1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 78 #include <asm/pgtable.h> 79 #include <asm/pgalloc.h> 80 #include <asm/uaccess.h> 81 #include <asm/mmu_context.h> 82 #include <asm/cacheflush.h> 83 #include <asm/tlbflush.h> 84 85 #include <trace/events/sched.h> 86 87 #define CREATE_TRACE_POINTS 88 #include <trace/events/task.h> 89 90 /* 91 * Protected counters by write_lock_irq(&tasklist_lock) 92 */ 93 unsigned long total_forks; /* Handle normal Linux uptimes. */ 94 int nr_threads; /* The idle threads do not count.. */ 95 96 int max_threads; /* tunable limit on nr_threads */ 97 98 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 99 100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 101 102 #ifdef CONFIG_PROVE_RCU 103 int lockdep_tasklist_lock_is_held(void) 104 { 105 return lockdep_is_held(&tasklist_lock); 106 } 107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 108 #endif /* #ifdef CONFIG_PROVE_RCU */ 109 110 int nr_processes(void) 111 { 112 int cpu; 113 int total = 0; 114 115 for_each_possible_cpu(cpu) 116 total += per_cpu(process_counts, cpu); 117 118 return total; 119 } 120 121 void __weak arch_release_task_struct(struct task_struct *tsk) 122 { 123 } 124 125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 126 static struct kmem_cache *task_struct_cachep; 127 128 static inline struct task_struct *alloc_task_struct_node(int node) 129 { 130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 131 } 132 133 static inline void free_task_struct(struct task_struct *tsk) 134 { 135 kmem_cache_free(task_struct_cachep, tsk); 136 } 137 #endif 138 139 void __weak arch_release_thread_info(struct thread_info *ti) 140 { 141 } 142 143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 144 145 /* 146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 147 * kmemcache based allocator. 148 */ 149 # if THREAD_SIZE >= PAGE_SIZE 150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 151 int node) 152 { 153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, 154 THREAD_SIZE_ORDER); 155 156 return page ? page_address(page) : NULL; 157 } 158 159 static inline void free_thread_info(struct thread_info *ti) 160 { 161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 162 } 163 # else 164 static struct kmem_cache *thread_info_cache; 165 166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 167 int node) 168 { 169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 170 } 171 172 static void free_thread_info(struct thread_info *ti) 173 { 174 kmem_cache_free(thread_info_cache, ti); 175 } 176 177 void thread_info_cache_init(void) 178 { 179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 180 THREAD_SIZE, 0, NULL); 181 BUG_ON(thread_info_cache == NULL); 182 } 183 # endif 184 #endif 185 186 /* SLAB cache for signal_struct structures (tsk->signal) */ 187 static struct kmem_cache *signal_cachep; 188 189 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 190 struct kmem_cache *sighand_cachep; 191 192 /* SLAB cache for files_struct structures (tsk->files) */ 193 struct kmem_cache *files_cachep; 194 195 /* SLAB cache for fs_struct structures (tsk->fs) */ 196 struct kmem_cache *fs_cachep; 197 198 /* SLAB cache for vm_area_struct structures */ 199 struct kmem_cache *vm_area_cachep; 200 201 /* SLAB cache for mm_struct structures (tsk->mm) */ 202 static struct kmem_cache *mm_cachep; 203 204 static void account_kernel_stack(struct thread_info *ti, int account) 205 { 206 struct zone *zone = page_zone(virt_to_page(ti)); 207 208 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 209 } 210 211 void free_task(struct task_struct *tsk) 212 { 213 account_kernel_stack(tsk->stack, -1); 214 arch_release_thread_info(tsk->stack); 215 free_thread_info(tsk->stack); 216 rt_mutex_debug_task_free(tsk); 217 ftrace_graph_exit_task(tsk); 218 put_seccomp_filter(tsk); 219 arch_release_task_struct(tsk); 220 free_task_struct(tsk); 221 } 222 EXPORT_SYMBOL(free_task); 223 224 static inline void free_signal_struct(struct signal_struct *sig) 225 { 226 taskstats_tgid_free(sig); 227 sched_autogroup_exit(sig); 228 kmem_cache_free(signal_cachep, sig); 229 } 230 231 static inline void put_signal_struct(struct signal_struct *sig) 232 { 233 if (atomic_dec_and_test(&sig->sigcnt)) 234 free_signal_struct(sig); 235 } 236 237 void __put_task_struct(struct task_struct *tsk) 238 { 239 WARN_ON(!tsk->exit_state); 240 WARN_ON(atomic_read(&tsk->usage)); 241 WARN_ON(tsk == current); 242 243 task_numa_free(tsk); 244 security_task_free(tsk); 245 exit_creds(tsk); 246 delayacct_tsk_free(tsk); 247 put_signal_struct(tsk->signal); 248 249 if (!profile_handoff_task(tsk)) 250 free_task(tsk); 251 } 252 EXPORT_SYMBOL_GPL(__put_task_struct); 253 254 void __init __weak arch_task_cache_init(void) { } 255 256 void __init fork_init(unsigned long mempages) 257 { 258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 259 #ifndef ARCH_MIN_TASKALIGN 260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 261 #endif 262 /* create a slab on which task_structs can be allocated */ 263 task_struct_cachep = 264 kmem_cache_create("task_struct", sizeof(struct task_struct), 265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 266 #endif 267 268 /* do the arch specific task caches init */ 269 arch_task_cache_init(); 270 271 /* 272 * The default maximum number of threads is set to a safe 273 * value: the thread structures can take up at most half 274 * of memory. 275 */ 276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 277 278 /* 279 * we need to allow at least 20 threads to boot a system 280 */ 281 if (max_threads < 20) 282 max_threads = 20; 283 284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 286 init_task.signal->rlim[RLIMIT_SIGPENDING] = 287 init_task.signal->rlim[RLIMIT_NPROC]; 288 } 289 290 int __weak arch_dup_task_struct(struct task_struct *dst, 291 struct task_struct *src) 292 { 293 *dst = *src; 294 return 0; 295 } 296 297 static struct task_struct *dup_task_struct(struct task_struct *orig) 298 { 299 struct task_struct *tsk; 300 struct thread_info *ti; 301 unsigned long *stackend; 302 int node = tsk_fork_get_node(orig); 303 int err; 304 305 tsk = alloc_task_struct_node(node); 306 if (!tsk) 307 return NULL; 308 309 ti = alloc_thread_info_node(tsk, node); 310 if (!ti) 311 goto free_tsk; 312 313 err = arch_dup_task_struct(tsk, orig); 314 if (err) 315 goto free_ti; 316 317 tsk->stack = ti; 318 #ifdef CONFIG_SECCOMP 319 /* 320 * We must handle setting up seccomp filters once we're under 321 * the sighand lock in case orig has changed between now and 322 * then. Until then, filter must be NULL to avoid messing up 323 * the usage counts on the error path calling free_task. 324 */ 325 tsk->seccomp.filter = NULL; 326 #endif 327 328 setup_thread_stack(tsk, orig); 329 clear_user_return_notifier(tsk); 330 clear_tsk_need_resched(tsk); 331 stackend = end_of_stack(tsk); 332 *stackend = STACK_END_MAGIC; /* for overflow detection */ 333 334 #ifdef CONFIG_CC_STACKPROTECTOR 335 tsk->stack_canary = get_random_int(); 336 #endif 337 338 /* 339 * One for us, one for whoever does the "release_task()" (usually 340 * parent) 341 */ 342 atomic_set(&tsk->usage, 2); 343 #ifdef CONFIG_BLK_DEV_IO_TRACE 344 tsk->btrace_seq = 0; 345 #endif 346 tsk->splice_pipe = NULL; 347 tsk->task_frag.page = NULL; 348 349 account_kernel_stack(ti, 1); 350 351 return tsk; 352 353 free_ti: 354 free_thread_info(ti); 355 free_tsk: 356 free_task_struct(tsk); 357 return NULL; 358 } 359 360 #ifdef CONFIG_MMU 361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 362 { 363 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 364 struct rb_node **rb_link, *rb_parent; 365 int retval; 366 unsigned long charge; 367 368 uprobe_start_dup_mmap(); 369 down_write(&oldmm->mmap_sem); 370 flush_cache_dup_mm(oldmm); 371 uprobe_dup_mmap(oldmm, mm); 372 /* 373 * Not linked in yet - no deadlock potential: 374 */ 375 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 376 377 mm->locked_vm = 0; 378 mm->mmap = NULL; 379 mm->vmacache_seqnum = 0; 380 mm->map_count = 0; 381 cpumask_clear(mm_cpumask(mm)); 382 mm->mm_rb = RB_ROOT; 383 rb_link = &mm->mm_rb.rb_node; 384 rb_parent = NULL; 385 pprev = &mm->mmap; 386 retval = ksm_fork(mm, oldmm); 387 if (retval) 388 goto out; 389 retval = khugepaged_fork(mm, oldmm); 390 if (retval) 391 goto out; 392 393 prev = NULL; 394 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 395 struct file *file; 396 397 if (mpnt->vm_flags & VM_DONTCOPY) { 398 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 399 -vma_pages(mpnt)); 400 continue; 401 } 402 charge = 0; 403 if (mpnt->vm_flags & VM_ACCOUNT) { 404 unsigned long len = vma_pages(mpnt); 405 406 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 407 goto fail_nomem; 408 charge = len; 409 } 410 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 411 if (!tmp) 412 goto fail_nomem; 413 *tmp = *mpnt; 414 INIT_LIST_HEAD(&tmp->anon_vma_chain); 415 retval = vma_dup_policy(mpnt, tmp); 416 if (retval) 417 goto fail_nomem_policy; 418 tmp->vm_mm = mm; 419 if (anon_vma_fork(tmp, mpnt)) 420 goto fail_nomem_anon_vma_fork; 421 tmp->vm_flags &= ~VM_LOCKED; 422 tmp->vm_next = tmp->vm_prev = NULL; 423 file = tmp->vm_file; 424 if (file) { 425 struct inode *inode = file_inode(file); 426 struct address_space *mapping = file->f_mapping; 427 428 get_file(file); 429 if (tmp->vm_flags & VM_DENYWRITE) 430 atomic_dec(&inode->i_writecount); 431 mutex_lock(&mapping->i_mmap_mutex); 432 if (tmp->vm_flags & VM_SHARED) 433 mapping->i_mmap_writable++; 434 flush_dcache_mmap_lock(mapping); 435 /* insert tmp into the share list, just after mpnt */ 436 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 437 vma_nonlinear_insert(tmp, 438 &mapping->i_mmap_nonlinear); 439 else 440 vma_interval_tree_insert_after(tmp, mpnt, 441 &mapping->i_mmap); 442 flush_dcache_mmap_unlock(mapping); 443 mutex_unlock(&mapping->i_mmap_mutex); 444 } 445 446 /* 447 * Clear hugetlb-related page reserves for children. This only 448 * affects MAP_PRIVATE mappings. Faults generated by the child 449 * are not guaranteed to succeed, even if read-only 450 */ 451 if (is_vm_hugetlb_page(tmp)) 452 reset_vma_resv_huge_pages(tmp); 453 454 /* 455 * Link in the new vma and copy the page table entries. 456 */ 457 *pprev = tmp; 458 pprev = &tmp->vm_next; 459 tmp->vm_prev = prev; 460 prev = tmp; 461 462 __vma_link_rb(mm, tmp, rb_link, rb_parent); 463 rb_link = &tmp->vm_rb.rb_right; 464 rb_parent = &tmp->vm_rb; 465 466 mm->map_count++; 467 retval = copy_page_range(mm, oldmm, mpnt); 468 469 if (tmp->vm_ops && tmp->vm_ops->open) 470 tmp->vm_ops->open(tmp); 471 472 if (retval) 473 goto out; 474 } 475 /* a new mm has just been created */ 476 arch_dup_mmap(oldmm, mm); 477 retval = 0; 478 out: 479 up_write(&mm->mmap_sem); 480 flush_tlb_mm(oldmm); 481 up_write(&oldmm->mmap_sem); 482 uprobe_end_dup_mmap(); 483 return retval; 484 fail_nomem_anon_vma_fork: 485 mpol_put(vma_policy(tmp)); 486 fail_nomem_policy: 487 kmem_cache_free(vm_area_cachep, tmp); 488 fail_nomem: 489 retval = -ENOMEM; 490 vm_unacct_memory(charge); 491 goto out; 492 } 493 494 static inline int mm_alloc_pgd(struct mm_struct *mm) 495 { 496 mm->pgd = pgd_alloc(mm); 497 if (unlikely(!mm->pgd)) 498 return -ENOMEM; 499 return 0; 500 } 501 502 static inline void mm_free_pgd(struct mm_struct *mm) 503 { 504 pgd_free(mm, mm->pgd); 505 } 506 #else 507 #define dup_mmap(mm, oldmm) (0) 508 #define mm_alloc_pgd(mm) (0) 509 #define mm_free_pgd(mm) 510 #endif /* CONFIG_MMU */ 511 512 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 513 514 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 515 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 516 517 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 518 519 static int __init coredump_filter_setup(char *s) 520 { 521 default_dump_filter = 522 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 523 MMF_DUMP_FILTER_MASK; 524 return 1; 525 } 526 527 __setup("coredump_filter=", coredump_filter_setup); 528 529 #include <linux/init_task.h> 530 531 static void mm_init_aio(struct mm_struct *mm) 532 { 533 #ifdef CONFIG_AIO 534 spin_lock_init(&mm->ioctx_lock); 535 mm->ioctx_table = NULL; 536 #endif 537 } 538 539 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 540 { 541 atomic_set(&mm->mm_users, 1); 542 atomic_set(&mm->mm_count, 1); 543 init_rwsem(&mm->mmap_sem); 544 INIT_LIST_HEAD(&mm->mmlist); 545 mm->core_state = NULL; 546 atomic_long_set(&mm->nr_ptes, 0); 547 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 548 spin_lock_init(&mm->page_table_lock); 549 mm_init_aio(mm); 550 mm_init_owner(mm, p); 551 clear_tlb_flush_pending(mm); 552 553 if (current->mm) { 554 mm->flags = current->mm->flags & MMF_INIT_MASK; 555 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 556 } else { 557 mm->flags = default_dump_filter; 558 mm->def_flags = 0; 559 } 560 561 if (likely(!mm_alloc_pgd(mm))) { 562 mmu_notifier_mm_init(mm); 563 return mm; 564 } 565 566 free_mm(mm); 567 return NULL; 568 } 569 570 static void check_mm(struct mm_struct *mm) 571 { 572 int i; 573 574 for (i = 0; i < NR_MM_COUNTERS; i++) { 575 long x = atomic_long_read(&mm->rss_stat.count[i]); 576 577 if (unlikely(x)) 578 printk(KERN_ALERT "BUG: Bad rss-counter state " 579 "mm:%p idx:%d val:%ld\n", mm, i, x); 580 } 581 582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 583 VM_BUG_ON(mm->pmd_huge_pte); 584 #endif 585 } 586 587 /* 588 * Allocate and initialize an mm_struct. 589 */ 590 struct mm_struct *mm_alloc(void) 591 { 592 struct mm_struct *mm; 593 594 mm = allocate_mm(); 595 if (!mm) 596 return NULL; 597 598 memset(mm, 0, sizeof(*mm)); 599 mm_init_cpumask(mm); 600 return mm_init(mm, current); 601 } 602 603 /* 604 * Called when the last reference to the mm 605 * is dropped: either by a lazy thread or by 606 * mmput. Free the page directory and the mm. 607 */ 608 void __mmdrop(struct mm_struct *mm) 609 { 610 BUG_ON(mm == &init_mm); 611 mm_free_pgd(mm); 612 destroy_context(mm); 613 mmu_notifier_mm_destroy(mm); 614 check_mm(mm); 615 free_mm(mm); 616 } 617 EXPORT_SYMBOL_GPL(__mmdrop); 618 619 /* 620 * Decrement the use count and release all resources for an mm. 621 */ 622 void mmput(struct mm_struct *mm) 623 { 624 might_sleep(); 625 626 if (atomic_dec_and_test(&mm->mm_users)) { 627 uprobe_clear_state(mm); 628 exit_aio(mm); 629 ksm_exit(mm); 630 khugepaged_exit(mm); /* must run before exit_mmap */ 631 exit_mmap(mm); 632 set_mm_exe_file(mm, NULL); 633 if (!list_empty(&mm->mmlist)) { 634 spin_lock(&mmlist_lock); 635 list_del(&mm->mmlist); 636 spin_unlock(&mmlist_lock); 637 } 638 if (mm->binfmt) 639 module_put(mm->binfmt->module); 640 mmdrop(mm); 641 } 642 } 643 EXPORT_SYMBOL_GPL(mmput); 644 645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 646 { 647 if (new_exe_file) 648 get_file(new_exe_file); 649 if (mm->exe_file) 650 fput(mm->exe_file); 651 mm->exe_file = new_exe_file; 652 } 653 654 struct file *get_mm_exe_file(struct mm_struct *mm) 655 { 656 struct file *exe_file; 657 658 /* We need mmap_sem to protect against races with removal of exe_file */ 659 down_read(&mm->mmap_sem); 660 exe_file = mm->exe_file; 661 if (exe_file) 662 get_file(exe_file); 663 up_read(&mm->mmap_sem); 664 return exe_file; 665 } 666 667 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 668 { 669 /* It's safe to write the exe_file pointer without exe_file_lock because 670 * this is called during fork when the task is not yet in /proc */ 671 newmm->exe_file = get_mm_exe_file(oldmm); 672 } 673 674 /** 675 * get_task_mm - acquire a reference to the task's mm 676 * 677 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 678 * this kernel workthread has transiently adopted a user mm with use_mm, 679 * to do its AIO) is not set and if so returns a reference to it, after 680 * bumping up the use count. User must release the mm via mmput() 681 * after use. Typically used by /proc and ptrace. 682 */ 683 struct mm_struct *get_task_mm(struct task_struct *task) 684 { 685 struct mm_struct *mm; 686 687 task_lock(task); 688 mm = task->mm; 689 if (mm) { 690 if (task->flags & PF_KTHREAD) 691 mm = NULL; 692 else 693 atomic_inc(&mm->mm_users); 694 } 695 task_unlock(task); 696 return mm; 697 } 698 EXPORT_SYMBOL_GPL(get_task_mm); 699 700 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 701 { 702 struct mm_struct *mm; 703 int err; 704 705 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 706 if (err) 707 return ERR_PTR(err); 708 709 mm = get_task_mm(task); 710 if (mm && mm != current->mm && 711 !ptrace_may_access(task, mode)) { 712 mmput(mm); 713 mm = ERR_PTR(-EACCES); 714 } 715 mutex_unlock(&task->signal->cred_guard_mutex); 716 717 return mm; 718 } 719 720 static void complete_vfork_done(struct task_struct *tsk) 721 { 722 struct completion *vfork; 723 724 task_lock(tsk); 725 vfork = tsk->vfork_done; 726 if (likely(vfork)) { 727 tsk->vfork_done = NULL; 728 complete(vfork); 729 } 730 task_unlock(tsk); 731 } 732 733 static int wait_for_vfork_done(struct task_struct *child, 734 struct completion *vfork) 735 { 736 int killed; 737 738 freezer_do_not_count(); 739 killed = wait_for_completion_killable(vfork); 740 freezer_count(); 741 742 if (killed) { 743 task_lock(child); 744 child->vfork_done = NULL; 745 task_unlock(child); 746 } 747 748 put_task_struct(child); 749 return killed; 750 } 751 752 /* Please note the differences between mmput and mm_release. 753 * mmput is called whenever we stop holding onto a mm_struct, 754 * error success whatever. 755 * 756 * mm_release is called after a mm_struct has been removed 757 * from the current process. 758 * 759 * This difference is important for error handling, when we 760 * only half set up a mm_struct for a new process and need to restore 761 * the old one. Because we mmput the new mm_struct before 762 * restoring the old one. . . 763 * Eric Biederman 10 January 1998 764 */ 765 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 766 { 767 /* Get rid of any futexes when releasing the mm */ 768 #ifdef CONFIG_FUTEX 769 if (unlikely(tsk->robust_list)) { 770 exit_robust_list(tsk); 771 tsk->robust_list = NULL; 772 } 773 #ifdef CONFIG_COMPAT 774 if (unlikely(tsk->compat_robust_list)) { 775 compat_exit_robust_list(tsk); 776 tsk->compat_robust_list = NULL; 777 } 778 #endif 779 if (unlikely(!list_empty(&tsk->pi_state_list))) 780 exit_pi_state_list(tsk); 781 #endif 782 783 uprobe_free_utask(tsk); 784 785 /* Get rid of any cached register state */ 786 deactivate_mm(tsk, mm); 787 788 /* 789 * If we're exiting normally, clear a user-space tid field if 790 * requested. We leave this alone when dying by signal, to leave 791 * the value intact in a core dump, and to save the unnecessary 792 * trouble, say, a killed vfork parent shouldn't touch this mm. 793 * Userland only wants this done for a sys_exit. 794 */ 795 if (tsk->clear_child_tid) { 796 if (!(tsk->flags & PF_SIGNALED) && 797 atomic_read(&mm->mm_users) > 1) { 798 /* 799 * We don't check the error code - if userspace has 800 * not set up a proper pointer then tough luck. 801 */ 802 put_user(0, tsk->clear_child_tid); 803 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 804 1, NULL, NULL, 0); 805 } 806 tsk->clear_child_tid = NULL; 807 } 808 809 /* 810 * All done, finally we can wake up parent and return this mm to him. 811 * Also kthread_stop() uses this completion for synchronization. 812 */ 813 if (tsk->vfork_done) 814 complete_vfork_done(tsk); 815 } 816 817 /* 818 * Allocate a new mm structure and copy contents from the 819 * mm structure of the passed in task structure. 820 */ 821 static struct mm_struct *dup_mm(struct task_struct *tsk) 822 { 823 struct mm_struct *mm, *oldmm = current->mm; 824 int err; 825 826 mm = allocate_mm(); 827 if (!mm) 828 goto fail_nomem; 829 830 memcpy(mm, oldmm, sizeof(*mm)); 831 mm_init_cpumask(mm); 832 833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 834 mm->pmd_huge_pte = NULL; 835 #endif 836 if (!mm_init(mm, tsk)) 837 goto fail_nomem; 838 839 if (init_new_context(tsk, mm)) 840 goto fail_nocontext; 841 842 dup_mm_exe_file(oldmm, mm); 843 844 err = dup_mmap(mm, oldmm); 845 if (err) 846 goto free_pt; 847 848 mm->hiwater_rss = get_mm_rss(mm); 849 mm->hiwater_vm = mm->total_vm; 850 851 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 852 goto free_pt; 853 854 return mm; 855 856 free_pt: 857 /* don't put binfmt in mmput, we haven't got module yet */ 858 mm->binfmt = NULL; 859 mmput(mm); 860 861 fail_nomem: 862 return NULL; 863 864 fail_nocontext: 865 /* 866 * If init_new_context() failed, we cannot use mmput() to free the mm 867 * because it calls destroy_context() 868 */ 869 mm_free_pgd(mm); 870 free_mm(mm); 871 return NULL; 872 } 873 874 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 875 { 876 struct mm_struct *mm, *oldmm; 877 int retval; 878 879 tsk->min_flt = tsk->maj_flt = 0; 880 tsk->nvcsw = tsk->nivcsw = 0; 881 #ifdef CONFIG_DETECT_HUNG_TASK 882 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 883 #endif 884 885 tsk->mm = NULL; 886 tsk->active_mm = NULL; 887 888 /* 889 * Are we cloning a kernel thread? 890 * 891 * We need to steal a active VM for that.. 892 */ 893 oldmm = current->mm; 894 if (!oldmm) 895 return 0; 896 897 /* initialize the new vmacache entries */ 898 vmacache_flush(tsk); 899 900 if (clone_flags & CLONE_VM) { 901 atomic_inc(&oldmm->mm_users); 902 mm = oldmm; 903 goto good_mm; 904 } 905 906 retval = -ENOMEM; 907 mm = dup_mm(tsk); 908 if (!mm) 909 goto fail_nomem; 910 911 good_mm: 912 tsk->mm = mm; 913 tsk->active_mm = mm; 914 return 0; 915 916 fail_nomem: 917 return retval; 918 } 919 920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 921 { 922 struct fs_struct *fs = current->fs; 923 if (clone_flags & CLONE_FS) { 924 /* tsk->fs is already what we want */ 925 spin_lock(&fs->lock); 926 if (fs->in_exec) { 927 spin_unlock(&fs->lock); 928 return -EAGAIN; 929 } 930 fs->users++; 931 spin_unlock(&fs->lock); 932 return 0; 933 } 934 tsk->fs = copy_fs_struct(fs); 935 if (!tsk->fs) 936 return -ENOMEM; 937 return 0; 938 } 939 940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 941 { 942 struct files_struct *oldf, *newf; 943 int error = 0; 944 945 /* 946 * A background process may not have any files ... 947 */ 948 oldf = current->files; 949 if (!oldf) 950 goto out; 951 952 if (clone_flags & CLONE_FILES) { 953 atomic_inc(&oldf->count); 954 goto out; 955 } 956 957 newf = dup_fd(oldf, &error); 958 if (!newf) 959 goto out; 960 961 tsk->files = newf; 962 error = 0; 963 out: 964 return error; 965 } 966 967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 968 { 969 #ifdef CONFIG_BLOCK 970 struct io_context *ioc = current->io_context; 971 struct io_context *new_ioc; 972 973 if (!ioc) 974 return 0; 975 /* 976 * Share io context with parent, if CLONE_IO is set 977 */ 978 if (clone_flags & CLONE_IO) { 979 ioc_task_link(ioc); 980 tsk->io_context = ioc; 981 } else if (ioprio_valid(ioc->ioprio)) { 982 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 983 if (unlikely(!new_ioc)) 984 return -ENOMEM; 985 986 new_ioc->ioprio = ioc->ioprio; 987 put_io_context(new_ioc); 988 } 989 #endif 990 return 0; 991 } 992 993 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 994 { 995 struct sighand_struct *sig; 996 997 if (clone_flags & CLONE_SIGHAND) { 998 atomic_inc(¤t->sighand->count); 999 return 0; 1000 } 1001 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1002 rcu_assign_pointer(tsk->sighand, sig); 1003 if (!sig) 1004 return -ENOMEM; 1005 atomic_set(&sig->count, 1); 1006 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1007 return 0; 1008 } 1009 1010 void __cleanup_sighand(struct sighand_struct *sighand) 1011 { 1012 if (atomic_dec_and_test(&sighand->count)) { 1013 signalfd_cleanup(sighand); 1014 kmem_cache_free(sighand_cachep, sighand); 1015 } 1016 } 1017 1018 1019 /* 1020 * Initialize POSIX timer handling for a thread group. 1021 */ 1022 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1023 { 1024 unsigned long cpu_limit; 1025 1026 /* Thread group counters. */ 1027 thread_group_cputime_init(sig); 1028 1029 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1030 if (cpu_limit != RLIM_INFINITY) { 1031 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1032 sig->cputimer.running = 1; 1033 } 1034 1035 /* The timer lists. */ 1036 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1037 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1038 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1039 } 1040 1041 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1042 { 1043 struct signal_struct *sig; 1044 1045 if (clone_flags & CLONE_THREAD) 1046 return 0; 1047 1048 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1049 tsk->signal = sig; 1050 if (!sig) 1051 return -ENOMEM; 1052 1053 sig->nr_threads = 1; 1054 atomic_set(&sig->live, 1); 1055 atomic_set(&sig->sigcnt, 1); 1056 1057 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1058 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1059 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1060 1061 init_waitqueue_head(&sig->wait_chldexit); 1062 sig->curr_target = tsk; 1063 init_sigpending(&sig->shared_pending); 1064 INIT_LIST_HEAD(&sig->posix_timers); 1065 1066 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1067 sig->real_timer.function = it_real_fn; 1068 1069 task_lock(current->group_leader); 1070 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1071 task_unlock(current->group_leader); 1072 1073 posix_cpu_timers_init_group(sig); 1074 1075 tty_audit_fork(sig); 1076 sched_autogroup_fork(sig); 1077 1078 #ifdef CONFIG_CGROUPS 1079 init_rwsem(&sig->group_rwsem); 1080 #endif 1081 1082 sig->oom_score_adj = current->signal->oom_score_adj; 1083 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1084 1085 sig->has_child_subreaper = current->signal->has_child_subreaper || 1086 current->signal->is_child_subreaper; 1087 1088 mutex_init(&sig->cred_guard_mutex); 1089 1090 return 0; 1091 } 1092 1093 static void copy_seccomp(struct task_struct *p) 1094 { 1095 #ifdef CONFIG_SECCOMP 1096 /* 1097 * Must be called with sighand->lock held, which is common to 1098 * all threads in the group. Holding cred_guard_mutex is not 1099 * needed because this new task is not yet running and cannot 1100 * be racing exec. 1101 */ 1102 BUG_ON(!spin_is_locked(¤t->sighand->siglock)); 1103 1104 /* Ref-count the new filter user, and assign it. */ 1105 get_seccomp_filter(current); 1106 p->seccomp = current->seccomp; 1107 1108 /* 1109 * Explicitly enable no_new_privs here in case it got set 1110 * between the task_struct being duplicated and holding the 1111 * sighand lock. The seccomp state and nnp must be in sync. 1112 */ 1113 if (task_no_new_privs(current)) 1114 task_set_no_new_privs(p); 1115 1116 /* 1117 * If the parent gained a seccomp mode after copying thread 1118 * flags and between before we held the sighand lock, we have 1119 * to manually enable the seccomp thread flag here. 1120 */ 1121 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1122 set_tsk_thread_flag(p, TIF_SECCOMP); 1123 #endif 1124 } 1125 1126 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1127 { 1128 current->clear_child_tid = tidptr; 1129 1130 return task_pid_vnr(current); 1131 } 1132 1133 static void rt_mutex_init_task(struct task_struct *p) 1134 { 1135 raw_spin_lock_init(&p->pi_lock); 1136 #ifdef CONFIG_RT_MUTEXES 1137 p->pi_waiters = RB_ROOT; 1138 p->pi_waiters_leftmost = NULL; 1139 p->pi_blocked_on = NULL; 1140 #endif 1141 } 1142 1143 #ifdef CONFIG_MEMCG 1144 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1145 { 1146 mm->owner = p; 1147 } 1148 #endif /* CONFIG_MEMCG */ 1149 1150 /* 1151 * Initialize POSIX timer handling for a single task. 1152 */ 1153 static void posix_cpu_timers_init(struct task_struct *tsk) 1154 { 1155 tsk->cputime_expires.prof_exp = 0; 1156 tsk->cputime_expires.virt_exp = 0; 1157 tsk->cputime_expires.sched_exp = 0; 1158 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1159 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1160 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1161 } 1162 1163 static inline void 1164 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1165 { 1166 task->pids[type].pid = pid; 1167 } 1168 1169 /* 1170 * This creates a new process as a copy of the old one, 1171 * but does not actually start it yet. 1172 * 1173 * It copies the registers, and all the appropriate 1174 * parts of the process environment (as per the clone 1175 * flags). The actual kick-off is left to the caller. 1176 */ 1177 static struct task_struct *copy_process(unsigned long clone_flags, 1178 unsigned long stack_start, 1179 unsigned long stack_size, 1180 int __user *child_tidptr, 1181 struct pid *pid, 1182 int trace) 1183 { 1184 int retval; 1185 struct task_struct *p; 1186 1187 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1188 return ERR_PTR(-EINVAL); 1189 1190 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1191 return ERR_PTR(-EINVAL); 1192 1193 /* 1194 * Thread groups must share signals as well, and detached threads 1195 * can only be started up within the thread group. 1196 */ 1197 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1198 return ERR_PTR(-EINVAL); 1199 1200 /* 1201 * Shared signal handlers imply shared VM. By way of the above, 1202 * thread groups also imply shared VM. Blocking this case allows 1203 * for various simplifications in other code. 1204 */ 1205 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1206 return ERR_PTR(-EINVAL); 1207 1208 /* 1209 * Siblings of global init remain as zombies on exit since they are 1210 * not reaped by their parent (swapper). To solve this and to avoid 1211 * multi-rooted process trees, prevent global and container-inits 1212 * from creating siblings. 1213 */ 1214 if ((clone_flags & CLONE_PARENT) && 1215 current->signal->flags & SIGNAL_UNKILLABLE) 1216 return ERR_PTR(-EINVAL); 1217 1218 /* 1219 * If the new process will be in a different pid or user namespace 1220 * do not allow it to share a thread group or signal handlers or 1221 * parent with the forking task. 1222 */ 1223 if (clone_flags & CLONE_SIGHAND) { 1224 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1225 (task_active_pid_ns(current) != 1226 current->nsproxy->pid_ns_for_children)) 1227 return ERR_PTR(-EINVAL); 1228 } 1229 1230 retval = security_task_create(clone_flags); 1231 if (retval) 1232 goto fork_out; 1233 1234 retval = -ENOMEM; 1235 p = dup_task_struct(current); 1236 if (!p) 1237 goto fork_out; 1238 1239 ftrace_graph_init_task(p); 1240 1241 rt_mutex_init_task(p); 1242 1243 #ifdef CONFIG_PROVE_LOCKING 1244 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1245 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1246 #endif 1247 retval = -EAGAIN; 1248 if (atomic_read(&p->real_cred->user->processes) >= 1249 task_rlimit(p, RLIMIT_NPROC)) { 1250 if (p->real_cred->user != INIT_USER && 1251 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1252 goto bad_fork_free; 1253 } 1254 current->flags &= ~PF_NPROC_EXCEEDED; 1255 1256 retval = copy_creds(p, clone_flags); 1257 if (retval < 0) 1258 goto bad_fork_free; 1259 1260 /* 1261 * If multiple threads are within copy_process(), then this check 1262 * triggers too late. This doesn't hurt, the check is only there 1263 * to stop root fork bombs. 1264 */ 1265 retval = -EAGAIN; 1266 if (nr_threads >= max_threads) 1267 goto bad_fork_cleanup_count; 1268 1269 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1270 goto bad_fork_cleanup_count; 1271 1272 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1273 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1274 p->flags |= PF_FORKNOEXEC; 1275 INIT_LIST_HEAD(&p->children); 1276 INIT_LIST_HEAD(&p->sibling); 1277 rcu_copy_process(p); 1278 p->vfork_done = NULL; 1279 spin_lock_init(&p->alloc_lock); 1280 1281 init_sigpending(&p->pending); 1282 1283 p->utime = p->stime = p->gtime = 0; 1284 p->utimescaled = p->stimescaled = 0; 1285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1286 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1287 #endif 1288 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1289 seqlock_init(&p->vtime_seqlock); 1290 p->vtime_snap = 0; 1291 p->vtime_snap_whence = VTIME_SLEEPING; 1292 #endif 1293 1294 #if defined(SPLIT_RSS_COUNTING) 1295 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1296 #endif 1297 1298 p->default_timer_slack_ns = current->timer_slack_ns; 1299 1300 task_io_accounting_init(&p->ioac); 1301 acct_clear_integrals(p); 1302 1303 posix_cpu_timers_init(p); 1304 1305 p->start_time = ktime_get_ns(); 1306 p->real_start_time = ktime_get_boot_ns(); 1307 p->io_context = NULL; 1308 p->audit_context = NULL; 1309 if (clone_flags & CLONE_THREAD) 1310 threadgroup_change_begin(current); 1311 cgroup_fork(p); 1312 #ifdef CONFIG_NUMA 1313 p->mempolicy = mpol_dup(p->mempolicy); 1314 if (IS_ERR(p->mempolicy)) { 1315 retval = PTR_ERR(p->mempolicy); 1316 p->mempolicy = NULL; 1317 goto bad_fork_cleanup_threadgroup_lock; 1318 } 1319 #endif 1320 #ifdef CONFIG_CPUSETS 1321 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1322 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1323 seqcount_init(&p->mems_allowed_seq); 1324 #endif 1325 #ifdef CONFIG_TRACE_IRQFLAGS 1326 p->irq_events = 0; 1327 p->hardirqs_enabled = 0; 1328 p->hardirq_enable_ip = 0; 1329 p->hardirq_enable_event = 0; 1330 p->hardirq_disable_ip = _THIS_IP_; 1331 p->hardirq_disable_event = 0; 1332 p->softirqs_enabled = 1; 1333 p->softirq_enable_ip = _THIS_IP_; 1334 p->softirq_enable_event = 0; 1335 p->softirq_disable_ip = 0; 1336 p->softirq_disable_event = 0; 1337 p->hardirq_context = 0; 1338 p->softirq_context = 0; 1339 #endif 1340 #ifdef CONFIG_LOCKDEP 1341 p->lockdep_depth = 0; /* no locks held yet */ 1342 p->curr_chain_key = 0; 1343 p->lockdep_recursion = 0; 1344 #endif 1345 1346 #ifdef CONFIG_DEBUG_MUTEXES 1347 p->blocked_on = NULL; /* not blocked yet */ 1348 #endif 1349 #ifdef CONFIG_MEMCG 1350 p->memcg_batch.do_batch = 0; 1351 p->memcg_batch.memcg = NULL; 1352 #endif 1353 #ifdef CONFIG_BCACHE 1354 p->sequential_io = 0; 1355 p->sequential_io_avg = 0; 1356 #endif 1357 1358 /* Perform scheduler related setup. Assign this task to a CPU. */ 1359 retval = sched_fork(clone_flags, p); 1360 if (retval) 1361 goto bad_fork_cleanup_policy; 1362 1363 retval = perf_event_init_task(p); 1364 if (retval) 1365 goto bad_fork_cleanup_policy; 1366 retval = audit_alloc(p); 1367 if (retval) 1368 goto bad_fork_cleanup_policy; 1369 /* copy all the process information */ 1370 retval = copy_semundo(clone_flags, p); 1371 if (retval) 1372 goto bad_fork_cleanup_audit; 1373 retval = copy_files(clone_flags, p); 1374 if (retval) 1375 goto bad_fork_cleanup_semundo; 1376 retval = copy_fs(clone_flags, p); 1377 if (retval) 1378 goto bad_fork_cleanup_files; 1379 retval = copy_sighand(clone_flags, p); 1380 if (retval) 1381 goto bad_fork_cleanup_fs; 1382 retval = copy_signal(clone_flags, p); 1383 if (retval) 1384 goto bad_fork_cleanup_sighand; 1385 retval = copy_mm(clone_flags, p); 1386 if (retval) 1387 goto bad_fork_cleanup_signal; 1388 retval = copy_namespaces(clone_flags, p); 1389 if (retval) 1390 goto bad_fork_cleanup_mm; 1391 retval = copy_io(clone_flags, p); 1392 if (retval) 1393 goto bad_fork_cleanup_namespaces; 1394 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1395 if (retval) 1396 goto bad_fork_cleanup_io; 1397 1398 if (pid != &init_struct_pid) { 1399 retval = -ENOMEM; 1400 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1401 if (!pid) 1402 goto bad_fork_cleanup_io; 1403 } 1404 1405 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1406 /* 1407 * Clear TID on mm_release()? 1408 */ 1409 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1410 #ifdef CONFIG_BLOCK 1411 p->plug = NULL; 1412 #endif 1413 #ifdef CONFIG_FUTEX 1414 p->robust_list = NULL; 1415 #ifdef CONFIG_COMPAT 1416 p->compat_robust_list = NULL; 1417 #endif 1418 INIT_LIST_HEAD(&p->pi_state_list); 1419 p->pi_state_cache = NULL; 1420 #endif 1421 /* 1422 * sigaltstack should be cleared when sharing the same VM 1423 */ 1424 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1425 p->sas_ss_sp = p->sas_ss_size = 0; 1426 1427 /* 1428 * Syscall tracing and stepping should be turned off in the 1429 * child regardless of CLONE_PTRACE. 1430 */ 1431 user_disable_single_step(p); 1432 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1433 #ifdef TIF_SYSCALL_EMU 1434 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1435 #endif 1436 clear_all_latency_tracing(p); 1437 1438 /* ok, now we should be set up.. */ 1439 p->pid = pid_nr(pid); 1440 if (clone_flags & CLONE_THREAD) { 1441 p->exit_signal = -1; 1442 p->group_leader = current->group_leader; 1443 p->tgid = current->tgid; 1444 } else { 1445 if (clone_flags & CLONE_PARENT) 1446 p->exit_signal = current->group_leader->exit_signal; 1447 else 1448 p->exit_signal = (clone_flags & CSIGNAL); 1449 p->group_leader = p; 1450 p->tgid = p->pid; 1451 } 1452 1453 p->nr_dirtied = 0; 1454 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1455 p->dirty_paused_when = 0; 1456 1457 p->pdeath_signal = 0; 1458 INIT_LIST_HEAD(&p->thread_group); 1459 p->task_works = NULL; 1460 1461 /* 1462 * Make it visible to the rest of the system, but dont wake it up yet. 1463 * Need tasklist lock for parent etc handling! 1464 */ 1465 write_lock_irq(&tasklist_lock); 1466 1467 /* CLONE_PARENT re-uses the old parent */ 1468 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1469 p->real_parent = current->real_parent; 1470 p->parent_exec_id = current->parent_exec_id; 1471 } else { 1472 p->real_parent = current; 1473 p->parent_exec_id = current->self_exec_id; 1474 } 1475 1476 spin_lock(¤t->sighand->siglock); 1477 1478 /* 1479 * Copy seccomp details explicitly here, in case they were changed 1480 * before holding sighand lock. 1481 */ 1482 copy_seccomp(p); 1483 1484 /* 1485 * Process group and session signals need to be delivered to just the 1486 * parent before the fork or both the parent and the child after the 1487 * fork. Restart if a signal comes in before we add the new process to 1488 * it's process group. 1489 * A fatal signal pending means that current will exit, so the new 1490 * thread can't slip out of an OOM kill (or normal SIGKILL). 1491 */ 1492 recalc_sigpending(); 1493 if (signal_pending(current)) { 1494 spin_unlock(¤t->sighand->siglock); 1495 write_unlock_irq(&tasklist_lock); 1496 retval = -ERESTARTNOINTR; 1497 goto bad_fork_free_pid; 1498 } 1499 1500 if (likely(p->pid)) { 1501 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1502 1503 init_task_pid(p, PIDTYPE_PID, pid); 1504 if (thread_group_leader(p)) { 1505 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1506 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1507 1508 if (is_child_reaper(pid)) { 1509 ns_of_pid(pid)->child_reaper = p; 1510 p->signal->flags |= SIGNAL_UNKILLABLE; 1511 } 1512 1513 p->signal->leader_pid = pid; 1514 p->signal->tty = tty_kref_get(current->signal->tty); 1515 list_add_tail(&p->sibling, &p->real_parent->children); 1516 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1517 attach_pid(p, PIDTYPE_PGID); 1518 attach_pid(p, PIDTYPE_SID); 1519 __this_cpu_inc(process_counts); 1520 } else { 1521 current->signal->nr_threads++; 1522 atomic_inc(¤t->signal->live); 1523 atomic_inc(¤t->signal->sigcnt); 1524 list_add_tail_rcu(&p->thread_group, 1525 &p->group_leader->thread_group); 1526 list_add_tail_rcu(&p->thread_node, 1527 &p->signal->thread_head); 1528 } 1529 attach_pid(p, PIDTYPE_PID); 1530 nr_threads++; 1531 } 1532 1533 total_forks++; 1534 spin_unlock(¤t->sighand->siglock); 1535 syscall_tracepoint_update(p); 1536 write_unlock_irq(&tasklist_lock); 1537 1538 proc_fork_connector(p); 1539 cgroup_post_fork(p); 1540 if (clone_flags & CLONE_THREAD) 1541 threadgroup_change_end(current); 1542 perf_event_fork(p); 1543 1544 trace_task_newtask(p, clone_flags); 1545 uprobe_copy_process(p, clone_flags); 1546 1547 return p; 1548 1549 bad_fork_free_pid: 1550 if (pid != &init_struct_pid) 1551 free_pid(pid); 1552 bad_fork_cleanup_io: 1553 if (p->io_context) 1554 exit_io_context(p); 1555 bad_fork_cleanup_namespaces: 1556 exit_task_namespaces(p); 1557 bad_fork_cleanup_mm: 1558 if (p->mm) 1559 mmput(p->mm); 1560 bad_fork_cleanup_signal: 1561 if (!(clone_flags & CLONE_THREAD)) 1562 free_signal_struct(p->signal); 1563 bad_fork_cleanup_sighand: 1564 __cleanup_sighand(p->sighand); 1565 bad_fork_cleanup_fs: 1566 exit_fs(p); /* blocking */ 1567 bad_fork_cleanup_files: 1568 exit_files(p); /* blocking */ 1569 bad_fork_cleanup_semundo: 1570 exit_sem(p); 1571 bad_fork_cleanup_audit: 1572 audit_free(p); 1573 bad_fork_cleanup_policy: 1574 perf_event_free_task(p); 1575 #ifdef CONFIG_NUMA 1576 mpol_put(p->mempolicy); 1577 bad_fork_cleanup_threadgroup_lock: 1578 #endif 1579 if (clone_flags & CLONE_THREAD) 1580 threadgroup_change_end(current); 1581 delayacct_tsk_free(p); 1582 module_put(task_thread_info(p)->exec_domain->module); 1583 bad_fork_cleanup_count: 1584 atomic_dec(&p->cred->user->processes); 1585 exit_creds(p); 1586 bad_fork_free: 1587 free_task(p); 1588 fork_out: 1589 return ERR_PTR(retval); 1590 } 1591 1592 static inline void init_idle_pids(struct pid_link *links) 1593 { 1594 enum pid_type type; 1595 1596 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1597 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1598 links[type].pid = &init_struct_pid; 1599 } 1600 } 1601 1602 struct task_struct *fork_idle(int cpu) 1603 { 1604 struct task_struct *task; 1605 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1606 if (!IS_ERR(task)) { 1607 init_idle_pids(task->pids); 1608 init_idle(task, cpu); 1609 } 1610 1611 return task; 1612 } 1613 1614 /* 1615 * Ok, this is the main fork-routine. 1616 * 1617 * It copies the process, and if successful kick-starts 1618 * it and waits for it to finish using the VM if required. 1619 */ 1620 long do_fork(unsigned long clone_flags, 1621 unsigned long stack_start, 1622 unsigned long stack_size, 1623 int __user *parent_tidptr, 1624 int __user *child_tidptr) 1625 { 1626 struct task_struct *p; 1627 int trace = 0; 1628 long nr; 1629 1630 /* 1631 * Determine whether and which event to report to ptracer. When 1632 * called from kernel_thread or CLONE_UNTRACED is explicitly 1633 * requested, no event is reported; otherwise, report if the event 1634 * for the type of forking is enabled. 1635 */ 1636 if (!(clone_flags & CLONE_UNTRACED)) { 1637 if (clone_flags & CLONE_VFORK) 1638 trace = PTRACE_EVENT_VFORK; 1639 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1640 trace = PTRACE_EVENT_CLONE; 1641 else 1642 trace = PTRACE_EVENT_FORK; 1643 1644 if (likely(!ptrace_event_enabled(current, trace))) 1645 trace = 0; 1646 } 1647 1648 p = copy_process(clone_flags, stack_start, stack_size, 1649 child_tidptr, NULL, trace); 1650 /* 1651 * Do this prior waking up the new thread - the thread pointer 1652 * might get invalid after that point, if the thread exits quickly. 1653 */ 1654 if (!IS_ERR(p)) { 1655 struct completion vfork; 1656 struct pid *pid; 1657 1658 trace_sched_process_fork(current, p); 1659 1660 pid = get_task_pid(p, PIDTYPE_PID); 1661 nr = pid_vnr(pid); 1662 1663 if (clone_flags & CLONE_PARENT_SETTID) 1664 put_user(nr, parent_tidptr); 1665 1666 if (clone_flags & CLONE_VFORK) { 1667 p->vfork_done = &vfork; 1668 init_completion(&vfork); 1669 get_task_struct(p); 1670 } 1671 1672 wake_up_new_task(p); 1673 1674 /* forking complete and child started to run, tell ptracer */ 1675 if (unlikely(trace)) 1676 ptrace_event_pid(trace, pid); 1677 1678 if (clone_flags & CLONE_VFORK) { 1679 if (!wait_for_vfork_done(p, &vfork)) 1680 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1681 } 1682 1683 put_pid(pid); 1684 } else { 1685 nr = PTR_ERR(p); 1686 } 1687 return nr; 1688 } 1689 1690 /* 1691 * Create a kernel thread. 1692 */ 1693 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1694 { 1695 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1696 (unsigned long)arg, NULL, NULL); 1697 } 1698 1699 #ifdef __ARCH_WANT_SYS_FORK 1700 SYSCALL_DEFINE0(fork) 1701 { 1702 #ifdef CONFIG_MMU 1703 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1704 #else 1705 /* can not support in nommu mode */ 1706 return -EINVAL; 1707 #endif 1708 } 1709 #endif 1710 1711 #ifdef __ARCH_WANT_SYS_VFORK 1712 SYSCALL_DEFINE0(vfork) 1713 { 1714 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1715 0, NULL, NULL); 1716 } 1717 #endif 1718 1719 #ifdef __ARCH_WANT_SYS_CLONE 1720 #ifdef CONFIG_CLONE_BACKWARDS 1721 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1722 int __user *, parent_tidptr, 1723 int, tls_val, 1724 int __user *, child_tidptr) 1725 #elif defined(CONFIG_CLONE_BACKWARDS2) 1726 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1727 int __user *, parent_tidptr, 1728 int __user *, child_tidptr, 1729 int, tls_val) 1730 #elif defined(CONFIG_CLONE_BACKWARDS3) 1731 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1732 int, stack_size, 1733 int __user *, parent_tidptr, 1734 int __user *, child_tidptr, 1735 int, tls_val) 1736 #else 1737 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1738 int __user *, parent_tidptr, 1739 int __user *, child_tidptr, 1740 int, tls_val) 1741 #endif 1742 { 1743 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1744 } 1745 #endif 1746 1747 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1748 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1749 #endif 1750 1751 static void sighand_ctor(void *data) 1752 { 1753 struct sighand_struct *sighand = data; 1754 1755 spin_lock_init(&sighand->siglock); 1756 init_waitqueue_head(&sighand->signalfd_wqh); 1757 } 1758 1759 void __init proc_caches_init(void) 1760 { 1761 sighand_cachep = kmem_cache_create("sighand_cache", 1762 sizeof(struct sighand_struct), 0, 1763 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1764 SLAB_NOTRACK, sighand_ctor); 1765 signal_cachep = kmem_cache_create("signal_cache", 1766 sizeof(struct signal_struct), 0, 1767 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1768 files_cachep = kmem_cache_create("files_cache", 1769 sizeof(struct files_struct), 0, 1770 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1771 fs_cachep = kmem_cache_create("fs_cache", 1772 sizeof(struct fs_struct), 0, 1773 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1774 /* 1775 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1776 * whole struct cpumask for the OFFSTACK case. We could change 1777 * this to *only* allocate as much of it as required by the 1778 * maximum number of CPU's we can ever have. The cpumask_allocation 1779 * is at the end of the structure, exactly for that reason. 1780 */ 1781 mm_cachep = kmem_cache_create("mm_struct", 1782 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1783 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1784 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1785 mmap_init(); 1786 nsproxy_cache_init(); 1787 } 1788 1789 /* 1790 * Check constraints on flags passed to the unshare system call. 1791 */ 1792 static int check_unshare_flags(unsigned long unshare_flags) 1793 { 1794 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1795 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1796 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1797 CLONE_NEWUSER|CLONE_NEWPID)) 1798 return -EINVAL; 1799 /* 1800 * Not implemented, but pretend it works if there is nothing to 1801 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1802 * needs to unshare vm. 1803 */ 1804 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1805 /* FIXME: get_task_mm() increments ->mm_users */ 1806 if (atomic_read(¤t->mm->mm_users) > 1) 1807 return -EINVAL; 1808 } 1809 1810 return 0; 1811 } 1812 1813 /* 1814 * Unshare the filesystem structure if it is being shared 1815 */ 1816 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1817 { 1818 struct fs_struct *fs = current->fs; 1819 1820 if (!(unshare_flags & CLONE_FS) || !fs) 1821 return 0; 1822 1823 /* don't need lock here; in the worst case we'll do useless copy */ 1824 if (fs->users == 1) 1825 return 0; 1826 1827 *new_fsp = copy_fs_struct(fs); 1828 if (!*new_fsp) 1829 return -ENOMEM; 1830 1831 return 0; 1832 } 1833 1834 /* 1835 * Unshare file descriptor table if it is being shared 1836 */ 1837 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1838 { 1839 struct files_struct *fd = current->files; 1840 int error = 0; 1841 1842 if ((unshare_flags & CLONE_FILES) && 1843 (fd && atomic_read(&fd->count) > 1)) { 1844 *new_fdp = dup_fd(fd, &error); 1845 if (!*new_fdp) 1846 return error; 1847 } 1848 1849 return 0; 1850 } 1851 1852 /* 1853 * unshare allows a process to 'unshare' part of the process 1854 * context which was originally shared using clone. copy_* 1855 * functions used by do_fork() cannot be used here directly 1856 * because they modify an inactive task_struct that is being 1857 * constructed. Here we are modifying the current, active, 1858 * task_struct. 1859 */ 1860 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1861 { 1862 struct fs_struct *fs, *new_fs = NULL; 1863 struct files_struct *fd, *new_fd = NULL; 1864 struct cred *new_cred = NULL; 1865 struct nsproxy *new_nsproxy = NULL; 1866 int do_sysvsem = 0; 1867 int err; 1868 1869 /* 1870 * If unsharing a user namespace must also unshare the thread. 1871 */ 1872 if (unshare_flags & CLONE_NEWUSER) 1873 unshare_flags |= CLONE_THREAD | CLONE_FS; 1874 /* 1875 * If unsharing a thread from a thread group, must also unshare vm. 1876 */ 1877 if (unshare_flags & CLONE_THREAD) 1878 unshare_flags |= CLONE_VM; 1879 /* 1880 * If unsharing vm, must also unshare signal handlers. 1881 */ 1882 if (unshare_flags & CLONE_VM) 1883 unshare_flags |= CLONE_SIGHAND; 1884 /* 1885 * If unsharing namespace, must also unshare filesystem information. 1886 */ 1887 if (unshare_flags & CLONE_NEWNS) 1888 unshare_flags |= CLONE_FS; 1889 1890 err = check_unshare_flags(unshare_flags); 1891 if (err) 1892 goto bad_unshare_out; 1893 /* 1894 * CLONE_NEWIPC must also detach from the undolist: after switching 1895 * to a new ipc namespace, the semaphore arrays from the old 1896 * namespace are unreachable. 1897 */ 1898 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1899 do_sysvsem = 1; 1900 err = unshare_fs(unshare_flags, &new_fs); 1901 if (err) 1902 goto bad_unshare_out; 1903 err = unshare_fd(unshare_flags, &new_fd); 1904 if (err) 1905 goto bad_unshare_cleanup_fs; 1906 err = unshare_userns(unshare_flags, &new_cred); 1907 if (err) 1908 goto bad_unshare_cleanup_fd; 1909 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1910 new_cred, new_fs); 1911 if (err) 1912 goto bad_unshare_cleanup_cred; 1913 1914 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1915 if (do_sysvsem) { 1916 /* 1917 * CLONE_SYSVSEM is equivalent to sys_exit(). 1918 */ 1919 exit_sem(current); 1920 } 1921 1922 if (new_nsproxy) 1923 switch_task_namespaces(current, new_nsproxy); 1924 1925 task_lock(current); 1926 1927 if (new_fs) { 1928 fs = current->fs; 1929 spin_lock(&fs->lock); 1930 current->fs = new_fs; 1931 if (--fs->users) 1932 new_fs = NULL; 1933 else 1934 new_fs = fs; 1935 spin_unlock(&fs->lock); 1936 } 1937 1938 if (new_fd) { 1939 fd = current->files; 1940 current->files = new_fd; 1941 new_fd = fd; 1942 } 1943 1944 task_unlock(current); 1945 1946 if (new_cred) { 1947 /* Install the new user namespace */ 1948 commit_creds(new_cred); 1949 new_cred = NULL; 1950 } 1951 } 1952 1953 bad_unshare_cleanup_cred: 1954 if (new_cred) 1955 put_cred(new_cred); 1956 bad_unshare_cleanup_fd: 1957 if (new_fd) 1958 put_files_struct(new_fd); 1959 1960 bad_unshare_cleanup_fs: 1961 if (new_fs) 1962 free_fs_struct(new_fs); 1963 1964 bad_unshare_out: 1965 return err; 1966 } 1967 1968 /* 1969 * Helper to unshare the files of the current task. 1970 * We don't want to expose copy_files internals to 1971 * the exec layer of the kernel. 1972 */ 1973 1974 int unshare_files(struct files_struct **displaced) 1975 { 1976 struct task_struct *task = current; 1977 struct files_struct *copy = NULL; 1978 int error; 1979 1980 error = unshare_fd(CLONE_FILES, ©); 1981 if (error || !copy) { 1982 *displaced = NULL; 1983 return error; 1984 } 1985 *displaced = task->files; 1986 task_lock(task); 1987 task->files = copy; 1988 task_unlock(task); 1989 return 0; 1990 } 1991