xref: /openbmc/linux/kernel/fork.c (revision 455f9726)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84 
85 #include <trace/events/sched.h>
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89 
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;	/* Handle normal Linux uptimes. */
94 int nr_threads;			/* The idle threads do not count.. */
95 
96 int max_threads;		/* tunable limit on nr_threads */
97 
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101 
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 	return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109 
110 int nr_processes(void)
111 {
112 	int cpu;
113 	int total = 0;
114 
115 	for_each_possible_cpu(cpu)
116 		total += per_cpu(process_counts, cpu);
117 
118 	return total;
119 }
120 
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124 
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127 
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132 
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 	kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138 
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142 
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144 
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 						  int node)
152 {
153 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 						  THREAD_SIZE_ORDER);
155 
156 	return page ? page_address(page) : NULL;
157 }
158 
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165 
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 						  int node)
168 {
169 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171 
172 static void free_thread_info(struct thread_info *ti)
173 {
174 	kmem_cache_free(thread_info_cache, ti);
175 }
176 
177 void thread_info_cache_init(void)
178 {
179 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 					      THREAD_SIZE, 0, NULL);
181 	BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185 
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188 
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191 
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194 
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197 
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200 
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203 
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 	struct zone *zone = page_zone(virt_to_page(ti));
207 
208 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210 
211 void free_task(struct task_struct *tsk)
212 {
213 	account_kernel_stack(tsk->stack, -1);
214 	arch_release_thread_info(tsk->stack);
215 	free_thread_info(tsk->stack);
216 	rt_mutex_debug_task_free(tsk);
217 	ftrace_graph_exit_task(tsk);
218 	put_seccomp_filter(tsk);
219 	arch_release_task_struct(tsk);
220 	free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223 
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 	taskstats_tgid_free(sig);
227 	sched_autogroup_exit(sig);
228 	kmem_cache_free(signal_cachep, sig);
229 }
230 
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 	if (atomic_dec_and_test(&sig->sigcnt))
234 		free_signal_struct(sig);
235 }
236 
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 	WARN_ON(!tsk->exit_state);
240 	WARN_ON(atomic_read(&tsk->usage));
241 	WARN_ON(tsk == current);
242 
243 	task_numa_free(tsk);
244 	security_task_free(tsk);
245 	exit_creds(tsk);
246 	delayacct_tsk_free(tsk);
247 	put_signal_struct(tsk->signal);
248 
249 	if (!profile_handoff_task(tsk))
250 		free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253 
254 void __init __weak arch_task_cache_init(void) { }
255 
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
261 #endif
262 	/* create a slab on which task_structs can be allocated */
263 	task_struct_cachep =
264 		kmem_cache_create("task_struct", sizeof(struct task_struct),
265 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267 
268 	/* do the arch specific task caches init */
269 	arch_task_cache_init();
270 
271 	/*
272 	 * The default maximum number of threads is set to a safe
273 	 * value: the thread structures can take up at most half
274 	 * of memory.
275 	 */
276 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 
278 	/*
279 	 * we need to allow at least 20 threads to boot a system
280 	 */
281 	if (max_threads < 20)
282 		max_threads = 20;
283 
284 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 		init_task.signal->rlim[RLIMIT_NPROC];
288 }
289 
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 					       struct task_struct *src)
292 {
293 	*dst = *src;
294 	return 0;
295 }
296 
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 	struct task_struct *tsk;
300 	struct thread_info *ti;
301 	unsigned long *stackend;
302 	int node = tsk_fork_get_node(orig);
303 	int err;
304 
305 	tsk = alloc_task_struct_node(node);
306 	if (!tsk)
307 		return NULL;
308 
309 	ti = alloc_thread_info_node(tsk, node);
310 	if (!ti)
311 		goto free_tsk;
312 
313 	err = arch_dup_task_struct(tsk, orig);
314 	if (err)
315 		goto free_ti;
316 
317 	tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 	/*
320 	 * We must handle setting up seccomp filters once we're under
321 	 * the sighand lock in case orig has changed between now and
322 	 * then. Until then, filter must be NULL to avoid messing up
323 	 * the usage counts on the error path calling free_task.
324 	 */
325 	tsk->seccomp.filter = NULL;
326 #endif
327 
328 	setup_thread_stack(tsk, orig);
329 	clear_user_return_notifier(tsk);
330 	clear_tsk_need_resched(tsk);
331 	stackend = end_of_stack(tsk);
332 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
333 
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 	tsk->stack_canary = get_random_int();
336 #endif
337 
338 	/*
339 	 * One for us, one for whoever does the "release_task()" (usually
340 	 * parent)
341 	 */
342 	atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 	tsk->btrace_seq = 0;
345 #endif
346 	tsk->splice_pipe = NULL;
347 	tsk->task_frag.page = NULL;
348 
349 	account_kernel_stack(ti, 1);
350 
351 	return tsk;
352 
353 free_ti:
354 	free_thread_info(ti);
355 free_tsk:
356 	free_task_struct(tsk);
357 	return NULL;
358 }
359 
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 	struct rb_node **rb_link, *rb_parent;
365 	int retval;
366 	unsigned long charge;
367 
368 	uprobe_start_dup_mmap();
369 	down_write(&oldmm->mmap_sem);
370 	flush_cache_dup_mm(oldmm);
371 	uprobe_dup_mmap(oldmm, mm);
372 	/*
373 	 * Not linked in yet - no deadlock potential:
374 	 */
375 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376 
377 	mm->locked_vm = 0;
378 	mm->mmap = NULL;
379 	mm->vmacache_seqnum = 0;
380 	mm->map_count = 0;
381 	cpumask_clear(mm_cpumask(mm));
382 	mm->mm_rb = RB_ROOT;
383 	rb_link = &mm->mm_rb.rb_node;
384 	rb_parent = NULL;
385 	pprev = &mm->mmap;
386 	retval = ksm_fork(mm, oldmm);
387 	if (retval)
388 		goto out;
389 	retval = khugepaged_fork(mm, oldmm);
390 	if (retval)
391 		goto out;
392 
393 	prev = NULL;
394 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
395 		struct file *file;
396 
397 		if (mpnt->vm_flags & VM_DONTCOPY) {
398 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
399 							-vma_pages(mpnt));
400 			continue;
401 		}
402 		charge = 0;
403 		if (mpnt->vm_flags & VM_ACCOUNT) {
404 			unsigned long len = vma_pages(mpnt);
405 
406 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
407 				goto fail_nomem;
408 			charge = len;
409 		}
410 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
411 		if (!tmp)
412 			goto fail_nomem;
413 		*tmp = *mpnt;
414 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
415 		retval = vma_dup_policy(mpnt, tmp);
416 		if (retval)
417 			goto fail_nomem_policy;
418 		tmp->vm_mm = mm;
419 		if (anon_vma_fork(tmp, mpnt))
420 			goto fail_nomem_anon_vma_fork;
421 		tmp->vm_flags &= ~VM_LOCKED;
422 		tmp->vm_next = tmp->vm_prev = NULL;
423 		file = tmp->vm_file;
424 		if (file) {
425 			struct inode *inode = file_inode(file);
426 			struct address_space *mapping = file->f_mapping;
427 
428 			get_file(file);
429 			if (tmp->vm_flags & VM_DENYWRITE)
430 				atomic_dec(&inode->i_writecount);
431 			mutex_lock(&mapping->i_mmap_mutex);
432 			if (tmp->vm_flags & VM_SHARED)
433 				mapping->i_mmap_writable++;
434 			flush_dcache_mmap_lock(mapping);
435 			/* insert tmp into the share list, just after mpnt */
436 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
437 				vma_nonlinear_insert(tmp,
438 						&mapping->i_mmap_nonlinear);
439 			else
440 				vma_interval_tree_insert_after(tmp, mpnt,
441 							&mapping->i_mmap);
442 			flush_dcache_mmap_unlock(mapping);
443 			mutex_unlock(&mapping->i_mmap_mutex);
444 		}
445 
446 		/*
447 		 * Clear hugetlb-related page reserves for children. This only
448 		 * affects MAP_PRIVATE mappings. Faults generated by the child
449 		 * are not guaranteed to succeed, even if read-only
450 		 */
451 		if (is_vm_hugetlb_page(tmp))
452 			reset_vma_resv_huge_pages(tmp);
453 
454 		/*
455 		 * Link in the new vma and copy the page table entries.
456 		 */
457 		*pprev = tmp;
458 		pprev = &tmp->vm_next;
459 		tmp->vm_prev = prev;
460 		prev = tmp;
461 
462 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
463 		rb_link = &tmp->vm_rb.rb_right;
464 		rb_parent = &tmp->vm_rb;
465 
466 		mm->map_count++;
467 		retval = copy_page_range(mm, oldmm, mpnt);
468 
469 		if (tmp->vm_ops && tmp->vm_ops->open)
470 			tmp->vm_ops->open(tmp);
471 
472 		if (retval)
473 			goto out;
474 	}
475 	/* a new mm has just been created */
476 	arch_dup_mmap(oldmm, mm);
477 	retval = 0;
478 out:
479 	up_write(&mm->mmap_sem);
480 	flush_tlb_mm(oldmm);
481 	up_write(&oldmm->mmap_sem);
482 	uprobe_end_dup_mmap();
483 	return retval;
484 fail_nomem_anon_vma_fork:
485 	mpol_put(vma_policy(tmp));
486 fail_nomem_policy:
487 	kmem_cache_free(vm_area_cachep, tmp);
488 fail_nomem:
489 	retval = -ENOMEM;
490 	vm_unacct_memory(charge);
491 	goto out;
492 }
493 
494 static inline int mm_alloc_pgd(struct mm_struct *mm)
495 {
496 	mm->pgd = pgd_alloc(mm);
497 	if (unlikely(!mm->pgd))
498 		return -ENOMEM;
499 	return 0;
500 }
501 
502 static inline void mm_free_pgd(struct mm_struct *mm)
503 {
504 	pgd_free(mm, mm->pgd);
505 }
506 #else
507 #define dup_mmap(mm, oldmm)	(0)
508 #define mm_alloc_pgd(mm)	(0)
509 #define mm_free_pgd(mm)
510 #endif /* CONFIG_MMU */
511 
512 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
513 
514 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
515 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
516 
517 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
518 
519 static int __init coredump_filter_setup(char *s)
520 {
521 	default_dump_filter =
522 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
523 		MMF_DUMP_FILTER_MASK;
524 	return 1;
525 }
526 
527 __setup("coredump_filter=", coredump_filter_setup);
528 
529 #include <linux/init_task.h>
530 
531 static void mm_init_aio(struct mm_struct *mm)
532 {
533 #ifdef CONFIG_AIO
534 	spin_lock_init(&mm->ioctx_lock);
535 	mm->ioctx_table = NULL;
536 #endif
537 }
538 
539 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
540 {
541 	atomic_set(&mm->mm_users, 1);
542 	atomic_set(&mm->mm_count, 1);
543 	init_rwsem(&mm->mmap_sem);
544 	INIT_LIST_HEAD(&mm->mmlist);
545 	mm->core_state = NULL;
546 	atomic_long_set(&mm->nr_ptes, 0);
547 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
548 	spin_lock_init(&mm->page_table_lock);
549 	mm_init_aio(mm);
550 	mm_init_owner(mm, p);
551 	clear_tlb_flush_pending(mm);
552 
553 	if (current->mm) {
554 		mm->flags = current->mm->flags & MMF_INIT_MASK;
555 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
556 	} else {
557 		mm->flags = default_dump_filter;
558 		mm->def_flags = 0;
559 	}
560 
561 	if (likely(!mm_alloc_pgd(mm))) {
562 		mmu_notifier_mm_init(mm);
563 		return mm;
564 	}
565 
566 	free_mm(mm);
567 	return NULL;
568 }
569 
570 static void check_mm(struct mm_struct *mm)
571 {
572 	int i;
573 
574 	for (i = 0; i < NR_MM_COUNTERS; i++) {
575 		long x = atomic_long_read(&mm->rss_stat.count[i]);
576 
577 		if (unlikely(x))
578 			printk(KERN_ALERT "BUG: Bad rss-counter state "
579 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
580 	}
581 
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 	VM_BUG_ON(mm->pmd_huge_pte);
584 #endif
585 }
586 
587 /*
588  * Allocate and initialize an mm_struct.
589  */
590 struct mm_struct *mm_alloc(void)
591 {
592 	struct mm_struct *mm;
593 
594 	mm = allocate_mm();
595 	if (!mm)
596 		return NULL;
597 
598 	memset(mm, 0, sizeof(*mm));
599 	mm_init_cpumask(mm);
600 	return mm_init(mm, current);
601 }
602 
603 /*
604  * Called when the last reference to the mm
605  * is dropped: either by a lazy thread or by
606  * mmput. Free the page directory and the mm.
607  */
608 void __mmdrop(struct mm_struct *mm)
609 {
610 	BUG_ON(mm == &init_mm);
611 	mm_free_pgd(mm);
612 	destroy_context(mm);
613 	mmu_notifier_mm_destroy(mm);
614 	check_mm(mm);
615 	free_mm(mm);
616 }
617 EXPORT_SYMBOL_GPL(__mmdrop);
618 
619 /*
620  * Decrement the use count and release all resources for an mm.
621  */
622 void mmput(struct mm_struct *mm)
623 {
624 	might_sleep();
625 
626 	if (atomic_dec_and_test(&mm->mm_users)) {
627 		uprobe_clear_state(mm);
628 		exit_aio(mm);
629 		ksm_exit(mm);
630 		khugepaged_exit(mm); /* must run before exit_mmap */
631 		exit_mmap(mm);
632 		set_mm_exe_file(mm, NULL);
633 		if (!list_empty(&mm->mmlist)) {
634 			spin_lock(&mmlist_lock);
635 			list_del(&mm->mmlist);
636 			spin_unlock(&mmlist_lock);
637 		}
638 		if (mm->binfmt)
639 			module_put(mm->binfmt->module);
640 		mmdrop(mm);
641 	}
642 }
643 EXPORT_SYMBOL_GPL(mmput);
644 
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647 	if (new_exe_file)
648 		get_file(new_exe_file);
649 	if (mm->exe_file)
650 		fput(mm->exe_file);
651 	mm->exe_file = new_exe_file;
652 }
653 
654 struct file *get_mm_exe_file(struct mm_struct *mm)
655 {
656 	struct file *exe_file;
657 
658 	/* We need mmap_sem to protect against races with removal of exe_file */
659 	down_read(&mm->mmap_sem);
660 	exe_file = mm->exe_file;
661 	if (exe_file)
662 		get_file(exe_file);
663 	up_read(&mm->mmap_sem);
664 	return exe_file;
665 }
666 
667 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
668 {
669 	/* It's safe to write the exe_file pointer without exe_file_lock because
670 	 * this is called during fork when the task is not yet in /proc */
671 	newmm->exe_file = get_mm_exe_file(oldmm);
672 }
673 
674 /**
675  * get_task_mm - acquire a reference to the task's mm
676  *
677  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
678  * this kernel workthread has transiently adopted a user mm with use_mm,
679  * to do its AIO) is not set and if so returns a reference to it, after
680  * bumping up the use count.  User must release the mm via mmput()
681  * after use.  Typically used by /proc and ptrace.
682  */
683 struct mm_struct *get_task_mm(struct task_struct *task)
684 {
685 	struct mm_struct *mm;
686 
687 	task_lock(task);
688 	mm = task->mm;
689 	if (mm) {
690 		if (task->flags & PF_KTHREAD)
691 			mm = NULL;
692 		else
693 			atomic_inc(&mm->mm_users);
694 	}
695 	task_unlock(task);
696 	return mm;
697 }
698 EXPORT_SYMBOL_GPL(get_task_mm);
699 
700 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
701 {
702 	struct mm_struct *mm;
703 	int err;
704 
705 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
706 	if (err)
707 		return ERR_PTR(err);
708 
709 	mm = get_task_mm(task);
710 	if (mm && mm != current->mm &&
711 			!ptrace_may_access(task, mode)) {
712 		mmput(mm);
713 		mm = ERR_PTR(-EACCES);
714 	}
715 	mutex_unlock(&task->signal->cred_guard_mutex);
716 
717 	return mm;
718 }
719 
720 static void complete_vfork_done(struct task_struct *tsk)
721 {
722 	struct completion *vfork;
723 
724 	task_lock(tsk);
725 	vfork = tsk->vfork_done;
726 	if (likely(vfork)) {
727 		tsk->vfork_done = NULL;
728 		complete(vfork);
729 	}
730 	task_unlock(tsk);
731 }
732 
733 static int wait_for_vfork_done(struct task_struct *child,
734 				struct completion *vfork)
735 {
736 	int killed;
737 
738 	freezer_do_not_count();
739 	killed = wait_for_completion_killable(vfork);
740 	freezer_count();
741 
742 	if (killed) {
743 		task_lock(child);
744 		child->vfork_done = NULL;
745 		task_unlock(child);
746 	}
747 
748 	put_task_struct(child);
749 	return killed;
750 }
751 
752 /* Please note the differences between mmput and mm_release.
753  * mmput is called whenever we stop holding onto a mm_struct,
754  * error success whatever.
755  *
756  * mm_release is called after a mm_struct has been removed
757  * from the current process.
758  *
759  * This difference is important for error handling, when we
760  * only half set up a mm_struct for a new process and need to restore
761  * the old one.  Because we mmput the new mm_struct before
762  * restoring the old one. . .
763  * Eric Biederman 10 January 1998
764  */
765 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
766 {
767 	/* Get rid of any futexes when releasing the mm */
768 #ifdef CONFIG_FUTEX
769 	if (unlikely(tsk->robust_list)) {
770 		exit_robust_list(tsk);
771 		tsk->robust_list = NULL;
772 	}
773 #ifdef CONFIG_COMPAT
774 	if (unlikely(tsk->compat_robust_list)) {
775 		compat_exit_robust_list(tsk);
776 		tsk->compat_robust_list = NULL;
777 	}
778 #endif
779 	if (unlikely(!list_empty(&tsk->pi_state_list)))
780 		exit_pi_state_list(tsk);
781 #endif
782 
783 	uprobe_free_utask(tsk);
784 
785 	/* Get rid of any cached register state */
786 	deactivate_mm(tsk, mm);
787 
788 	/*
789 	 * If we're exiting normally, clear a user-space tid field if
790 	 * requested.  We leave this alone when dying by signal, to leave
791 	 * the value intact in a core dump, and to save the unnecessary
792 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
793 	 * Userland only wants this done for a sys_exit.
794 	 */
795 	if (tsk->clear_child_tid) {
796 		if (!(tsk->flags & PF_SIGNALED) &&
797 		    atomic_read(&mm->mm_users) > 1) {
798 			/*
799 			 * We don't check the error code - if userspace has
800 			 * not set up a proper pointer then tough luck.
801 			 */
802 			put_user(0, tsk->clear_child_tid);
803 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
804 					1, NULL, NULL, 0);
805 		}
806 		tsk->clear_child_tid = NULL;
807 	}
808 
809 	/*
810 	 * All done, finally we can wake up parent and return this mm to him.
811 	 * Also kthread_stop() uses this completion for synchronization.
812 	 */
813 	if (tsk->vfork_done)
814 		complete_vfork_done(tsk);
815 }
816 
817 /*
818  * Allocate a new mm structure and copy contents from the
819  * mm structure of the passed in task structure.
820  */
821 static struct mm_struct *dup_mm(struct task_struct *tsk)
822 {
823 	struct mm_struct *mm, *oldmm = current->mm;
824 	int err;
825 
826 	mm = allocate_mm();
827 	if (!mm)
828 		goto fail_nomem;
829 
830 	memcpy(mm, oldmm, sizeof(*mm));
831 	mm_init_cpumask(mm);
832 
833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
834 	mm->pmd_huge_pte = NULL;
835 #endif
836 	if (!mm_init(mm, tsk))
837 		goto fail_nomem;
838 
839 	if (init_new_context(tsk, mm))
840 		goto fail_nocontext;
841 
842 	dup_mm_exe_file(oldmm, mm);
843 
844 	err = dup_mmap(mm, oldmm);
845 	if (err)
846 		goto free_pt;
847 
848 	mm->hiwater_rss = get_mm_rss(mm);
849 	mm->hiwater_vm = mm->total_vm;
850 
851 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
852 		goto free_pt;
853 
854 	return mm;
855 
856 free_pt:
857 	/* don't put binfmt in mmput, we haven't got module yet */
858 	mm->binfmt = NULL;
859 	mmput(mm);
860 
861 fail_nomem:
862 	return NULL;
863 
864 fail_nocontext:
865 	/*
866 	 * If init_new_context() failed, we cannot use mmput() to free the mm
867 	 * because it calls destroy_context()
868 	 */
869 	mm_free_pgd(mm);
870 	free_mm(mm);
871 	return NULL;
872 }
873 
874 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
875 {
876 	struct mm_struct *mm, *oldmm;
877 	int retval;
878 
879 	tsk->min_flt = tsk->maj_flt = 0;
880 	tsk->nvcsw = tsk->nivcsw = 0;
881 #ifdef CONFIG_DETECT_HUNG_TASK
882 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
883 #endif
884 
885 	tsk->mm = NULL;
886 	tsk->active_mm = NULL;
887 
888 	/*
889 	 * Are we cloning a kernel thread?
890 	 *
891 	 * We need to steal a active VM for that..
892 	 */
893 	oldmm = current->mm;
894 	if (!oldmm)
895 		return 0;
896 
897 	/* initialize the new vmacache entries */
898 	vmacache_flush(tsk);
899 
900 	if (clone_flags & CLONE_VM) {
901 		atomic_inc(&oldmm->mm_users);
902 		mm = oldmm;
903 		goto good_mm;
904 	}
905 
906 	retval = -ENOMEM;
907 	mm = dup_mm(tsk);
908 	if (!mm)
909 		goto fail_nomem;
910 
911 good_mm:
912 	tsk->mm = mm;
913 	tsk->active_mm = mm;
914 	return 0;
915 
916 fail_nomem:
917 	return retval;
918 }
919 
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
921 {
922 	struct fs_struct *fs = current->fs;
923 	if (clone_flags & CLONE_FS) {
924 		/* tsk->fs is already what we want */
925 		spin_lock(&fs->lock);
926 		if (fs->in_exec) {
927 			spin_unlock(&fs->lock);
928 			return -EAGAIN;
929 		}
930 		fs->users++;
931 		spin_unlock(&fs->lock);
932 		return 0;
933 	}
934 	tsk->fs = copy_fs_struct(fs);
935 	if (!tsk->fs)
936 		return -ENOMEM;
937 	return 0;
938 }
939 
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
941 {
942 	struct files_struct *oldf, *newf;
943 	int error = 0;
944 
945 	/*
946 	 * A background process may not have any files ...
947 	 */
948 	oldf = current->files;
949 	if (!oldf)
950 		goto out;
951 
952 	if (clone_flags & CLONE_FILES) {
953 		atomic_inc(&oldf->count);
954 		goto out;
955 	}
956 
957 	newf = dup_fd(oldf, &error);
958 	if (!newf)
959 		goto out;
960 
961 	tsk->files = newf;
962 	error = 0;
963 out:
964 	return error;
965 }
966 
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
968 {
969 #ifdef CONFIG_BLOCK
970 	struct io_context *ioc = current->io_context;
971 	struct io_context *new_ioc;
972 
973 	if (!ioc)
974 		return 0;
975 	/*
976 	 * Share io context with parent, if CLONE_IO is set
977 	 */
978 	if (clone_flags & CLONE_IO) {
979 		ioc_task_link(ioc);
980 		tsk->io_context = ioc;
981 	} else if (ioprio_valid(ioc->ioprio)) {
982 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
983 		if (unlikely(!new_ioc))
984 			return -ENOMEM;
985 
986 		new_ioc->ioprio = ioc->ioprio;
987 		put_io_context(new_ioc);
988 	}
989 #endif
990 	return 0;
991 }
992 
993 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
994 {
995 	struct sighand_struct *sig;
996 
997 	if (clone_flags & CLONE_SIGHAND) {
998 		atomic_inc(&current->sighand->count);
999 		return 0;
1000 	}
1001 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002 	rcu_assign_pointer(tsk->sighand, sig);
1003 	if (!sig)
1004 		return -ENOMEM;
1005 	atomic_set(&sig->count, 1);
1006 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1007 	return 0;
1008 }
1009 
1010 void __cleanup_sighand(struct sighand_struct *sighand)
1011 {
1012 	if (atomic_dec_and_test(&sighand->count)) {
1013 		signalfd_cleanup(sighand);
1014 		kmem_cache_free(sighand_cachep, sighand);
1015 	}
1016 }
1017 
1018 
1019 /*
1020  * Initialize POSIX timer handling for a thread group.
1021  */
1022 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1023 {
1024 	unsigned long cpu_limit;
1025 
1026 	/* Thread group counters. */
1027 	thread_group_cputime_init(sig);
1028 
1029 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1030 	if (cpu_limit != RLIM_INFINITY) {
1031 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1032 		sig->cputimer.running = 1;
1033 	}
1034 
1035 	/* The timer lists. */
1036 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1037 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1038 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1039 }
1040 
1041 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1042 {
1043 	struct signal_struct *sig;
1044 
1045 	if (clone_flags & CLONE_THREAD)
1046 		return 0;
1047 
1048 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1049 	tsk->signal = sig;
1050 	if (!sig)
1051 		return -ENOMEM;
1052 
1053 	sig->nr_threads = 1;
1054 	atomic_set(&sig->live, 1);
1055 	atomic_set(&sig->sigcnt, 1);
1056 
1057 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1058 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1059 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1060 
1061 	init_waitqueue_head(&sig->wait_chldexit);
1062 	sig->curr_target = tsk;
1063 	init_sigpending(&sig->shared_pending);
1064 	INIT_LIST_HEAD(&sig->posix_timers);
1065 
1066 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067 	sig->real_timer.function = it_real_fn;
1068 
1069 	task_lock(current->group_leader);
1070 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1071 	task_unlock(current->group_leader);
1072 
1073 	posix_cpu_timers_init_group(sig);
1074 
1075 	tty_audit_fork(sig);
1076 	sched_autogroup_fork(sig);
1077 
1078 #ifdef CONFIG_CGROUPS
1079 	init_rwsem(&sig->group_rwsem);
1080 #endif
1081 
1082 	sig->oom_score_adj = current->signal->oom_score_adj;
1083 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084 
1085 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1086 				   current->signal->is_child_subreaper;
1087 
1088 	mutex_init(&sig->cred_guard_mutex);
1089 
1090 	return 0;
1091 }
1092 
1093 static void copy_seccomp(struct task_struct *p)
1094 {
1095 #ifdef CONFIG_SECCOMP
1096 	/*
1097 	 * Must be called with sighand->lock held, which is common to
1098 	 * all threads in the group. Holding cred_guard_mutex is not
1099 	 * needed because this new task is not yet running and cannot
1100 	 * be racing exec.
1101 	 */
1102 	BUG_ON(!spin_is_locked(&current->sighand->siglock));
1103 
1104 	/* Ref-count the new filter user, and assign it. */
1105 	get_seccomp_filter(current);
1106 	p->seccomp = current->seccomp;
1107 
1108 	/*
1109 	 * Explicitly enable no_new_privs here in case it got set
1110 	 * between the task_struct being duplicated and holding the
1111 	 * sighand lock. The seccomp state and nnp must be in sync.
1112 	 */
1113 	if (task_no_new_privs(current))
1114 		task_set_no_new_privs(p);
1115 
1116 	/*
1117 	 * If the parent gained a seccomp mode after copying thread
1118 	 * flags and between before we held the sighand lock, we have
1119 	 * to manually enable the seccomp thread flag here.
1120 	 */
1121 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1122 		set_tsk_thread_flag(p, TIF_SECCOMP);
1123 #endif
1124 }
1125 
1126 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1127 {
1128 	current->clear_child_tid = tidptr;
1129 
1130 	return task_pid_vnr(current);
1131 }
1132 
1133 static void rt_mutex_init_task(struct task_struct *p)
1134 {
1135 	raw_spin_lock_init(&p->pi_lock);
1136 #ifdef CONFIG_RT_MUTEXES
1137 	p->pi_waiters = RB_ROOT;
1138 	p->pi_waiters_leftmost = NULL;
1139 	p->pi_blocked_on = NULL;
1140 #endif
1141 }
1142 
1143 #ifdef CONFIG_MEMCG
1144 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1145 {
1146 	mm->owner = p;
1147 }
1148 #endif /* CONFIG_MEMCG */
1149 
1150 /*
1151  * Initialize POSIX timer handling for a single task.
1152  */
1153 static void posix_cpu_timers_init(struct task_struct *tsk)
1154 {
1155 	tsk->cputime_expires.prof_exp = 0;
1156 	tsk->cputime_expires.virt_exp = 0;
1157 	tsk->cputime_expires.sched_exp = 0;
1158 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1159 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1160 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1161 }
1162 
1163 static inline void
1164 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1165 {
1166 	 task->pids[type].pid = pid;
1167 }
1168 
1169 /*
1170  * This creates a new process as a copy of the old one,
1171  * but does not actually start it yet.
1172  *
1173  * It copies the registers, and all the appropriate
1174  * parts of the process environment (as per the clone
1175  * flags). The actual kick-off is left to the caller.
1176  */
1177 static struct task_struct *copy_process(unsigned long clone_flags,
1178 					unsigned long stack_start,
1179 					unsigned long stack_size,
1180 					int __user *child_tidptr,
1181 					struct pid *pid,
1182 					int trace)
1183 {
1184 	int retval;
1185 	struct task_struct *p;
1186 
1187 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1188 		return ERR_PTR(-EINVAL);
1189 
1190 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1191 		return ERR_PTR(-EINVAL);
1192 
1193 	/*
1194 	 * Thread groups must share signals as well, and detached threads
1195 	 * can only be started up within the thread group.
1196 	 */
1197 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1198 		return ERR_PTR(-EINVAL);
1199 
1200 	/*
1201 	 * Shared signal handlers imply shared VM. By way of the above,
1202 	 * thread groups also imply shared VM. Blocking this case allows
1203 	 * for various simplifications in other code.
1204 	 */
1205 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1206 		return ERR_PTR(-EINVAL);
1207 
1208 	/*
1209 	 * Siblings of global init remain as zombies on exit since they are
1210 	 * not reaped by their parent (swapper). To solve this and to avoid
1211 	 * multi-rooted process trees, prevent global and container-inits
1212 	 * from creating siblings.
1213 	 */
1214 	if ((clone_flags & CLONE_PARENT) &&
1215 				current->signal->flags & SIGNAL_UNKILLABLE)
1216 		return ERR_PTR(-EINVAL);
1217 
1218 	/*
1219 	 * If the new process will be in a different pid or user namespace
1220 	 * do not allow it to share a thread group or signal handlers or
1221 	 * parent with the forking task.
1222 	 */
1223 	if (clone_flags & CLONE_SIGHAND) {
1224 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1225 		    (task_active_pid_ns(current) !=
1226 				current->nsproxy->pid_ns_for_children))
1227 			return ERR_PTR(-EINVAL);
1228 	}
1229 
1230 	retval = security_task_create(clone_flags);
1231 	if (retval)
1232 		goto fork_out;
1233 
1234 	retval = -ENOMEM;
1235 	p = dup_task_struct(current);
1236 	if (!p)
1237 		goto fork_out;
1238 
1239 	ftrace_graph_init_task(p);
1240 
1241 	rt_mutex_init_task(p);
1242 
1243 #ifdef CONFIG_PROVE_LOCKING
1244 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1245 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1246 #endif
1247 	retval = -EAGAIN;
1248 	if (atomic_read(&p->real_cred->user->processes) >=
1249 			task_rlimit(p, RLIMIT_NPROC)) {
1250 		if (p->real_cred->user != INIT_USER &&
1251 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1252 			goto bad_fork_free;
1253 	}
1254 	current->flags &= ~PF_NPROC_EXCEEDED;
1255 
1256 	retval = copy_creds(p, clone_flags);
1257 	if (retval < 0)
1258 		goto bad_fork_free;
1259 
1260 	/*
1261 	 * If multiple threads are within copy_process(), then this check
1262 	 * triggers too late. This doesn't hurt, the check is only there
1263 	 * to stop root fork bombs.
1264 	 */
1265 	retval = -EAGAIN;
1266 	if (nr_threads >= max_threads)
1267 		goto bad_fork_cleanup_count;
1268 
1269 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1270 		goto bad_fork_cleanup_count;
1271 
1272 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1273 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1274 	p->flags |= PF_FORKNOEXEC;
1275 	INIT_LIST_HEAD(&p->children);
1276 	INIT_LIST_HEAD(&p->sibling);
1277 	rcu_copy_process(p);
1278 	p->vfork_done = NULL;
1279 	spin_lock_init(&p->alloc_lock);
1280 
1281 	init_sigpending(&p->pending);
1282 
1283 	p->utime = p->stime = p->gtime = 0;
1284 	p->utimescaled = p->stimescaled = 0;
1285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1286 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1287 #endif
1288 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1289 	seqlock_init(&p->vtime_seqlock);
1290 	p->vtime_snap = 0;
1291 	p->vtime_snap_whence = VTIME_SLEEPING;
1292 #endif
1293 
1294 #if defined(SPLIT_RSS_COUNTING)
1295 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1296 #endif
1297 
1298 	p->default_timer_slack_ns = current->timer_slack_ns;
1299 
1300 	task_io_accounting_init(&p->ioac);
1301 	acct_clear_integrals(p);
1302 
1303 	posix_cpu_timers_init(p);
1304 
1305 	p->start_time = ktime_get_ns();
1306 	p->real_start_time = ktime_get_boot_ns();
1307 	p->io_context = NULL;
1308 	p->audit_context = NULL;
1309 	if (clone_flags & CLONE_THREAD)
1310 		threadgroup_change_begin(current);
1311 	cgroup_fork(p);
1312 #ifdef CONFIG_NUMA
1313 	p->mempolicy = mpol_dup(p->mempolicy);
1314 	if (IS_ERR(p->mempolicy)) {
1315 		retval = PTR_ERR(p->mempolicy);
1316 		p->mempolicy = NULL;
1317 		goto bad_fork_cleanup_threadgroup_lock;
1318 	}
1319 #endif
1320 #ifdef CONFIG_CPUSETS
1321 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1322 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1323 	seqcount_init(&p->mems_allowed_seq);
1324 #endif
1325 #ifdef CONFIG_TRACE_IRQFLAGS
1326 	p->irq_events = 0;
1327 	p->hardirqs_enabled = 0;
1328 	p->hardirq_enable_ip = 0;
1329 	p->hardirq_enable_event = 0;
1330 	p->hardirq_disable_ip = _THIS_IP_;
1331 	p->hardirq_disable_event = 0;
1332 	p->softirqs_enabled = 1;
1333 	p->softirq_enable_ip = _THIS_IP_;
1334 	p->softirq_enable_event = 0;
1335 	p->softirq_disable_ip = 0;
1336 	p->softirq_disable_event = 0;
1337 	p->hardirq_context = 0;
1338 	p->softirq_context = 0;
1339 #endif
1340 #ifdef CONFIG_LOCKDEP
1341 	p->lockdep_depth = 0; /* no locks held yet */
1342 	p->curr_chain_key = 0;
1343 	p->lockdep_recursion = 0;
1344 #endif
1345 
1346 #ifdef CONFIG_DEBUG_MUTEXES
1347 	p->blocked_on = NULL; /* not blocked yet */
1348 #endif
1349 #ifdef CONFIG_MEMCG
1350 	p->memcg_batch.do_batch = 0;
1351 	p->memcg_batch.memcg = NULL;
1352 #endif
1353 #ifdef CONFIG_BCACHE
1354 	p->sequential_io	= 0;
1355 	p->sequential_io_avg	= 0;
1356 #endif
1357 
1358 	/* Perform scheduler related setup. Assign this task to a CPU. */
1359 	retval = sched_fork(clone_flags, p);
1360 	if (retval)
1361 		goto bad_fork_cleanup_policy;
1362 
1363 	retval = perf_event_init_task(p);
1364 	if (retval)
1365 		goto bad_fork_cleanup_policy;
1366 	retval = audit_alloc(p);
1367 	if (retval)
1368 		goto bad_fork_cleanup_policy;
1369 	/* copy all the process information */
1370 	retval = copy_semundo(clone_flags, p);
1371 	if (retval)
1372 		goto bad_fork_cleanup_audit;
1373 	retval = copy_files(clone_flags, p);
1374 	if (retval)
1375 		goto bad_fork_cleanup_semundo;
1376 	retval = copy_fs(clone_flags, p);
1377 	if (retval)
1378 		goto bad_fork_cleanup_files;
1379 	retval = copy_sighand(clone_flags, p);
1380 	if (retval)
1381 		goto bad_fork_cleanup_fs;
1382 	retval = copy_signal(clone_flags, p);
1383 	if (retval)
1384 		goto bad_fork_cleanup_sighand;
1385 	retval = copy_mm(clone_flags, p);
1386 	if (retval)
1387 		goto bad_fork_cleanup_signal;
1388 	retval = copy_namespaces(clone_flags, p);
1389 	if (retval)
1390 		goto bad_fork_cleanup_mm;
1391 	retval = copy_io(clone_flags, p);
1392 	if (retval)
1393 		goto bad_fork_cleanup_namespaces;
1394 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1395 	if (retval)
1396 		goto bad_fork_cleanup_io;
1397 
1398 	if (pid != &init_struct_pid) {
1399 		retval = -ENOMEM;
1400 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1401 		if (!pid)
1402 			goto bad_fork_cleanup_io;
1403 	}
1404 
1405 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1406 	/*
1407 	 * Clear TID on mm_release()?
1408 	 */
1409 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1410 #ifdef CONFIG_BLOCK
1411 	p->plug = NULL;
1412 #endif
1413 #ifdef CONFIG_FUTEX
1414 	p->robust_list = NULL;
1415 #ifdef CONFIG_COMPAT
1416 	p->compat_robust_list = NULL;
1417 #endif
1418 	INIT_LIST_HEAD(&p->pi_state_list);
1419 	p->pi_state_cache = NULL;
1420 #endif
1421 	/*
1422 	 * sigaltstack should be cleared when sharing the same VM
1423 	 */
1424 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1425 		p->sas_ss_sp = p->sas_ss_size = 0;
1426 
1427 	/*
1428 	 * Syscall tracing and stepping should be turned off in the
1429 	 * child regardless of CLONE_PTRACE.
1430 	 */
1431 	user_disable_single_step(p);
1432 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1433 #ifdef TIF_SYSCALL_EMU
1434 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1435 #endif
1436 	clear_all_latency_tracing(p);
1437 
1438 	/* ok, now we should be set up.. */
1439 	p->pid = pid_nr(pid);
1440 	if (clone_flags & CLONE_THREAD) {
1441 		p->exit_signal = -1;
1442 		p->group_leader = current->group_leader;
1443 		p->tgid = current->tgid;
1444 	} else {
1445 		if (clone_flags & CLONE_PARENT)
1446 			p->exit_signal = current->group_leader->exit_signal;
1447 		else
1448 			p->exit_signal = (clone_flags & CSIGNAL);
1449 		p->group_leader = p;
1450 		p->tgid = p->pid;
1451 	}
1452 
1453 	p->nr_dirtied = 0;
1454 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1455 	p->dirty_paused_when = 0;
1456 
1457 	p->pdeath_signal = 0;
1458 	INIT_LIST_HEAD(&p->thread_group);
1459 	p->task_works = NULL;
1460 
1461 	/*
1462 	 * Make it visible to the rest of the system, but dont wake it up yet.
1463 	 * Need tasklist lock for parent etc handling!
1464 	 */
1465 	write_lock_irq(&tasklist_lock);
1466 
1467 	/* CLONE_PARENT re-uses the old parent */
1468 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1469 		p->real_parent = current->real_parent;
1470 		p->parent_exec_id = current->parent_exec_id;
1471 	} else {
1472 		p->real_parent = current;
1473 		p->parent_exec_id = current->self_exec_id;
1474 	}
1475 
1476 	spin_lock(&current->sighand->siglock);
1477 
1478 	/*
1479 	 * Copy seccomp details explicitly here, in case they were changed
1480 	 * before holding sighand lock.
1481 	 */
1482 	copy_seccomp(p);
1483 
1484 	/*
1485 	 * Process group and session signals need to be delivered to just the
1486 	 * parent before the fork or both the parent and the child after the
1487 	 * fork. Restart if a signal comes in before we add the new process to
1488 	 * it's process group.
1489 	 * A fatal signal pending means that current will exit, so the new
1490 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1491 	*/
1492 	recalc_sigpending();
1493 	if (signal_pending(current)) {
1494 		spin_unlock(&current->sighand->siglock);
1495 		write_unlock_irq(&tasklist_lock);
1496 		retval = -ERESTARTNOINTR;
1497 		goto bad_fork_free_pid;
1498 	}
1499 
1500 	if (likely(p->pid)) {
1501 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1502 
1503 		init_task_pid(p, PIDTYPE_PID, pid);
1504 		if (thread_group_leader(p)) {
1505 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1506 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1507 
1508 			if (is_child_reaper(pid)) {
1509 				ns_of_pid(pid)->child_reaper = p;
1510 				p->signal->flags |= SIGNAL_UNKILLABLE;
1511 			}
1512 
1513 			p->signal->leader_pid = pid;
1514 			p->signal->tty = tty_kref_get(current->signal->tty);
1515 			list_add_tail(&p->sibling, &p->real_parent->children);
1516 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1517 			attach_pid(p, PIDTYPE_PGID);
1518 			attach_pid(p, PIDTYPE_SID);
1519 			__this_cpu_inc(process_counts);
1520 		} else {
1521 			current->signal->nr_threads++;
1522 			atomic_inc(&current->signal->live);
1523 			atomic_inc(&current->signal->sigcnt);
1524 			list_add_tail_rcu(&p->thread_group,
1525 					  &p->group_leader->thread_group);
1526 			list_add_tail_rcu(&p->thread_node,
1527 					  &p->signal->thread_head);
1528 		}
1529 		attach_pid(p, PIDTYPE_PID);
1530 		nr_threads++;
1531 	}
1532 
1533 	total_forks++;
1534 	spin_unlock(&current->sighand->siglock);
1535 	syscall_tracepoint_update(p);
1536 	write_unlock_irq(&tasklist_lock);
1537 
1538 	proc_fork_connector(p);
1539 	cgroup_post_fork(p);
1540 	if (clone_flags & CLONE_THREAD)
1541 		threadgroup_change_end(current);
1542 	perf_event_fork(p);
1543 
1544 	trace_task_newtask(p, clone_flags);
1545 	uprobe_copy_process(p, clone_flags);
1546 
1547 	return p;
1548 
1549 bad_fork_free_pid:
1550 	if (pid != &init_struct_pid)
1551 		free_pid(pid);
1552 bad_fork_cleanup_io:
1553 	if (p->io_context)
1554 		exit_io_context(p);
1555 bad_fork_cleanup_namespaces:
1556 	exit_task_namespaces(p);
1557 bad_fork_cleanup_mm:
1558 	if (p->mm)
1559 		mmput(p->mm);
1560 bad_fork_cleanup_signal:
1561 	if (!(clone_flags & CLONE_THREAD))
1562 		free_signal_struct(p->signal);
1563 bad_fork_cleanup_sighand:
1564 	__cleanup_sighand(p->sighand);
1565 bad_fork_cleanup_fs:
1566 	exit_fs(p); /* blocking */
1567 bad_fork_cleanup_files:
1568 	exit_files(p); /* blocking */
1569 bad_fork_cleanup_semundo:
1570 	exit_sem(p);
1571 bad_fork_cleanup_audit:
1572 	audit_free(p);
1573 bad_fork_cleanup_policy:
1574 	perf_event_free_task(p);
1575 #ifdef CONFIG_NUMA
1576 	mpol_put(p->mempolicy);
1577 bad_fork_cleanup_threadgroup_lock:
1578 #endif
1579 	if (clone_flags & CLONE_THREAD)
1580 		threadgroup_change_end(current);
1581 	delayacct_tsk_free(p);
1582 	module_put(task_thread_info(p)->exec_domain->module);
1583 bad_fork_cleanup_count:
1584 	atomic_dec(&p->cred->user->processes);
1585 	exit_creds(p);
1586 bad_fork_free:
1587 	free_task(p);
1588 fork_out:
1589 	return ERR_PTR(retval);
1590 }
1591 
1592 static inline void init_idle_pids(struct pid_link *links)
1593 {
1594 	enum pid_type type;
1595 
1596 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1597 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1598 		links[type].pid = &init_struct_pid;
1599 	}
1600 }
1601 
1602 struct task_struct *fork_idle(int cpu)
1603 {
1604 	struct task_struct *task;
1605 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1606 	if (!IS_ERR(task)) {
1607 		init_idle_pids(task->pids);
1608 		init_idle(task, cpu);
1609 	}
1610 
1611 	return task;
1612 }
1613 
1614 /*
1615  *  Ok, this is the main fork-routine.
1616  *
1617  * It copies the process, and if successful kick-starts
1618  * it and waits for it to finish using the VM if required.
1619  */
1620 long do_fork(unsigned long clone_flags,
1621 	      unsigned long stack_start,
1622 	      unsigned long stack_size,
1623 	      int __user *parent_tidptr,
1624 	      int __user *child_tidptr)
1625 {
1626 	struct task_struct *p;
1627 	int trace = 0;
1628 	long nr;
1629 
1630 	/*
1631 	 * Determine whether and which event to report to ptracer.  When
1632 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1633 	 * requested, no event is reported; otherwise, report if the event
1634 	 * for the type of forking is enabled.
1635 	 */
1636 	if (!(clone_flags & CLONE_UNTRACED)) {
1637 		if (clone_flags & CLONE_VFORK)
1638 			trace = PTRACE_EVENT_VFORK;
1639 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1640 			trace = PTRACE_EVENT_CLONE;
1641 		else
1642 			trace = PTRACE_EVENT_FORK;
1643 
1644 		if (likely(!ptrace_event_enabled(current, trace)))
1645 			trace = 0;
1646 	}
1647 
1648 	p = copy_process(clone_flags, stack_start, stack_size,
1649 			 child_tidptr, NULL, trace);
1650 	/*
1651 	 * Do this prior waking up the new thread - the thread pointer
1652 	 * might get invalid after that point, if the thread exits quickly.
1653 	 */
1654 	if (!IS_ERR(p)) {
1655 		struct completion vfork;
1656 		struct pid *pid;
1657 
1658 		trace_sched_process_fork(current, p);
1659 
1660 		pid = get_task_pid(p, PIDTYPE_PID);
1661 		nr = pid_vnr(pid);
1662 
1663 		if (clone_flags & CLONE_PARENT_SETTID)
1664 			put_user(nr, parent_tidptr);
1665 
1666 		if (clone_flags & CLONE_VFORK) {
1667 			p->vfork_done = &vfork;
1668 			init_completion(&vfork);
1669 			get_task_struct(p);
1670 		}
1671 
1672 		wake_up_new_task(p);
1673 
1674 		/* forking complete and child started to run, tell ptracer */
1675 		if (unlikely(trace))
1676 			ptrace_event_pid(trace, pid);
1677 
1678 		if (clone_flags & CLONE_VFORK) {
1679 			if (!wait_for_vfork_done(p, &vfork))
1680 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1681 		}
1682 
1683 		put_pid(pid);
1684 	} else {
1685 		nr = PTR_ERR(p);
1686 	}
1687 	return nr;
1688 }
1689 
1690 /*
1691  * Create a kernel thread.
1692  */
1693 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1694 {
1695 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1696 		(unsigned long)arg, NULL, NULL);
1697 }
1698 
1699 #ifdef __ARCH_WANT_SYS_FORK
1700 SYSCALL_DEFINE0(fork)
1701 {
1702 #ifdef CONFIG_MMU
1703 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1704 #else
1705 	/* can not support in nommu mode */
1706 	return -EINVAL;
1707 #endif
1708 }
1709 #endif
1710 
1711 #ifdef __ARCH_WANT_SYS_VFORK
1712 SYSCALL_DEFINE0(vfork)
1713 {
1714 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1715 			0, NULL, NULL);
1716 }
1717 #endif
1718 
1719 #ifdef __ARCH_WANT_SYS_CLONE
1720 #ifdef CONFIG_CLONE_BACKWARDS
1721 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1722 		 int __user *, parent_tidptr,
1723 		 int, tls_val,
1724 		 int __user *, child_tidptr)
1725 #elif defined(CONFIG_CLONE_BACKWARDS2)
1726 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1727 		 int __user *, parent_tidptr,
1728 		 int __user *, child_tidptr,
1729 		 int, tls_val)
1730 #elif defined(CONFIG_CLONE_BACKWARDS3)
1731 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1732 		int, stack_size,
1733 		int __user *, parent_tidptr,
1734 		int __user *, child_tidptr,
1735 		int, tls_val)
1736 #else
1737 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1738 		 int __user *, parent_tidptr,
1739 		 int __user *, child_tidptr,
1740 		 int, tls_val)
1741 #endif
1742 {
1743 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1744 }
1745 #endif
1746 
1747 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1748 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1749 #endif
1750 
1751 static void sighand_ctor(void *data)
1752 {
1753 	struct sighand_struct *sighand = data;
1754 
1755 	spin_lock_init(&sighand->siglock);
1756 	init_waitqueue_head(&sighand->signalfd_wqh);
1757 }
1758 
1759 void __init proc_caches_init(void)
1760 {
1761 	sighand_cachep = kmem_cache_create("sighand_cache",
1762 			sizeof(struct sighand_struct), 0,
1763 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1764 			SLAB_NOTRACK, sighand_ctor);
1765 	signal_cachep = kmem_cache_create("signal_cache",
1766 			sizeof(struct signal_struct), 0,
1767 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1768 	files_cachep = kmem_cache_create("files_cache",
1769 			sizeof(struct files_struct), 0,
1770 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1771 	fs_cachep = kmem_cache_create("fs_cache",
1772 			sizeof(struct fs_struct), 0,
1773 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774 	/*
1775 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1776 	 * whole struct cpumask for the OFFSTACK case. We could change
1777 	 * this to *only* allocate as much of it as required by the
1778 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1779 	 * is at the end of the structure, exactly for that reason.
1780 	 */
1781 	mm_cachep = kmem_cache_create("mm_struct",
1782 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1783 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1784 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1785 	mmap_init();
1786 	nsproxy_cache_init();
1787 }
1788 
1789 /*
1790  * Check constraints on flags passed to the unshare system call.
1791  */
1792 static int check_unshare_flags(unsigned long unshare_flags)
1793 {
1794 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1795 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1796 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1797 				CLONE_NEWUSER|CLONE_NEWPID))
1798 		return -EINVAL;
1799 	/*
1800 	 * Not implemented, but pretend it works if there is nothing to
1801 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1802 	 * needs to unshare vm.
1803 	 */
1804 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1805 		/* FIXME: get_task_mm() increments ->mm_users */
1806 		if (atomic_read(&current->mm->mm_users) > 1)
1807 			return -EINVAL;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Unshare the filesystem structure if it is being shared
1815  */
1816 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1817 {
1818 	struct fs_struct *fs = current->fs;
1819 
1820 	if (!(unshare_flags & CLONE_FS) || !fs)
1821 		return 0;
1822 
1823 	/* don't need lock here; in the worst case we'll do useless copy */
1824 	if (fs->users == 1)
1825 		return 0;
1826 
1827 	*new_fsp = copy_fs_struct(fs);
1828 	if (!*new_fsp)
1829 		return -ENOMEM;
1830 
1831 	return 0;
1832 }
1833 
1834 /*
1835  * Unshare file descriptor table if it is being shared
1836  */
1837 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1838 {
1839 	struct files_struct *fd = current->files;
1840 	int error = 0;
1841 
1842 	if ((unshare_flags & CLONE_FILES) &&
1843 	    (fd && atomic_read(&fd->count) > 1)) {
1844 		*new_fdp = dup_fd(fd, &error);
1845 		if (!*new_fdp)
1846 			return error;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 /*
1853  * unshare allows a process to 'unshare' part of the process
1854  * context which was originally shared using clone.  copy_*
1855  * functions used by do_fork() cannot be used here directly
1856  * because they modify an inactive task_struct that is being
1857  * constructed. Here we are modifying the current, active,
1858  * task_struct.
1859  */
1860 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1861 {
1862 	struct fs_struct *fs, *new_fs = NULL;
1863 	struct files_struct *fd, *new_fd = NULL;
1864 	struct cred *new_cred = NULL;
1865 	struct nsproxy *new_nsproxy = NULL;
1866 	int do_sysvsem = 0;
1867 	int err;
1868 
1869 	/*
1870 	 * If unsharing a user namespace must also unshare the thread.
1871 	 */
1872 	if (unshare_flags & CLONE_NEWUSER)
1873 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1874 	/*
1875 	 * If unsharing a thread from a thread group, must also unshare vm.
1876 	 */
1877 	if (unshare_flags & CLONE_THREAD)
1878 		unshare_flags |= CLONE_VM;
1879 	/*
1880 	 * If unsharing vm, must also unshare signal handlers.
1881 	 */
1882 	if (unshare_flags & CLONE_VM)
1883 		unshare_flags |= CLONE_SIGHAND;
1884 	/*
1885 	 * If unsharing namespace, must also unshare filesystem information.
1886 	 */
1887 	if (unshare_flags & CLONE_NEWNS)
1888 		unshare_flags |= CLONE_FS;
1889 
1890 	err = check_unshare_flags(unshare_flags);
1891 	if (err)
1892 		goto bad_unshare_out;
1893 	/*
1894 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1895 	 * to a new ipc namespace, the semaphore arrays from the old
1896 	 * namespace are unreachable.
1897 	 */
1898 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1899 		do_sysvsem = 1;
1900 	err = unshare_fs(unshare_flags, &new_fs);
1901 	if (err)
1902 		goto bad_unshare_out;
1903 	err = unshare_fd(unshare_flags, &new_fd);
1904 	if (err)
1905 		goto bad_unshare_cleanup_fs;
1906 	err = unshare_userns(unshare_flags, &new_cred);
1907 	if (err)
1908 		goto bad_unshare_cleanup_fd;
1909 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1910 					 new_cred, new_fs);
1911 	if (err)
1912 		goto bad_unshare_cleanup_cred;
1913 
1914 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1915 		if (do_sysvsem) {
1916 			/*
1917 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1918 			 */
1919 			exit_sem(current);
1920 		}
1921 
1922 		if (new_nsproxy)
1923 			switch_task_namespaces(current, new_nsproxy);
1924 
1925 		task_lock(current);
1926 
1927 		if (new_fs) {
1928 			fs = current->fs;
1929 			spin_lock(&fs->lock);
1930 			current->fs = new_fs;
1931 			if (--fs->users)
1932 				new_fs = NULL;
1933 			else
1934 				new_fs = fs;
1935 			spin_unlock(&fs->lock);
1936 		}
1937 
1938 		if (new_fd) {
1939 			fd = current->files;
1940 			current->files = new_fd;
1941 			new_fd = fd;
1942 		}
1943 
1944 		task_unlock(current);
1945 
1946 		if (new_cred) {
1947 			/* Install the new user namespace */
1948 			commit_creds(new_cred);
1949 			new_cred = NULL;
1950 		}
1951 	}
1952 
1953 bad_unshare_cleanup_cred:
1954 	if (new_cred)
1955 		put_cred(new_cred);
1956 bad_unshare_cleanup_fd:
1957 	if (new_fd)
1958 		put_files_struct(new_fd);
1959 
1960 bad_unshare_cleanup_fs:
1961 	if (new_fs)
1962 		free_fs_struct(new_fs);
1963 
1964 bad_unshare_out:
1965 	return err;
1966 }
1967 
1968 /*
1969  *	Helper to unshare the files of the current task.
1970  *	We don't want to expose copy_files internals to
1971  *	the exec layer of the kernel.
1972  */
1973 
1974 int unshare_files(struct files_struct **displaced)
1975 {
1976 	struct task_struct *task = current;
1977 	struct files_struct *copy = NULL;
1978 	int error;
1979 
1980 	error = unshare_fd(CLONE_FILES, &copy);
1981 	if (error || !copy) {
1982 		*displaced = NULL;
1983 		return error;
1984 	}
1985 	*displaced = task->files;
1986 	task_lock(task);
1987 	task->files = copy;
1988 	task_unlock(task);
1989 	return 0;
1990 }
1991