xref: /openbmc/linux/kernel/fork.c (revision 44a2db43)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60 
61 /*
62  * Protected counters by write_lock_irq(&tasklist_lock)
63  */
64 unsigned long total_forks;	/* Handle normal Linux uptimes. */
65 int nr_threads; 		/* The idle threads do not count.. */
66 
67 int max_threads;		/* tunable limit on nr_threads */
68 
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
72 
73 int nr_processes(void)
74 {
75 	int cpu;
76 	int total = 0;
77 
78 	for_each_online_cpu(cpu)
79 		total += per_cpu(process_counts, cpu);
80 
81 	return total;
82 }
83 
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
89 
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
92 
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
95 
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
98 
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
101 
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
104 
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
107 
108 void free_task(struct task_struct *tsk)
109 {
110 	prop_local_destroy_single(&tsk->dirties);
111 	free_thread_info(tsk->stack);
112 	rt_mutex_debug_task_free(tsk);
113 	free_task_struct(tsk);
114 }
115 EXPORT_SYMBOL(free_task);
116 
117 void __put_task_struct(struct task_struct *tsk)
118 {
119 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
120 	WARN_ON(atomic_read(&tsk->usage));
121 	WARN_ON(tsk == current);
122 
123 	security_task_free(tsk);
124 	free_uid(tsk->user);
125 	put_group_info(tsk->group_info);
126 	delayacct_tsk_free(tsk);
127 
128 	if (!profile_handoff_task(tsk))
129 		free_task(tsk);
130 }
131 
132 void __init fork_init(unsigned long mempages)
133 {
134 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
135 #ifndef ARCH_MIN_TASKALIGN
136 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
137 #endif
138 	/* create a slab on which task_structs can be allocated */
139 	task_struct_cachep =
140 		kmem_cache_create("task_struct", sizeof(struct task_struct),
141 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
142 #endif
143 
144 	/*
145 	 * The default maximum number of threads is set to a safe
146 	 * value: the thread structures can take up at most half
147 	 * of memory.
148 	 */
149 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
150 
151 	/*
152 	 * we need to allow at least 20 threads to boot a system
153 	 */
154 	if(max_threads < 20)
155 		max_threads = 20;
156 
157 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
158 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
159 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
160 		init_task.signal->rlim[RLIMIT_NPROC];
161 }
162 
163 static struct task_struct *dup_task_struct(struct task_struct *orig)
164 {
165 	struct task_struct *tsk;
166 	struct thread_info *ti;
167 	int err;
168 
169 	prepare_to_copy(orig);
170 
171 	tsk = alloc_task_struct();
172 	if (!tsk)
173 		return NULL;
174 
175 	ti = alloc_thread_info(tsk);
176 	if (!ti) {
177 		free_task_struct(tsk);
178 		return NULL;
179 	}
180 
181 	*tsk = *orig;
182 	tsk->stack = ti;
183 
184 	err = prop_local_init_single(&tsk->dirties);
185 	if (err) {
186 		free_thread_info(ti);
187 		free_task_struct(tsk);
188 		return NULL;
189 	}
190 
191 	setup_thread_stack(tsk, orig);
192 
193 #ifdef CONFIG_CC_STACKPROTECTOR
194 	tsk->stack_canary = get_random_int();
195 #endif
196 
197 	/* One for us, one for whoever does the "release_task()" (usually parent) */
198 	atomic_set(&tsk->usage,2);
199 	atomic_set(&tsk->fs_excl, 0);
200 #ifdef CONFIG_BLK_DEV_IO_TRACE
201 	tsk->btrace_seq = 0;
202 #endif
203 	tsk->splice_pipe = NULL;
204 	return tsk;
205 }
206 
207 #ifdef CONFIG_MMU
208 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
209 {
210 	struct vm_area_struct *mpnt, *tmp, **pprev;
211 	struct rb_node **rb_link, *rb_parent;
212 	int retval;
213 	unsigned long charge;
214 	struct mempolicy *pol;
215 
216 	down_write(&oldmm->mmap_sem);
217 	flush_cache_dup_mm(oldmm);
218 	/*
219 	 * Not linked in yet - no deadlock potential:
220 	 */
221 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
222 
223 	mm->locked_vm = 0;
224 	mm->mmap = NULL;
225 	mm->mmap_cache = NULL;
226 	mm->free_area_cache = oldmm->mmap_base;
227 	mm->cached_hole_size = ~0UL;
228 	mm->map_count = 0;
229 	cpus_clear(mm->cpu_vm_mask);
230 	mm->mm_rb = RB_ROOT;
231 	rb_link = &mm->mm_rb.rb_node;
232 	rb_parent = NULL;
233 	pprev = &mm->mmap;
234 
235 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
236 		struct file *file;
237 
238 		if (mpnt->vm_flags & VM_DONTCOPY) {
239 			long pages = vma_pages(mpnt);
240 			mm->total_vm -= pages;
241 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
242 								-pages);
243 			continue;
244 		}
245 		charge = 0;
246 		if (mpnt->vm_flags & VM_ACCOUNT) {
247 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
248 			if (security_vm_enough_memory(len))
249 				goto fail_nomem;
250 			charge = len;
251 		}
252 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
253 		if (!tmp)
254 			goto fail_nomem;
255 		*tmp = *mpnt;
256 		pol = mpol_copy(vma_policy(mpnt));
257 		retval = PTR_ERR(pol);
258 		if (IS_ERR(pol))
259 			goto fail_nomem_policy;
260 		vma_set_policy(tmp, pol);
261 		tmp->vm_flags &= ~VM_LOCKED;
262 		tmp->vm_mm = mm;
263 		tmp->vm_next = NULL;
264 		anon_vma_link(tmp);
265 		file = tmp->vm_file;
266 		if (file) {
267 			struct inode *inode = file->f_path.dentry->d_inode;
268 			get_file(file);
269 			if (tmp->vm_flags & VM_DENYWRITE)
270 				atomic_dec(&inode->i_writecount);
271 
272 			/* insert tmp into the share list, just after mpnt */
273 			spin_lock(&file->f_mapping->i_mmap_lock);
274 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
275 			flush_dcache_mmap_lock(file->f_mapping);
276 			vma_prio_tree_add(tmp, mpnt);
277 			flush_dcache_mmap_unlock(file->f_mapping);
278 			spin_unlock(&file->f_mapping->i_mmap_lock);
279 		}
280 
281 		/*
282 		 * Link in the new vma and copy the page table entries.
283 		 */
284 		*pprev = tmp;
285 		pprev = &tmp->vm_next;
286 
287 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
288 		rb_link = &tmp->vm_rb.rb_right;
289 		rb_parent = &tmp->vm_rb;
290 
291 		mm->map_count++;
292 		retval = copy_page_range(mm, oldmm, mpnt);
293 
294 		if (tmp->vm_ops && tmp->vm_ops->open)
295 			tmp->vm_ops->open(tmp);
296 
297 		if (retval)
298 			goto out;
299 	}
300 	/* a new mm has just been created */
301 	arch_dup_mmap(oldmm, mm);
302 	retval = 0;
303 out:
304 	up_write(&mm->mmap_sem);
305 	flush_tlb_mm(oldmm);
306 	up_write(&oldmm->mmap_sem);
307 	return retval;
308 fail_nomem_policy:
309 	kmem_cache_free(vm_area_cachep, tmp);
310 fail_nomem:
311 	retval = -ENOMEM;
312 	vm_unacct_memory(charge);
313 	goto out;
314 }
315 
316 static inline int mm_alloc_pgd(struct mm_struct * mm)
317 {
318 	mm->pgd = pgd_alloc(mm);
319 	if (unlikely(!mm->pgd))
320 		return -ENOMEM;
321 	return 0;
322 }
323 
324 static inline void mm_free_pgd(struct mm_struct * mm)
325 {
326 	pgd_free(mm->pgd);
327 }
328 #else
329 #define dup_mmap(mm, oldmm)	(0)
330 #define mm_alloc_pgd(mm)	(0)
331 #define mm_free_pgd(mm)
332 #endif /* CONFIG_MMU */
333 
334  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
335 
336 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
337 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
338 
339 #include <linux/init_task.h>
340 
341 static struct mm_struct * mm_init(struct mm_struct * mm)
342 {
343 	atomic_set(&mm->mm_users, 1);
344 	atomic_set(&mm->mm_count, 1);
345 	init_rwsem(&mm->mmap_sem);
346 	INIT_LIST_HEAD(&mm->mmlist);
347 	mm->flags = (current->mm) ? current->mm->flags
348 				  : MMF_DUMP_FILTER_DEFAULT;
349 	mm->core_waiters = 0;
350 	mm->nr_ptes = 0;
351 	set_mm_counter(mm, file_rss, 0);
352 	set_mm_counter(mm, anon_rss, 0);
353 	spin_lock_init(&mm->page_table_lock);
354 	rwlock_init(&mm->ioctx_list_lock);
355 	mm->ioctx_list = NULL;
356 	mm->free_area_cache = TASK_UNMAPPED_BASE;
357 	mm->cached_hole_size = ~0UL;
358 
359 	if (likely(!mm_alloc_pgd(mm))) {
360 		mm->def_flags = 0;
361 		return mm;
362 	}
363 	free_mm(mm);
364 	return NULL;
365 }
366 
367 /*
368  * Allocate and initialize an mm_struct.
369  */
370 struct mm_struct * mm_alloc(void)
371 {
372 	struct mm_struct * mm;
373 
374 	mm = allocate_mm();
375 	if (mm) {
376 		memset(mm, 0, sizeof(*mm));
377 		mm = mm_init(mm);
378 	}
379 	return mm;
380 }
381 
382 /*
383  * Called when the last reference to the mm
384  * is dropped: either by a lazy thread or by
385  * mmput. Free the page directory and the mm.
386  */
387 void fastcall __mmdrop(struct mm_struct *mm)
388 {
389 	BUG_ON(mm == &init_mm);
390 	mm_free_pgd(mm);
391 	destroy_context(mm);
392 	free_mm(mm);
393 }
394 
395 /*
396  * Decrement the use count and release all resources for an mm.
397  */
398 void mmput(struct mm_struct *mm)
399 {
400 	might_sleep();
401 
402 	if (atomic_dec_and_test(&mm->mm_users)) {
403 		exit_aio(mm);
404 		exit_mmap(mm);
405 		if (!list_empty(&mm->mmlist)) {
406 			spin_lock(&mmlist_lock);
407 			list_del(&mm->mmlist);
408 			spin_unlock(&mmlist_lock);
409 		}
410 		put_swap_token(mm);
411 		mmdrop(mm);
412 	}
413 }
414 EXPORT_SYMBOL_GPL(mmput);
415 
416 /**
417  * get_task_mm - acquire a reference to the task's mm
418  *
419  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
420  * this kernel workthread has transiently adopted a user mm with use_mm,
421  * to do its AIO) is not set and if so returns a reference to it, after
422  * bumping up the use count.  User must release the mm via mmput()
423  * after use.  Typically used by /proc and ptrace.
424  */
425 struct mm_struct *get_task_mm(struct task_struct *task)
426 {
427 	struct mm_struct *mm;
428 
429 	task_lock(task);
430 	mm = task->mm;
431 	if (mm) {
432 		if (task->flags & PF_BORROWED_MM)
433 			mm = NULL;
434 		else
435 			atomic_inc(&mm->mm_users);
436 	}
437 	task_unlock(task);
438 	return mm;
439 }
440 EXPORT_SYMBOL_GPL(get_task_mm);
441 
442 /* Please note the differences between mmput and mm_release.
443  * mmput is called whenever we stop holding onto a mm_struct,
444  * error success whatever.
445  *
446  * mm_release is called after a mm_struct has been removed
447  * from the current process.
448  *
449  * This difference is important for error handling, when we
450  * only half set up a mm_struct for a new process and need to restore
451  * the old one.  Because we mmput the new mm_struct before
452  * restoring the old one. . .
453  * Eric Biederman 10 January 1998
454  */
455 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
456 {
457 	struct completion *vfork_done = tsk->vfork_done;
458 
459 	/* Get rid of any cached register state */
460 	deactivate_mm(tsk, mm);
461 
462 	/* notify parent sleeping on vfork() */
463 	if (vfork_done) {
464 		tsk->vfork_done = NULL;
465 		complete(vfork_done);
466 	}
467 
468 	/*
469 	 * If we're exiting normally, clear a user-space tid field if
470 	 * requested.  We leave this alone when dying by signal, to leave
471 	 * the value intact in a core dump, and to save the unnecessary
472 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
473 	 */
474 	if (tsk->clear_child_tid
475 	    && !(tsk->flags & PF_SIGNALED)
476 	    && atomic_read(&mm->mm_users) > 1) {
477 		u32 __user * tidptr = tsk->clear_child_tid;
478 		tsk->clear_child_tid = NULL;
479 
480 		/*
481 		 * We don't check the error code - if userspace has
482 		 * not set up a proper pointer then tough luck.
483 		 */
484 		put_user(0, tidptr);
485 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
486 	}
487 }
488 
489 /*
490  * Allocate a new mm structure and copy contents from the
491  * mm structure of the passed in task structure.
492  */
493 static struct mm_struct *dup_mm(struct task_struct *tsk)
494 {
495 	struct mm_struct *mm, *oldmm = current->mm;
496 	int err;
497 
498 	if (!oldmm)
499 		return NULL;
500 
501 	mm = allocate_mm();
502 	if (!mm)
503 		goto fail_nomem;
504 
505 	memcpy(mm, oldmm, sizeof(*mm));
506 
507 	/* Initializing for Swap token stuff */
508 	mm->token_priority = 0;
509 	mm->last_interval = 0;
510 
511 	if (!mm_init(mm))
512 		goto fail_nomem;
513 
514 	if (init_new_context(tsk, mm))
515 		goto fail_nocontext;
516 
517 	err = dup_mmap(mm, oldmm);
518 	if (err)
519 		goto free_pt;
520 
521 	mm->hiwater_rss = get_mm_rss(mm);
522 	mm->hiwater_vm = mm->total_vm;
523 
524 	return mm;
525 
526 free_pt:
527 	mmput(mm);
528 
529 fail_nomem:
530 	return NULL;
531 
532 fail_nocontext:
533 	/*
534 	 * If init_new_context() failed, we cannot use mmput() to free the mm
535 	 * because it calls destroy_context()
536 	 */
537 	mm_free_pgd(mm);
538 	free_mm(mm);
539 	return NULL;
540 }
541 
542 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
543 {
544 	struct mm_struct * mm, *oldmm;
545 	int retval;
546 
547 	tsk->min_flt = tsk->maj_flt = 0;
548 	tsk->nvcsw = tsk->nivcsw = 0;
549 
550 	tsk->mm = NULL;
551 	tsk->active_mm = NULL;
552 
553 	/*
554 	 * Are we cloning a kernel thread?
555 	 *
556 	 * We need to steal a active VM for that..
557 	 */
558 	oldmm = current->mm;
559 	if (!oldmm)
560 		return 0;
561 
562 	if (clone_flags & CLONE_VM) {
563 		atomic_inc(&oldmm->mm_users);
564 		mm = oldmm;
565 		goto good_mm;
566 	}
567 
568 	retval = -ENOMEM;
569 	mm = dup_mm(tsk);
570 	if (!mm)
571 		goto fail_nomem;
572 
573 good_mm:
574 	/* Initializing for Swap token stuff */
575 	mm->token_priority = 0;
576 	mm->last_interval = 0;
577 
578 	tsk->mm = mm;
579 	tsk->active_mm = mm;
580 	return 0;
581 
582 fail_nomem:
583 	return retval;
584 }
585 
586 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
587 {
588 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
589 	/* We don't need to lock fs - think why ;-) */
590 	if (fs) {
591 		atomic_set(&fs->count, 1);
592 		rwlock_init(&fs->lock);
593 		fs->umask = old->umask;
594 		read_lock(&old->lock);
595 		fs->rootmnt = mntget(old->rootmnt);
596 		fs->root = dget(old->root);
597 		fs->pwdmnt = mntget(old->pwdmnt);
598 		fs->pwd = dget(old->pwd);
599 		if (old->altroot) {
600 			fs->altrootmnt = mntget(old->altrootmnt);
601 			fs->altroot = dget(old->altroot);
602 		} else {
603 			fs->altrootmnt = NULL;
604 			fs->altroot = NULL;
605 		}
606 		read_unlock(&old->lock);
607 	}
608 	return fs;
609 }
610 
611 struct fs_struct *copy_fs_struct(struct fs_struct *old)
612 {
613 	return __copy_fs_struct(old);
614 }
615 
616 EXPORT_SYMBOL_GPL(copy_fs_struct);
617 
618 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
619 {
620 	if (clone_flags & CLONE_FS) {
621 		atomic_inc(&current->fs->count);
622 		return 0;
623 	}
624 	tsk->fs = __copy_fs_struct(current->fs);
625 	if (!tsk->fs)
626 		return -ENOMEM;
627 	return 0;
628 }
629 
630 static int count_open_files(struct fdtable *fdt)
631 {
632 	int size = fdt->max_fds;
633 	int i;
634 
635 	/* Find the last open fd */
636 	for (i = size/(8*sizeof(long)); i > 0; ) {
637 		if (fdt->open_fds->fds_bits[--i])
638 			break;
639 	}
640 	i = (i+1) * 8 * sizeof(long);
641 	return i;
642 }
643 
644 static struct files_struct *alloc_files(void)
645 {
646 	struct files_struct *newf;
647 	struct fdtable *fdt;
648 
649 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
650 	if (!newf)
651 		goto out;
652 
653 	atomic_set(&newf->count, 1);
654 
655 	spin_lock_init(&newf->file_lock);
656 	newf->next_fd = 0;
657 	fdt = &newf->fdtab;
658 	fdt->max_fds = NR_OPEN_DEFAULT;
659 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
660 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
661 	fdt->fd = &newf->fd_array[0];
662 	INIT_RCU_HEAD(&fdt->rcu);
663 	fdt->next = NULL;
664 	rcu_assign_pointer(newf->fdt, fdt);
665 out:
666 	return newf;
667 }
668 
669 /*
670  * Allocate a new files structure and copy contents from the
671  * passed in files structure.
672  * errorp will be valid only when the returned files_struct is NULL.
673  */
674 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
675 {
676 	struct files_struct *newf;
677 	struct file **old_fds, **new_fds;
678 	int open_files, size, i;
679 	struct fdtable *old_fdt, *new_fdt;
680 
681 	*errorp = -ENOMEM;
682 	newf = alloc_files();
683 	if (!newf)
684 		goto out;
685 
686 	spin_lock(&oldf->file_lock);
687 	old_fdt = files_fdtable(oldf);
688 	new_fdt = files_fdtable(newf);
689 	open_files = count_open_files(old_fdt);
690 
691 	/*
692 	 * Check whether we need to allocate a larger fd array and fd set.
693 	 * Note: we're not a clone task, so the open count won't change.
694 	 */
695 	if (open_files > new_fdt->max_fds) {
696 		new_fdt->max_fds = 0;
697 		spin_unlock(&oldf->file_lock);
698 		spin_lock(&newf->file_lock);
699 		*errorp = expand_files(newf, open_files-1);
700 		spin_unlock(&newf->file_lock);
701 		if (*errorp < 0)
702 			goto out_release;
703 		new_fdt = files_fdtable(newf);
704 		/*
705 		 * Reacquire the oldf lock and a pointer to its fd table
706 		 * who knows it may have a new bigger fd table. We need
707 		 * the latest pointer.
708 		 */
709 		spin_lock(&oldf->file_lock);
710 		old_fdt = files_fdtable(oldf);
711 	}
712 
713 	old_fds = old_fdt->fd;
714 	new_fds = new_fdt->fd;
715 
716 	memcpy(new_fdt->open_fds->fds_bits,
717 		old_fdt->open_fds->fds_bits, open_files/8);
718 	memcpy(new_fdt->close_on_exec->fds_bits,
719 		old_fdt->close_on_exec->fds_bits, open_files/8);
720 
721 	for (i = open_files; i != 0; i--) {
722 		struct file *f = *old_fds++;
723 		if (f) {
724 			get_file(f);
725 		} else {
726 			/*
727 			 * The fd may be claimed in the fd bitmap but not yet
728 			 * instantiated in the files array if a sibling thread
729 			 * is partway through open().  So make sure that this
730 			 * fd is available to the new process.
731 			 */
732 			FD_CLR(open_files - i, new_fdt->open_fds);
733 		}
734 		rcu_assign_pointer(*new_fds++, f);
735 	}
736 	spin_unlock(&oldf->file_lock);
737 
738 	/* compute the remainder to be cleared */
739 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
740 
741 	/* This is long word aligned thus could use a optimized version */
742 	memset(new_fds, 0, size);
743 
744 	if (new_fdt->max_fds > open_files) {
745 		int left = (new_fdt->max_fds-open_files)/8;
746 		int start = open_files / (8 * sizeof(unsigned long));
747 
748 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
749 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
750 	}
751 
752 	return newf;
753 
754 out_release:
755 	kmem_cache_free(files_cachep, newf);
756 out:
757 	return NULL;
758 }
759 
760 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
761 {
762 	struct files_struct *oldf, *newf;
763 	int error = 0;
764 
765 	/*
766 	 * A background process may not have any files ...
767 	 */
768 	oldf = current->files;
769 	if (!oldf)
770 		goto out;
771 
772 	if (clone_flags & CLONE_FILES) {
773 		atomic_inc(&oldf->count);
774 		goto out;
775 	}
776 
777 	/*
778 	 * Note: we may be using current for both targets (See exec.c)
779 	 * This works because we cache current->files (old) as oldf. Don't
780 	 * break this.
781 	 */
782 	tsk->files = NULL;
783 	newf = dup_fd(oldf, &error);
784 	if (!newf)
785 		goto out;
786 
787 	tsk->files = newf;
788 	error = 0;
789 out:
790 	return error;
791 }
792 
793 /*
794  *	Helper to unshare the files of the current task.
795  *	We don't want to expose copy_files internals to
796  *	the exec layer of the kernel.
797  */
798 
799 int unshare_files(void)
800 {
801 	struct files_struct *files  = current->files;
802 	int rc;
803 
804 	BUG_ON(!files);
805 
806 	/* This can race but the race causes us to copy when we don't
807 	   need to and drop the copy */
808 	if(atomic_read(&files->count) == 1)
809 	{
810 		atomic_inc(&files->count);
811 		return 0;
812 	}
813 	rc = copy_files(0, current);
814 	if(rc)
815 		current->files = files;
816 	return rc;
817 }
818 
819 EXPORT_SYMBOL(unshare_files);
820 
821 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
822 {
823 	struct sighand_struct *sig;
824 
825 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
826 		atomic_inc(&current->sighand->count);
827 		return 0;
828 	}
829 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
830 	rcu_assign_pointer(tsk->sighand, sig);
831 	if (!sig)
832 		return -ENOMEM;
833 	atomic_set(&sig->count, 1);
834 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
835 	return 0;
836 }
837 
838 void __cleanup_sighand(struct sighand_struct *sighand)
839 {
840 	if (atomic_dec_and_test(&sighand->count))
841 		kmem_cache_free(sighand_cachep, sighand);
842 }
843 
844 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
845 {
846 	struct signal_struct *sig;
847 	int ret;
848 
849 	if (clone_flags & CLONE_THREAD) {
850 		atomic_inc(&current->signal->count);
851 		atomic_inc(&current->signal->live);
852 		return 0;
853 	}
854 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
855 	tsk->signal = sig;
856 	if (!sig)
857 		return -ENOMEM;
858 
859 	ret = copy_thread_group_keys(tsk);
860 	if (ret < 0) {
861 		kmem_cache_free(signal_cachep, sig);
862 		return ret;
863 	}
864 
865 	atomic_set(&sig->count, 1);
866 	atomic_set(&sig->live, 1);
867 	init_waitqueue_head(&sig->wait_chldexit);
868 	sig->flags = 0;
869 	sig->group_exit_code = 0;
870 	sig->group_exit_task = NULL;
871 	sig->group_stop_count = 0;
872 	sig->curr_target = NULL;
873 	init_sigpending(&sig->shared_pending);
874 	INIT_LIST_HEAD(&sig->posix_timers);
875 
876 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 	sig->it_real_incr.tv64 = 0;
878 	sig->real_timer.function = it_real_fn;
879 	sig->tsk = tsk;
880 
881 	sig->it_virt_expires = cputime_zero;
882 	sig->it_virt_incr = cputime_zero;
883 	sig->it_prof_expires = cputime_zero;
884 	sig->it_prof_incr = cputime_zero;
885 
886 	sig->leader = 0;	/* session leadership doesn't inherit */
887 	sig->tty_old_pgrp = NULL;
888 
889 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
890 	sig->gtime = cputime_zero;
891 	sig->cgtime = cputime_zero;
892 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
893 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
894 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
895 	sig->sum_sched_runtime = 0;
896 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
897 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
898 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
899 	taskstats_tgid_init(sig);
900 
901 	task_lock(current->group_leader);
902 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
903 	task_unlock(current->group_leader);
904 
905 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
906 		/*
907 		 * New sole thread in the process gets an expiry time
908 		 * of the whole CPU time limit.
909 		 */
910 		tsk->it_prof_expires =
911 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
912 	}
913 	acct_init_pacct(&sig->pacct);
914 
915 	tty_audit_fork(sig);
916 
917 	return 0;
918 }
919 
920 void __cleanup_signal(struct signal_struct *sig)
921 {
922 	exit_thread_group_keys(sig);
923 	kmem_cache_free(signal_cachep, sig);
924 }
925 
926 static inline void cleanup_signal(struct task_struct *tsk)
927 {
928 	struct signal_struct *sig = tsk->signal;
929 
930 	atomic_dec(&sig->live);
931 
932 	if (atomic_dec_and_test(&sig->count))
933 		__cleanup_signal(sig);
934 }
935 
936 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
937 {
938 	unsigned long new_flags = p->flags;
939 
940 	new_flags &= ~PF_SUPERPRIV;
941 	new_flags |= PF_FORKNOEXEC;
942 	if (!(clone_flags & CLONE_PTRACE))
943 		p->ptrace = 0;
944 	p->flags = new_flags;
945 }
946 
947 asmlinkage long sys_set_tid_address(int __user *tidptr)
948 {
949 	current->clear_child_tid = tidptr;
950 
951 	return current->pid;
952 }
953 
954 static inline void rt_mutex_init_task(struct task_struct *p)
955 {
956 	spin_lock_init(&p->pi_lock);
957 #ifdef CONFIG_RT_MUTEXES
958 	plist_head_init(&p->pi_waiters, &p->pi_lock);
959 	p->pi_blocked_on = NULL;
960 #endif
961 }
962 
963 /*
964  * This creates a new process as a copy of the old one,
965  * but does not actually start it yet.
966  *
967  * It copies the registers, and all the appropriate
968  * parts of the process environment (as per the clone
969  * flags). The actual kick-off is left to the caller.
970  */
971 static struct task_struct *copy_process(unsigned long clone_flags,
972 					unsigned long stack_start,
973 					struct pt_regs *regs,
974 					unsigned long stack_size,
975 					int __user *parent_tidptr,
976 					int __user *child_tidptr,
977 					struct pid *pid)
978 {
979 	int retval;
980 	struct task_struct *p = NULL;
981 
982 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
983 		return ERR_PTR(-EINVAL);
984 
985 	/*
986 	 * Thread groups must share signals as well, and detached threads
987 	 * can only be started up within the thread group.
988 	 */
989 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
990 		return ERR_PTR(-EINVAL);
991 
992 	/*
993 	 * Shared signal handlers imply shared VM. By way of the above,
994 	 * thread groups also imply shared VM. Blocking this case allows
995 	 * for various simplifications in other code.
996 	 */
997 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
998 		return ERR_PTR(-EINVAL);
999 
1000 	retval = security_task_create(clone_flags);
1001 	if (retval)
1002 		goto fork_out;
1003 
1004 	retval = -ENOMEM;
1005 	p = dup_task_struct(current);
1006 	if (!p)
1007 		goto fork_out;
1008 
1009 	rt_mutex_init_task(p);
1010 
1011 #ifdef CONFIG_TRACE_IRQFLAGS
1012 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1013 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1014 #endif
1015 	retval = -EAGAIN;
1016 	if (atomic_read(&p->user->processes) >=
1017 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1018 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1019 		    p->user != current->nsproxy->user_ns->root_user)
1020 			goto bad_fork_free;
1021 	}
1022 
1023 	atomic_inc(&p->user->__count);
1024 	atomic_inc(&p->user->processes);
1025 	get_group_info(p->group_info);
1026 
1027 	/*
1028 	 * If multiple threads are within copy_process(), then this check
1029 	 * triggers too late. This doesn't hurt, the check is only there
1030 	 * to stop root fork bombs.
1031 	 */
1032 	if (nr_threads >= max_threads)
1033 		goto bad_fork_cleanup_count;
1034 
1035 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1036 		goto bad_fork_cleanup_count;
1037 
1038 	if (p->binfmt && !try_module_get(p->binfmt->module))
1039 		goto bad_fork_cleanup_put_domain;
1040 
1041 	p->did_exec = 0;
1042 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1043 	copy_flags(clone_flags, p);
1044 	p->pid = pid_nr(pid);
1045 	retval = -EFAULT;
1046 	if (clone_flags & CLONE_PARENT_SETTID)
1047 		if (put_user(p->pid, parent_tidptr))
1048 			goto bad_fork_cleanup_delays_binfmt;
1049 
1050 	INIT_LIST_HEAD(&p->children);
1051 	INIT_LIST_HEAD(&p->sibling);
1052 	p->vfork_done = NULL;
1053 	spin_lock_init(&p->alloc_lock);
1054 
1055 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1056 	init_sigpending(&p->pending);
1057 
1058 	p->utime = cputime_zero;
1059 	p->stime = cputime_zero;
1060 	p->gtime = cputime_zero;
1061 
1062 #ifdef CONFIG_TASK_XACCT
1063 	p->rchar = 0;		/* I/O counter: bytes read */
1064 	p->wchar = 0;		/* I/O counter: bytes written */
1065 	p->syscr = 0;		/* I/O counter: read syscalls */
1066 	p->syscw = 0;		/* I/O counter: write syscalls */
1067 #endif
1068 	task_io_accounting_init(p);
1069 	acct_clear_integrals(p);
1070 
1071  	p->it_virt_expires = cputime_zero;
1072 	p->it_prof_expires = cputime_zero;
1073  	p->it_sched_expires = 0;
1074  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1075  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1076  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1077 
1078 	p->lock_depth = -1;		/* -1 = no lock */
1079 	do_posix_clock_monotonic_gettime(&p->start_time);
1080 	p->real_start_time = p->start_time;
1081 	monotonic_to_bootbased(&p->real_start_time);
1082 	p->security = NULL;
1083 	p->io_context = NULL;
1084 	p->io_wait = NULL;
1085 	p->audit_context = NULL;
1086 	cpuset_fork(p);
1087 #ifdef CONFIG_NUMA
1088  	p->mempolicy = mpol_copy(p->mempolicy);
1089  	if (IS_ERR(p->mempolicy)) {
1090  		retval = PTR_ERR(p->mempolicy);
1091  		p->mempolicy = NULL;
1092  		goto bad_fork_cleanup_cpuset;
1093  	}
1094 	mpol_fix_fork_child_flag(p);
1095 #endif
1096 #ifdef CONFIG_TRACE_IRQFLAGS
1097 	p->irq_events = 0;
1098 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1099 	p->hardirqs_enabled = 1;
1100 #else
1101 	p->hardirqs_enabled = 0;
1102 #endif
1103 	p->hardirq_enable_ip = 0;
1104 	p->hardirq_enable_event = 0;
1105 	p->hardirq_disable_ip = _THIS_IP_;
1106 	p->hardirq_disable_event = 0;
1107 	p->softirqs_enabled = 1;
1108 	p->softirq_enable_ip = _THIS_IP_;
1109 	p->softirq_enable_event = 0;
1110 	p->softirq_disable_ip = 0;
1111 	p->softirq_disable_event = 0;
1112 	p->hardirq_context = 0;
1113 	p->softirq_context = 0;
1114 #endif
1115 #ifdef CONFIG_LOCKDEP
1116 	p->lockdep_depth = 0; /* no locks held yet */
1117 	p->curr_chain_key = 0;
1118 	p->lockdep_recursion = 0;
1119 #endif
1120 
1121 #ifdef CONFIG_DEBUG_MUTEXES
1122 	p->blocked_on = NULL; /* not blocked yet */
1123 #endif
1124 
1125 	p->tgid = p->pid;
1126 	if (clone_flags & CLONE_THREAD)
1127 		p->tgid = current->tgid;
1128 
1129 	if ((retval = security_task_alloc(p)))
1130 		goto bad_fork_cleanup_policy;
1131 	if ((retval = audit_alloc(p)))
1132 		goto bad_fork_cleanup_security;
1133 	/* copy all the process information */
1134 	if ((retval = copy_semundo(clone_flags, p)))
1135 		goto bad_fork_cleanup_audit;
1136 	if ((retval = copy_files(clone_flags, p)))
1137 		goto bad_fork_cleanup_semundo;
1138 	if ((retval = copy_fs(clone_flags, p)))
1139 		goto bad_fork_cleanup_files;
1140 	if ((retval = copy_sighand(clone_flags, p)))
1141 		goto bad_fork_cleanup_fs;
1142 	if ((retval = copy_signal(clone_flags, p)))
1143 		goto bad_fork_cleanup_sighand;
1144 	if ((retval = copy_mm(clone_flags, p)))
1145 		goto bad_fork_cleanup_signal;
1146 	if ((retval = copy_keys(clone_flags, p)))
1147 		goto bad_fork_cleanup_mm;
1148 	if ((retval = copy_namespaces(clone_flags, p)))
1149 		goto bad_fork_cleanup_keys;
1150 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1151 	if (retval)
1152 		goto bad_fork_cleanup_namespaces;
1153 
1154 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1155 	/*
1156 	 * Clear TID on mm_release()?
1157 	 */
1158 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1159 #ifdef CONFIG_FUTEX
1160 	p->robust_list = NULL;
1161 #ifdef CONFIG_COMPAT
1162 	p->compat_robust_list = NULL;
1163 #endif
1164 	INIT_LIST_HEAD(&p->pi_state_list);
1165 	p->pi_state_cache = NULL;
1166 #endif
1167 	/*
1168 	 * sigaltstack should be cleared when sharing the same VM
1169 	 */
1170 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1171 		p->sas_ss_sp = p->sas_ss_size = 0;
1172 
1173 	/*
1174 	 * Syscall tracing should be turned off in the child regardless
1175 	 * of CLONE_PTRACE.
1176 	 */
1177 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1178 #ifdef TIF_SYSCALL_EMU
1179 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1180 #endif
1181 
1182 	/* Our parent execution domain becomes current domain
1183 	   These must match for thread signalling to apply */
1184 	p->parent_exec_id = p->self_exec_id;
1185 
1186 	/* ok, now we should be set up.. */
1187 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1188 	p->pdeath_signal = 0;
1189 	p->exit_state = 0;
1190 
1191 	/*
1192 	 * Ok, make it visible to the rest of the system.
1193 	 * We dont wake it up yet.
1194 	 */
1195 	p->group_leader = p;
1196 	INIT_LIST_HEAD(&p->thread_group);
1197 	INIT_LIST_HEAD(&p->ptrace_children);
1198 	INIT_LIST_HEAD(&p->ptrace_list);
1199 
1200 	/* Perform scheduler related setup. Assign this task to a CPU. */
1201 	sched_fork(p, clone_flags);
1202 
1203 	/* Need tasklist lock for parent etc handling! */
1204 	write_lock_irq(&tasklist_lock);
1205 
1206 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1207 	p->ioprio = current->ioprio;
1208 
1209 	/*
1210 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1211 	 * not be changed, nor will its assigned CPU.
1212 	 *
1213 	 * The cpus_allowed mask of the parent may have changed after it was
1214 	 * copied first time - so re-copy it here, then check the child's CPU
1215 	 * to ensure it is on a valid CPU (and if not, just force it back to
1216 	 * parent's CPU). This avoids alot of nasty races.
1217 	 */
1218 	p->cpus_allowed = current->cpus_allowed;
1219 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1220 			!cpu_online(task_cpu(p))))
1221 		set_task_cpu(p, smp_processor_id());
1222 
1223 	/* CLONE_PARENT re-uses the old parent */
1224 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1225 		p->real_parent = current->real_parent;
1226 	else
1227 		p->real_parent = current;
1228 	p->parent = p->real_parent;
1229 
1230 	spin_lock(&current->sighand->siglock);
1231 
1232 	/*
1233 	 * Process group and session signals need to be delivered to just the
1234 	 * parent before the fork or both the parent and the child after the
1235 	 * fork. Restart if a signal comes in before we add the new process to
1236 	 * it's process group.
1237 	 * A fatal signal pending means that current will exit, so the new
1238 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1239  	 */
1240  	recalc_sigpending();
1241 	if (signal_pending(current)) {
1242 		spin_unlock(&current->sighand->siglock);
1243 		write_unlock_irq(&tasklist_lock);
1244 		retval = -ERESTARTNOINTR;
1245 		goto bad_fork_cleanup_namespaces;
1246 	}
1247 
1248 	if (clone_flags & CLONE_THREAD) {
1249 		p->group_leader = current->group_leader;
1250 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1251 
1252 		if (!cputime_eq(current->signal->it_virt_expires,
1253 				cputime_zero) ||
1254 		    !cputime_eq(current->signal->it_prof_expires,
1255 				cputime_zero) ||
1256 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1257 		    !list_empty(&current->signal->cpu_timers[0]) ||
1258 		    !list_empty(&current->signal->cpu_timers[1]) ||
1259 		    !list_empty(&current->signal->cpu_timers[2])) {
1260 			/*
1261 			 * Have child wake up on its first tick to check
1262 			 * for process CPU timers.
1263 			 */
1264 			p->it_prof_expires = jiffies_to_cputime(1);
1265 		}
1266 	}
1267 
1268 	if (likely(p->pid)) {
1269 		add_parent(p);
1270 		if (unlikely(p->ptrace & PT_PTRACED))
1271 			__ptrace_link(p, current->parent);
1272 
1273 		if (thread_group_leader(p)) {
1274 			p->signal->tty = current->signal->tty;
1275 			p->signal->pgrp = process_group(current);
1276 			set_signal_session(p->signal, process_session(current));
1277 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1278 			attach_pid(p, PIDTYPE_SID, task_session(current));
1279 
1280 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1281 			__get_cpu_var(process_counts)++;
1282 		}
1283 		attach_pid(p, PIDTYPE_PID, pid);
1284 		nr_threads++;
1285 	}
1286 
1287 	total_forks++;
1288 	spin_unlock(&current->sighand->siglock);
1289 	write_unlock_irq(&tasklist_lock);
1290 	proc_fork_connector(p);
1291 	return p;
1292 
1293 bad_fork_cleanup_namespaces:
1294 	exit_task_namespaces(p);
1295 bad_fork_cleanup_keys:
1296 	exit_keys(p);
1297 bad_fork_cleanup_mm:
1298 	if (p->mm)
1299 		mmput(p->mm);
1300 bad_fork_cleanup_signal:
1301 	cleanup_signal(p);
1302 bad_fork_cleanup_sighand:
1303 	__cleanup_sighand(p->sighand);
1304 bad_fork_cleanup_fs:
1305 	exit_fs(p); /* blocking */
1306 bad_fork_cleanup_files:
1307 	exit_files(p); /* blocking */
1308 bad_fork_cleanup_semundo:
1309 	exit_sem(p);
1310 bad_fork_cleanup_audit:
1311 	audit_free(p);
1312 bad_fork_cleanup_security:
1313 	security_task_free(p);
1314 bad_fork_cleanup_policy:
1315 #ifdef CONFIG_NUMA
1316 	mpol_free(p->mempolicy);
1317 bad_fork_cleanup_cpuset:
1318 #endif
1319 	cpuset_exit(p);
1320 bad_fork_cleanup_delays_binfmt:
1321 	delayacct_tsk_free(p);
1322 	if (p->binfmt)
1323 		module_put(p->binfmt->module);
1324 bad_fork_cleanup_put_domain:
1325 	module_put(task_thread_info(p)->exec_domain->module);
1326 bad_fork_cleanup_count:
1327 	put_group_info(p->group_info);
1328 	atomic_dec(&p->user->processes);
1329 	free_uid(p->user);
1330 bad_fork_free:
1331 	free_task(p);
1332 fork_out:
1333 	return ERR_PTR(retval);
1334 }
1335 
1336 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1337 {
1338 	memset(regs, 0, sizeof(struct pt_regs));
1339 	return regs;
1340 }
1341 
1342 struct task_struct * __cpuinit fork_idle(int cpu)
1343 {
1344 	struct task_struct *task;
1345 	struct pt_regs regs;
1346 
1347 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1348 				&init_struct_pid);
1349 	if (!IS_ERR(task))
1350 		init_idle(task, cpu);
1351 
1352 	return task;
1353 }
1354 
1355 static inline int fork_traceflag (unsigned clone_flags)
1356 {
1357 	if (clone_flags & CLONE_UNTRACED)
1358 		return 0;
1359 	else if (clone_flags & CLONE_VFORK) {
1360 		if (current->ptrace & PT_TRACE_VFORK)
1361 			return PTRACE_EVENT_VFORK;
1362 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1363 		if (current->ptrace & PT_TRACE_CLONE)
1364 			return PTRACE_EVENT_CLONE;
1365 	} else if (current->ptrace & PT_TRACE_FORK)
1366 		return PTRACE_EVENT_FORK;
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  *  Ok, this is the main fork-routine.
1373  *
1374  * It copies the process, and if successful kick-starts
1375  * it and waits for it to finish using the VM if required.
1376  */
1377 long do_fork(unsigned long clone_flags,
1378 	      unsigned long stack_start,
1379 	      struct pt_regs *regs,
1380 	      unsigned long stack_size,
1381 	      int __user *parent_tidptr,
1382 	      int __user *child_tidptr)
1383 {
1384 	struct task_struct *p;
1385 	int trace = 0;
1386 	struct pid *pid = alloc_pid();
1387 	long nr;
1388 
1389 	if (!pid)
1390 		return -EAGAIN;
1391 	nr = pid->nr;
1392 	if (unlikely(current->ptrace)) {
1393 		trace = fork_traceflag (clone_flags);
1394 		if (trace)
1395 			clone_flags |= CLONE_PTRACE;
1396 	}
1397 
1398 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1399 	/*
1400 	 * Do this prior waking up the new thread - the thread pointer
1401 	 * might get invalid after that point, if the thread exits quickly.
1402 	 */
1403 	if (!IS_ERR(p)) {
1404 		struct completion vfork;
1405 
1406 		if (clone_flags & CLONE_VFORK) {
1407 			p->vfork_done = &vfork;
1408 			init_completion(&vfork);
1409 		}
1410 
1411 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1412 			/*
1413 			 * We'll start up with an immediate SIGSTOP.
1414 			 */
1415 			sigaddset(&p->pending.signal, SIGSTOP);
1416 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1417 		}
1418 
1419 		if (!(clone_flags & CLONE_STOPPED))
1420 			wake_up_new_task(p, clone_flags);
1421 		else
1422 			p->state = TASK_STOPPED;
1423 
1424 		if (unlikely (trace)) {
1425 			current->ptrace_message = nr;
1426 			ptrace_notify ((trace << 8) | SIGTRAP);
1427 		}
1428 
1429 		if (clone_flags & CLONE_VFORK) {
1430 			freezer_do_not_count();
1431 			wait_for_completion(&vfork);
1432 			freezer_count();
1433 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1434 				current->ptrace_message = nr;
1435 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1436 			}
1437 		}
1438 	} else {
1439 		free_pid(pid);
1440 		nr = PTR_ERR(p);
1441 	}
1442 	return nr;
1443 }
1444 
1445 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1446 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1447 #endif
1448 
1449 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1450 {
1451 	struct sighand_struct *sighand = data;
1452 
1453 	spin_lock_init(&sighand->siglock);
1454 	init_waitqueue_head(&sighand->signalfd_wqh);
1455 }
1456 
1457 void __init proc_caches_init(void)
1458 {
1459 	sighand_cachep = kmem_cache_create("sighand_cache",
1460 			sizeof(struct sighand_struct), 0,
1461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1462 			sighand_ctor);
1463 	signal_cachep = kmem_cache_create("signal_cache",
1464 			sizeof(struct signal_struct), 0,
1465 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1466 	files_cachep = kmem_cache_create("files_cache",
1467 			sizeof(struct files_struct), 0,
1468 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1469 	fs_cachep = kmem_cache_create("fs_cache",
1470 			sizeof(struct fs_struct), 0,
1471 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1472 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1473 			sizeof(struct vm_area_struct), 0,
1474 			SLAB_PANIC, NULL);
1475 	mm_cachep = kmem_cache_create("mm_struct",
1476 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1477 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1478 }
1479 
1480 /*
1481  * Check constraints on flags passed to the unshare system call and
1482  * force unsharing of additional process context as appropriate.
1483  */
1484 static inline void check_unshare_flags(unsigned long *flags_ptr)
1485 {
1486 	/*
1487 	 * If unsharing a thread from a thread group, must also
1488 	 * unshare vm.
1489 	 */
1490 	if (*flags_ptr & CLONE_THREAD)
1491 		*flags_ptr |= CLONE_VM;
1492 
1493 	/*
1494 	 * If unsharing vm, must also unshare signal handlers.
1495 	 */
1496 	if (*flags_ptr & CLONE_VM)
1497 		*flags_ptr |= CLONE_SIGHAND;
1498 
1499 	/*
1500 	 * If unsharing signal handlers and the task was created
1501 	 * using CLONE_THREAD, then must unshare the thread
1502 	 */
1503 	if ((*flags_ptr & CLONE_SIGHAND) &&
1504 	    (atomic_read(&current->signal->count) > 1))
1505 		*flags_ptr |= CLONE_THREAD;
1506 
1507 	/*
1508 	 * If unsharing namespace, must also unshare filesystem information.
1509 	 */
1510 	if (*flags_ptr & CLONE_NEWNS)
1511 		*flags_ptr |= CLONE_FS;
1512 }
1513 
1514 /*
1515  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1516  */
1517 static int unshare_thread(unsigned long unshare_flags)
1518 {
1519 	if (unshare_flags & CLONE_THREAD)
1520 		return -EINVAL;
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Unshare the filesystem structure if it is being shared
1527  */
1528 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1529 {
1530 	struct fs_struct *fs = current->fs;
1531 
1532 	if ((unshare_flags & CLONE_FS) &&
1533 	    (fs && atomic_read(&fs->count) > 1)) {
1534 		*new_fsp = __copy_fs_struct(current->fs);
1535 		if (!*new_fsp)
1536 			return -ENOMEM;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Unsharing of sighand is not supported yet
1544  */
1545 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1546 {
1547 	struct sighand_struct *sigh = current->sighand;
1548 
1549 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1550 		return -EINVAL;
1551 	else
1552 		return 0;
1553 }
1554 
1555 /*
1556  * Unshare vm if it is being shared
1557  */
1558 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1559 {
1560 	struct mm_struct *mm = current->mm;
1561 
1562 	if ((unshare_flags & CLONE_VM) &&
1563 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1564 		return -EINVAL;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Unshare file descriptor table if it is being shared
1572  */
1573 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1574 {
1575 	struct files_struct *fd = current->files;
1576 	int error = 0;
1577 
1578 	if ((unshare_flags & CLONE_FILES) &&
1579 	    (fd && atomic_read(&fd->count) > 1)) {
1580 		*new_fdp = dup_fd(fd, &error);
1581 		if (!*new_fdp)
1582 			return error;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1590  * supported yet
1591  */
1592 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1593 {
1594 	if (unshare_flags & CLONE_SYSVSEM)
1595 		return -EINVAL;
1596 
1597 	return 0;
1598 }
1599 
1600 /*
1601  * unshare allows a process to 'unshare' part of the process
1602  * context which was originally shared using clone.  copy_*
1603  * functions used by do_fork() cannot be used here directly
1604  * because they modify an inactive task_struct that is being
1605  * constructed. Here we are modifying the current, active,
1606  * task_struct.
1607  */
1608 asmlinkage long sys_unshare(unsigned long unshare_flags)
1609 {
1610 	int err = 0;
1611 	struct fs_struct *fs, *new_fs = NULL;
1612 	struct sighand_struct *new_sigh = NULL;
1613 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1614 	struct files_struct *fd, *new_fd = NULL;
1615 	struct sem_undo_list *new_ulist = NULL;
1616 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1617 
1618 	check_unshare_flags(&unshare_flags);
1619 
1620 	/* Return -EINVAL for all unsupported flags */
1621 	err = -EINVAL;
1622 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1623 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1624 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1625 				CLONE_NEWNET))
1626 		goto bad_unshare_out;
1627 
1628 	if ((err = unshare_thread(unshare_flags)))
1629 		goto bad_unshare_out;
1630 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1631 		goto bad_unshare_cleanup_thread;
1632 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1633 		goto bad_unshare_cleanup_fs;
1634 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1635 		goto bad_unshare_cleanup_sigh;
1636 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1637 		goto bad_unshare_cleanup_vm;
1638 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1639 		goto bad_unshare_cleanup_fd;
1640 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1641 			new_fs)))
1642 		goto bad_unshare_cleanup_semundo;
1643 
1644 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1645 
1646 		task_lock(current);
1647 
1648 		if (new_nsproxy) {
1649 			old_nsproxy = current->nsproxy;
1650 			current->nsproxy = new_nsproxy;
1651 			new_nsproxy = old_nsproxy;
1652 		}
1653 
1654 		if (new_fs) {
1655 			fs = current->fs;
1656 			current->fs = new_fs;
1657 			new_fs = fs;
1658 		}
1659 
1660 		if (new_mm) {
1661 			mm = current->mm;
1662 			active_mm = current->active_mm;
1663 			current->mm = new_mm;
1664 			current->active_mm = new_mm;
1665 			activate_mm(active_mm, new_mm);
1666 			new_mm = mm;
1667 		}
1668 
1669 		if (new_fd) {
1670 			fd = current->files;
1671 			current->files = new_fd;
1672 			new_fd = fd;
1673 		}
1674 
1675 		task_unlock(current);
1676 	}
1677 
1678 	if (new_nsproxy)
1679 		put_nsproxy(new_nsproxy);
1680 
1681 bad_unshare_cleanup_semundo:
1682 bad_unshare_cleanup_fd:
1683 	if (new_fd)
1684 		put_files_struct(new_fd);
1685 
1686 bad_unshare_cleanup_vm:
1687 	if (new_mm)
1688 		mmput(new_mm);
1689 
1690 bad_unshare_cleanup_sigh:
1691 	if (new_sigh)
1692 		if (atomic_dec_and_test(&new_sigh->count))
1693 			kmem_cache_free(sighand_cachep, new_sigh);
1694 
1695 bad_unshare_cleanup_fs:
1696 	if (new_fs)
1697 		put_fs_struct(new_fs);
1698 
1699 bad_unshare_cleanup_thread:
1700 bad_unshare_out:
1701 	return err;
1702 }
1703