xref: /openbmc/linux/kernel/fork.c (revision 4bce6fce)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 void __init fork_init(void)
291 {
292 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
293 #ifndef ARCH_MIN_TASKALIGN
294 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
295 #endif
296 	/* create a slab on which task_structs can be allocated */
297 	task_struct_cachep =
298 		kmem_cache_create("task_struct", sizeof(struct task_struct),
299 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
300 #endif
301 
302 	/* do the arch specific task caches init */
303 	arch_task_cache_init();
304 
305 	set_max_threads(MAX_THREADS);
306 
307 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
308 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
309 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
310 		init_task.signal->rlim[RLIMIT_NPROC];
311 }
312 
313 int __weak arch_dup_task_struct(struct task_struct *dst,
314 					       struct task_struct *src)
315 {
316 	*dst = *src;
317 	return 0;
318 }
319 
320 void set_task_stack_end_magic(struct task_struct *tsk)
321 {
322 	unsigned long *stackend;
323 
324 	stackend = end_of_stack(tsk);
325 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
326 }
327 
328 static struct task_struct *dup_task_struct(struct task_struct *orig)
329 {
330 	struct task_struct *tsk;
331 	struct thread_info *ti;
332 	int node = tsk_fork_get_node(orig);
333 	int err;
334 
335 	tsk = alloc_task_struct_node(node);
336 	if (!tsk)
337 		return NULL;
338 
339 	ti = alloc_thread_info_node(tsk, node);
340 	if (!ti)
341 		goto free_tsk;
342 
343 	err = arch_dup_task_struct(tsk, orig);
344 	if (err)
345 		goto free_ti;
346 
347 	tsk->stack = ti;
348 #ifdef CONFIG_SECCOMP
349 	/*
350 	 * We must handle setting up seccomp filters once we're under
351 	 * the sighand lock in case orig has changed between now and
352 	 * then. Until then, filter must be NULL to avoid messing up
353 	 * the usage counts on the error path calling free_task.
354 	 */
355 	tsk->seccomp.filter = NULL;
356 #endif
357 
358 	setup_thread_stack(tsk, orig);
359 	clear_user_return_notifier(tsk);
360 	clear_tsk_need_resched(tsk);
361 	set_task_stack_end_magic(tsk);
362 
363 #ifdef CONFIG_CC_STACKPROTECTOR
364 	tsk->stack_canary = get_random_int();
365 #endif
366 
367 	/*
368 	 * One for us, one for whoever does the "release_task()" (usually
369 	 * parent)
370 	 */
371 	atomic_set(&tsk->usage, 2);
372 #ifdef CONFIG_BLK_DEV_IO_TRACE
373 	tsk->btrace_seq = 0;
374 #endif
375 	tsk->splice_pipe = NULL;
376 	tsk->task_frag.page = NULL;
377 
378 	account_kernel_stack(ti, 1);
379 
380 	return tsk;
381 
382 free_ti:
383 	free_thread_info(ti);
384 free_tsk:
385 	free_task_struct(tsk);
386 	return NULL;
387 }
388 
389 #ifdef CONFIG_MMU
390 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
391 {
392 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
393 	struct rb_node **rb_link, *rb_parent;
394 	int retval;
395 	unsigned long charge;
396 
397 	uprobe_start_dup_mmap();
398 	down_write(&oldmm->mmap_sem);
399 	flush_cache_dup_mm(oldmm);
400 	uprobe_dup_mmap(oldmm, mm);
401 	/*
402 	 * Not linked in yet - no deadlock potential:
403 	 */
404 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
405 
406 	/* No ordering required: file already has been exposed. */
407 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
408 
409 	mm->total_vm = oldmm->total_vm;
410 	mm->shared_vm = oldmm->shared_vm;
411 	mm->exec_vm = oldmm->exec_vm;
412 	mm->stack_vm = oldmm->stack_vm;
413 
414 	rb_link = &mm->mm_rb.rb_node;
415 	rb_parent = NULL;
416 	pprev = &mm->mmap;
417 	retval = ksm_fork(mm, oldmm);
418 	if (retval)
419 		goto out;
420 	retval = khugepaged_fork(mm, oldmm);
421 	if (retval)
422 		goto out;
423 
424 	prev = NULL;
425 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
426 		struct file *file;
427 
428 		if (mpnt->vm_flags & VM_DONTCOPY) {
429 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
430 							-vma_pages(mpnt));
431 			continue;
432 		}
433 		charge = 0;
434 		if (mpnt->vm_flags & VM_ACCOUNT) {
435 			unsigned long len = vma_pages(mpnt);
436 
437 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
438 				goto fail_nomem;
439 			charge = len;
440 		}
441 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 		if (!tmp)
443 			goto fail_nomem;
444 		*tmp = *mpnt;
445 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
446 		retval = vma_dup_policy(mpnt, tmp);
447 		if (retval)
448 			goto fail_nomem_policy;
449 		tmp->vm_mm = mm;
450 		if (anon_vma_fork(tmp, mpnt))
451 			goto fail_nomem_anon_vma_fork;
452 		tmp->vm_flags &= ~VM_LOCKED;
453 		tmp->vm_next = tmp->vm_prev = NULL;
454 		file = tmp->vm_file;
455 		if (file) {
456 			struct inode *inode = file_inode(file);
457 			struct address_space *mapping = file->f_mapping;
458 
459 			get_file(file);
460 			if (tmp->vm_flags & VM_DENYWRITE)
461 				atomic_dec(&inode->i_writecount);
462 			i_mmap_lock_write(mapping);
463 			if (tmp->vm_flags & VM_SHARED)
464 				atomic_inc(&mapping->i_mmap_writable);
465 			flush_dcache_mmap_lock(mapping);
466 			/* insert tmp into the share list, just after mpnt */
467 			vma_interval_tree_insert_after(tmp, mpnt,
468 					&mapping->i_mmap);
469 			flush_dcache_mmap_unlock(mapping);
470 			i_mmap_unlock_write(mapping);
471 		}
472 
473 		/*
474 		 * Clear hugetlb-related page reserves for children. This only
475 		 * affects MAP_PRIVATE mappings. Faults generated by the child
476 		 * are not guaranteed to succeed, even if read-only
477 		 */
478 		if (is_vm_hugetlb_page(tmp))
479 			reset_vma_resv_huge_pages(tmp);
480 
481 		/*
482 		 * Link in the new vma and copy the page table entries.
483 		 */
484 		*pprev = tmp;
485 		pprev = &tmp->vm_next;
486 		tmp->vm_prev = prev;
487 		prev = tmp;
488 
489 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
490 		rb_link = &tmp->vm_rb.rb_right;
491 		rb_parent = &tmp->vm_rb;
492 
493 		mm->map_count++;
494 		retval = copy_page_range(mm, oldmm, mpnt);
495 
496 		if (tmp->vm_ops && tmp->vm_ops->open)
497 			tmp->vm_ops->open(tmp);
498 
499 		if (retval)
500 			goto out;
501 	}
502 	/* a new mm has just been created */
503 	arch_dup_mmap(oldmm, mm);
504 	retval = 0;
505 out:
506 	up_write(&mm->mmap_sem);
507 	flush_tlb_mm(oldmm);
508 	up_write(&oldmm->mmap_sem);
509 	uprobe_end_dup_mmap();
510 	return retval;
511 fail_nomem_anon_vma_fork:
512 	mpol_put(vma_policy(tmp));
513 fail_nomem_policy:
514 	kmem_cache_free(vm_area_cachep, tmp);
515 fail_nomem:
516 	retval = -ENOMEM;
517 	vm_unacct_memory(charge);
518 	goto out;
519 }
520 
521 static inline int mm_alloc_pgd(struct mm_struct *mm)
522 {
523 	mm->pgd = pgd_alloc(mm);
524 	if (unlikely(!mm->pgd))
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 static inline void mm_free_pgd(struct mm_struct *mm)
530 {
531 	pgd_free(mm, mm->pgd);
532 }
533 #else
534 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
535 {
536 	down_write(&oldmm->mmap_sem);
537 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
538 	up_write(&oldmm->mmap_sem);
539 	return 0;
540 }
541 #define mm_alloc_pgd(mm)	(0)
542 #define mm_free_pgd(mm)
543 #endif /* CONFIG_MMU */
544 
545 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
546 
547 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
548 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
549 
550 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
551 
552 static int __init coredump_filter_setup(char *s)
553 {
554 	default_dump_filter =
555 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
556 		MMF_DUMP_FILTER_MASK;
557 	return 1;
558 }
559 
560 __setup("coredump_filter=", coredump_filter_setup);
561 
562 #include <linux/init_task.h>
563 
564 static void mm_init_aio(struct mm_struct *mm)
565 {
566 #ifdef CONFIG_AIO
567 	spin_lock_init(&mm->ioctx_lock);
568 	mm->ioctx_table = NULL;
569 #endif
570 }
571 
572 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
573 {
574 #ifdef CONFIG_MEMCG
575 	mm->owner = p;
576 #endif
577 }
578 
579 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
580 {
581 	mm->mmap = NULL;
582 	mm->mm_rb = RB_ROOT;
583 	mm->vmacache_seqnum = 0;
584 	atomic_set(&mm->mm_users, 1);
585 	atomic_set(&mm->mm_count, 1);
586 	init_rwsem(&mm->mmap_sem);
587 	INIT_LIST_HEAD(&mm->mmlist);
588 	mm->core_state = NULL;
589 	atomic_long_set(&mm->nr_ptes, 0);
590 	mm_nr_pmds_init(mm);
591 	mm->map_count = 0;
592 	mm->locked_vm = 0;
593 	mm->pinned_vm = 0;
594 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
595 	spin_lock_init(&mm->page_table_lock);
596 	mm_init_cpumask(mm);
597 	mm_init_aio(mm);
598 	mm_init_owner(mm, p);
599 	mmu_notifier_mm_init(mm);
600 	clear_tlb_flush_pending(mm);
601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 	mm->pmd_huge_pte = NULL;
603 #endif
604 
605 	if (current->mm) {
606 		mm->flags = current->mm->flags & MMF_INIT_MASK;
607 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
608 	} else {
609 		mm->flags = default_dump_filter;
610 		mm->def_flags = 0;
611 	}
612 
613 	if (mm_alloc_pgd(mm))
614 		goto fail_nopgd;
615 
616 	if (init_new_context(p, mm))
617 		goto fail_nocontext;
618 
619 	return mm;
620 
621 fail_nocontext:
622 	mm_free_pgd(mm);
623 fail_nopgd:
624 	free_mm(mm);
625 	return NULL;
626 }
627 
628 static void check_mm(struct mm_struct *mm)
629 {
630 	int i;
631 
632 	for (i = 0; i < NR_MM_COUNTERS; i++) {
633 		long x = atomic_long_read(&mm->rss_stat.count[i]);
634 
635 		if (unlikely(x))
636 			printk(KERN_ALERT "BUG: Bad rss-counter state "
637 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
638 	}
639 
640 	if (atomic_long_read(&mm->nr_ptes))
641 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
642 				atomic_long_read(&mm->nr_ptes));
643 	if (mm_nr_pmds(mm))
644 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
645 				mm_nr_pmds(mm));
646 
647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
648 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
649 #endif
650 }
651 
652 /*
653  * Allocate and initialize an mm_struct.
654  */
655 struct mm_struct *mm_alloc(void)
656 {
657 	struct mm_struct *mm;
658 
659 	mm = allocate_mm();
660 	if (!mm)
661 		return NULL;
662 
663 	memset(mm, 0, sizeof(*mm));
664 	return mm_init(mm, current);
665 }
666 
667 /*
668  * Called when the last reference to the mm
669  * is dropped: either by a lazy thread or by
670  * mmput. Free the page directory and the mm.
671  */
672 void __mmdrop(struct mm_struct *mm)
673 {
674 	BUG_ON(mm == &init_mm);
675 	mm_free_pgd(mm);
676 	destroy_context(mm);
677 	mmu_notifier_mm_destroy(mm);
678 	check_mm(mm);
679 	free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682 
683 /*
684  * Decrement the use count and release all resources for an mm.
685  */
686 void mmput(struct mm_struct *mm)
687 {
688 	might_sleep();
689 
690 	if (atomic_dec_and_test(&mm->mm_users)) {
691 		uprobe_clear_state(mm);
692 		exit_aio(mm);
693 		ksm_exit(mm);
694 		khugepaged_exit(mm); /* must run before exit_mmap */
695 		exit_mmap(mm);
696 		set_mm_exe_file(mm, NULL);
697 		if (!list_empty(&mm->mmlist)) {
698 			spin_lock(&mmlist_lock);
699 			list_del(&mm->mmlist);
700 			spin_unlock(&mmlist_lock);
701 		}
702 		if (mm->binfmt)
703 			module_put(mm->binfmt->module);
704 		mmdrop(mm);
705 	}
706 }
707 EXPORT_SYMBOL_GPL(mmput);
708 
709 /**
710  * set_mm_exe_file - change a reference to the mm's executable file
711  *
712  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
713  *
714  * Main users are mmput() and sys_execve(). Callers prevent concurrent
715  * invocations: in mmput() nobody alive left, in execve task is single
716  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
717  * mm->exe_file, but does so without using set_mm_exe_file() in order
718  * to do avoid the need for any locks.
719  */
720 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
721 {
722 	struct file *old_exe_file;
723 
724 	/*
725 	 * It is safe to dereference the exe_file without RCU as
726 	 * this function is only called if nobody else can access
727 	 * this mm -- see comment above for justification.
728 	 */
729 	old_exe_file = rcu_dereference_raw(mm->exe_file);
730 
731 	if (new_exe_file)
732 		get_file(new_exe_file);
733 	rcu_assign_pointer(mm->exe_file, new_exe_file);
734 	if (old_exe_file)
735 		fput(old_exe_file);
736 }
737 
738 /**
739  * get_mm_exe_file - acquire a reference to the mm's executable file
740  *
741  * Returns %NULL if mm has no associated executable file.
742  * User must release file via fput().
743  */
744 struct file *get_mm_exe_file(struct mm_struct *mm)
745 {
746 	struct file *exe_file;
747 
748 	rcu_read_lock();
749 	exe_file = rcu_dereference(mm->exe_file);
750 	if (exe_file && !get_file_rcu(exe_file))
751 		exe_file = NULL;
752 	rcu_read_unlock();
753 	return exe_file;
754 }
755 EXPORT_SYMBOL(get_mm_exe_file);
756 
757 /**
758  * get_task_mm - acquire a reference to the task's mm
759  *
760  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
761  * this kernel workthread has transiently adopted a user mm with use_mm,
762  * to do its AIO) is not set and if so returns a reference to it, after
763  * bumping up the use count.  User must release the mm via mmput()
764  * after use.  Typically used by /proc and ptrace.
765  */
766 struct mm_struct *get_task_mm(struct task_struct *task)
767 {
768 	struct mm_struct *mm;
769 
770 	task_lock(task);
771 	mm = task->mm;
772 	if (mm) {
773 		if (task->flags & PF_KTHREAD)
774 			mm = NULL;
775 		else
776 			atomic_inc(&mm->mm_users);
777 	}
778 	task_unlock(task);
779 	return mm;
780 }
781 EXPORT_SYMBOL_GPL(get_task_mm);
782 
783 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
784 {
785 	struct mm_struct *mm;
786 	int err;
787 
788 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
789 	if (err)
790 		return ERR_PTR(err);
791 
792 	mm = get_task_mm(task);
793 	if (mm && mm != current->mm &&
794 			!ptrace_may_access(task, mode)) {
795 		mmput(mm);
796 		mm = ERR_PTR(-EACCES);
797 	}
798 	mutex_unlock(&task->signal->cred_guard_mutex);
799 
800 	return mm;
801 }
802 
803 static void complete_vfork_done(struct task_struct *tsk)
804 {
805 	struct completion *vfork;
806 
807 	task_lock(tsk);
808 	vfork = tsk->vfork_done;
809 	if (likely(vfork)) {
810 		tsk->vfork_done = NULL;
811 		complete(vfork);
812 	}
813 	task_unlock(tsk);
814 }
815 
816 static int wait_for_vfork_done(struct task_struct *child,
817 				struct completion *vfork)
818 {
819 	int killed;
820 
821 	freezer_do_not_count();
822 	killed = wait_for_completion_killable(vfork);
823 	freezer_count();
824 
825 	if (killed) {
826 		task_lock(child);
827 		child->vfork_done = NULL;
828 		task_unlock(child);
829 	}
830 
831 	put_task_struct(child);
832 	return killed;
833 }
834 
835 /* Please note the differences between mmput and mm_release.
836  * mmput is called whenever we stop holding onto a mm_struct,
837  * error success whatever.
838  *
839  * mm_release is called after a mm_struct has been removed
840  * from the current process.
841  *
842  * This difference is important for error handling, when we
843  * only half set up a mm_struct for a new process and need to restore
844  * the old one.  Because we mmput the new mm_struct before
845  * restoring the old one. . .
846  * Eric Biederman 10 January 1998
847  */
848 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
849 {
850 	/* Get rid of any futexes when releasing the mm */
851 #ifdef CONFIG_FUTEX
852 	if (unlikely(tsk->robust_list)) {
853 		exit_robust_list(tsk);
854 		tsk->robust_list = NULL;
855 	}
856 #ifdef CONFIG_COMPAT
857 	if (unlikely(tsk->compat_robust_list)) {
858 		compat_exit_robust_list(tsk);
859 		tsk->compat_robust_list = NULL;
860 	}
861 #endif
862 	if (unlikely(!list_empty(&tsk->pi_state_list)))
863 		exit_pi_state_list(tsk);
864 #endif
865 
866 	uprobe_free_utask(tsk);
867 
868 	/* Get rid of any cached register state */
869 	deactivate_mm(tsk, mm);
870 
871 	/*
872 	 * If we're exiting normally, clear a user-space tid field if
873 	 * requested.  We leave this alone when dying by signal, to leave
874 	 * the value intact in a core dump, and to save the unnecessary
875 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
876 	 * Userland only wants this done for a sys_exit.
877 	 */
878 	if (tsk->clear_child_tid) {
879 		if (!(tsk->flags & PF_SIGNALED) &&
880 		    atomic_read(&mm->mm_users) > 1) {
881 			/*
882 			 * We don't check the error code - if userspace has
883 			 * not set up a proper pointer then tough luck.
884 			 */
885 			put_user(0, tsk->clear_child_tid);
886 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
887 					1, NULL, NULL, 0);
888 		}
889 		tsk->clear_child_tid = NULL;
890 	}
891 
892 	/*
893 	 * All done, finally we can wake up parent and return this mm to him.
894 	 * Also kthread_stop() uses this completion for synchronization.
895 	 */
896 	if (tsk->vfork_done)
897 		complete_vfork_done(tsk);
898 }
899 
900 /*
901  * Allocate a new mm structure and copy contents from the
902  * mm structure of the passed in task structure.
903  */
904 static struct mm_struct *dup_mm(struct task_struct *tsk)
905 {
906 	struct mm_struct *mm, *oldmm = current->mm;
907 	int err;
908 
909 	mm = allocate_mm();
910 	if (!mm)
911 		goto fail_nomem;
912 
913 	memcpy(mm, oldmm, sizeof(*mm));
914 
915 	if (!mm_init(mm, tsk))
916 		goto fail_nomem;
917 
918 	err = dup_mmap(mm, oldmm);
919 	if (err)
920 		goto free_pt;
921 
922 	mm->hiwater_rss = get_mm_rss(mm);
923 	mm->hiwater_vm = mm->total_vm;
924 
925 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
926 		goto free_pt;
927 
928 	return mm;
929 
930 free_pt:
931 	/* don't put binfmt in mmput, we haven't got module yet */
932 	mm->binfmt = NULL;
933 	mmput(mm);
934 
935 fail_nomem:
936 	return NULL;
937 }
938 
939 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 	struct mm_struct *mm, *oldmm;
942 	int retval;
943 
944 	tsk->min_flt = tsk->maj_flt = 0;
945 	tsk->nvcsw = tsk->nivcsw = 0;
946 #ifdef CONFIG_DETECT_HUNG_TASK
947 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
948 #endif
949 
950 	tsk->mm = NULL;
951 	tsk->active_mm = NULL;
952 
953 	/*
954 	 * Are we cloning a kernel thread?
955 	 *
956 	 * We need to steal a active VM for that..
957 	 */
958 	oldmm = current->mm;
959 	if (!oldmm)
960 		return 0;
961 
962 	/* initialize the new vmacache entries */
963 	vmacache_flush(tsk);
964 
965 	if (clone_flags & CLONE_VM) {
966 		atomic_inc(&oldmm->mm_users);
967 		mm = oldmm;
968 		goto good_mm;
969 	}
970 
971 	retval = -ENOMEM;
972 	mm = dup_mm(tsk);
973 	if (!mm)
974 		goto fail_nomem;
975 
976 good_mm:
977 	tsk->mm = mm;
978 	tsk->active_mm = mm;
979 	return 0;
980 
981 fail_nomem:
982 	return retval;
983 }
984 
985 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 	struct fs_struct *fs = current->fs;
988 	if (clone_flags & CLONE_FS) {
989 		/* tsk->fs is already what we want */
990 		spin_lock(&fs->lock);
991 		if (fs->in_exec) {
992 			spin_unlock(&fs->lock);
993 			return -EAGAIN;
994 		}
995 		fs->users++;
996 		spin_unlock(&fs->lock);
997 		return 0;
998 	}
999 	tsk->fs = copy_fs_struct(fs);
1000 	if (!tsk->fs)
1001 		return -ENOMEM;
1002 	return 0;
1003 }
1004 
1005 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 	struct files_struct *oldf, *newf;
1008 	int error = 0;
1009 
1010 	/*
1011 	 * A background process may not have any files ...
1012 	 */
1013 	oldf = current->files;
1014 	if (!oldf)
1015 		goto out;
1016 
1017 	if (clone_flags & CLONE_FILES) {
1018 		atomic_inc(&oldf->count);
1019 		goto out;
1020 	}
1021 
1022 	newf = dup_fd(oldf, &error);
1023 	if (!newf)
1024 		goto out;
1025 
1026 	tsk->files = newf;
1027 	error = 0;
1028 out:
1029 	return error;
1030 }
1031 
1032 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 #ifdef CONFIG_BLOCK
1035 	struct io_context *ioc = current->io_context;
1036 	struct io_context *new_ioc;
1037 
1038 	if (!ioc)
1039 		return 0;
1040 	/*
1041 	 * Share io context with parent, if CLONE_IO is set
1042 	 */
1043 	if (clone_flags & CLONE_IO) {
1044 		ioc_task_link(ioc);
1045 		tsk->io_context = ioc;
1046 	} else if (ioprio_valid(ioc->ioprio)) {
1047 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1048 		if (unlikely(!new_ioc))
1049 			return -ENOMEM;
1050 
1051 		new_ioc->ioprio = ioc->ioprio;
1052 		put_io_context(new_ioc);
1053 	}
1054 #endif
1055 	return 0;
1056 }
1057 
1058 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060 	struct sighand_struct *sig;
1061 
1062 	if (clone_flags & CLONE_SIGHAND) {
1063 		atomic_inc(&current->sighand->count);
1064 		return 0;
1065 	}
1066 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1067 	rcu_assign_pointer(tsk->sighand, sig);
1068 	if (!sig)
1069 		return -ENOMEM;
1070 	atomic_set(&sig->count, 1);
1071 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1072 	return 0;
1073 }
1074 
1075 void __cleanup_sighand(struct sighand_struct *sighand)
1076 {
1077 	if (atomic_dec_and_test(&sighand->count)) {
1078 		signalfd_cleanup(sighand);
1079 		/*
1080 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1081 		 * without an RCU grace period, see __lock_task_sighand().
1082 		 */
1083 		kmem_cache_free(sighand_cachep, sighand);
1084 	}
1085 }
1086 
1087 /*
1088  * Initialize POSIX timer handling for a thread group.
1089  */
1090 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1091 {
1092 	unsigned long cpu_limit;
1093 
1094 	/* Thread group counters. */
1095 	thread_group_cputime_init(sig);
1096 
1097 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1098 	if (cpu_limit != RLIM_INFINITY) {
1099 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1100 		sig->cputimer.running = 1;
1101 	}
1102 
1103 	/* The timer lists. */
1104 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1105 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1106 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1107 }
1108 
1109 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1110 {
1111 	struct signal_struct *sig;
1112 
1113 	if (clone_flags & CLONE_THREAD)
1114 		return 0;
1115 
1116 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1117 	tsk->signal = sig;
1118 	if (!sig)
1119 		return -ENOMEM;
1120 
1121 	sig->nr_threads = 1;
1122 	atomic_set(&sig->live, 1);
1123 	atomic_set(&sig->sigcnt, 1);
1124 
1125 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1126 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1127 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1128 
1129 	init_waitqueue_head(&sig->wait_chldexit);
1130 	sig->curr_target = tsk;
1131 	init_sigpending(&sig->shared_pending);
1132 	INIT_LIST_HEAD(&sig->posix_timers);
1133 	seqlock_init(&sig->stats_lock);
1134 
1135 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 	sig->real_timer.function = it_real_fn;
1137 
1138 	task_lock(current->group_leader);
1139 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1140 	task_unlock(current->group_leader);
1141 
1142 	posix_cpu_timers_init_group(sig);
1143 
1144 	tty_audit_fork(sig);
1145 	sched_autogroup_fork(sig);
1146 
1147 #ifdef CONFIG_CGROUPS
1148 	init_rwsem(&sig->group_rwsem);
1149 #endif
1150 
1151 	sig->oom_score_adj = current->signal->oom_score_adj;
1152 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1153 
1154 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1155 				   current->signal->is_child_subreaper;
1156 
1157 	mutex_init(&sig->cred_guard_mutex);
1158 
1159 	return 0;
1160 }
1161 
1162 static void copy_seccomp(struct task_struct *p)
1163 {
1164 #ifdef CONFIG_SECCOMP
1165 	/*
1166 	 * Must be called with sighand->lock held, which is common to
1167 	 * all threads in the group. Holding cred_guard_mutex is not
1168 	 * needed because this new task is not yet running and cannot
1169 	 * be racing exec.
1170 	 */
1171 	assert_spin_locked(&current->sighand->siglock);
1172 
1173 	/* Ref-count the new filter user, and assign it. */
1174 	get_seccomp_filter(current);
1175 	p->seccomp = current->seccomp;
1176 
1177 	/*
1178 	 * Explicitly enable no_new_privs here in case it got set
1179 	 * between the task_struct being duplicated and holding the
1180 	 * sighand lock. The seccomp state and nnp must be in sync.
1181 	 */
1182 	if (task_no_new_privs(current))
1183 		task_set_no_new_privs(p);
1184 
1185 	/*
1186 	 * If the parent gained a seccomp mode after copying thread
1187 	 * flags and between before we held the sighand lock, we have
1188 	 * to manually enable the seccomp thread flag here.
1189 	 */
1190 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1191 		set_tsk_thread_flag(p, TIF_SECCOMP);
1192 #endif
1193 }
1194 
1195 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1196 {
1197 	current->clear_child_tid = tidptr;
1198 
1199 	return task_pid_vnr(current);
1200 }
1201 
1202 static void rt_mutex_init_task(struct task_struct *p)
1203 {
1204 	raw_spin_lock_init(&p->pi_lock);
1205 #ifdef CONFIG_RT_MUTEXES
1206 	p->pi_waiters = RB_ROOT;
1207 	p->pi_waiters_leftmost = NULL;
1208 	p->pi_blocked_on = NULL;
1209 #endif
1210 }
1211 
1212 /*
1213  * Initialize POSIX timer handling for a single task.
1214  */
1215 static void posix_cpu_timers_init(struct task_struct *tsk)
1216 {
1217 	tsk->cputime_expires.prof_exp = 0;
1218 	tsk->cputime_expires.virt_exp = 0;
1219 	tsk->cputime_expires.sched_exp = 0;
1220 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1221 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1222 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1223 }
1224 
1225 static inline void
1226 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1227 {
1228 	 task->pids[type].pid = pid;
1229 }
1230 
1231 /*
1232  * This creates a new process as a copy of the old one,
1233  * but does not actually start it yet.
1234  *
1235  * It copies the registers, and all the appropriate
1236  * parts of the process environment (as per the clone
1237  * flags). The actual kick-off is left to the caller.
1238  */
1239 static struct task_struct *copy_process(unsigned long clone_flags,
1240 					unsigned long stack_start,
1241 					unsigned long stack_size,
1242 					int __user *child_tidptr,
1243 					struct pid *pid,
1244 					int trace)
1245 {
1246 	int retval;
1247 	struct task_struct *p;
1248 
1249 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1250 		return ERR_PTR(-EINVAL);
1251 
1252 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1253 		return ERR_PTR(-EINVAL);
1254 
1255 	/*
1256 	 * Thread groups must share signals as well, and detached threads
1257 	 * can only be started up within the thread group.
1258 	 */
1259 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1260 		return ERR_PTR(-EINVAL);
1261 
1262 	/*
1263 	 * Shared signal handlers imply shared VM. By way of the above,
1264 	 * thread groups also imply shared VM. Blocking this case allows
1265 	 * for various simplifications in other code.
1266 	 */
1267 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1268 		return ERR_PTR(-EINVAL);
1269 
1270 	/*
1271 	 * Siblings of global init remain as zombies on exit since they are
1272 	 * not reaped by their parent (swapper). To solve this and to avoid
1273 	 * multi-rooted process trees, prevent global and container-inits
1274 	 * from creating siblings.
1275 	 */
1276 	if ((clone_flags & CLONE_PARENT) &&
1277 				current->signal->flags & SIGNAL_UNKILLABLE)
1278 		return ERR_PTR(-EINVAL);
1279 
1280 	/*
1281 	 * If the new process will be in a different pid or user namespace
1282 	 * do not allow it to share a thread group or signal handlers or
1283 	 * parent with the forking task.
1284 	 */
1285 	if (clone_flags & CLONE_SIGHAND) {
1286 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1287 		    (task_active_pid_ns(current) !=
1288 				current->nsproxy->pid_ns_for_children))
1289 			return ERR_PTR(-EINVAL);
1290 	}
1291 
1292 	retval = security_task_create(clone_flags);
1293 	if (retval)
1294 		goto fork_out;
1295 
1296 	retval = -ENOMEM;
1297 	p = dup_task_struct(current);
1298 	if (!p)
1299 		goto fork_out;
1300 
1301 	ftrace_graph_init_task(p);
1302 
1303 	rt_mutex_init_task(p);
1304 
1305 #ifdef CONFIG_PROVE_LOCKING
1306 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1307 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1308 #endif
1309 	retval = -EAGAIN;
1310 	if (atomic_read(&p->real_cred->user->processes) >=
1311 			task_rlimit(p, RLIMIT_NPROC)) {
1312 		if (p->real_cred->user != INIT_USER &&
1313 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1314 			goto bad_fork_free;
1315 	}
1316 	current->flags &= ~PF_NPROC_EXCEEDED;
1317 
1318 	retval = copy_creds(p, clone_flags);
1319 	if (retval < 0)
1320 		goto bad_fork_free;
1321 
1322 	/*
1323 	 * If multiple threads are within copy_process(), then this check
1324 	 * triggers too late. This doesn't hurt, the check is only there
1325 	 * to stop root fork bombs.
1326 	 */
1327 	retval = -EAGAIN;
1328 	if (nr_threads >= max_threads)
1329 		goto bad_fork_cleanup_count;
1330 
1331 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1332 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1333 	p->flags |= PF_FORKNOEXEC;
1334 	INIT_LIST_HEAD(&p->children);
1335 	INIT_LIST_HEAD(&p->sibling);
1336 	rcu_copy_process(p);
1337 	p->vfork_done = NULL;
1338 	spin_lock_init(&p->alloc_lock);
1339 
1340 	init_sigpending(&p->pending);
1341 
1342 	p->utime = p->stime = p->gtime = 0;
1343 	p->utimescaled = p->stimescaled = 0;
1344 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1345 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1346 #endif
1347 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1348 	seqlock_init(&p->vtime_seqlock);
1349 	p->vtime_snap = 0;
1350 	p->vtime_snap_whence = VTIME_SLEEPING;
1351 #endif
1352 
1353 #if defined(SPLIT_RSS_COUNTING)
1354 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1355 #endif
1356 
1357 	p->default_timer_slack_ns = current->timer_slack_ns;
1358 
1359 	task_io_accounting_init(&p->ioac);
1360 	acct_clear_integrals(p);
1361 
1362 	posix_cpu_timers_init(p);
1363 
1364 	p->start_time = ktime_get_ns();
1365 	p->real_start_time = ktime_get_boot_ns();
1366 	p->io_context = NULL;
1367 	p->audit_context = NULL;
1368 	if (clone_flags & CLONE_THREAD)
1369 		threadgroup_change_begin(current);
1370 	cgroup_fork(p);
1371 #ifdef CONFIG_NUMA
1372 	p->mempolicy = mpol_dup(p->mempolicy);
1373 	if (IS_ERR(p->mempolicy)) {
1374 		retval = PTR_ERR(p->mempolicy);
1375 		p->mempolicy = NULL;
1376 		goto bad_fork_cleanup_threadgroup_lock;
1377 	}
1378 #endif
1379 #ifdef CONFIG_CPUSETS
1380 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1381 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1382 	seqcount_init(&p->mems_allowed_seq);
1383 #endif
1384 #ifdef CONFIG_TRACE_IRQFLAGS
1385 	p->irq_events = 0;
1386 	p->hardirqs_enabled = 0;
1387 	p->hardirq_enable_ip = 0;
1388 	p->hardirq_enable_event = 0;
1389 	p->hardirq_disable_ip = _THIS_IP_;
1390 	p->hardirq_disable_event = 0;
1391 	p->softirqs_enabled = 1;
1392 	p->softirq_enable_ip = _THIS_IP_;
1393 	p->softirq_enable_event = 0;
1394 	p->softirq_disable_ip = 0;
1395 	p->softirq_disable_event = 0;
1396 	p->hardirq_context = 0;
1397 	p->softirq_context = 0;
1398 #endif
1399 #ifdef CONFIG_LOCKDEP
1400 	p->lockdep_depth = 0; /* no locks held yet */
1401 	p->curr_chain_key = 0;
1402 	p->lockdep_recursion = 0;
1403 #endif
1404 
1405 #ifdef CONFIG_DEBUG_MUTEXES
1406 	p->blocked_on = NULL; /* not blocked yet */
1407 #endif
1408 #ifdef CONFIG_BCACHE
1409 	p->sequential_io	= 0;
1410 	p->sequential_io_avg	= 0;
1411 #endif
1412 
1413 	/* Perform scheduler related setup. Assign this task to a CPU. */
1414 	retval = sched_fork(clone_flags, p);
1415 	if (retval)
1416 		goto bad_fork_cleanup_policy;
1417 
1418 	retval = perf_event_init_task(p);
1419 	if (retval)
1420 		goto bad_fork_cleanup_policy;
1421 	retval = audit_alloc(p);
1422 	if (retval)
1423 		goto bad_fork_cleanup_perf;
1424 	/* copy all the process information */
1425 	shm_init_task(p);
1426 	retval = copy_semundo(clone_flags, p);
1427 	if (retval)
1428 		goto bad_fork_cleanup_audit;
1429 	retval = copy_files(clone_flags, p);
1430 	if (retval)
1431 		goto bad_fork_cleanup_semundo;
1432 	retval = copy_fs(clone_flags, p);
1433 	if (retval)
1434 		goto bad_fork_cleanup_files;
1435 	retval = copy_sighand(clone_flags, p);
1436 	if (retval)
1437 		goto bad_fork_cleanup_fs;
1438 	retval = copy_signal(clone_flags, p);
1439 	if (retval)
1440 		goto bad_fork_cleanup_sighand;
1441 	retval = copy_mm(clone_flags, p);
1442 	if (retval)
1443 		goto bad_fork_cleanup_signal;
1444 	retval = copy_namespaces(clone_flags, p);
1445 	if (retval)
1446 		goto bad_fork_cleanup_mm;
1447 	retval = copy_io(clone_flags, p);
1448 	if (retval)
1449 		goto bad_fork_cleanup_namespaces;
1450 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1451 	if (retval)
1452 		goto bad_fork_cleanup_io;
1453 
1454 	if (pid != &init_struct_pid) {
1455 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1456 		if (IS_ERR(pid)) {
1457 			retval = PTR_ERR(pid);
1458 			goto bad_fork_cleanup_io;
1459 		}
1460 	}
1461 
1462 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1463 	/*
1464 	 * Clear TID on mm_release()?
1465 	 */
1466 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1467 #ifdef CONFIG_BLOCK
1468 	p->plug = NULL;
1469 #endif
1470 #ifdef CONFIG_FUTEX
1471 	p->robust_list = NULL;
1472 #ifdef CONFIG_COMPAT
1473 	p->compat_robust_list = NULL;
1474 #endif
1475 	INIT_LIST_HEAD(&p->pi_state_list);
1476 	p->pi_state_cache = NULL;
1477 #endif
1478 	/*
1479 	 * sigaltstack should be cleared when sharing the same VM
1480 	 */
1481 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1482 		p->sas_ss_sp = p->sas_ss_size = 0;
1483 
1484 	/*
1485 	 * Syscall tracing and stepping should be turned off in the
1486 	 * child regardless of CLONE_PTRACE.
1487 	 */
1488 	user_disable_single_step(p);
1489 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1490 #ifdef TIF_SYSCALL_EMU
1491 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1492 #endif
1493 	clear_all_latency_tracing(p);
1494 
1495 	/* ok, now we should be set up.. */
1496 	p->pid = pid_nr(pid);
1497 	if (clone_flags & CLONE_THREAD) {
1498 		p->exit_signal = -1;
1499 		p->group_leader = current->group_leader;
1500 		p->tgid = current->tgid;
1501 	} else {
1502 		if (clone_flags & CLONE_PARENT)
1503 			p->exit_signal = current->group_leader->exit_signal;
1504 		else
1505 			p->exit_signal = (clone_flags & CSIGNAL);
1506 		p->group_leader = p;
1507 		p->tgid = p->pid;
1508 	}
1509 
1510 	p->nr_dirtied = 0;
1511 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1512 	p->dirty_paused_when = 0;
1513 
1514 	p->pdeath_signal = 0;
1515 	INIT_LIST_HEAD(&p->thread_group);
1516 	p->task_works = NULL;
1517 
1518 	/*
1519 	 * Make it visible to the rest of the system, but dont wake it up yet.
1520 	 * Need tasklist lock for parent etc handling!
1521 	 */
1522 	write_lock_irq(&tasklist_lock);
1523 
1524 	/* CLONE_PARENT re-uses the old parent */
1525 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1526 		p->real_parent = current->real_parent;
1527 		p->parent_exec_id = current->parent_exec_id;
1528 	} else {
1529 		p->real_parent = current;
1530 		p->parent_exec_id = current->self_exec_id;
1531 	}
1532 
1533 	spin_lock(&current->sighand->siglock);
1534 
1535 	/*
1536 	 * Copy seccomp details explicitly here, in case they were changed
1537 	 * before holding sighand lock.
1538 	 */
1539 	copy_seccomp(p);
1540 
1541 	/*
1542 	 * Process group and session signals need to be delivered to just the
1543 	 * parent before the fork or both the parent and the child after the
1544 	 * fork. Restart if a signal comes in before we add the new process to
1545 	 * it's process group.
1546 	 * A fatal signal pending means that current will exit, so the new
1547 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1548 	*/
1549 	recalc_sigpending();
1550 	if (signal_pending(current)) {
1551 		spin_unlock(&current->sighand->siglock);
1552 		write_unlock_irq(&tasklist_lock);
1553 		retval = -ERESTARTNOINTR;
1554 		goto bad_fork_free_pid;
1555 	}
1556 
1557 	if (likely(p->pid)) {
1558 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1559 
1560 		init_task_pid(p, PIDTYPE_PID, pid);
1561 		if (thread_group_leader(p)) {
1562 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1563 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1564 
1565 			if (is_child_reaper(pid)) {
1566 				ns_of_pid(pid)->child_reaper = p;
1567 				p->signal->flags |= SIGNAL_UNKILLABLE;
1568 			}
1569 
1570 			p->signal->leader_pid = pid;
1571 			p->signal->tty = tty_kref_get(current->signal->tty);
1572 			list_add_tail(&p->sibling, &p->real_parent->children);
1573 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1574 			attach_pid(p, PIDTYPE_PGID);
1575 			attach_pid(p, PIDTYPE_SID);
1576 			__this_cpu_inc(process_counts);
1577 		} else {
1578 			current->signal->nr_threads++;
1579 			atomic_inc(&current->signal->live);
1580 			atomic_inc(&current->signal->sigcnt);
1581 			list_add_tail_rcu(&p->thread_group,
1582 					  &p->group_leader->thread_group);
1583 			list_add_tail_rcu(&p->thread_node,
1584 					  &p->signal->thread_head);
1585 		}
1586 		attach_pid(p, PIDTYPE_PID);
1587 		nr_threads++;
1588 	}
1589 
1590 	total_forks++;
1591 	spin_unlock(&current->sighand->siglock);
1592 	syscall_tracepoint_update(p);
1593 	write_unlock_irq(&tasklist_lock);
1594 
1595 	proc_fork_connector(p);
1596 	cgroup_post_fork(p);
1597 	if (clone_flags & CLONE_THREAD)
1598 		threadgroup_change_end(current);
1599 	perf_event_fork(p);
1600 
1601 	trace_task_newtask(p, clone_flags);
1602 	uprobe_copy_process(p, clone_flags);
1603 
1604 	return p;
1605 
1606 bad_fork_free_pid:
1607 	if (pid != &init_struct_pid)
1608 		free_pid(pid);
1609 bad_fork_cleanup_io:
1610 	if (p->io_context)
1611 		exit_io_context(p);
1612 bad_fork_cleanup_namespaces:
1613 	exit_task_namespaces(p);
1614 bad_fork_cleanup_mm:
1615 	if (p->mm)
1616 		mmput(p->mm);
1617 bad_fork_cleanup_signal:
1618 	if (!(clone_flags & CLONE_THREAD))
1619 		free_signal_struct(p->signal);
1620 bad_fork_cleanup_sighand:
1621 	__cleanup_sighand(p->sighand);
1622 bad_fork_cleanup_fs:
1623 	exit_fs(p); /* blocking */
1624 bad_fork_cleanup_files:
1625 	exit_files(p); /* blocking */
1626 bad_fork_cleanup_semundo:
1627 	exit_sem(p);
1628 bad_fork_cleanup_audit:
1629 	audit_free(p);
1630 bad_fork_cleanup_perf:
1631 	perf_event_free_task(p);
1632 bad_fork_cleanup_policy:
1633 #ifdef CONFIG_NUMA
1634 	mpol_put(p->mempolicy);
1635 bad_fork_cleanup_threadgroup_lock:
1636 #endif
1637 	if (clone_flags & CLONE_THREAD)
1638 		threadgroup_change_end(current);
1639 	delayacct_tsk_free(p);
1640 bad_fork_cleanup_count:
1641 	atomic_dec(&p->cred->user->processes);
1642 	exit_creds(p);
1643 bad_fork_free:
1644 	free_task(p);
1645 fork_out:
1646 	return ERR_PTR(retval);
1647 }
1648 
1649 static inline void init_idle_pids(struct pid_link *links)
1650 {
1651 	enum pid_type type;
1652 
1653 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1655 		links[type].pid = &init_struct_pid;
1656 	}
1657 }
1658 
1659 struct task_struct *fork_idle(int cpu)
1660 {
1661 	struct task_struct *task;
1662 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1663 	if (!IS_ERR(task)) {
1664 		init_idle_pids(task->pids);
1665 		init_idle(task, cpu);
1666 	}
1667 
1668 	return task;
1669 }
1670 
1671 /*
1672  *  Ok, this is the main fork-routine.
1673  *
1674  * It copies the process, and if successful kick-starts
1675  * it and waits for it to finish using the VM if required.
1676  */
1677 long do_fork(unsigned long clone_flags,
1678 	      unsigned long stack_start,
1679 	      unsigned long stack_size,
1680 	      int __user *parent_tidptr,
1681 	      int __user *child_tidptr)
1682 {
1683 	struct task_struct *p;
1684 	int trace = 0;
1685 	long nr;
1686 
1687 	/*
1688 	 * Determine whether and which event to report to ptracer.  When
1689 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1690 	 * requested, no event is reported; otherwise, report if the event
1691 	 * for the type of forking is enabled.
1692 	 */
1693 	if (!(clone_flags & CLONE_UNTRACED)) {
1694 		if (clone_flags & CLONE_VFORK)
1695 			trace = PTRACE_EVENT_VFORK;
1696 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1697 			trace = PTRACE_EVENT_CLONE;
1698 		else
1699 			trace = PTRACE_EVENT_FORK;
1700 
1701 		if (likely(!ptrace_event_enabled(current, trace)))
1702 			trace = 0;
1703 	}
1704 
1705 	p = copy_process(clone_flags, stack_start, stack_size,
1706 			 child_tidptr, NULL, trace);
1707 	/*
1708 	 * Do this prior waking up the new thread - the thread pointer
1709 	 * might get invalid after that point, if the thread exits quickly.
1710 	 */
1711 	if (!IS_ERR(p)) {
1712 		struct completion vfork;
1713 		struct pid *pid;
1714 
1715 		trace_sched_process_fork(current, p);
1716 
1717 		pid = get_task_pid(p, PIDTYPE_PID);
1718 		nr = pid_vnr(pid);
1719 
1720 		if (clone_flags & CLONE_PARENT_SETTID)
1721 			put_user(nr, parent_tidptr);
1722 
1723 		if (clone_flags & CLONE_VFORK) {
1724 			p->vfork_done = &vfork;
1725 			init_completion(&vfork);
1726 			get_task_struct(p);
1727 		}
1728 
1729 		wake_up_new_task(p);
1730 
1731 		/* forking complete and child started to run, tell ptracer */
1732 		if (unlikely(trace))
1733 			ptrace_event_pid(trace, pid);
1734 
1735 		if (clone_flags & CLONE_VFORK) {
1736 			if (!wait_for_vfork_done(p, &vfork))
1737 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1738 		}
1739 
1740 		put_pid(pid);
1741 	} else {
1742 		nr = PTR_ERR(p);
1743 	}
1744 	return nr;
1745 }
1746 
1747 /*
1748  * Create a kernel thread.
1749  */
1750 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1751 {
1752 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1753 		(unsigned long)arg, NULL, NULL);
1754 }
1755 
1756 #ifdef __ARCH_WANT_SYS_FORK
1757 SYSCALL_DEFINE0(fork)
1758 {
1759 #ifdef CONFIG_MMU
1760 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1761 #else
1762 	/* can not support in nommu mode */
1763 	return -EINVAL;
1764 #endif
1765 }
1766 #endif
1767 
1768 #ifdef __ARCH_WANT_SYS_VFORK
1769 SYSCALL_DEFINE0(vfork)
1770 {
1771 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1772 			0, NULL, NULL);
1773 }
1774 #endif
1775 
1776 #ifdef __ARCH_WANT_SYS_CLONE
1777 #ifdef CONFIG_CLONE_BACKWARDS
1778 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1779 		 int __user *, parent_tidptr,
1780 		 int, tls_val,
1781 		 int __user *, child_tidptr)
1782 #elif defined(CONFIG_CLONE_BACKWARDS2)
1783 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1784 		 int __user *, parent_tidptr,
1785 		 int __user *, child_tidptr,
1786 		 int, tls_val)
1787 #elif defined(CONFIG_CLONE_BACKWARDS3)
1788 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1789 		int, stack_size,
1790 		int __user *, parent_tidptr,
1791 		int __user *, child_tidptr,
1792 		int, tls_val)
1793 #else
1794 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1795 		 int __user *, parent_tidptr,
1796 		 int __user *, child_tidptr,
1797 		 int, tls_val)
1798 #endif
1799 {
1800 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1801 }
1802 #endif
1803 
1804 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1805 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1806 #endif
1807 
1808 static void sighand_ctor(void *data)
1809 {
1810 	struct sighand_struct *sighand = data;
1811 
1812 	spin_lock_init(&sighand->siglock);
1813 	init_waitqueue_head(&sighand->signalfd_wqh);
1814 }
1815 
1816 void __init proc_caches_init(void)
1817 {
1818 	sighand_cachep = kmem_cache_create("sighand_cache",
1819 			sizeof(struct sighand_struct), 0,
1820 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1821 			SLAB_NOTRACK, sighand_ctor);
1822 	signal_cachep = kmem_cache_create("signal_cache",
1823 			sizeof(struct signal_struct), 0,
1824 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1825 	files_cachep = kmem_cache_create("files_cache",
1826 			sizeof(struct files_struct), 0,
1827 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1828 	fs_cachep = kmem_cache_create("fs_cache",
1829 			sizeof(struct fs_struct), 0,
1830 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1831 	/*
1832 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1833 	 * whole struct cpumask for the OFFSTACK case. We could change
1834 	 * this to *only* allocate as much of it as required by the
1835 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1836 	 * is at the end of the structure, exactly for that reason.
1837 	 */
1838 	mm_cachep = kmem_cache_create("mm_struct",
1839 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1840 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1841 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1842 	mmap_init();
1843 	nsproxy_cache_init();
1844 }
1845 
1846 /*
1847  * Check constraints on flags passed to the unshare system call.
1848  */
1849 static int check_unshare_flags(unsigned long unshare_flags)
1850 {
1851 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1852 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1853 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1854 				CLONE_NEWUSER|CLONE_NEWPID))
1855 		return -EINVAL;
1856 	/*
1857 	 * Not implemented, but pretend it works if there is nothing to
1858 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1859 	 * needs to unshare vm.
1860 	 */
1861 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1862 		/* FIXME: get_task_mm() increments ->mm_users */
1863 		if (atomic_read(&current->mm->mm_users) > 1)
1864 			return -EINVAL;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 /*
1871  * Unshare the filesystem structure if it is being shared
1872  */
1873 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1874 {
1875 	struct fs_struct *fs = current->fs;
1876 
1877 	if (!(unshare_flags & CLONE_FS) || !fs)
1878 		return 0;
1879 
1880 	/* don't need lock here; in the worst case we'll do useless copy */
1881 	if (fs->users == 1)
1882 		return 0;
1883 
1884 	*new_fsp = copy_fs_struct(fs);
1885 	if (!*new_fsp)
1886 		return -ENOMEM;
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * Unshare file descriptor table if it is being shared
1893  */
1894 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1895 {
1896 	struct files_struct *fd = current->files;
1897 	int error = 0;
1898 
1899 	if ((unshare_flags & CLONE_FILES) &&
1900 	    (fd && atomic_read(&fd->count) > 1)) {
1901 		*new_fdp = dup_fd(fd, &error);
1902 		if (!*new_fdp)
1903 			return error;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 /*
1910  * unshare allows a process to 'unshare' part of the process
1911  * context which was originally shared using clone.  copy_*
1912  * functions used by do_fork() cannot be used here directly
1913  * because they modify an inactive task_struct that is being
1914  * constructed. Here we are modifying the current, active,
1915  * task_struct.
1916  */
1917 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1918 {
1919 	struct fs_struct *fs, *new_fs = NULL;
1920 	struct files_struct *fd, *new_fd = NULL;
1921 	struct cred *new_cred = NULL;
1922 	struct nsproxy *new_nsproxy = NULL;
1923 	int do_sysvsem = 0;
1924 	int err;
1925 
1926 	/*
1927 	 * If unsharing a user namespace must also unshare the thread.
1928 	 */
1929 	if (unshare_flags & CLONE_NEWUSER)
1930 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1931 	/*
1932 	 * If unsharing a thread from a thread group, must also unshare vm.
1933 	 */
1934 	if (unshare_flags & CLONE_THREAD)
1935 		unshare_flags |= CLONE_VM;
1936 	/*
1937 	 * If unsharing vm, must also unshare signal handlers.
1938 	 */
1939 	if (unshare_flags & CLONE_VM)
1940 		unshare_flags |= CLONE_SIGHAND;
1941 	/*
1942 	 * If unsharing namespace, must also unshare filesystem information.
1943 	 */
1944 	if (unshare_flags & CLONE_NEWNS)
1945 		unshare_flags |= CLONE_FS;
1946 
1947 	err = check_unshare_flags(unshare_flags);
1948 	if (err)
1949 		goto bad_unshare_out;
1950 	/*
1951 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1952 	 * to a new ipc namespace, the semaphore arrays from the old
1953 	 * namespace are unreachable.
1954 	 */
1955 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1956 		do_sysvsem = 1;
1957 	err = unshare_fs(unshare_flags, &new_fs);
1958 	if (err)
1959 		goto bad_unshare_out;
1960 	err = unshare_fd(unshare_flags, &new_fd);
1961 	if (err)
1962 		goto bad_unshare_cleanup_fs;
1963 	err = unshare_userns(unshare_flags, &new_cred);
1964 	if (err)
1965 		goto bad_unshare_cleanup_fd;
1966 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1967 					 new_cred, new_fs);
1968 	if (err)
1969 		goto bad_unshare_cleanup_cred;
1970 
1971 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1972 		if (do_sysvsem) {
1973 			/*
1974 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1975 			 */
1976 			exit_sem(current);
1977 		}
1978 		if (unshare_flags & CLONE_NEWIPC) {
1979 			/* Orphan segments in old ns (see sem above). */
1980 			exit_shm(current);
1981 			shm_init_task(current);
1982 		}
1983 
1984 		if (new_nsproxy)
1985 			switch_task_namespaces(current, new_nsproxy);
1986 
1987 		task_lock(current);
1988 
1989 		if (new_fs) {
1990 			fs = current->fs;
1991 			spin_lock(&fs->lock);
1992 			current->fs = new_fs;
1993 			if (--fs->users)
1994 				new_fs = NULL;
1995 			else
1996 				new_fs = fs;
1997 			spin_unlock(&fs->lock);
1998 		}
1999 
2000 		if (new_fd) {
2001 			fd = current->files;
2002 			current->files = new_fd;
2003 			new_fd = fd;
2004 		}
2005 
2006 		task_unlock(current);
2007 
2008 		if (new_cred) {
2009 			/* Install the new user namespace */
2010 			commit_creds(new_cred);
2011 			new_cred = NULL;
2012 		}
2013 	}
2014 
2015 bad_unshare_cleanup_cred:
2016 	if (new_cred)
2017 		put_cred(new_cred);
2018 bad_unshare_cleanup_fd:
2019 	if (new_fd)
2020 		put_files_struct(new_fd);
2021 
2022 bad_unshare_cleanup_fs:
2023 	if (new_fs)
2024 		free_fs_struct(new_fs);
2025 
2026 bad_unshare_out:
2027 	return err;
2028 }
2029 
2030 /*
2031  *	Helper to unshare the files of the current task.
2032  *	We don't want to expose copy_files internals to
2033  *	the exec layer of the kernel.
2034  */
2035 
2036 int unshare_files(struct files_struct **displaced)
2037 {
2038 	struct task_struct *task = current;
2039 	struct files_struct *copy = NULL;
2040 	int error;
2041 
2042 	error = unshare_fd(CLONE_FILES, &copy);
2043 	if (error || !copy) {
2044 		*displaced = NULL;
2045 		return error;
2046 	}
2047 	*displaced = task->files;
2048 	task_lock(task);
2049 	task->files = copy;
2050 	task_unlock(task);
2051 	return 0;
2052 }
2053 
2054 int sysctl_max_threads(struct ctl_table *table, int write,
2055 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2056 {
2057 	struct ctl_table t;
2058 	int ret;
2059 	int threads = max_threads;
2060 	int min = MIN_THREADS;
2061 	int max = MAX_THREADS;
2062 
2063 	t = *table;
2064 	t.data = &threads;
2065 	t.extra1 = &min;
2066 	t.extra2 = &max;
2067 
2068 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2069 	if (ret || !write)
2070 		return ret;
2071 
2072 	set_max_threads(threads);
2073 
2074 	return 0;
2075 }
2076