1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 78 #include <asm/pgtable.h> 79 #include <asm/pgalloc.h> 80 #include <asm/uaccess.h> 81 #include <asm/mmu_context.h> 82 #include <asm/cacheflush.h> 83 #include <asm/tlbflush.h> 84 85 #include <trace/events/sched.h> 86 87 #define CREATE_TRACE_POINTS 88 #include <trace/events/task.h> 89 90 /* 91 * Protected counters by write_lock_irq(&tasklist_lock) 92 */ 93 unsigned long total_forks; /* Handle normal Linux uptimes. */ 94 int nr_threads; /* The idle threads do not count.. */ 95 96 int max_threads; /* tunable limit on nr_threads */ 97 98 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 99 100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 101 102 #ifdef CONFIG_PROVE_RCU 103 int lockdep_tasklist_lock_is_held(void) 104 { 105 return lockdep_is_held(&tasklist_lock); 106 } 107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 108 #endif /* #ifdef CONFIG_PROVE_RCU */ 109 110 int nr_processes(void) 111 { 112 int cpu; 113 int total = 0; 114 115 for_each_possible_cpu(cpu) 116 total += per_cpu(process_counts, cpu); 117 118 return total; 119 } 120 121 void __weak arch_release_task_struct(struct task_struct *tsk) 122 { 123 } 124 125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 126 static struct kmem_cache *task_struct_cachep; 127 128 static inline struct task_struct *alloc_task_struct_node(int node) 129 { 130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 131 } 132 133 static inline void free_task_struct(struct task_struct *tsk) 134 { 135 kmem_cache_free(task_struct_cachep, tsk); 136 } 137 #endif 138 139 void __weak arch_release_thread_info(struct thread_info *ti) 140 { 141 } 142 143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 144 145 /* 146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 147 * kmemcache based allocator. 148 */ 149 # if THREAD_SIZE >= PAGE_SIZE 150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 151 int node) 152 { 153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, 154 THREAD_SIZE_ORDER); 155 156 return page ? page_address(page) : NULL; 157 } 158 159 static inline void free_thread_info(struct thread_info *ti) 160 { 161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 162 } 163 # else 164 static struct kmem_cache *thread_info_cache; 165 166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 167 int node) 168 { 169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 170 } 171 172 static void free_thread_info(struct thread_info *ti) 173 { 174 kmem_cache_free(thread_info_cache, ti); 175 } 176 177 void thread_info_cache_init(void) 178 { 179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 180 THREAD_SIZE, 0, NULL); 181 BUG_ON(thread_info_cache == NULL); 182 } 183 # endif 184 #endif 185 186 /* SLAB cache for signal_struct structures (tsk->signal) */ 187 static struct kmem_cache *signal_cachep; 188 189 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 190 struct kmem_cache *sighand_cachep; 191 192 /* SLAB cache for files_struct structures (tsk->files) */ 193 struct kmem_cache *files_cachep; 194 195 /* SLAB cache for fs_struct structures (tsk->fs) */ 196 struct kmem_cache *fs_cachep; 197 198 /* SLAB cache for vm_area_struct structures */ 199 struct kmem_cache *vm_area_cachep; 200 201 /* SLAB cache for mm_struct structures (tsk->mm) */ 202 static struct kmem_cache *mm_cachep; 203 204 static void account_kernel_stack(struct thread_info *ti, int account) 205 { 206 struct zone *zone = page_zone(virt_to_page(ti)); 207 208 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 209 } 210 211 void free_task(struct task_struct *tsk) 212 { 213 account_kernel_stack(tsk->stack, -1); 214 arch_release_thread_info(tsk->stack); 215 free_thread_info(tsk->stack); 216 rt_mutex_debug_task_free(tsk); 217 ftrace_graph_exit_task(tsk); 218 put_seccomp_filter(tsk); 219 arch_release_task_struct(tsk); 220 free_task_struct(tsk); 221 } 222 EXPORT_SYMBOL(free_task); 223 224 static inline void free_signal_struct(struct signal_struct *sig) 225 { 226 taskstats_tgid_free(sig); 227 sched_autogroup_exit(sig); 228 kmem_cache_free(signal_cachep, sig); 229 } 230 231 static inline void put_signal_struct(struct signal_struct *sig) 232 { 233 if (atomic_dec_and_test(&sig->sigcnt)) 234 free_signal_struct(sig); 235 } 236 237 void __put_task_struct(struct task_struct *tsk) 238 { 239 WARN_ON(!tsk->exit_state); 240 WARN_ON(atomic_read(&tsk->usage)); 241 WARN_ON(tsk == current); 242 243 task_numa_free(tsk); 244 security_task_free(tsk); 245 exit_creds(tsk); 246 delayacct_tsk_free(tsk); 247 put_signal_struct(tsk->signal); 248 249 if (!profile_handoff_task(tsk)) 250 free_task(tsk); 251 } 252 EXPORT_SYMBOL_GPL(__put_task_struct); 253 254 void __init __weak arch_task_cache_init(void) { } 255 256 void __init fork_init(unsigned long mempages) 257 { 258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 259 #ifndef ARCH_MIN_TASKALIGN 260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 261 #endif 262 /* create a slab on which task_structs can be allocated */ 263 task_struct_cachep = 264 kmem_cache_create("task_struct", sizeof(struct task_struct), 265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 266 #endif 267 268 /* do the arch specific task caches init */ 269 arch_task_cache_init(); 270 271 /* 272 * The default maximum number of threads is set to a safe 273 * value: the thread structures can take up at most half 274 * of memory. 275 */ 276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 277 278 /* 279 * we need to allow at least 20 threads to boot a system 280 */ 281 if (max_threads < 20) 282 max_threads = 20; 283 284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 286 init_task.signal->rlim[RLIMIT_SIGPENDING] = 287 init_task.signal->rlim[RLIMIT_NPROC]; 288 } 289 290 int __weak arch_dup_task_struct(struct task_struct *dst, 291 struct task_struct *src) 292 { 293 *dst = *src; 294 return 0; 295 } 296 297 void set_task_stack_end_magic(struct task_struct *tsk) 298 { 299 unsigned long *stackend; 300 301 stackend = end_of_stack(tsk); 302 *stackend = STACK_END_MAGIC; /* for overflow detection */ 303 } 304 305 static struct task_struct *dup_task_struct(struct task_struct *orig) 306 { 307 struct task_struct *tsk; 308 struct thread_info *ti; 309 int node = tsk_fork_get_node(orig); 310 int err; 311 312 tsk = alloc_task_struct_node(node); 313 if (!tsk) 314 return NULL; 315 316 ti = alloc_thread_info_node(tsk, node); 317 if (!ti) 318 goto free_tsk; 319 320 err = arch_dup_task_struct(tsk, orig); 321 if (err) 322 goto free_ti; 323 324 tsk->stack = ti; 325 #ifdef CONFIG_SECCOMP 326 /* 327 * We must handle setting up seccomp filters once we're under 328 * the sighand lock in case orig has changed between now and 329 * then. Until then, filter must be NULL to avoid messing up 330 * the usage counts on the error path calling free_task. 331 */ 332 tsk->seccomp.filter = NULL; 333 #endif 334 335 setup_thread_stack(tsk, orig); 336 clear_user_return_notifier(tsk); 337 clear_tsk_need_resched(tsk); 338 set_task_stack_end_magic(tsk); 339 340 #ifdef CONFIG_CC_STACKPROTECTOR 341 tsk->stack_canary = get_random_int(); 342 #endif 343 344 /* 345 * One for us, one for whoever does the "release_task()" (usually 346 * parent) 347 */ 348 atomic_set(&tsk->usage, 2); 349 #ifdef CONFIG_BLK_DEV_IO_TRACE 350 tsk->btrace_seq = 0; 351 #endif 352 tsk->splice_pipe = NULL; 353 tsk->task_frag.page = NULL; 354 355 account_kernel_stack(ti, 1); 356 357 return tsk; 358 359 free_ti: 360 free_thread_info(ti); 361 free_tsk: 362 free_task_struct(tsk); 363 return NULL; 364 } 365 366 #ifdef CONFIG_MMU 367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 368 { 369 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 370 struct rb_node **rb_link, *rb_parent; 371 int retval; 372 unsigned long charge; 373 374 uprobe_start_dup_mmap(); 375 down_write(&oldmm->mmap_sem); 376 flush_cache_dup_mm(oldmm); 377 uprobe_dup_mmap(oldmm, mm); 378 /* 379 * Not linked in yet - no deadlock potential: 380 */ 381 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 382 383 mm->total_vm = oldmm->total_vm; 384 mm->shared_vm = oldmm->shared_vm; 385 mm->exec_vm = oldmm->exec_vm; 386 mm->stack_vm = oldmm->stack_vm; 387 388 rb_link = &mm->mm_rb.rb_node; 389 rb_parent = NULL; 390 pprev = &mm->mmap; 391 retval = ksm_fork(mm, oldmm); 392 if (retval) 393 goto out; 394 retval = khugepaged_fork(mm, oldmm); 395 if (retval) 396 goto out; 397 398 prev = NULL; 399 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 400 struct file *file; 401 402 if (mpnt->vm_flags & VM_DONTCOPY) { 403 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 404 -vma_pages(mpnt)); 405 continue; 406 } 407 charge = 0; 408 if (mpnt->vm_flags & VM_ACCOUNT) { 409 unsigned long len = vma_pages(mpnt); 410 411 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 412 goto fail_nomem; 413 charge = len; 414 } 415 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 416 if (!tmp) 417 goto fail_nomem; 418 *tmp = *mpnt; 419 INIT_LIST_HEAD(&tmp->anon_vma_chain); 420 retval = vma_dup_policy(mpnt, tmp); 421 if (retval) 422 goto fail_nomem_policy; 423 tmp->vm_mm = mm; 424 if (anon_vma_fork(tmp, mpnt)) 425 goto fail_nomem_anon_vma_fork; 426 tmp->vm_flags &= ~VM_LOCKED; 427 tmp->vm_next = tmp->vm_prev = NULL; 428 file = tmp->vm_file; 429 if (file) { 430 struct inode *inode = file_inode(file); 431 struct address_space *mapping = file->f_mapping; 432 433 get_file(file); 434 if (tmp->vm_flags & VM_DENYWRITE) 435 atomic_dec(&inode->i_writecount); 436 mutex_lock(&mapping->i_mmap_mutex); 437 if (tmp->vm_flags & VM_SHARED) 438 atomic_inc(&mapping->i_mmap_writable); 439 flush_dcache_mmap_lock(mapping); 440 /* insert tmp into the share list, just after mpnt */ 441 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 442 vma_nonlinear_insert(tmp, 443 &mapping->i_mmap_nonlinear); 444 else 445 vma_interval_tree_insert_after(tmp, mpnt, 446 &mapping->i_mmap); 447 flush_dcache_mmap_unlock(mapping); 448 mutex_unlock(&mapping->i_mmap_mutex); 449 } 450 451 /* 452 * Clear hugetlb-related page reserves for children. This only 453 * affects MAP_PRIVATE mappings. Faults generated by the child 454 * are not guaranteed to succeed, even if read-only 455 */ 456 if (is_vm_hugetlb_page(tmp)) 457 reset_vma_resv_huge_pages(tmp); 458 459 /* 460 * Link in the new vma and copy the page table entries. 461 */ 462 *pprev = tmp; 463 pprev = &tmp->vm_next; 464 tmp->vm_prev = prev; 465 prev = tmp; 466 467 __vma_link_rb(mm, tmp, rb_link, rb_parent); 468 rb_link = &tmp->vm_rb.rb_right; 469 rb_parent = &tmp->vm_rb; 470 471 mm->map_count++; 472 retval = copy_page_range(mm, oldmm, mpnt); 473 474 if (tmp->vm_ops && tmp->vm_ops->open) 475 tmp->vm_ops->open(tmp); 476 477 if (retval) 478 goto out; 479 } 480 /* a new mm has just been created */ 481 arch_dup_mmap(oldmm, mm); 482 retval = 0; 483 out: 484 up_write(&mm->mmap_sem); 485 flush_tlb_mm(oldmm); 486 up_write(&oldmm->mmap_sem); 487 uprobe_end_dup_mmap(); 488 return retval; 489 fail_nomem_anon_vma_fork: 490 mpol_put(vma_policy(tmp)); 491 fail_nomem_policy: 492 kmem_cache_free(vm_area_cachep, tmp); 493 fail_nomem: 494 retval = -ENOMEM; 495 vm_unacct_memory(charge); 496 goto out; 497 } 498 499 static inline int mm_alloc_pgd(struct mm_struct *mm) 500 { 501 mm->pgd = pgd_alloc(mm); 502 if (unlikely(!mm->pgd)) 503 return -ENOMEM; 504 return 0; 505 } 506 507 static inline void mm_free_pgd(struct mm_struct *mm) 508 { 509 pgd_free(mm, mm->pgd); 510 } 511 #else 512 #define dup_mmap(mm, oldmm) (0) 513 #define mm_alloc_pgd(mm) (0) 514 #define mm_free_pgd(mm) 515 #endif /* CONFIG_MMU */ 516 517 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 518 519 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 520 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 521 522 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 523 524 static int __init coredump_filter_setup(char *s) 525 { 526 default_dump_filter = 527 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 528 MMF_DUMP_FILTER_MASK; 529 return 1; 530 } 531 532 __setup("coredump_filter=", coredump_filter_setup); 533 534 #include <linux/init_task.h> 535 536 static void mm_init_aio(struct mm_struct *mm) 537 { 538 #ifdef CONFIG_AIO 539 spin_lock_init(&mm->ioctx_lock); 540 mm->ioctx_table = NULL; 541 #endif 542 } 543 544 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 545 { 546 #ifdef CONFIG_MEMCG 547 mm->owner = p; 548 #endif 549 } 550 551 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 552 { 553 mm->mmap = NULL; 554 mm->mm_rb = RB_ROOT; 555 mm->vmacache_seqnum = 0; 556 atomic_set(&mm->mm_users, 1); 557 atomic_set(&mm->mm_count, 1); 558 init_rwsem(&mm->mmap_sem); 559 INIT_LIST_HEAD(&mm->mmlist); 560 mm->core_state = NULL; 561 atomic_long_set(&mm->nr_ptes, 0); 562 mm->map_count = 0; 563 mm->locked_vm = 0; 564 mm->pinned_vm = 0; 565 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 566 spin_lock_init(&mm->page_table_lock); 567 mm_init_cpumask(mm); 568 mm_init_aio(mm); 569 mm_init_owner(mm, p); 570 mmu_notifier_mm_init(mm); 571 clear_tlb_flush_pending(mm); 572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 573 mm->pmd_huge_pte = NULL; 574 #endif 575 576 if (current->mm) { 577 mm->flags = current->mm->flags & MMF_INIT_MASK; 578 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 579 } else { 580 mm->flags = default_dump_filter; 581 mm->def_flags = 0; 582 } 583 584 if (mm_alloc_pgd(mm)) 585 goto fail_nopgd; 586 587 if (init_new_context(p, mm)) 588 goto fail_nocontext; 589 590 return mm; 591 592 fail_nocontext: 593 mm_free_pgd(mm); 594 fail_nopgd: 595 free_mm(mm); 596 return NULL; 597 } 598 599 static void check_mm(struct mm_struct *mm) 600 { 601 int i; 602 603 for (i = 0; i < NR_MM_COUNTERS; i++) { 604 long x = atomic_long_read(&mm->rss_stat.count[i]); 605 606 if (unlikely(x)) 607 printk(KERN_ALERT "BUG: Bad rss-counter state " 608 "mm:%p idx:%d val:%ld\n", mm, i, x); 609 } 610 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 611 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 612 #endif 613 } 614 615 /* 616 * Allocate and initialize an mm_struct. 617 */ 618 struct mm_struct *mm_alloc(void) 619 { 620 struct mm_struct *mm; 621 622 mm = allocate_mm(); 623 if (!mm) 624 return NULL; 625 626 memset(mm, 0, sizeof(*mm)); 627 return mm_init(mm, current); 628 } 629 630 /* 631 * Called when the last reference to the mm 632 * is dropped: either by a lazy thread or by 633 * mmput. Free the page directory and the mm. 634 */ 635 void __mmdrop(struct mm_struct *mm) 636 { 637 BUG_ON(mm == &init_mm); 638 mm_free_pgd(mm); 639 destroy_context(mm); 640 mmu_notifier_mm_destroy(mm); 641 check_mm(mm); 642 free_mm(mm); 643 } 644 EXPORT_SYMBOL_GPL(__mmdrop); 645 646 /* 647 * Decrement the use count and release all resources for an mm. 648 */ 649 void mmput(struct mm_struct *mm) 650 { 651 might_sleep(); 652 653 if (atomic_dec_and_test(&mm->mm_users)) { 654 uprobe_clear_state(mm); 655 exit_aio(mm); 656 ksm_exit(mm); 657 khugepaged_exit(mm); /* must run before exit_mmap */ 658 exit_mmap(mm); 659 set_mm_exe_file(mm, NULL); 660 if (!list_empty(&mm->mmlist)) { 661 spin_lock(&mmlist_lock); 662 list_del(&mm->mmlist); 663 spin_unlock(&mmlist_lock); 664 } 665 if (mm->binfmt) 666 module_put(mm->binfmt->module); 667 mmdrop(mm); 668 } 669 } 670 EXPORT_SYMBOL_GPL(mmput); 671 672 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 673 { 674 if (new_exe_file) 675 get_file(new_exe_file); 676 if (mm->exe_file) 677 fput(mm->exe_file); 678 mm->exe_file = new_exe_file; 679 } 680 681 struct file *get_mm_exe_file(struct mm_struct *mm) 682 { 683 struct file *exe_file; 684 685 /* We need mmap_sem to protect against races with removal of exe_file */ 686 down_read(&mm->mmap_sem); 687 exe_file = mm->exe_file; 688 if (exe_file) 689 get_file(exe_file); 690 up_read(&mm->mmap_sem); 691 return exe_file; 692 } 693 694 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 695 { 696 /* It's safe to write the exe_file pointer without exe_file_lock because 697 * this is called during fork when the task is not yet in /proc */ 698 newmm->exe_file = get_mm_exe_file(oldmm); 699 } 700 701 /** 702 * get_task_mm - acquire a reference to the task's mm 703 * 704 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 705 * this kernel workthread has transiently adopted a user mm with use_mm, 706 * to do its AIO) is not set and if so returns a reference to it, after 707 * bumping up the use count. User must release the mm via mmput() 708 * after use. Typically used by /proc and ptrace. 709 */ 710 struct mm_struct *get_task_mm(struct task_struct *task) 711 { 712 struct mm_struct *mm; 713 714 task_lock(task); 715 mm = task->mm; 716 if (mm) { 717 if (task->flags & PF_KTHREAD) 718 mm = NULL; 719 else 720 atomic_inc(&mm->mm_users); 721 } 722 task_unlock(task); 723 return mm; 724 } 725 EXPORT_SYMBOL_GPL(get_task_mm); 726 727 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 728 { 729 struct mm_struct *mm; 730 int err; 731 732 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 733 if (err) 734 return ERR_PTR(err); 735 736 mm = get_task_mm(task); 737 if (mm && mm != current->mm && 738 !ptrace_may_access(task, mode)) { 739 mmput(mm); 740 mm = ERR_PTR(-EACCES); 741 } 742 mutex_unlock(&task->signal->cred_guard_mutex); 743 744 return mm; 745 } 746 747 static void complete_vfork_done(struct task_struct *tsk) 748 { 749 struct completion *vfork; 750 751 task_lock(tsk); 752 vfork = tsk->vfork_done; 753 if (likely(vfork)) { 754 tsk->vfork_done = NULL; 755 complete(vfork); 756 } 757 task_unlock(tsk); 758 } 759 760 static int wait_for_vfork_done(struct task_struct *child, 761 struct completion *vfork) 762 { 763 int killed; 764 765 freezer_do_not_count(); 766 killed = wait_for_completion_killable(vfork); 767 freezer_count(); 768 769 if (killed) { 770 task_lock(child); 771 child->vfork_done = NULL; 772 task_unlock(child); 773 } 774 775 put_task_struct(child); 776 return killed; 777 } 778 779 /* Please note the differences between mmput and mm_release. 780 * mmput is called whenever we stop holding onto a mm_struct, 781 * error success whatever. 782 * 783 * mm_release is called after a mm_struct has been removed 784 * from the current process. 785 * 786 * This difference is important for error handling, when we 787 * only half set up a mm_struct for a new process and need to restore 788 * the old one. Because we mmput the new mm_struct before 789 * restoring the old one. . . 790 * Eric Biederman 10 January 1998 791 */ 792 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 793 { 794 /* Get rid of any futexes when releasing the mm */ 795 #ifdef CONFIG_FUTEX 796 if (unlikely(tsk->robust_list)) { 797 exit_robust_list(tsk); 798 tsk->robust_list = NULL; 799 } 800 #ifdef CONFIG_COMPAT 801 if (unlikely(tsk->compat_robust_list)) { 802 compat_exit_robust_list(tsk); 803 tsk->compat_robust_list = NULL; 804 } 805 #endif 806 if (unlikely(!list_empty(&tsk->pi_state_list))) 807 exit_pi_state_list(tsk); 808 #endif 809 810 uprobe_free_utask(tsk); 811 812 /* Get rid of any cached register state */ 813 deactivate_mm(tsk, mm); 814 815 /* 816 * If we're exiting normally, clear a user-space tid field if 817 * requested. We leave this alone when dying by signal, to leave 818 * the value intact in a core dump, and to save the unnecessary 819 * trouble, say, a killed vfork parent shouldn't touch this mm. 820 * Userland only wants this done for a sys_exit. 821 */ 822 if (tsk->clear_child_tid) { 823 if (!(tsk->flags & PF_SIGNALED) && 824 atomic_read(&mm->mm_users) > 1) { 825 /* 826 * We don't check the error code - if userspace has 827 * not set up a proper pointer then tough luck. 828 */ 829 put_user(0, tsk->clear_child_tid); 830 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 831 1, NULL, NULL, 0); 832 } 833 tsk->clear_child_tid = NULL; 834 } 835 836 /* 837 * All done, finally we can wake up parent and return this mm to him. 838 * Also kthread_stop() uses this completion for synchronization. 839 */ 840 if (tsk->vfork_done) 841 complete_vfork_done(tsk); 842 } 843 844 /* 845 * Allocate a new mm structure and copy contents from the 846 * mm structure of the passed in task structure. 847 */ 848 static struct mm_struct *dup_mm(struct task_struct *tsk) 849 { 850 struct mm_struct *mm, *oldmm = current->mm; 851 int err; 852 853 mm = allocate_mm(); 854 if (!mm) 855 goto fail_nomem; 856 857 memcpy(mm, oldmm, sizeof(*mm)); 858 859 if (!mm_init(mm, tsk)) 860 goto fail_nomem; 861 862 dup_mm_exe_file(oldmm, mm); 863 864 err = dup_mmap(mm, oldmm); 865 if (err) 866 goto free_pt; 867 868 mm->hiwater_rss = get_mm_rss(mm); 869 mm->hiwater_vm = mm->total_vm; 870 871 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 872 goto free_pt; 873 874 return mm; 875 876 free_pt: 877 /* don't put binfmt in mmput, we haven't got module yet */ 878 mm->binfmt = NULL; 879 mmput(mm); 880 881 fail_nomem: 882 return NULL; 883 } 884 885 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 886 { 887 struct mm_struct *mm, *oldmm; 888 int retval; 889 890 tsk->min_flt = tsk->maj_flt = 0; 891 tsk->nvcsw = tsk->nivcsw = 0; 892 #ifdef CONFIG_DETECT_HUNG_TASK 893 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 894 #endif 895 896 tsk->mm = NULL; 897 tsk->active_mm = NULL; 898 899 /* 900 * Are we cloning a kernel thread? 901 * 902 * We need to steal a active VM for that.. 903 */ 904 oldmm = current->mm; 905 if (!oldmm) 906 return 0; 907 908 /* initialize the new vmacache entries */ 909 vmacache_flush(tsk); 910 911 if (clone_flags & CLONE_VM) { 912 atomic_inc(&oldmm->mm_users); 913 mm = oldmm; 914 goto good_mm; 915 } 916 917 retval = -ENOMEM; 918 mm = dup_mm(tsk); 919 if (!mm) 920 goto fail_nomem; 921 922 good_mm: 923 tsk->mm = mm; 924 tsk->active_mm = mm; 925 return 0; 926 927 fail_nomem: 928 return retval; 929 } 930 931 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 932 { 933 struct fs_struct *fs = current->fs; 934 if (clone_flags & CLONE_FS) { 935 /* tsk->fs is already what we want */ 936 spin_lock(&fs->lock); 937 if (fs->in_exec) { 938 spin_unlock(&fs->lock); 939 return -EAGAIN; 940 } 941 fs->users++; 942 spin_unlock(&fs->lock); 943 return 0; 944 } 945 tsk->fs = copy_fs_struct(fs); 946 if (!tsk->fs) 947 return -ENOMEM; 948 return 0; 949 } 950 951 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 952 { 953 struct files_struct *oldf, *newf; 954 int error = 0; 955 956 /* 957 * A background process may not have any files ... 958 */ 959 oldf = current->files; 960 if (!oldf) 961 goto out; 962 963 if (clone_flags & CLONE_FILES) { 964 atomic_inc(&oldf->count); 965 goto out; 966 } 967 968 newf = dup_fd(oldf, &error); 969 if (!newf) 970 goto out; 971 972 tsk->files = newf; 973 error = 0; 974 out: 975 return error; 976 } 977 978 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 979 { 980 #ifdef CONFIG_BLOCK 981 struct io_context *ioc = current->io_context; 982 struct io_context *new_ioc; 983 984 if (!ioc) 985 return 0; 986 /* 987 * Share io context with parent, if CLONE_IO is set 988 */ 989 if (clone_flags & CLONE_IO) { 990 ioc_task_link(ioc); 991 tsk->io_context = ioc; 992 } else if (ioprio_valid(ioc->ioprio)) { 993 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 994 if (unlikely(!new_ioc)) 995 return -ENOMEM; 996 997 new_ioc->ioprio = ioc->ioprio; 998 put_io_context(new_ioc); 999 } 1000 #endif 1001 return 0; 1002 } 1003 1004 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1005 { 1006 struct sighand_struct *sig; 1007 1008 if (clone_flags & CLONE_SIGHAND) { 1009 atomic_inc(¤t->sighand->count); 1010 return 0; 1011 } 1012 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1013 rcu_assign_pointer(tsk->sighand, sig); 1014 if (!sig) 1015 return -ENOMEM; 1016 atomic_set(&sig->count, 1); 1017 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1018 return 0; 1019 } 1020 1021 void __cleanup_sighand(struct sighand_struct *sighand) 1022 { 1023 if (atomic_dec_and_test(&sighand->count)) { 1024 signalfd_cleanup(sighand); 1025 kmem_cache_free(sighand_cachep, sighand); 1026 } 1027 } 1028 1029 1030 /* 1031 * Initialize POSIX timer handling for a thread group. 1032 */ 1033 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1034 { 1035 unsigned long cpu_limit; 1036 1037 /* Thread group counters. */ 1038 thread_group_cputime_init(sig); 1039 1040 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1041 if (cpu_limit != RLIM_INFINITY) { 1042 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1043 sig->cputimer.running = 1; 1044 } 1045 1046 /* The timer lists. */ 1047 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1048 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1049 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1050 } 1051 1052 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1053 { 1054 struct signal_struct *sig; 1055 1056 if (clone_flags & CLONE_THREAD) 1057 return 0; 1058 1059 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1060 tsk->signal = sig; 1061 if (!sig) 1062 return -ENOMEM; 1063 1064 sig->nr_threads = 1; 1065 atomic_set(&sig->live, 1); 1066 atomic_set(&sig->sigcnt, 1); 1067 1068 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1069 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1070 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1071 1072 init_waitqueue_head(&sig->wait_chldexit); 1073 sig->curr_target = tsk; 1074 init_sigpending(&sig->shared_pending); 1075 INIT_LIST_HEAD(&sig->posix_timers); 1076 seqlock_init(&sig->stats_lock); 1077 1078 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1079 sig->real_timer.function = it_real_fn; 1080 1081 task_lock(current->group_leader); 1082 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1083 task_unlock(current->group_leader); 1084 1085 posix_cpu_timers_init_group(sig); 1086 1087 tty_audit_fork(sig); 1088 sched_autogroup_fork(sig); 1089 1090 #ifdef CONFIG_CGROUPS 1091 init_rwsem(&sig->group_rwsem); 1092 #endif 1093 1094 sig->oom_score_adj = current->signal->oom_score_adj; 1095 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1096 1097 sig->has_child_subreaper = current->signal->has_child_subreaper || 1098 current->signal->is_child_subreaper; 1099 1100 mutex_init(&sig->cred_guard_mutex); 1101 1102 return 0; 1103 } 1104 1105 static void copy_seccomp(struct task_struct *p) 1106 { 1107 #ifdef CONFIG_SECCOMP 1108 /* 1109 * Must be called with sighand->lock held, which is common to 1110 * all threads in the group. Holding cred_guard_mutex is not 1111 * needed because this new task is not yet running and cannot 1112 * be racing exec. 1113 */ 1114 assert_spin_locked(¤t->sighand->siglock); 1115 1116 /* Ref-count the new filter user, and assign it. */ 1117 get_seccomp_filter(current); 1118 p->seccomp = current->seccomp; 1119 1120 /* 1121 * Explicitly enable no_new_privs here in case it got set 1122 * between the task_struct being duplicated and holding the 1123 * sighand lock. The seccomp state and nnp must be in sync. 1124 */ 1125 if (task_no_new_privs(current)) 1126 task_set_no_new_privs(p); 1127 1128 /* 1129 * If the parent gained a seccomp mode after copying thread 1130 * flags and between before we held the sighand lock, we have 1131 * to manually enable the seccomp thread flag here. 1132 */ 1133 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1134 set_tsk_thread_flag(p, TIF_SECCOMP); 1135 #endif 1136 } 1137 1138 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1139 { 1140 current->clear_child_tid = tidptr; 1141 1142 return task_pid_vnr(current); 1143 } 1144 1145 static void rt_mutex_init_task(struct task_struct *p) 1146 { 1147 raw_spin_lock_init(&p->pi_lock); 1148 #ifdef CONFIG_RT_MUTEXES 1149 p->pi_waiters = RB_ROOT; 1150 p->pi_waiters_leftmost = NULL; 1151 p->pi_blocked_on = NULL; 1152 #endif 1153 } 1154 1155 /* 1156 * Initialize POSIX timer handling for a single task. 1157 */ 1158 static void posix_cpu_timers_init(struct task_struct *tsk) 1159 { 1160 tsk->cputime_expires.prof_exp = 0; 1161 tsk->cputime_expires.virt_exp = 0; 1162 tsk->cputime_expires.sched_exp = 0; 1163 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1164 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1165 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1166 } 1167 1168 static inline void 1169 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1170 { 1171 task->pids[type].pid = pid; 1172 } 1173 1174 /* 1175 * This creates a new process as a copy of the old one, 1176 * but does not actually start it yet. 1177 * 1178 * It copies the registers, and all the appropriate 1179 * parts of the process environment (as per the clone 1180 * flags). The actual kick-off is left to the caller. 1181 */ 1182 static struct task_struct *copy_process(unsigned long clone_flags, 1183 unsigned long stack_start, 1184 unsigned long stack_size, 1185 int __user *child_tidptr, 1186 struct pid *pid, 1187 int trace) 1188 { 1189 int retval; 1190 struct task_struct *p; 1191 1192 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1193 return ERR_PTR(-EINVAL); 1194 1195 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1196 return ERR_PTR(-EINVAL); 1197 1198 /* 1199 * Thread groups must share signals as well, and detached threads 1200 * can only be started up within the thread group. 1201 */ 1202 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1203 return ERR_PTR(-EINVAL); 1204 1205 /* 1206 * Shared signal handlers imply shared VM. By way of the above, 1207 * thread groups also imply shared VM. Blocking this case allows 1208 * for various simplifications in other code. 1209 */ 1210 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1211 return ERR_PTR(-EINVAL); 1212 1213 /* 1214 * Siblings of global init remain as zombies on exit since they are 1215 * not reaped by their parent (swapper). To solve this and to avoid 1216 * multi-rooted process trees, prevent global and container-inits 1217 * from creating siblings. 1218 */ 1219 if ((clone_flags & CLONE_PARENT) && 1220 current->signal->flags & SIGNAL_UNKILLABLE) 1221 return ERR_PTR(-EINVAL); 1222 1223 /* 1224 * If the new process will be in a different pid or user namespace 1225 * do not allow it to share a thread group or signal handlers or 1226 * parent with the forking task. 1227 */ 1228 if (clone_flags & CLONE_SIGHAND) { 1229 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1230 (task_active_pid_ns(current) != 1231 current->nsproxy->pid_ns_for_children)) 1232 return ERR_PTR(-EINVAL); 1233 } 1234 1235 retval = security_task_create(clone_flags); 1236 if (retval) 1237 goto fork_out; 1238 1239 retval = -ENOMEM; 1240 p = dup_task_struct(current); 1241 if (!p) 1242 goto fork_out; 1243 1244 ftrace_graph_init_task(p); 1245 1246 rt_mutex_init_task(p); 1247 1248 #ifdef CONFIG_PROVE_LOCKING 1249 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1250 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1251 #endif 1252 retval = -EAGAIN; 1253 if (atomic_read(&p->real_cred->user->processes) >= 1254 task_rlimit(p, RLIMIT_NPROC)) { 1255 if (p->real_cred->user != INIT_USER && 1256 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1257 goto bad_fork_free; 1258 } 1259 current->flags &= ~PF_NPROC_EXCEEDED; 1260 1261 retval = copy_creds(p, clone_flags); 1262 if (retval < 0) 1263 goto bad_fork_free; 1264 1265 /* 1266 * If multiple threads are within copy_process(), then this check 1267 * triggers too late. This doesn't hurt, the check is only there 1268 * to stop root fork bombs. 1269 */ 1270 retval = -EAGAIN; 1271 if (nr_threads >= max_threads) 1272 goto bad_fork_cleanup_count; 1273 1274 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1275 goto bad_fork_cleanup_count; 1276 1277 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1278 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1279 p->flags |= PF_FORKNOEXEC; 1280 INIT_LIST_HEAD(&p->children); 1281 INIT_LIST_HEAD(&p->sibling); 1282 rcu_copy_process(p); 1283 p->vfork_done = NULL; 1284 spin_lock_init(&p->alloc_lock); 1285 1286 init_sigpending(&p->pending); 1287 1288 p->utime = p->stime = p->gtime = 0; 1289 p->utimescaled = p->stimescaled = 0; 1290 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1291 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1292 #endif 1293 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1294 seqlock_init(&p->vtime_seqlock); 1295 p->vtime_snap = 0; 1296 p->vtime_snap_whence = VTIME_SLEEPING; 1297 #endif 1298 1299 #if defined(SPLIT_RSS_COUNTING) 1300 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1301 #endif 1302 1303 p->default_timer_slack_ns = current->timer_slack_ns; 1304 1305 task_io_accounting_init(&p->ioac); 1306 acct_clear_integrals(p); 1307 1308 posix_cpu_timers_init(p); 1309 1310 p->start_time = ktime_get_ns(); 1311 p->real_start_time = ktime_get_boot_ns(); 1312 p->io_context = NULL; 1313 p->audit_context = NULL; 1314 if (clone_flags & CLONE_THREAD) 1315 threadgroup_change_begin(current); 1316 cgroup_fork(p); 1317 #ifdef CONFIG_NUMA 1318 p->mempolicy = mpol_dup(p->mempolicy); 1319 if (IS_ERR(p->mempolicy)) { 1320 retval = PTR_ERR(p->mempolicy); 1321 p->mempolicy = NULL; 1322 goto bad_fork_cleanup_threadgroup_lock; 1323 } 1324 #endif 1325 #ifdef CONFIG_CPUSETS 1326 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1327 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1328 seqcount_init(&p->mems_allowed_seq); 1329 #endif 1330 #ifdef CONFIG_TRACE_IRQFLAGS 1331 p->irq_events = 0; 1332 p->hardirqs_enabled = 0; 1333 p->hardirq_enable_ip = 0; 1334 p->hardirq_enable_event = 0; 1335 p->hardirq_disable_ip = _THIS_IP_; 1336 p->hardirq_disable_event = 0; 1337 p->softirqs_enabled = 1; 1338 p->softirq_enable_ip = _THIS_IP_; 1339 p->softirq_enable_event = 0; 1340 p->softirq_disable_ip = 0; 1341 p->softirq_disable_event = 0; 1342 p->hardirq_context = 0; 1343 p->softirq_context = 0; 1344 #endif 1345 #ifdef CONFIG_LOCKDEP 1346 p->lockdep_depth = 0; /* no locks held yet */ 1347 p->curr_chain_key = 0; 1348 p->lockdep_recursion = 0; 1349 #endif 1350 1351 #ifdef CONFIG_DEBUG_MUTEXES 1352 p->blocked_on = NULL; /* not blocked yet */ 1353 #endif 1354 #ifdef CONFIG_BCACHE 1355 p->sequential_io = 0; 1356 p->sequential_io_avg = 0; 1357 #endif 1358 1359 /* Perform scheduler related setup. Assign this task to a CPU. */ 1360 retval = sched_fork(clone_flags, p); 1361 if (retval) 1362 goto bad_fork_cleanup_policy; 1363 1364 retval = perf_event_init_task(p); 1365 if (retval) 1366 goto bad_fork_cleanup_policy; 1367 retval = audit_alloc(p); 1368 if (retval) 1369 goto bad_fork_cleanup_perf; 1370 /* copy all the process information */ 1371 shm_init_task(p); 1372 retval = copy_semundo(clone_flags, p); 1373 if (retval) 1374 goto bad_fork_cleanup_audit; 1375 retval = copy_files(clone_flags, p); 1376 if (retval) 1377 goto bad_fork_cleanup_semundo; 1378 retval = copy_fs(clone_flags, p); 1379 if (retval) 1380 goto bad_fork_cleanup_files; 1381 retval = copy_sighand(clone_flags, p); 1382 if (retval) 1383 goto bad_fork_cleanup_fs; 1384 retval = copy_signal(clone_flags, p); 1385 if (retval) 1386 goto bad_fork_cleanup_sighand; 1387 retval = copy_mm(clone_flags, p); 1388 if (retval) 1389 goto bad_fork_cleanup_signal; 1390 retval = copy_namespaces(clone_flags, p); 1391 if (retval) 1392 goto bad_fork_cleanup_mm; 1393 retval = copy_io(clone_flags, p); 1394 if (retval) 1395 goto bad_fork_cleanup_namespaces; 1396 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1397 if (retval) 1398 goto bad_fork_cleanup_io; 1399 1400 if (pid != &init_struct_pid) { 1401 retval = -ENOMEM; 1402 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1403 if (!pid) 1404 goto bad_fork_cleanup_io; 1405 } 1406 1407 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1408 /* 1409 * Clear TID on mm_release()? 1410 */ 1411 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1412 #ifdef CONFIG_BLOCK 1413 p->plug = NULL; 1414 #endif 1415 #ifdef CONFIG_FUTEX 1416 p->robust_list = NULL; 1417 #ifdef CONFIG_COMPAT 1418 p->compat_robust_list = NULL; 1419 #endif 1420 INIT_LIST_HEAD(&p->pi_state_list); 1421 p->pi_state_cache = NULL; 1422 #endif 1423 /* 1424 * sigaltstack should be cleared when sharing the same VM 1425 */ 1426 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1427 p->sas_ss_sp = p->sas_ss_size = 0; 1428 1429 /* 1430 * Syscall tracing and stepping should be turned off in the 1431 * child regardless of CLONE_PTRACE. 1432 */ 1433 user_disable_single_step(p); 1434 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1435 #ifdef TIF_SYSCALL_EMU 1436 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1437 #endif 1438 clear_all_latency_tracing(p); 1439 1440 /* ok, now we should be set up.. */ 1441 p->pid = pid_nr(pid); 1442 if (clone_flags & CLONE_THREAD) { 1443 p->exit_signal = -1; 1444 p->group_leader = current->group_leader; 1445 p->tgid = current->tgid; 1446 } else { 1447 if (clone_flags & CLONE_PARENT) 1448 p->exit_signal = current->group_leader->exit_signal; 1449 else 1450 p->exit_signal = (clone_flags & CSIGNAL); 1451 p->group_leader = p; 1452 p->tgid = p->pid; 1453 } 1454 1455 p->nr_dirtied = 0; 1456 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1457 p->dirty_paused_when = 0; 1458 1459 p->pdeath_signal = 0; 1460 INIT_LIST_HEAD(&p->thread_group); 1461 p->task_works = NULL; 1462 1463 /* 1464 * Make it visible to the rest of the system, but dont wake it up yet. 1465 * Need tasklist lock for parent etc handling! 1466 */ 1467 write_lock_irq(&tasklist_lock); 1468 1469 /* CLONE_PARENT re-uses the old parent */ 1470 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1471 p->real_parent = current->real_parent; 1472 p->parent_exec_id = current->parent_exec_id; 1473 } else { 1474 p->real_parent = current; 1475 p->parent_exec_id = current->self_exec_id; 1476 } 1477 1478 spin_lock(¤t->sighand->siglock); 1479 1480 /* 1481 * Copy seccomp details explicitly here, in case they were changed 1482 * before holding sighand lock. 1483 */ 1484 copy_seccomp(p); 1485 1486 /* 1487 * Process group and session signals need to be delivered to just the 1488 * parent before the fork or both the parent and the child after the 1489 * fork. Restart if a signal comes in before we add the new process to 1490 * it's process group. 1491 * A fatal signal pending means that current will exit, so the new 1492 * thread can't slip out of an OOM kill (or normal SIGKILL). 1493 */ 1494 recalc_sigpending(); 1495 if (signal_pending(current)) { 1496 spin_unlock(¤t->sighand->siglock); 1497 write_unlock_irq(&tasklist_lock); 1498 retval = -ERESTARTNOINTR; 1499 goto bad_fork_free_pid; 1500 } 1501 1502 if (likely(p->pid)) { 1503 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1504 1505 init_task_pid(p, PIDTYPE_PID, pid); 1506 if (thread_group_leader(p)) { 1507 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1508 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1509 1510 if (is_child_reaper(pid)) { 1511 ns_of_pid(pid)->child_reaper = p; 1512 p->signal->flags |= SIGNAL_UNKILLABLE; 1513 } 1514 1515 p->signal->leader_pid = pid; 1516 p->signal->tty = tty_kref_get(current->signal->tty); 1517 list_add_tail(&p->sibling, &p->real_parent->children); 1518 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1519 attach_pid(p, PIDTYPE_PGID); 1520 attach_pid(p, PIDTYPE_SID); 1521 __this_cpu_inc(process_counts); 1522 } else { 1523 current->signal->nr_threads++; 1524 atomic_inc(¤t->signal->live); 1525 atomic_inc(¤t->signal->sigcnt); 1526 list_add_tail_rcu(&p->thread_group, 1527 &p->group_leader->thread_group); 1528 list_add_tail_rcu(&p->thread_node, 1529 &p->signal->thread_head); 1530 } 1531 attach_pid(p, PIDTYPE_PID); 1532 nr_threads++; 1533 } 1534 1535 total_forks++; 1536 spin_unlock(¤t->sighand->siglock); 1537 syscall_tracepoint_update(p); 1538 write_unlock_irq(&tasklist_lock); 1539 1540 proc_fork_connector(p); 1541 cgroup_post_fork(p); 1542 if (clone_flags & CLONE_THREAD) 1543 threadgroup_change_end(current); 1544 perf_event_fork(p); 1545 1546 trace_task_newtask(p, clone_flags); 1547 uprobe_copy_process(p, clone_flags); 1548 1549 return p; 1550 1551 bad_fork_free_pid: 1552 if (pid != &init_struct_pid) 1553 free_pid(pid); 1554 bad_fork_cleanup_io: 1555 if (p->io_context) 1556 exit_io_context(p); 1557 bad_fork_cleanup_namespaces: 1558 exit_task_namespaces(p); 1559 bad_fork_cleanup_mm: 1560 if (p->mm) 1561 mmput(p->mm); 1562 bad_fork_cleanup_signal: 1563 if (!(clone_flags & CLONE_THREAD)) 1564 free_signal_struct(p->signal); 1565 bad_fork_cleanup_sighand: 1566 __cleanup_sighand(p->sighand); 1567 bad_fork_cleanup_fs: 1568 exit_fs(p); /* blocking */ 1569 bad_fork_cleanup_files: 1570 exit_files(p); /* blocking */ 1571 bad_fork_cleanup_semundo: 1572 exit_sem(p); 1573 bad_fork_cleanup_audit: 1574 audit_free(p); 1575 bad_fork_cleanup_perf: 1576 perf_event_free_task(p); 1577 bad_fork_cleanup_policy: 1578 #ifdef CONFIG_NUMA 1579 mpol_put(p->mempolicy); 1580 bad_fork_cleanup_threadgroup_lock: 1581 #endif 1582 if (clone_flags & CLONE_THREAD) 1583 threadgroup_change_end(current); 1584 delayacct_tsk_free(p); 1585 module_put(task_thread_info(p)->exec_domain->module); 1586 bad_fork_cleanup_count: 1587 atomic_dec(&p->cred->user->processes); 1588 exit_creds(p); 1589 bad_fork_free: 1590 free_task(p); 1591 fork_out: 1592 return ERR_PTR(retval); 1593 } 1594 1595 static inline void init_idle_pids(struct pid_link *links) 1596 { 1597 enum pid_type type; 1598 1599 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1600 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1601 links[type].pid = &init_struct_pid; 1602 } 1603 } 1604 1605 struct task_struct *fork_idle(int cpu) 1606 { 1607 struct task_struct *task; 1608 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1609 if (!IS_ERR(task)) { 1610 init_idle_pids(task->pids); 1611 init_idle(task, cpu); 1612 } 1613 1614 return task; 1615 } 1616 1617 /* 1618 * Ok, this is the main fork-routine. 1619 * 1620 * It copies the process, and if successful kick-starts 1621 * it and waits for it to finish using the VM if required. 1622 */ 1623 long do_fork(unsigned long clone_flags, 1624 unsigned long stack_start, 1625 unsigned long stack_size, 1626 int __user *parent_tidptr, 1627 int __user *child_tidptr) 1628 { 1629 struct task_struct *p; 1630 int trace = 0; 1631 long nr; 1632 1633 /* 1634 * Determine whether and which event to report to ptracer. When 1635 * called from kernel_thread or CLONE_UNTRACED is explicitly 1636 * requested, no event is reported; otherwise, report if the event 1637 * for the type of forking is enabled. 1638 */ 1639 if (!(clone_flags & CLONE_UNTRACED)) { 1640 if (clone_flags & CLONE_VFORK) 1641 trace = PTRACE_EVENT_VFORK; 1642 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1643 trace = PTRACE_EVENT_CLONE; 1644 else 1645 trace = PTRACE_EVENT_FORK; 1646 1647 if (likely(!ptrace_event_enabled(current, trace))) 1648 trace = 0; 1649 } 1650 1651 p = copy_process(clone_flags, stack_start, stack_size, 1652 child_tidptr, NULL, trace); 1653 /* 1654 * Do this prior waking up the new thread - the thread pointer 1655 * might get invalid after that point, if the thread exits quickly. 1656 */ 1657 if (!IS_ERR(p)) { 1658 struct completion vfork; 1659 struct pid *pid; 1660 1661 trace_sched_process_fork(current, p); 1662 1663 pid = get_task_pid(p, PIDTYPE_PID); 1664 nr = pid_vnr(pid); 1665 1666 if (clone_flags & CLONE_PARENT_SETTID) 1667 put_user(nr, parent_tidptr); 1668 1669 if (clone_flags & CLONE_VFORK) { 1670 p->vfork_done = &vfork; 1671 init_completion(&vfork); 1672 get_task_struct(p); 1673 } 1674 1675 wake_up_new_task(p); 1676 1677 /* forking complete and child started to run, tell ptracer */ 1678 if (unlikely(trace)) 1679 ptrace_event_pid(trace, pid); 1680 1681 if (clone_flags & CLONE_VFORK) { 1682 if (!wait_for_vfork_done(p, &vfork)) 1683 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1684 } 1685 1686 put_pid(pid); 1687 } else { 1688 nr = PTR_ERR(p); 1689 } 1690 return nr; 1691 } 1692 1693 /* 1694 * Create a kernel thread. 1695 */ 1696 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1697 { 1698 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1699 (unsigned long)arg, NULL, NULL); 1700 } 1701 1702 #ifdef __ARCH_WANT_SYS_FORK 1703 SYSCALL_DEFINE0(fork) 1704 { 1705 #ifdef CONFIG_MMU 1706 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1707 #else 1708 /* can not support in nommu mode */ 1709 return -EINVAL; 1710 #endif 1711 } 1712 #endif 1713 1714 #ifdef __ARCH_WANT_SYS_VFORK 1715 SYSCALL_DEFINE0(vfork) 1716 { 1717 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1718 0, NULL, NULL); 1719 } 1720 #endif 1721 1722 #ifdef __ARCH_WANT_SYS_CLONE 1723 #ifdef CONFIG_CLONE_BACKWARDS 1724 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1725 int __user *, parent_tidptr, 1726 int, tls_val, 1727 int __user *, child_tidptr) 1728 #elif defined(CONFIG_CLONE_BACKWARDS2) 1729 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1730 int __user *, parent_tidptr, 1731 int __user *, child_tidptr, 1732 int, tls_val) 1733 #elif defined(CONFIG_CLONE_BACKWARDS3) 1734 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1735 int, stack_size, 1736 int __user *, parent_tidptr, 1737 int __user *, child_tidptr, 1738 int, tls_val) 1739 #else 1740 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1741 int __user *, parent_tidptr, 1742 int __user *, child_tidptr, 1743 int, tls_val) 1744 #endif 1745 { 1746 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1747 } 1748 #endif 1749 1750 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1751 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1752 #endif 1753 1754 static void sighand_ctor(void *data) 1755 { 1756 struct sighand_struct *sighand = data; 1757 1758 spin_lock_init(&sighand->siglock); 1759 init_waitqueue_head(&sighand->signalfd_wqh); 1760 } 1761 1762 void __init proc_caches_init(void) 1763 { 1764 sighand_cachep = kmem_cache_create("sighand_cache", 1765 sizeof(struct sighand_struct), 0, 1766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1767 SLAB_NOTRACK, sighand_ctor); 1768 signal_cachep = kmem_cache_create("signal_cache", 1769 sizeof(struct signal_struct), 0, 1770 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1771 files_cachep = kmem_cache_create("files_cache", 1772 sizeof(struct files_struct), 0, 1773 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1774 fs_cachep = kmem_cache_create("fs_cache", 1775 sizeof(struct fs_struct), 0, 1776 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1777 /* 1778 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1779 * whole struct cpumask for the OFFSTACK case. We could change 1780 * this to *only* allocate as much of it as required by the 1781 * maximum number of CPU's we can ever have. The cpumask_allocation 1782 * is at the end of the structure, exactly for that reason. 1783 */ 1784 mm_cachep = kmem_cache_create("mm_struct", 1785 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1786 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1787 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1788 mmap_init(); 1789 nsproxy_cache_init(); 1790 } 1791 1792 /* 1793 * Check constraints on flags passed to the unshare system call. 1794 */ 1795 static int check_unshare_flags(unsigned long unshare_flags) 1796 { 1797 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1798 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1799 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1800 CLONE_NEWUSER|CLONE_NEWPID)) 1801 return -EINVAL; 1802 /* 1803 * Not implemented, but pretend it works if there is nothing to 1804 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1805 * needs to unshare vm. 1806 */ 1807 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1808 /* FIXME: get_task_mm() increments ->mm_users */ 1809 if (atomic_read(¤t->mm->mm_users) > 1) 1810 return -EINVAL; 1811 } 1812 1813 return 0; 1814 } 1815 1816 /* 1817 * Unshare the filesystem structure if it is being shared 1818 */ 1819 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1820 { 1821 struct fs_struct *fs = current->fs; 1822 1823 if (!(unshare_flags & CLONE_FS) || !fs) 1824 return 0; 1825 1826 /* don't need lock here; in the worst case we'll do useless copy */ 1827 if (fs->users == 1) 1828 return 0; 1829 1830 *new_fsp = copy_fs_struct(fs); 1831 if (!*new_fsp) 1832 return -ENOMEM; 1833 1834 return 0; 1835 } 1836 1837 /* 1838 * Unshare file descriptor table if it is being shared 1839 */ 1840 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1841 { 1842 struct files_struct *fd = current->files; 1843 int error = 0; 1844 1845 if ((unshare_flags & CLONE_FILES) && 1846 (fd && atomic_read(&fd->count) > 1)) { 1847 *new_fdp = dup_fd(fd, &error); 1848 if (!*new_fdp) 1849 return error; 1850 } 1851 1852 return 0; 1853 } 1854 1855 /* 1856 * unshare allows a process to 'unshare' part of the process 1857 * context which was originally shared using clone. copy_* 1858 * functions used by do_fork() cannot be used here directly 1859 * because they modify an inactive task_struct that is being 1860 * constructed. Here we are modifying the current, active, 1861 * task_struct. 1862 */ 1863 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1864 { 1865 struct fs_struct *fs, *new_fs = NULL; 1866 struct files_struct *fd, *new_fd = NULL; 1867 struct cred *new_cred = NULL; 1868 struct nsproxy *new_nsproxy = NULL; 1869 int do_sysvsem = 0; 1870 int err; 1871 1872 /* 1873 * If unsharing a user namespace must also unshare the thread. 1874 */ 1875 if (unshare_flags & CLONE_NEWUSER) 1876 unshare_flags |= CLONE_THREAD | CLONE_FS; 1877 /* 1878 * If unsharing a thread from a thread group, must also unshare vm. 1879 */ 1880 if (unshare_flags & CLONE_THREAD) 1881 unshare_flags |= CLONE_VM; 1882 /* 1883 * If unsharing vm, must also unshare signal handlers. 1884 */ 1885 if (unshare_flags & CLONE_VM) 1886 unshare_flags |= CLONE_SIGHAND; 1887 /* 1888 * If unsharing namespace, must also unshare filesystem information. 1889 */ 1890 if (unshare_flags & CLONE_NEWNS) 1891 unshare_flags |= CLONE_FS; 1892 1893 err = check_unshare_flags(unshare_flags); 1894 if (err) 1895 goto bad_unshare_out; 1896 /* 1897 * CLONE_NEWIPC must also detach from the undolist: after switching 1898 * to a new ipc namespace, the semaphore arrays from the old 1899 * namespace are unreachable. 1900 */ 1901 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1902 do_sysvsem = 1; 1903 err = unshare_fs(unshare_flags, &new_fs); 1904 if (err) 1905 goto bad_unshare_out; 1906 err = unshare_fd(unshare_flags, &new_fd); 1907 if (err) 1908 goto bad_unshare_cleanup_fs; 1909 err = unshare_userns(unshare_flags, &new_cred); 1910 if (err) 1911 goto bad_unshare_cleanup_fd; 1912 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1913 new_cred, new_fs); 1914 if (err) 1915 goto bad_unshare_cleanup_cred; 1916 1917 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1918 if (do_sysvsem) { 1919 /* 1920 * CLONE_SYSVSEM is equivalent to sys_exit(). 1921 */ 1922 exit_sem(current); 1923 } 1924 if (unshare_flags & CLONE_NEWIPC) { 1925 /* Orphan segments in old ns (see sem above). */ 1926 exit_shm(current); 1927 shm_init_task(current); 1928 } 1929 1930 if (new_nsproxy) 1931 switch_task_namespaces(current, new_nsproxy); 1932 1933 task_lock(current); 1934 1935 if (new_fs) { 1936 fs = current->fs; 1937 spin_lock(&fs->lock); 1938 current->fs = new_fs; 1939 if (--fs->users) 1940 new_fs = NULL; 1941 else 1942 new_fs = fs; 1943 spin_unlock(&fs->lock); 1944 } 1945 1946 if (new_fd) { 1947 fd = current->files; 1948 current->files = new_fd; 1949 new_fd = fd; 1950 } 1951 1952 task_unlock(current); 1953 1954 if (new_cred) { 1955 /* Install the new user namespace */ 1956 commit_creds(new_cred); 1957 new_cred = NULL; 1958 } 1959 } 1960 1961 bad_unshare_cleanup_cred: 1962 if (new_cred) 1963 put_cred(new_cred); 1964 bad_unshare_cleanup_fd: 1965 if (new_fd) 1966 put_files_struct(new_fd); 1967 1968 bad_unshare_cleanup_fs: 1969 if (new_fs) 1970 free_fs_struct(new_fs); 1971 1972 bad_unshare_out: 1973 return err; 1974 } 1975 1976 /* 1977 * Helper to unshare the files of the current task. 1978 * We don't want to expose copy_files internals to 1979 * the exec layer of the kernel. 1980 */ 1981 1982 int unshare_files(struct files_struct **displaced) 1983 { 1984 struct task_struct *task = current; 1985 struct files_struct *copy = NULL; 1986 int error; 1987 1988 error = unshare_fd(CLONE_FILES, ©); 1989 if (error || !copy) { 1990 *displaced = NULL; 1991 return error; 1992 } 1993 *displaced = task->files; 1994 task_lock(task); 1995 task->files = copy; 1996 task_unlock(task); 1997 return 0; 1998 } 1999