1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 384 /* All stack pages are in the same node. */ 385 if (vm) 386 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 387 account * (THREAD_SIZE / 1024)); 388 else 389 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 390 account * (THREAD_SIZE / 1024)); 391 } 392 393 static int memcg_charge_kernel_stack(struct task_struct *tsk) 394 { 395 #ifdef CONFIG_VMAP_STACK 396 struct vm_struct *vm = task_stack_vm_area(tsk); 397 int ret; 398 399 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 400 401 if (vm) { 402 int i; 403 404 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 405 406 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 407 /* 408 * If memcg_kmem_charge_page() fails, page's 409 * memory cgroup pointer is NULL, and 410 * memcg_kmem_uncharge_page() in free_thread_stack() 411 * will ignore this page. 412 */ 413 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 414 0); 415 if (ret) 416 return ret; 417 } 418 } 419 #endif 420 return 0; 421 } 422 423 static void release_task_stack(struct task_struct *tsk) 424 { 425 if (WARN_ON(tsk->state != TASK_DEAD)) 426 return; /* Better to leak the stack than to free prematurely */ 427 428 account_kernel_stack(tsk, -1); 429 free_thread_stack(tsk); 430 tsk->stack = NULL; 431 #ifdef CONFIG_VMAP_STACK 432 tsk->stack_vm_area = NULL; 433 #endif 434 } 435 436 #ifdef CONFIG_THREAD_INFO_IN_TASK 437 void put_task_stack(struct task_struct *tsk) 438 { 439 if (refcount_dec_and_test(&tsk->stack_refcount)) 440 release_task_stack(tsk); 441 } 442 #endif 443 444 void free_task(struct task_struct *tsk) 445 { 446 scs_release(tsk); 447 448 #ifndef CONFIG_THREAD_INFO_IN_TASK 449 /* 450 * The task is finally done with both the stack and thread_info, 451 * so free both. 452 */ 453 release_task_stack(tsk); 454 #else 455 /* 456 * If the task had a separate stack allocation, it should be gone 457 * by now. 458 */ 459 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 460 #endif 461 rt_mutex_debug_task_free(tsk); 462 ftrace_graph_exit_task(tsk); 463 arch_release_task_struct(tsk); 464 if (tsk->flags & PF_KTHREAD) 465 free_kthread_struct(tsk); 466 free_task_struct(tsk); 467 } 468 EXPORT_SYMBOL(free_task); 469 470 #ifdef CONFIG_MMU 471 static __latent_entropy int dup_mmap(struct mm_struct *mm, 472 struct mm_struct *oldmm) 473 { 474 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 475 struct rb_node **rb_link, *rb_parent; 476 int retval; 477 unsigned long charge; 478 LIST_HEAD(uf); 479 480 uprobe_start_dup_mmap(); 481 if (mmap_write_lock_killable(oldmm)) { 482 retval = -EINTR; 483 goto fail_uprobe_end; 484 } 485 flush_cache_dup_mm(oldmm); 486 uprobe_dup_mmap(oldmm, mm); 487 /* 488 * Not linked in yet - no deadlock potential: 489 */ 490 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 491 492 /* No ordering required: file already has been exposed. */ 493 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 494 495 mm->total_vm = oldmm->total_vm; 496 mm->data_vm = oldmm->data_vm; 497 mm->exec_vm = oldmm->exec_vm; 498 mm->stack_vm = oldmm->stack_vm; 499 500 rb_link = &mm->mm_rb.rb_node; 501 rb_parent = NULL; 502 pprev = &mm->mmap; 503 retval = ksm_fork(mm, oldmm); 504 if (retval) 505 goto out; 506 retval = khugepaged_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 510 prev = NULL; 511 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 512 struct file *file; 513 514 if (mpnt->vm_flags & VM_DONTCOPY) { 515 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 516 continue; 517 } 518 charge = 0; 519 /* 520 * Don't duplicate many vmas if we've been oom-killed (for 521 * example) 522 */ 523 if (fatal_signal_pending(current)) { 524 retval = -EINTR; 525 goto out; 526 } 527 if (mpnt->vm_flags & VM_ACCOUNT) { 528 unsigned long len = vma_pages(mpnt); 529 530 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 531 goto fail_nomem; 532 charge = len; 533 } 534 tmp = vm_area_dup(mpnt); 535 if (!tmp) 536 goto fail_nomem; 537 retval = vma_dup_policy(mpnt, tmp); 538 if (retval) 539 goto fail_nomem_policy; 540 tmp->vm_mm = mm; 541 retval = dup_userfaultfd(tmp, &uf); 542 if (retval) 543 goto fail_nomem_anon_vma_fork; 544 if (tmp->vm_flags & VM_WIPEONFORK) { 545 /* 546 * VM_WIPEONFORK gets a clean slate in the child. 547 * Don't prepare anon_vma until fault since we don't 548 * copy page for current vma. 549 */ 550 tmp->anon_vma = NULL; 551 } else if (anon_vma_fork(tmp, mpnt)) 552 goto fail_nomem_anon_vma_fork; 553 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 554 file = tmp->vm_file; 555 if (file) { 556 struct inode *inode = file_inode(file); 557 struct address_space *mapping = file->f_mapping; 558 559 get_file(file); 560 if (tmp->vm_flags & VM_DENYWRITE) 561 put_write_access(inode); 562 i_mmap_lock_write(mapping); 563 if (tmp->vm_flags & VM_SHARED) 564 mapping_allow_writable(mapping); 565 flush_dcache_mmap_lock(mapping); 566 /* insert tmp into the share list, just after mpnt */ 567 vma_interval_tree_insert_after(tmp, mpnt, 568 &mapping->i_mmap); 569 flush_dcache_mmap_unlock(mapping); 570 i_mmap_unlock_write(mapping); 571 } 572 573 /* 574 * Clear hugetlb-related page reserves for children. This only 575 * affects MAP_PRIVATE mappings. Faults generated by the child 576 * are not guaranteed to succeed, even if read-only 577 */ 578 if (is_vm_hugetlb_page(tmp)) 579 reset_vma_resv_huge_pages(tmp); 580 581 /* 582 * Link in the new vma and copy the page table entries. 583 */ 584 *pprev = tmp; 585 pprev = &tmp->vm_next; 586 tmp->vm_prev = prev; 587 prev = tmp; 588 589 __vma_link_rb(mm, tmp, rb_link, rb_parent); 590 rb_link = &tmp->vm_rb.rb_right; 591 rb_parent = &tmp->vm_rb; 592 593 mm->map_count++; 594 if (!(tmp->vm_flags & VM_WIPEONFORK)) 595 retval = copy_page_range(tmp, mpnt); 596 597 if (tmp->vm_ops && tmp->vm_ops->open) 598 tmp->vm_ops->open(tmp); 599 600 if (retval) 601 goto out; 602 } 603 /* a new mm has just been created */ 604 retval = arch_dup_mmap(oldmm, mm); 605 out: 606 mmap_write_unlock(mm); 607 flush_tlb_mm(oldmm); 608 mmap_write_unlock(oldmm); 609 dup_userfaultfd_complete(&uf); 610 fail_uprobe_end: 611 uprobe_end_dup_mmap(); 612 return retval; 613 fail_nomem_anon_vma_fork: 614 mpol_put(vma_policy(tmp)); 615 fail_nomem_policy: 616 vm_area_free(tmp); 617 fail_nomem: 618 retval = -ENOMEM; 619 vm_unacct_memory(charge); 620 goto out; 621 } 622 623 static inline int mm_alloc_pgd(struct mm_struct *mm) 624 { 625 mm->pgd = pgd_alloc(mm); 626 if (unlikely(!mm->pgd)) 627 return -ENOMEM; 628 return 0; 629 } 630 631 static inline void mm_free_pgd(struct mm_struct *mm) 632 { 633 pgd_free(mm, mm->pgd); 634 } 635 #else 636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 637 { 638 mmap_write_lock(oldmm); 639 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 640 mmap_write_unlock(oldmm); 641 return 0; 642 } 643 #define mm_alloc_pgd(mm) (0) 644 #define mm_free_pgd(mm) 645 #endif /* CONFIG_MMU */ 646 647 static void check_mm(struct mm_struct *mm) 648 { 649 int i; 650 651 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 652 "Please make sure 'struct resident_page_types[]' is updated as well"); 653 654 for (i = 0; i < NR_MM_COUNTERS; i++) { 655 long x = atomic_long_read(&mm->rss_stat.count[i]); 656 657 if (unlikely(x)) 658 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 659 mm, resident_page_types[i], x); 660 } 661 662 if (mm_pgtables_bytes(mm)) 663 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 664 mm_pgtables_bytes(mm)); 665 666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 668 #endif 669 } 670 671 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 672 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 673 674 /* 675 * Called when the last reference to the mm 676 * is dropped: either by a lazy thread or by 677 * mmput. Free the page directory and the mm. 678 */ 679 void __mmdrop(struct mm_struct *mm) 680 { 681 BUG_ON(mm == &init_mm); 682 WARN_ON_ONCE(mm == current->mm); 683 WARN_ON_ONCE(mm == current->active_mm); 684 mm_free_pgd(mm); 685 destroy_context(mm); 686 mmu_notifier_subscriptions_destroy(mm); 687 check_mm(mm); 688 put_user_ns(mm->user_ns); 689 free_mm(mm); 690 } 691 EXPORT_SYMBOL_GPL(__mmdrop); 692 693 static void mmdrop_async_fn(struct work_struct *work) 694 { 695 struct mm_struct *mm; 696 697 mm = container_of(work, struct mm_struct, async_put_work); 698 __mmdrop(mm); 699 } 700 701 static void mmdrop_async(struct mm_struct *mm) 702 { 703 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 704 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 705 schedule_work(&mm->async_put_work); 706 } 707 } 708 709 static inline void free_signal_struct(struct signal_struct *sig) 710 { 711 taskstats_tgid_free(sig); 712 sched_autogroup_exit(sig); 713 /* 714 * __mmdrop is not safe to call from softirq context on x86 due to 715 * pgd_dtor so postpone it to the async context 716 */ 717 if (sig->oom_mm) 718 mmdrop_async(sig->oom_mm); 719 kmem_cache_free(signal_cachep, sig); 720 } 721 722 static inline void put_signal_struct(struct signal_struct *sig) 723 { 724 if (refcount_dec_and_test(&sig->sigcnt)) 725 free_signal_struct(sig); 726 } 727 728 void __put_task_struct(struct task_struct *tsk) 729 { 730 WARN_ON(!tsk->exit_state); 731 WARN_ON(refcount_read(&tsk->usage)); 732 WARN_ON(tsk == current); 733 734 io_uring_free(tsk); 735 cgroup_free(tsk); 736 task_numa_free(tsk, true); 737 security_task_free(tsk); 738 bpf_task_storage_free(tsk); 739 exit_creds(tsk); 740 delayacct_tsk_free(tsk); 741 put_signal_struct(tsk->signal); 742 743 if (!profile_handoff_task(tsk)) 744 free_task(tsk); 745 } 746 EXPORT_SYMBOL_GPL(__put_task_struct); 747 748 void __init __weak arch_task_cache_init(void) { } 749 750 /* 751 * set_max_threads 752 */ 753 static void set_max_threads(unsigned int max_threads_suggested) 754 { 755 u64 threads; 756 unsigned long nr_pages = totalram_pages(); 757 758 /* 759 * The number of threads shall be limited such that the thread 760 * structures may only consume a small part of the available memory. 761 */ 762 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 763 threads = MAX_THREADS; 764 else 765 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 766 (u64) THREAD_SIZE * 8UL); 767 768 if (threads > max_threads_suggested) 769 threads = max_threads_suggested; 770 771 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 772 } 773 774 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 775 /* Initialized by the architecture: */ 776 int arch_task_struct_size __read_mostly; 777 #endif 778 779 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 780 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 781 { 782 /* Fetch thread_struct whitelist for the architecture. */ 783 arch_thread_struct_whitelist(offset, size); 784 785 /* 786 * Handle zero-sized whitelist or empty thread_struct, otherwise 787 * adjust offset to position of thread_struct in task_struct. 788 */ 789 if (unlikely(*size == 0)) 790 *offset = 0; 791 else 792 *offset += offsetof(struct task_struct, thread); 793 } 794 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 795 796 void __init fork_init(void) 797 { 798 int i; 799 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 800 #ifndef ARCH_MIN_TASKALIGN 801 #define ARCH_MIN_TASKALIGN 0 802 #endif 803 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 804 unsigned long useroffset, usersize; 805 806 /* create a slab on which task_structs can be allocated */ 807 task_struct_whitelist(&useroffset, &usersize); 808 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 809 arch_task_struct_size, align, 810 SLAB_PANIC|SLAB_ACCOUNT, 811 useroffset, usersize, NULL); 812 #endif 813 814 /* do the arch specific task caches init */ 815 arch_task_cache_init(); 816 817 set_max_threads(MAX_THREADS); 818 819 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 820 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 821 init_task.signal->rlim[RLIMIT_SIGPENDING] = 822 init_task.signal->rlim[RLIMIT_NPROC]; 823 824 for (i = 0; i < UCOUNT_COUNTS; i++) 825 init_user_ns.ucount_max[i] = max_threads/2; 826 827 #ifdef CONFIG_VMAP_STACK 828 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 829 NULL, free_vm_stack_cache); 830 #endif 831 832 scs_init(); 833 834 lockdep_init_task(&init_task); 835 uprobes_init(); 836 } 837 838 int __weak arch_dup_task_struct(struct task_struct *dst, 839 struct task_struct *src) 840 { 841 *dst = *src; 842 return 0; 843 } 844 845 void set_task_stack_end_magic(struct task_struct *tsk) 846 { 847 unsigned long *stackend; 848 849 stackend = end_of_stack(tsk); 850 *stackend = STACK_END_MAGIC; /* for overflow detection */ 851 } 852 853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 854 { 855 struct task_struct *tsk; 856 unsigned long *stack; 857 struct vm_struct *stack_vm_area __maybe_unused; 858 int err; 859 860 if (node == NUMA_NO_NODE) 861 node = tsk_fork_get_node(orig); 862 tsk = alloc_task_struct_node(node); 863 if (!tsk) 864 return NULL; 865 866 stack = alloc_thread_stack_node(tsk, node); 867 if (!stack) 868 goto free_tsk; 869 870 if (memcg_charge_kernel_stack(tsk)) 871 goto free_stack; 872 873 stack_vm_area = task_stack_vm_area(tsk); 874 875 err = arch_dup_task_struct(tsk, orig); 876 877 /* 878 * arch_dup_task_struct() clobbers the stack-related fields. Make 879 * sure they're properly initialized before using any stack-related 880 * functions again. 881 */ 882 tsk->stack = stack; 883 #ifdef CONFIG_VMAP_STACK 884 tsk->stack_vm_area = stack_vm_area; 885 #endif 886 #ifdef CONFIG_THREAD_INFO_IN_TASK 887 refcount_set(&tsk->stack_refcount, 1); 888 #endif 889 890 if (err) 891 goto free_stack; 892 893 err = scs_prepare(tsk, node); 894 if (err) 895 goto free_stack; 896 897 #ifdef CONFIG_SECCOMP 898 /* 899 * We must handle setting up seccomp filters once we're under 900 * the sighand lock in case orig has changed between now and 901 * then. Until then, filter must be NULL to avoid messing up 902 * the usage counts on the error path calling free_task. 903 */ 904 tsk->seccomp.filter = NULL; 905 #endif 906 907 setup_thread_stack(tsk, orig); 908 clear_user_return_notifier(tsk); 909 clear_tsk_need_resched(tsk); 910 set_task_stack_end_magic(tsk); 911 clear_syscall_work_syscall_user_dispatch(tsk); 912 913 #ifdef CONFIG_STACKPROTECTOR 914 tsk->stack_canary = get_random_canary(); 915 #endif 916 if (orig->cpus_ptr == &orig->cpus_mask) 917 tsk->cpus_ptr = &tsk->cpus_mask; 918 919 /* 920 * One for the user space visible state that goes away when reaped. 921 * One for the scheduler. 922 */ 923 refcount_set(&tsk->rcu_users, 2); 924 /* One for the rcu users */ 925 refcount_set(&tsk->usage, 1); 926 #ifdef CONFIG_BLK_DEV_IO_TRACE 927 tsk->btrace_seq = 0; 928 #endif 929 tsk->splice_pipe = NULL; 930 tsk->task_frag.page = NULL; 931 tsk->wake_q.next = NULL; 932 933 account_kernel_stack(tsk, 1); 934 935 kcov_task_init(tsk); 936 kmap_local_fork(tsk); 937 938 #ifdef CONFIG_FAULT_INJECTION 939 tsk->fail_nth = 0; 940 #endif 941 942 #ifdef CONFIG_BLK_CGROUP 943 tsk->throttle_queue = NULL; 944 tsk->use_memdelay = 0; 945 #endif 946 947 #ifdef CONFIG_MEMCG 948 tsk->active_memcg = NULL; 949 #endif 950 return tsk; 951 952 free_stack: 953 free_thread_stack(tsk); 954 free_tsk: 955 free_task_struct(tsk); 956 return NULL; 957 } 958 959 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 960 961 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 962 963 static int __init coredump_filter_setup(char *s) 964 { 965 default_dump_filter = 966 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 967 MMF_DUMP_FILTER_MASK; 968 return 1; 969 } 970 971 __setup("coredump_filter=", coredump_filter_setup); 972 973 #include <linux/init_task.h> 974 975 static void mm_init_aio(struct mm_struct *mm) 976 { 977 #ifdef CONFIG_AIO 978 spin_lock_init(&mm->ioctx_lock); 979 mm->ioctx_table = NULL; 980 #endif 981 } 982 983 static __always_inline void mm_clear_owner(struct mm_struct *mm, 984 struct task_struct *p) 985 { 986 #ifdef CONFIG_MEMCG 987 if (mm->owner == p) 988 WRITE_ONCE(mm->owner, NULL); 989 #endif 990 } 991 992 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 993 { 994 #ifdef CONFIG_MEMCG 995 mm->owner = p; 996 #endif 997 } 998 999 static void mm_init_pasid(struct mm_struct *mm) 1000 { 1001 #ifdef CONFIG_IOMMU_SUPPORT 1002 mm->pasid = INIT_PASID; 1003 #endif 1004 } 1005 1006 static void mm_init_uprobes_state(struct mm_struct *mm) 1007 { 1008 #ifdef CONFIG_UPROBES 1009 mm->uprobes_state.xol_area = NULL; 1010 #endif 1011 } 1012 1013 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1014 struct user_namespace *user_ns) 1015 { 1016 mm->mmap = NULL; 1017 mm->mm_rb = RB_ROOT; 1018 mm->vmacache_seqnum = 0; 1019 atomic_set(&mm->mm_users, 1); 1020 atomic_set(&mm->mm_count, 1); 1021 seqcount_init(&mm->write_protect_seq); 1022 mmap_init_lock(mm); 1023 INIT_LIST_HEAD(&mm->mmlist); 1024 mm->core_state = NULL; 1025 mm_pgtables_bytes_init(mm); 1026 mm->map_count = 0; 1027 mm->locked_vm = 0; 1028 atomic_set(&mm->has_pinned, 0); 1029 atomic64_set(&mm->pinned_vm, 0); 1030 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1031 spin_lock_init(&mm->page_table_lock); 1032 spin_lock_init(&mm->arg_lock); 1033 mm_init_cpumask(mm); 1034 mm_init_aio(mm); 1035 mm_init_owner(mm, p); 1036 mm_init_pasid(mm); 1037 RCU_INIT_POINTER(mm->exe_file, NULL); 1038 mmu_notifier_subscriptions_init(mm); 1039 init_tlb_flush_pending(mm); 1040 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1041 mm->pmd_huge_pte = NULL; 1042 #endif 1043 mm_init_uprobes_state(mm); 1044 1045 if (current->mm) { 1046 mm->flags = current->mm->flags & MMF_INIT_MASK; 1047 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1048 } else { 1049 mm->flags = default_dump_filter; 1050 mm->def_flags = 0; 1051 } 1052 1053 if (mm_alloc_pgd(mm)) 1054 goto fail_nopgd; 1055 1056 if (init_new_context(p, mm)) 1057 goto fail_nocontext; 1058 1059 mm->user_ns = get_user_ns(user_ns); 1060 return mm; 1061 1062 fail_nocontext: 1063 mm_free_pgd(mm); 1064 fail_nopgd: 1065 free_mm(mm); 1066 return NULL; 1067 } 1068 1069 /* 1070 * Allocate and initialize an mm_struct. 1071 */ 1072 struct mm_struct *mm_alloc(void) 1073 { 1074 struct mm_struct *mm; 1075 1076 mm = allocate_mm(); 1077 if (!mm) 1078 return NULL; 1079 1080 memset(mm, 0, sizeof(*mm)); 1081 return mm_init(mm, current, current_user_ns()); 1082 } 1083 1084 static inline void __mmput(struct mm_struct *mm) 1085 { 1086 VM_BUG_ON(atomic_read(&mm->mm_users)); 1087 1088 uprobe_clear_state(mm); 1089 exit_aio(mm); 1090 ksm_exit(mm); 1091 khugepaged_exit(mm); /* must run before exit_mmap */ 1092 exit_mmap(mm); 1093 mm_put_huge_zero_page(mm); 1094 set_mm_exe_file(mm, NULL); 1095 if (!list_empty(&mm->mmlist)) { 1096 spin_lock(&mmlist_lock); 1097 list_del(&mm->mmlist); 1098 spin_unlock(&mmlist_lock); 1099 } 1100 if (mm->binfmt) 1101 module_put(mm->binfmt->module); 1102 mmdrop(mm); 1103 } 1104 1105 /* 1106 * Decrement the use count and release all resources for an mm. 1107 */ 1108 void mmput(struct mm_struct *mm) 1109 { 1110 might_sleep(); 1111 1112 if (atomic_dec_and_test(&mm->mm_users)) 1113 __mmput(mm); 1114 } 1115 EXPORT_SYMBOL_GPL(mmput); 1116 1117 #ifdef CONFIG_MMU 1118 static void mmput_async_fn(struct work_struct *work) 1119 { 1120 struct mm_struct *mm = container_of(work, struct mm_struct, 1121 async_put_work); 1122 1123 __mmput(mm); 1124 } 1125 1126 void mmput_async(struct mm_struct *mm) 1127 { 1128 if (atomic_dec_and_test(&mm->mm_users)) { 1129 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1130 schedule_work(&mm->async_put_work); 1131 } 1132 } 1133 #endif 1134 1135 /** 1136 * set_mm_exe_file - change a reference to the mm's executable file 1137 * 1138 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1139 * 1140 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1141 * invocations: in mmput() nobody alive left, in execve task is single 1142 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1143 * mm->exe_file, but does so without using set_mm_exe_file() in order 1144 * to do avoid the need for any locks. 1145 */ 1146 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1147 { 1148 struct file *old_exe_file; 1149 1150 /* 1151 * It is safe to dereference the exe_file without RCU as 1152 * this function is only called if nobody else can access 1153 * this mm -- see comment above for justification. 1154 */ 1155 old_exe_file = rcu_dereference_raw(mm->exe_file); 1156 1157 if (new_exe_file) 1158 get_file(new_exe_file); 1159 rcu_assign_pointer(mm->exe_file, new_exe_file); 1160 if (old_exe_file) 1161 fput(old_exe_file); 1162 } 1163 1164 /** 1165 * get_mm_exe_file - acquire a reference to the mm's executable file 1166 * 1167 * Returns %NULL if mm has no associated executable file. 1168 * User must release file via fput(). 1169 */ 1170 struct file *get_mm_exe_file(struct mm_struct *mm) 1171 { 1172 struct file *exe_file; 1173 1174 rcu_read_lock(); 1175 exe_file = rcu_dereference(mm->exe_file); 1176 if (exe_file && !get_file_rcu(exe_file)) 1177 exe_file = NULL; 1178 rcu_read_unlock(); 1179 return exe_file; 1180 } 1181 EXPORT_SYMBOL(get_mm_exe_file); 1182 1183 /** 1184 * get_task_exe_file - acquire a reference to the task's executable file 1185 * 1186 * Returns %NULL if task's mm (if any) has no associated executable file or 1187 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1188 * User must release file via fput(). 1189 */ 1190 struct file *get_task_exe_file(struct task_struct *task) 1191 { 1192 struct file *exe_file = NULL; 1193 struct mm_struct *mm; 1194 1195 task_lock(task); 1196 mm = task->mm; 1197 if (mm) { 1198 if (!(task->flags & PF_KTHREAD)) 1199 exe_file = get_mm_exe_file(mm); 1200 } 1201 task_unlock(task); 1202 return exe_file; 1203 } 1204 EXPORT_SYMBOL(get_task_exe_file); 1205 1206 /** 1207 * get_task_mm - acquire a reference to the task's mm 1208 * 1209 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1210 * this kernel workthread has transiently adopted a user mm with use_mm, 1211 * to do its AIO) is not set and if so returns a reference to it, after 1212 * bumping up the use count. User must release the mm via mmput() 1213 * after use. Typically used by /proc and ptrace. 1214 */ 1215 struct mm_struct *get_task_mm(struct task_struct *task) 1216 { 1217 struct mm_struct *mm; 1218 1219 task_lock(task); 1220 mm = task->mm; 1221 if (mm) { 1222 if (task->flags & PF_KTHREAD) 1223 mm = NULL; 1224 else 1225 mmget(mm); 1226 } 1227 task_unlock(task); 1228 return mm; 1229 } 1230 EXPORT_SYMBOL_GPL(get_task_mm); 1231 1232 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1233 { 1234 struct mm_struct *mm; 1235 int err; 1236 1237 err = down_read_killable(&task->signal->exec_update_lock); 1238 if (err) 1239 return ERR_PTR(err); 1240 1241 mm = get_task_mm(task); 1242 if (mm && mm != current->mm && 1243 !ptrace_may_access(task, mode)) { 1244 mmput(mm); 1245 mm = ERR_PTR(-EACCES); 1246 } 1247 up_read(&task->signal->exec_update_lock); 1248 1249 return mm; 1250 } 1251 1252 static void complete_vfork_done(struct task_struct *tsk) 1253 { 1254 struct completion *vfork; 1255 1256 task_lock(tsk); 1257 vfork = tsk->vfork_done; 1258 if (likely(vfork)) { 1259 tsk->vfork_done = NULL; 1260 complete(vfork); 1261 } 1262 task_unlock(tsk); 1263 } 1264 1265 static int wait_for_vfork_done(struct task_struct *child, 1266 struct completion *vfork) 1267 { 1268 int killed; 1269 1270 freezer_do_not_count(); 1271 cgroup_enter_frozen(); 1272 killed = wait_for_completion_killable(vfork); 1273 cgroup_leave_frozen(false); 1274 freezer_count(); 1275 1276 if (killed) { 1277 task_lock(child); 1278 child->vfork_done = NULL; 1279 task_unlock(child); 1280 } 1281 1282 put_task_struct(child); 1283 return killed; 1284 } 1285 1286 /* Please note the differences between mmput and mm_release. 1287 * mmput is called whenever we stop holding onto a mm_struct, 1288 * error success whatever. 1289 * 1290 * mm_release is called after a mm_struct has been removed 1291 * from the current process. 1292 * 1293 * This difference is important for error handling, when we 1294 * only half set up a mm_struct for a new process and need to restore 1295 * the old one. Because we mmput the new mm_struct before 1296 * restoring the old one. . . 1297 * Eric Biederman 10 January 1998 1298 */ 1299 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1300 { 1301 uprobe_free_utask(tsk); 1302 1303 /* Get rid of any cached register state */ 1304 deactivate_mm(tsk, mm); 1305 1306 /* 1307 * Signal userspace if we're not exiting with a core dump 1308 * because we want to leave the value intact for debugging 1309 * purposes. 1310 */ 1311 if (tsk->clear_child_tid) { 1312 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1313 atomic_read(&mm->mm_users) > 1) { 1314 /* 1315 * We don't check the error code - if userspace has 1316 * not set up a proper pointer then tough luck. 1317 */ 1318 put_user(0, tsk->clear_child_tid); 1319 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1320 1, NULL, NULL, 0, 0); 1321 } 1322 tsk->clear_child_tid = NULL; 1323 } 1324 1325 /* 1326 * All done, finally we can wake up parent and return this mm to him. 1327 * Also kthread_stop() uses this completion for synchronization. 1328 */ 1329 if (tsk->vfork_done) 1330 complete_vfork_done(tsk); 1331 } 1332 1333 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1334 { 1335 futex_exit_release(tsk); 1336 mm_release(tsk, mm); 1337 } 1338 1339 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1340 { 1341 futex_exec_release(tsk); 1342 mm_release(tsk, mm); 1343 } 1344 1345 /** 1346 * dup_mm() - duplicates an existing mm structure 1347 * @tsk: the task_struct with which the new mm will be associated. 1348 * @oldmm: the mm to duplicate. 1349 * 1350 * Allocates a new mm structure and duplicates the provided @oldmm structure 1351 * content into it. 1352 * 1353 * Return: the duplicated mm or NULL on failure. 1354 */ 1355 static struct mm_struct *dup_mm(struct task_struct *tsk, 1356 struct mm_struct *oldmm) 1357 { 1358 struct mm_struct *mm; 1359 int err; 1360 1361 mm = allocate_mm(); 1362 if (!mm) 1363 goto fail_nomem; 1364 1365 memcpy(mm, oldmm, sizeof(*mm)); 1366 1367 if (!mm_init(mm, tsk, mm->user_ns)) 1368 goto fail_nomem; 1369 1370 err = dup_mmap(mm, oldmm); 1371 if (err) 1372 goto free_pt; 1373 1374 mm->hiwater_rss = get_mm_rss(mm); 1375 mm->hiwater_vm = mm->total_vm; 1376 1377 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1378 goto free_pt; 1379 1380 return mm; 1381 1382 free_pt: 1383 /* don't put binfmt in mmput, we haven't got module yet */ 1384 mm->binfmt = NULL; 1385 mm_init_owner(mm, NULL); 1386 mmput(mm); 1387 1388 fail_nomem: 1389 return NULL; 1390 } 1391 1392 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1393 { 1394 struct mm_struct *mm, *oldmm; 1395 int retval; 1396 1397 tsk->min_flt = tsk->maj_flt = 0; 1398 tsk->nvcsw = tsk->nivcsw = 0; 1399 #ifdef CONFIG_DETECT_HUNG_TASK 1400 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1401 tsk->last_switch_time = 0; 1402 #endif 1403 1404 tsk->mm = NULL; 1405 tsk->active_mm = NULL; 1406 1407 /* 1408 * Are we cloning a kernel thread? 1409 * 1410 * We need to steal a active VM for that.. 1411 */ 1412 oldmm = current->mm; 1413 if (!oldmm) 1414 return 0; 1415 1416 /* initialize the new vmacache entries */ 1417 vmacache_flush(tsk); 1418 1419 if (clone_flags & CLONE_VM) { 1420 mmget(oldmm); 1421 mm = oldmm; 1422 goto good_mm; 1423 } 1424 1425 retval = -ENOMEM; 1426 mm = dup_mm(tsk, current->mm); 1427 if (!mm) 1428 goto fail_nomem; 1429 1430 good_mm: 1431 tsk->mm = mm; 1432 tsk->active_mm = mm; 1433 return 0; 1434 1435 fail_nomem: 1436 return retval; 1437 } 1438 1439 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1440 { 1441 struct fs_struct *fs = current->fs; 1442 if (clone_flags & CLONE_FS) { 1443 /* tsk->fs is already what we want */ 1444 spin_lock(&fs->lock); 1445 if (fs->in_exec) { 1446 spin_unlock(&fs->lock); 1447 return -EAGAIN; 1448 } 1449 fs->users++; 1450 spin_unlock(&fs->lock); 1451 return 0; 1452 } 1453 tsk->fs = copy_fs_struct(fs); 1454 if (!tsk->fs) 1455 return -ENOMEM; 1456 return 0; 1457 } 1458 1459 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1460 { 1461 struct files_struct *oldf, *newf; 1462 int error = 0; 1463 1464 /* 1465 * A background process may not have any files ... 1466 */ 1467 oldf = current->files; 1468 if (!oldf) 1469 goto out; 1470 1471 if (clone_flags & CLONE_FILES) { 1472 atomic_inc(&oldf->count); 1473 goto out; 1474 } 1475 1476 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1477 if (!newf) 1478 goto out; 1479 1480 tsk->files = newf; 1481 error = 0; 1482 out: 1483 return error; 1484 } 1485 1486 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1487 { 1488 #ifdef CONFIG_BLOCK 1489 struct io_context *ioc = current->io_context; 1490 struct io_context *new_ioc; 1491 1492 if (!ioc) 1493 return 0; 1494 /* 1495 * Share io context with parent, if CLONE_IO is set 1496 */ 1497 if (clone_flags & CLONE_IO) { 1498 ioc_task_link(ioc); 1499 tsk->io_context = ioc; 1500 } else if (ioprio_valid(ioc->ioprio)) { 1501 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1502 if (unlikely(!new_ioc)) 1503 return -ENOMEM; 1504 1505 new_ioc->ioprio = ioc->ioprio; 1506 put_io_context(new_ioc); 1507 } 1508 #endif 1509 return 0; 1510 } 1511 1512 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1513 { 1514 struct sighand_struct *sig; 1515 1516 if (clone_flags & CLONE_SIGHAND) { 1517 refcount_inc(¤t->sighand->count); 1518 return 0; 1519 } 1520 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1521 RCU_INIT_POINTER(tsk->sighand, sig); 1522 if (!sig) 1523 return -ENOMEM; 1524 1525 refcount_set(&sig->count, 1); 1526 spin_lock_irq(¤t->sighand->siglock); 1527 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1528 spin_unlock_irq(¤t->sighand->siglock); 1529 1530 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1531 if (clone_flags & CLONE_CLEAR_SIGHAND) 1532 flush_signal_handlers(tsk, 0); 1533 1534 return 0; 1535 } 1536 1537 void __cleanup_sighand(struct sighand_struct *sighand) 1538 { 1539 if (refcount_dec_and_test(&sighand->count)) { 1540 signalfd_cleanup(sighand); 1541 /* 1542 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1543 * without an RCU grace period, see __lock_task_sighand(). 1544 */ 1545 kmem_cache_free(sighand_cachep, sighand); 1546 } 1547 } 1548 1549 /* 1550 * Initialize POSIX timer handling for a thread group. 1551 */ 1552 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1553 { 1554 struct posix_cputimers *pct = &sig->posix_cputimers; 1555 unsigned long cpu_limit; 1556 1557 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1558 posix_cputimers_group_init(pct, cpu_limit); 1559 } 1560 1561 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1562 { 1563 struct signal_struct *sig; 1564 1565 if (clone_flags & CLONE_THREAD) 1566 return 0; 1567 1568 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1569 tsk->signal = sig; 1570 if (!sig) 1571 return -ENOMEM; 1572 1573 sig->nr_threads = 1; 1574 atomic_set(&sig->live, 1); 1575 refcount_set(&sig->sigcnt, 1); 1576 1577 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1578 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1579 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1580 1581 init_waitqueue_head(&sig->wait_chldexit); 1582 sig->curr_target = tsk; 1583 init_sigpending(&sig->shared_pending); 1584 INIT_HLIST_HEAD(&sig->multiprocess); 1585 seqlock_init(&sig->stats_lock); 1586 prev_cputime_init(&sig->prev_cputime); 1587 1588 #ifdef CONFIG_POSIX_TIMERS 1589 INIT_LIST_HEAD(&sig->posix_timers); 1590 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1591 sig->real_timer.function = it_real_fn; 1592 #endif 1593 1594 task_lock(current->group_leader); 1595 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1596 task_unlock(current->group_leader); 1597 1598 posix_cpu_timers_init_group(sig); 1599 1600 tty_audit_fork(sig); 1601 sched_autogroup_fork(sig); 1602 1603 sig->oom_score_adj = current->signal->oom_score_adj; 1604 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1605 1606 mutex_init(&sig->cred_guard_mutex); 1607 init_rwsem(&sig->exec_update_lock); 1608 1609 return 0; 1610 } 1611 1612 static void copy_seccomp(struct task_struct *p) 1613 { 1614 #ifdef CONFIG_SECCOMP 1615 /* 1616 * Must be called with sighand->lock held, which is common to 1617 * all threads in the group. Holding cred_guard_mutex is not 1618 * needed because this new task is not yet running and cannot 1619 * be racing exec. 1620 */ 1621 assert_spin_locked(¤t->sighand->siglock); 1622 1623 /* Ref-count the new filter user, and assign it. */ 1624 get_seccomp_filter(current); 1625 p->seccomp = current->seccomp; 1626 1627 /* 1628 * Explicitly enable no_new_privs here in case it got set 1629 * between the task_struct being duplicated and holding the 1630 * sighand lock. The seccomp state and nnp must be in sync. 1631 */ 1632 if (task_no_new_privs(current)) 1633 task_set_no_new_privs(p); 1634 1635 /* 1636 * If the parent gained a seccomp mode after copying thread 1637 * flags and between before we held the sighand lock, we have 1638 * to manually enable the seccomp thread flag here. 1639 */ 1640 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1641 set_task_syscall_work(p, SECCOMP); 1642 #endif 1643 } 1644 1645 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1646 { 1647 current->clear_child_tid = tidptr; 1648 1649 return task_pid_vnr(current); 1650 } 1651 1652 static void rt_mutex_init_task(struct task_struct *p) 1653 { 1654 raw_spin_lock_init(&p->pi_lock); 1655 #ifdef CONFIG_RT_MUTEXES 1656 p->pi_waiters = RB_ROOT_CACHED; 1657 p->pi_top_task = NULL; 1658 p->pi_blocked_on = NULL; 1659 #endif 1660 } 1661 1662 static inline void init_task_pid_links(struct task_struct *task) 1663 { 1664 enum pid_type type; 1665 1666 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1667 INIT_HLIST_NODE(&task->pid_links[type]); 1668 } 1669 1670 static inline void 1671 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1672 { 1673 if (type == PIDTYPE_PID) 1674 task->thread_pid = pid; 1675 else 1676 task->signal->pids[type] = pid; 1677 } 1678 1679 static inline void rcu_copy_process(struct task_struct *p) 1680 { 1681 #ifdef CONFIG_PREEMPT_RCU 1682 p->rcu_read_lock_nesting = 0; 1683 p->rcu_read_unlock_special.s = 0; 1684 p->rcu_blocked_node = NULL; 1685 INIT_LIST_HEAD(&p->rcu_node_entry); 1686 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1687 #ifdef CONFIG_TASKS_RCU 1688 p->rcu_tasks_holdout = false; 1689 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1690 p->rcu_tasks_idle_cpu = -1; 1691 #endif /* #ifdef CONFIG_TASKS_RCU */ 1692 #ifdef CONFIG_TASKS_TRACE_RCU 1693 p->trc_reader_nesting = 0; 1694 p->trc_reader_special.s = 0; 1695 INIT_LIST_HEAD(&p->trc_holdout_list); 1696 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1697 } 1698 1699 struct pid *pidfd_pid(const struct file *file) 1700 { 1701 if (file->f_op == &pidfd_fops) 1702 return file->private_data; 1703 1704 return ERR_PTR(-EBADF); 1705 } 1706 1707 static int pidfd_release(struct inode *inode, struct file *file) 1708 { 1709 struct pid *pid = file->private_data; 1710 1711 file->private_data = NULL; 1712 put_pid(pid); 1713 return 0; 1714 } 1715 1716 #ifdef CONFIG_PROC_FS 1717 /** 1718 * pidfd_show_fdinfo - print information about a pidfd 1719 * @m: proc fdinfo file 1720 * @f: file referencing a pidfd 1721 * 1722 * Pid: 1723 * This function will print the pid that a given pidfd refers to in the 1724 * pid namespace of the procfs instance. 1725 * If the pid namespace of the process is not a descendant of the pid 1726 * namespace of the procfs instance 0 will be shown as its pid. This is 1727 * similar to calling getppid() on a process whose parent is outside of 1728 * its pid namespace. 1729 * 1730 * NSpid: 1731 * If pid namespaces are supported then this function will also print 1732 * the pid of a given pidfd refers to for all descendant pid namespaces 1733 * starting from the current pid namespace of the instance, i.e. the 1734 * Pid field and the first entry in the NSpid field will be identical. 1735 * If the pid namespace of the process is not a descendant of the pid 1736 * namespace of the procfs instance 0 will be shown as its first NSpid 1737 * entry and no others will be shown. 1738 * Note that this differs from the Pid and NSpid fields in 1739 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1740 * the pid namespace of the procfs instance. The difference becomes 1741 * obvious when sending around a pidfd between pid namespaces from a 1742 * different branch of the tree, i.e. where no ancestoral relation is 1743 * present between the pid namespaces: 1744 * - create two new pid namespaces ns1 and ns2 in the initial pid 1745 * namespace (also take care to create new mount namespaces in the 1746 * new pid namespace and mount procfs) 1747 * - create a process with a pidfd in ns1 1748 * - send pidfd from ns1 to ns2 1749 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1750 * have exactly one entry, which is 0 1751 */ 1752 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1753 { 1754 struct pid *pid = f->private_data; 1755 struct pid_namespace *ns; 1756 pid_t nr = -1; 1757 1758 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1759 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1760 nr = pid_nr_ns(pid, ns); 1761 } 1762 1763 seq_put_decimal_ll(m, "Pid:\t", nr); 1764 1765 #ifdef CONFIG_PID_NS 1766 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1767 if (nr > 0) { 1768 int i; 1769 1770 /* If nr is non-zero it means that 'pid' is valid and that 1771 * ns, i.e. the pid namespace associated with the procfs 1772 * instance, is in the pid namespace hierarchy of pid. 1773 * Start at one below the already printed level. 1774 */ 1775 for (i = ns->level + 1; i <= pid->level; i++) 1776 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1777 } 1778 #endif 1779 seq_putc(m, '\n'); 1780 } 1781 #endif 1782 1783 /* 1784 * Poll support for process exit notification. 1785 */ 1786 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1787 { 1788 struct pid *pid = file->private_data; 1789 __poll_t poll_flags = 0; 1790 1791 poll_wait(file, &pid->wait_pidfd, pts); 1792 1793 /* 1794 * Inform pollers only when the whole thread group exits. 1795 * If the thread group leader exits before all other threads in the 1796 * group, then poll(2) should block, similar to the wait(2) family. 1797 */ 1798 if (thread_group_exited(pid)) 1799 poll_flags = EPOLLIN | EPOLLRDNORM; 1800 1801 return poll_flags; 1802 } 1803 1804 const struct file_operations pidfd_fops = { 1805 .release = pidfd_release, 1806 .poll = pidfd_poll, 1807 #ifdef CONFIG_PROC_FS 1808 .show_fdinfo = pidfd_show_fdinfo, 1809 #endif 1810 }; 1811 1812 static void __delayed_free_task(struct rcu_head *rhp) 1813 { 1814 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1815 1816 free_task(tsk); 1817 } 1818 1819 static __always_inline void delayed_free_task(struct task_struct *tsk) 1820 { 1821 if (IS_ENABLED(CONFIG_MEMCG)) 1822 call_rcu(&tsk->rcu, __delayed_free_task); 1823 else 1824 free_task(tsk); 1825 } 1826 1827 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1828 { 1829 /* Skip if kernel thread */ 1830 if (!tsk->mm) 1831 return; 1832 1833 /* Skip if spawning a thread or using vfork */ 1834 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1835 return; 1836 1837 /* We need to synchronize with __set_oom_adj */ 1838 mutex_lock(&oom_adj_mutex); 1839 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1840 /* Update the values in case they were changed after copy_signal */ 1841 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1842 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1843 mutex_unlock(&oom_adj_mutex); 1844 } 1845 1846 /* 1847 * This creates a new process as a copy of the old one, 1848 * but does not actually start it yet. 1849 * 1850 * It copies the registers, and all the appropriate 1851 * parts of the process environment (as per the clone 1852 * flags). The actual kick-off is left to the caller. 1853 */ 1854 static __latent_entropy struct task_struct *copy_process( 1855 struct pid *pid, 1856 int trace, 1857 int node, 1858 struct kernel_clone_args *args) 1859 { 1860 int pidfd = -1, retval; 1861 struct task_struct *p; 1862 struct multiprocess_signals delayed; 1863 struct file *pidfile = NULL; 1864 u64 clone_flags = args->flags; 1865 struct nsproxy *nsp = current->nsproxy; 1866 1867 /* 1868 * Don't allow sharing the root directory with processes in a different 1869 * namespace 1870 */ 1871 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1872 return ERR_PTR(-EINVAL); 1873 1874 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1875 return ERR_PTR(-EINVAL); 1876 1877 /* 1878 * Thread groups must share signals as well, and detached threads 1879 * can only be started up within the thread group. 1880 */ 1881 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1882 return ERR_PTR(-EINVAL); 1883 1884 /* 1885 * Shared signal handlers imply shared VM. By way of the above, 1886 * thread groups also imply shared VM. Blocking this case allows 1887 * for various simplifications in other code. 1888 */ 1889 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1890 return ERR_PTR(-EINVAL); 1891 1892 /* 1893 * Siblings of global init remain as zombies on exit since they are 1894 * not reaped by their parent (swapper). To solve this and to avoid 1895 * multi-rooted process trees, prevent global and container-inits 1896 * from creating siblings. 1897 */ 1898 if ((clone_flags & CLONE_PARENT) && 1899 current->signal->flags & SIGNAL_UNKILLABLE) 1900 return ERR_PTR(-EINVAL); 1901 1902 /* 1903 * If the new process will be in a different pid or user namespace 1904 * do not allow it to share a thread group with the forking task. 1905 */ 1906 if (clone_flags & CLONE_THREAD) { 1907 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1908 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1909 return ERR_PTR(-EINVAL); 1910 } 1911 1912 /* 1913 * If the new process will be in a different time namespace 1914 * do not allow it to share VM or a thread group with the forking task. 1915 */ 1916 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1917 if (nsp->time_ns != nsp->time_ns_for_children) 1918 return ERR_PTR(-EINVAL); 1919 } 1920 1921 if (clone_flags & CLONE_PIDFD) { 1922 /* 1923 * - CLONE_DETACHED is blocked so that we can potentially 1924 * reuse it later for CLONE_PIDFD. 1925 * - CLONE_THREAD is blocked until someone really needs it. 1926 */ 1927 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1928 return ERR_PTR(-EINVAL); 1929 } 1930 1931 /* 1932 * Force any signals received before this point to be delivered 1933 * before the fork happens. Collect up signals sent to multiple 1934 * processes that happen during the fork and delay them so that 1935 * they appear to happen after the fork. 1936 */ 1937 sigemptyset(&delayed.signal); 1938 INIT_HLIST_NODE(&delayed.node); 1939 1940 spin_lock_irq(¤t->sighand->siglock); 1941 if (!(clone_flags & CLONE_THREAD)) 1942 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1943 recalc_sigpending(); 1944 spin_unlock_irq(¤t->sighand->siglock); 1945 retval = -ERESTARTNOINTR; 1946 if (signal_pending(current)) 1947 goto fork_out; 1948 1949 retval = -ENOMEM; 1950 p = dup_task_struct(current, node); 1951 if (!p) 1952 goto fork_out; 1953 if (args->io_thread) 1954 p->flags |= PF_IO_WORKER; 1955 1956 /* 1957 * This _must_ happen before we call free_task(), i.e. before we jump 1958 * to any of the bad_fork_* labels. This is to avoid freeing 1959 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1960 * kernel threads (PF_KTHREAD). 1961 */ 1962 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1963 /* 1964 * Clear TID on mm_release()? 1965 */ 1966 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1967 1968 ftrace_graph_init_task(p); 1969 1970 rt_mutex_init_task(p); 1971 1972 lockdep_assert_irqs_enabled(); 1973 #ifdef CONFIG_PROVE_LOCKING 1974 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1975 #endif 1976 retval = -EAGAIN; 1977 if (atomic_read(&p->real_cred->user->processes) >= 1978 task_rlimit(p, RLIMIT_NPROC)) { 1979 if (p->real_cred->user != INIT_USER && 1980 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1981 goto bad_fork_free; 1982 } 1983 current->flags &= ~PF_NPROC_EXCEEDED; 1984 1985 retval = copy_creds(p, clone_flags); 1986 if (retval < 0) 1987 goto bad_fork_free; 1988 1989 /* 1990 * If multiple threads are within copy_process(), then this check 1991 * triggers too late. This doesn't hurt, the check is only there 1992 * to stop root fork bombs. 1993 */ 1994 retval = -EAGAIN; 1995 if (data_race(nr_threads >= max_threads)) 1996 goto bad_fork_cleanup_count; 1997 1998 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1999 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2000 p->flags |= PF_FORKNOEXEC; 2001 INIT_LIST_HEAD(&p->children); 2002 INIT_LIST_HEAD(&p->sibling); 2003 rcu_copy_process(p); 2004 p->vfork_done = NULL; 2005 spin_lock_init(&p->alloc_lock); 2006 2007 init_sigpending(&p->pending); 2008 2009 p->utime = p->stime = p->gtime = 0; 2010 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2011 p->utimescaled = p->stimescaled = 0; 2012 #endif 2013 prev_cputime_init(&p->prev_cputime); 2014 2015 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2016 seqcount_init(&p->vtime.seqcount); 2017 p->vtime.starttime = 0; 2018 p->vtime.state = VTIME_INACTIVE; 2019 #endif 2020 2021 #ifdef CONFIG_IO_URING 2022 p->io_uring = NULL; 2023 #endif 2024 2025 #if defined(SPLIT_RSS_COUNTING) 2026 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2027 #endif 2028 2029 p->default_timer_slack_ns = current->timer_slack_ns; 2030 2031 #ifdef CONFIG_PSI 2032 p->psi_flags = 0; 2033 #endif 2034 2035 task_io_accounting_init(&p->ioac); 2036 acct_clear_integrals(p); 2037 2038 posix_cputimers_init(&p->posix_cputimers); 2039 2040 p->io_context = NULL; 2041 audit_set_context(p, NULL); 2042 cgroup_fork(p); 2043 #ifdef CONFIG_NUMA 2044 p->mempolicy = mpol_dup(p->mempolicy); 2045 if (IS_ERR(p->mempolicy)) { 2046 retval = PTR_ERR(p->mempolicy); 2047 p->mempolicy = NULL; 2048 goto bad_fork_cleanup_threadgroup_lock; 2049 } 2050 #endif 2051 #ifdef CONFIG_CPUSETS 2052 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2053 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2054 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2055 #endif 2056 #ifdef CONFIG_TRACE_IRQFLAGS 2057 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2058 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2059 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2060 p->softirqs_enabled = 1; 2061 p->softirq_context = 0; 2062 #endif 2063 2064 p->pagefault_disabled = 0; 2065 2066 #ifdef CONFIG_LOCKDEP 2067 lockdep_init_task(p); 2068 #endif 2069 2070 #ifdef CONFIG_DEBUG_MUTEXES 2071 p->blocked_on = NULL; /* not blocked yet */ 2072 #endif 2073 #ifdef CONFIG_BCACHE 2074 p->sequential_io = 0; 2075 p->sequential_io_avg = 0; 2076 #endif 2077 #ifdef CONFIG_BPF_SYSCALL 2078 RCU_INIT_POINTER(p->bpf_storage, NULL); 2079 #endif 2080 2081 /* Perform scheduler related setup. Assign this task to a CPU. */ 2082 retval = sched_fork(clone_flags, p); 2083 if (retval) 2084 goto bad_fork_cleanup_policy; 2085 2086 retval = perf_event_init_task(p); 2087 if (retval) 2088 goto bad_fork_cleanup_policy; 2089 retval = audit_alloc(p); 2090 if (retval) 2091 goto bad_fork_cleanup_perf; 2092 /* copy all the process information */ 2093 shm_init_task(p); 2094 retval = security_task_alloc(p, clone_flags); 2095 if (retval) 2096 goto bad_fork_cleanup_audit; 2097 retval = copy_semundo(clone_flags, p); 2098 if (retval) 2099 goto bad_fork_cleanup_security; 2100 retval = copy_files(clone_flags, p); 2101 if (retval) 2102 goto bad_fork_cleanup_semundo; 2103 retval = copy_fs(clone_flags, p); 2104 if (retval) 2105 goto bad_fork_cleanup_files; 2106 retval = copy_sighand(clone_flags, p); 2107 if (retval) 2108 goto bad_fork_cleanup_fs; 2109 retval = copy_signal(clone_flags, p); 2110 if (retval) 2111 goto bad_fork_cleanup_sighand; 2112 retval = copy_mm(clone_flags, p); 2113 if (retval) 2114 goto bad_fork_cleanup_signal; 2115 retval = copy_namespaces(clone_flags, p); 2116 if (retval) 2117 goto bad_fork_cleanup_mm; 2118 retval = copy_io(clone_flags, p); 2119 if (retval) 2120 goto bad_fork_cleanup_namespaces; 2121 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2122 if (retval) 2123 goto bad_fork_cleanup_io; 2124 2125 stackleak_task_init(p); 2126 2127 if (pid != &init_struct_pid) { 2128 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2129 args->set_tid_size); 2130 if (IS_ERR(pid)) { 2131 retval = PTR_ERR(pid); 2132 goto bad_fork_cleanup_thread; 2133 } 2134 } 2135 2136 /* 2137 * This has to happen after we've potentially unshared the file 2138 * descriptor table (so that the pidfd doesn't leak into the child 2139 * if the fd table isn't shared). 2140 */ 2141 if (clone_flags & CLONE_PIDFD) { 2142 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2143 if (retval < 0) 2144 goto bad_fork_free_pid; 2145 2146 pidfd = retval; 2147 2148 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2149 O_RDWR | O_CLOEXEC); 2150 if (IS_ERR(pidfile)) { 2151 put_unused_fd(pidfd); 2152 retval = PTR_ERR(pidfile); 2153 goto bad_fork_free_pid; 2154 } 2155 get_pid(pid); /* held by pidfile now */ 2156 2157 retval = put_user(pidfd, args->pidfd); 2158 if (retval) 2159 goto bad_fork_put_pidfd; 2160 } 2161 2162 #ifdef CONFIG_BLOCK 2163 p->plug = NULL; 2164 #endif 2165 futex_init_task(p); 2166 2167 /* 2168 * sigaltstack should be cleared when sharing the same VM 2169 */ 2170 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2171 sas_ss_reset(p); 2172 2173 /* 2174 * Syscall tracing and stepping should be turned off in the 2175 * child regardless of CLONE_PTRACE. 2176 */ 2177 user_disable_single_step(p); 2178 clear_task_syscall_work(p, SYSCALL_TRACE); 2179 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2180 clear_task_syscall_work(p, SYSCALL_EMU); 2181 #endif 2182 clear_tsk_latency_tracing(p); 2183 2184 /* ok, now we should be set up.. */ 2185 p->pid = pid_nr(pid); 2186 if (clone_flags & CLONE_THREAD) { 2187 p->group_leader = current->group_leader; 2188 p->tgid = current->tgid; 2189 } else { 2190 p->group_leader = p; 2191 p->tgid = p->pid; 2192 } 2193 2194 p->nr_dirtied = 0; 2195 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2196 p->dirty_paused_when = 0; 2197 2198 p->pdeath_signal = 0; 2199 INIT_LIST_HEAD(&p->thread_group); 2200 p->task_works = NULL; 2201 2202 #ifdef CONFIG_KRETPROBES 2203 p->kretprobe_instances.first = NULL; 2204 #endif 2205 2206 /* 2207 * Ensure that the cgroup subsystem policies allow the new process to be 2208 * forked. It should be noted that the new process's css_set can be changed 2209 * between here and cgroup_post_fork() if an organisation operation is in 2210 * progress. 2211 */ 2212 retval = cgroup_can_fork(p, args); 2213 if (retval) 2214 goto bad_fork_put_pidfd; 2215 2216 /* 2217 * From this point on we must avoid any synchronous user-space 2218 * communication until we take the tasklist-lock. In particular, we do 2219 * not want user-space to be able to predict the process start-time by 2220 * stalling fork(2) after we recorded the start_time but before it is 2221 * visible to the system. 2222 */ 2223 2224 p->start_time = ktime_get_ns(); 2225 p->start_boottime = ktime_get_boottime_ns(); 2226 2227 /* 2228 * Make it visible to the rest of the system, but dont wake it up yet. 2229 * Need tasklist lock for parent etc handling! 2230 */ 2231 write_lock_irq(&tasklist_lock); 2232 2233 /* CLONE_PARENT re-uses the old parent */ 2234 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2235 p->real_parent = current->real_parent; 2236 p->parent_exec_id = current->parent_exec_id; 2237 if (clone_flags & CLONE_THREAD) 2238 p->exit_signal = -1; 2239 else 2240 p->exit_signal = current->group_leader->exit_signal; 2241 } else { 2242 p->real_parent = current; 2243 p->parent_exec_id = current->self_exec_id; 2244 p->exit_signal = args->exit_signal; 2245 } 2246 2247 klp_copy_process(p); 2248 2249 spin_lock(¤t->sighand->siglock); 2250 2251 /* 2252 * Copy seccomp details explicitly here, in case they were changed 2253 * before holding sighand lock. 2254 */ 2255 copy_seccomp(p); 2256 2257 rseq_fork(p, clone_flags); 2258 2259 /* Don't start children in a dying pid namespace */ 2260 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2261 retval = -ENOMEM; 2262 goto bad_fork_cancel_cgroup; 2263 } 2264 2265 /* Let kill terminate clone/fork in the middle */ 2266 if (fatal_signal_pending(current)) { 2267 retval = -EINTR; 2268 goto bad_fork_cancel_cgroup; 2269 } 2270 2271 /* past the last point of failure */ 2272 if (pidfile) 2273 fd_install(pidfd, pidfile); 2274 2275 init_task_pid_links(p); 2276 if (likely(p->pid)) { 2277 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2278 2279 init_task_pid(p, PIDTYPE_PID, pid); 2280 if (thread_group_leader(p)) { 2281 init_task_pid(p, PIDTYPE_TGID, pid); 2282 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2283 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2284 2285 if (is_child_reaper(pid)) { 2286 ns_of_pid(pid)->child_reaper = p; 2287 p->signal->flags |= SIGNAL_UNKILLABLE; 2288 } 2289 p->signal->shared_pending.signal = delayed.signal; 2290 p->signal->tty = tty_kref_get(current->signal->tty); 2291 /* 2292 * Inherit has_child_subreaper flag under the same 2293 * tasklist_lock with adding child to the process tree 2294 * for propagate_has_child_subreaper optimization. 2295 */ 2296 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2297 p->real_parent->signal->is_child_subreaper; 2298 list_add_tail(&p->sibling, &p->real_parent->children); 2299 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2300 attach_pid(p, PIDTYPE_TGID); 2301 attach_pid(p, PIDTYPE_PGID); 2302 attach_pid(p, PIDTYPE_SID); 2303 __this_cpu_inc(process_counts); 2304 } else { 2305 current->signal->nr_threads++; 2306 atomic_inc(¤t->signal->live); 2307 refcount_inc(¤t->signal->sigcnt); 2308 task_join_group_stop(p); 2309 list_add_tail_rcu(&p->thread_group, 2310 &p->group_leader->thread_group); 2311 list_add_tail_rcu(&p->thread_node, 2312 &p->signal->thread_head); 2313 } 2314 attach_pid(p, PIDTYPE_PID); 2315 nr_threads++; 2316 } 2317 total_forks++; 2318 hlist_del_init(&delayed.node); 2319 spin_unlock(¤t->sighand->siglock); 2320 syscall_tracepoint_update(p); 2321 write_unlock_irq(&tasklist_lock); 2322 2323 proc_fork_connector(p); 2324 sched_post_fork(p); 2325 cgroup_post_fork(p, args); 2326 perf_event_fork(p); 2327 2328 trace_task_newtask(p, clone_flags); 2329 uprobe_copy_process(p, clone_flags); 2330 2331 copy_oom_score_adj(clone_flags, p); 2332 2333 return p; 2334 2335 bad_fork_cancel_cgroup: 2336 spin_unlock(¤t->sighand->siglock); 2337 write_unlock_irq(&tasklist_lock); 2338 cgroup_cancel_fork(p, args); 2339 bad_fork_put_pidfd: 2340 if (clone_flags & CLONE_PIDFD) { 2341 fput(pidfile); 2342 put_unused_fd(pidfd); 2343 } 2344 bad_fork_free_pid: 2345 if (pid != &init_struct_pid) 2346 free_pid(pid); 2347 bad_fork_cleanup_thread: 2348 exit_thread(p); 2349 bad_fork_cleanup_io: 2350 if (p->io_context) 2351 exit_io_context(p); 2352 bad_fork_cleanup_namespaces: 2353 exit_task_namespaces(p); 2354 bad_fork_cleanup_mm: 2355 if (p->mm) { 2356 mm_clear_owner(p->mm, p); 2357 mmput(p->mm); 2358 } 2359 bad_fork_cleanup_signal: 2360 if (!(clone_flags & CLONE_THREAD)) 2361 free_signal_struct(p->signal); 2362 bad_fork_cleanup_sighand: 2363 __cleanup_sighand(p->sighand); 2364 bad_fork_cleanup_fs: 2365 exit_fs(p); /* blocking */ 2366 bad_fork_cleanup_files: 2367 exit_files(p); /* blocking */ 2368 bad_fork_cleanup_semundo: 2369 exit_sem(p); 2370 bad_fork_cleanup_security: 2371 security_task_free(p); 2372 bad_fork_cleanup_audit: 2373 audit_free(p); 2374 bad_fork_cleanup_perf: 2375 perf_event_free_task(p); 2376 bad_fork_cleanup_policy: 2377 lockdep_free_task(p); 2378 #ifdef CONFIG_NUMA 2379 mpol_put(p->mempolicy); 2380 bad_fork_cleanup_threadgroup_lock: 2381 #endif 2382 delayacct_tsk_free(p); 2383 bad_fork_cleanup_count: 2384 atomic_dec(&p->cred->user->processes); 2385 exit_creds(p); 2386 bad_fork_free: 2387 p->state = TASK_DEAD; 2388 put_task_stack(p); 2389 delayed_free_task(p); 2390 fork_out: 2391 spin_lock_irq(¤t->sighand->siglock); 2392 hlist_del_init(&delayed.node); 2393 spin_unlock_irq(¤t->sighand->siglock); 2394 return ERR_PTR(retval); 2395 } 2396 2397 static inline void init_idle_pids(struct task_struct *idle) 2398 { 2399 enum pid_type type; 2400 2401 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2402 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2403 init_task_pid(idle, type, &init_struct_pid); 2404 } 2405 } 2406 2407 struct task_struct *fork_idle(int cpu) 2408 { 2409 struct task_struct *task; 2410 struct kernel_clone_args args = { 2411 .flags = CLONE_VM, 2412 }; 2413 2414 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2415 if (!IS_ERR(task)) { 2416 init_idle_pids(task); 2417 init_idle(task, cpu); 2418 } 2419 2420 return task; 2421 } 2422 2423 struct mm_struct *copy_init_mm(void) 2424 { 2425 return dup_mm(NULL, &init_mm); 2426 } 2427 2428 /* 2429 * This is like kernel_clone(), but shaved down and tailored to just 2430 * creating io_uring workers. It returns a created task, or an error pointer. 2431 * The returned task is inactive, and the caller must fire it up through 2432 * wake_up_new_task(p). All signals are blocked in the created task. 2433 */ 2434 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2435 { 2436 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2437 CLONE_IO; 2438 struct kernel_clone_args args = { 2439 .flags = ((lower_32_bits(flags) | CLONE_VM | 2440 CLONE_UNTRACED) & ~CSIGNAL), 2441 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2442 .stack = (unsigned long)fn, 2443 .stack_size = (unsigned long)arg, 2444 .io_thread = 1, 2445 }; 2446 struct task_struct *tsk; 2447 2448 tsk = copy_process(NULL, 0, node, &args); 2449 if (!IS_ERR(tsk)) { 2450 sigfillset(&tsk->blocked); 2451 sigdelsetmask(&tsk->blocked, sigmask(SIGKILL)); 2452 } 2453 return tsk; 2454 } 2455 2456 /* 2457 * Ok, this is the main fork-routine. 2458 * 2459 * It copies the process, and if successful kick-starts 2460 * it and waits for it to finish using the VM if required. 2461 * 2462 * args->exit_signal is expected to be checked for sanity by the caller. 2463 */ 2464 pid_t kernel_clone(struct kernel_clone_args *args) 2465 { 2466 u64 clone_flags = args->flags; 2467 struct completion vfork; 2468 struct pid *pid; 2469 struct task_struct *p; 2470 int trace = 0; 2471 pid_t nr; 2472 2473 /* 2474 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2475 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2476 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2477 * field in struct clone_args and it still doesn't make sense to have 2478 * them both point at the same memory location. Performing this check 2479 * here has the advantage that we don't need to have a separate helper 2480 * to check for legacy clone(). 2481 */ 2482 if ((args->flags & CLONE_PIDFD) && 2483 (args->flags & CLONE_PARENT_SETTID) && 2484 (args->pidfd == args->parent_tid)) 2485 return -EINVAL; 2486 2487 /* 2488 * Determine whether and which event to report to ptracer. When 2489 * called from kernel_thread or CLONE_UNTRACED is explicitly 2490 * requested, no event is reported; otherwise, report if the event 2491 * for the type of forking is enabled. 2492 */ 2493 if (!(clone_flags & CLONE_UNTRACED)) { 2494 if (clone_flags & CLONE_VFORK) 2495 trace = PTRACE_EVENT_VFORK; 2496 else if (args->exit_signal != SIGCHLD) 2497 trace = PTRACE_EVENT_CLONE; 2498 else 2499 trace = PTRACE_EVENT_FORK; 2500 2501 if (likely(!ptrace_event_enabled(current, trace))) 2502 trace = 0; 2503 } 2504 2505 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2506 add_latent_entropy(); 2507 2508 if (IS_ERR(p)) 2509 return PTR_ERR(p); 2510 2511 /* 2512 * Do this prior waking up the new thread - the thread pointer 2513 * might get invalid after that point, if the thread exits quickly. 2514 */ 2515 trace_sched_process_fork(current, p); 2516 2517 pid = get_task_pid(p, PIDTYPE_PID); 2518 nr = pid_vnr(pid); 2519 2520 if (clone_flags & CLONE_PARENT_SETTID) 2521 put_user(nr, args->parent_tid); 2522 2523 if (clone_flags & CLONE_VFORK) { 2524 p->vfork_done = &vfork; 2525 init_completion(&vfork); 2526 get_task_struct(p); 2527 } 2528 2529 wake_up_new_task(p); 2530 2531 /* forking complete and child started to run, tell ptracer */ 2532 if (unlikely(trace)) 2533 ptrace_event_pid(trace, pid); 2534 2535 if (clone_flags & CLONE_VFORK) { 2536 if (!wait_for_vfork_done(p, &vfork)) 2537 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2538 } 2539 2540 put_pid(pid); 2541 return nr; 2542 } 2543 2544 /* 2545 * Create a kernel thread. 2546 */ 2547 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2548 { 2549 struct kernel_clone_args args = { 2550 .flags = ((lower_32_bits(flags) | CLONE_VM | 2551 CLONE_UNTRACED) & ~CSIGNAL), 2552 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2553 .stack = (unsigned long)fn, 2554 .stack_size = (unsigned long)arg, 2555 }; 2556 2557 return kernel_clone(&args); 2558 } 2559 2560 #ifdef __ARCH_WANT_SYS_FORK 2561 SYSCALL_DEFINE0(fork) 2562 { 2563 #ifdef CONFIG_MMU 2564 struct kernel_clone_args args = { 2565 .exit_signal = SIGCHLD, 2566 }; 2567 2568 return kernel_clone(&args); 2569 #else 2570 /* can not support in nommu mode */ 2571 return -EINVAL; 2572 #endif 2573 } 2574 #endif 2575 2576 #ifdef __ARCH_WANT_SYS_VFORK 2577 SYSCALL_DEFINE0(vfork) 2578 { 2579 struct kernel_clone_args args = { 2580 .flags = CLONE_VFORK | CLONE_VM, 2581 .exit_signal = SIGCHLD, 2582 }; 2583 2584 return kernel_clone(&args); 2585 } 2586 #endif 2587 2588 #ifdef __ARCH_WANT_SYS_CLONE 2589 #ifdef CONFIG_CLONE_BACKWARDS 2590 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2591 int __user *, parent_tidptr, 2592 unsigned long, tls, 2593 int __user *, child_tidptr) 2594 #elif defined(CONFIG_CLONE_BACKWARDS2) 2595 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2596 int __user *, parent_tidptr, 2597 int __user *, child_tidptr, 2598 unsigned long, tls) 2599 #elif defined(CONFIG_CLONE_BACKWARDS3) 2600 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2601 int, stack_size, 2602 int __user *, parent_tidptr, 2603 int __user *, child_tidptr, 2604 unsigned long, tls) 2605 #else 2606 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2607 int __user *, parent_tidptr, 2608 int __user *, child_tidptr, 2609 unsigned long, tls) 2610 #endif 2611 { 2612 struct kernel_clone_args args = { 2613 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2614 .pidfd = parent_tidptr, 2615 .child_tid = child_tidptr, 2616 .parent_tid = parent_tidptr, 2617 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2618 .stack = newsp, 2619 .tls = tls, 2620 }; 2621 2622 return kernel_clone(&args); 2623 } 2624 #endif 2625 2626 #ifdef __ARCH_WANT_SYS_CLONE3 2627 2628 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2629 struct clone_args __user *uargs, 2630 size_t usize) 2631 { 2632 int err; 2633 struct clone_args args; 2634 pid_t *kset_tid = kargs->set_tid; 2635 2636 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2637 CLONE_ARGS_SIZE_VER0); 2638 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2639 CLONE_ARGS_SIZE_VER1); 2640 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2641 CLONE_ARGS_SIZE_VER2); 2642 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2643 2644 if (unlikely(usize > PAGE_SIZE)) 2645 return -E2BIG; 2646 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2647 return -EINVAL; 2648 2649 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2650 if (err) 2651 return err; 2652 2653 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2654 return -EINVAL; 2655 2656 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2657 return -EINVAL; 2658 2659 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2660 return -EINVAL; 2661 2662 /* 2663 * Verify that higher 32bits of exit_signal are unset and that 2664 * it is a valid signal 2665 */ 2666 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2667 !valid_signal(args.exit_signal))) 2668 return -EINVAL; 2669 2670 if ((args.flags & CLONE_INTO_CGROUP) && 2671 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2672 return -EINVAL; 2673 2674 *kargs = (struct kernel_clone_args){ 2675 .flags = args.flags, 2676 .pidfd = u64_to_user_ptr(args.pidfd), 2677 .child_tid = u64_to_user_ptr(args.child_tid), 2678 .parent_tid = u64_to_user_ptr(args.parent_tid), 2679 .exit_signal = args.exit_signal, 2680 .stack = args.stack, 2681 .stack_size = args.stack_size, 2682 .tls = args.tls, 2683 .set_tid_size = args.set_tid_size, 2684 .cgroup = args.cgroup, 2685 }; 2686 2687 if (args.set_tid && 2688 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2689 (kargs->set_tid_size * sizeof(pid_t)))) 2690 return -EFAULT; 2691 2692 kargs->set_tid = kset_tid; 2693 2694 return 0; 2695 } 2696 2697 /** 2698 * clone3_stack_valid - check and prepare stack 2699 * @kargs: kernel clone args 2700 * 2701 * Verify that the stack arguments userspace gave us are sane. 2702 * In addition, set the stack direction for userspace since it's easy for us to 2703 * determine. 2704 */ 2705 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2706 { 2707 if (kargs->stack == 0) { 2708 if (kargs->stack_size > 0) 2709 return false; 2710 } else { 2711 if (kargs->stack_size == 0) 2712 return false; 2713 2714 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2715 return false; 2716 2717 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2718 kargs->stack += kargs->stack_size; 2719 #endif 2720 } 2721 2722 return true; 2723 } 2724 2725 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2726 { 2727 /* Verify that no unknown flags are passed along. */ 2728 if (kargs->flags & 2729 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2730 return false; 2731 2732 /* 2733 * - make the CLONE_DETACHED bit reuseable for clone3 2734 * - make the CSIGNAL bits reuseable for clone3 2735 */ 2736 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2737 return false; 2738 2739 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2740 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2741 return false; 2742 2743 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2744 kargs->exit_signal) 2745 return false; 2746 2747 if (!clone3_stack_valid(kargs)) 2748 return false; 2749 2750 return true; 2751 } 2752 2753 /** 2754 * clone3 - create a new process with specific properties 2755 * @uargs: argument structure 2756 * @size: size of @uargs 2757 * 2758 * clone3() is the extensible successor to clone()/clone2(). 2759 * It takes a struct as argument that is versioned by its size. 2760 * 2761 * Return: On success, a positive PID for the child process. 2762 * On error, a negative errno number. 2763 */ 2764 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2765 { 2766 int err; 2767 2768 struct kernel_clone_args kargs; 2769 pid_t set_tid[MAX_PID_NS_LEVEL]; 2770 2771 kargs.set_tid = set_tid; 2772 2773 err = copy_clone_args_from_user(&kargs, uargs, size); 2774 if (err) 2775 return err; 2776 2777 if (!clone3_args_valid(&kargs)) 2778 return -EINVAL; 2779 2780 return kernel_clone(&kargs); 2781 } 2782 #endif 2783 2784 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2785 { 2786 struct task_struct *leader, *parent, *child; 2787 int res; 2788 2789 read_lock(&tasklist_lock); 2790 leader = top = top->group_leader; 2791 down: 2792 for_each_thread(leader, parent) { 2793 list_for_each_entry(child, &parent->children, sibling) { 2794 res = visitor(child, data); 2795 if (res) { 2796 if (res < 0) 2797 goto out; 2798 leader = child; 2799 goto down; 2800 } 2801 up: 2802 ; 2803 } 2804 } 2805 2806 if (leader != top) { 2807 child = leader; 2808 parent = child->real_parent; 2809 leader = parent->group_leader; 2810 goto up; 2811 } 2812 out: 2813 read_unlock(&tasklist_lock); 2814 } 2815 2816 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2817 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2818 #endif 2819 2820 static void sighand_ctor(void *data) 2821 { 2822 struct sighand_struct *sighand = data; 2823 2824 spin_lock_init(&sighand->siglock); 2825 init_waitqueue_head(&sighand->signalfd_wqh); 2826 } 2827 2828 void __init proc_caches_init(void) 2829 { 2830 unsigned int mm_size; 2831 2832 sighand_cachep = kmem_cache_create("sighand_cache", 2833 sizeof(struct sighand_struct), 0, 2834 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2835 SLAB_ACCOUNT, sighand_ctor); 2836 signal_cachep = kmem_cache_create("signal_cache", 2837 sizeof(struct signal_struct), 0, 2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2839 NULL); 2840 files_cachep = kmem_cache_create("files_cache", 2841 sizeof(struct files_struct), 0, 2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2843 NULL); 2844 fs_cachep = kmem_cache_create("fs_cache", 2845 sizeof(struct fs_struct), 0, 2846 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2847 NULL); 2848 2849 /* 2850 * The mm_cpumask is located at the end of mm_struct, and is 2851 * dynamically sized based on the maximum CPU number this system 2852 * can have, taking hotplug into account (nr_cpu_ids). 2853 */ 2854 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2855 2856 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2857 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2858 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2859 offsetof(struct mm_struct, saved_auxv), 2860 sizeof_field(struct mm_struct, saved_auxv), 2861 NULL); 2862 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2863 mmap_init(); 2864 nsproxy_cache_init(); 2865 } 2866 2867 /* 2868 * Check constraints on flags passed to the unshare system call. 2869 */ 2870 static int check_unshare_flags(unsigned long unshare_flags) 2871 { 2872 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2873 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2874 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2875 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2876 CLONE_NEWTIME)) 2877 return -EINVAL; 2878 /* 2879 * Not implemented, but pretend it works if there is nothing 2880 * to unshare. Note that unsharing the address space or the 2881 * signal handlers also need to unshare the signal queues (aka 2882 * CLONE_THREAD). 2883 */ 2884 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2885 if (!thread_group_empty(current)) 2886 return -EINVAL; 2887 } 2888 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2889 if (refcount_read(¤t->sighand->count) > 1) 2890 return -EINVAL; 2891 } 2892 if (unshare_flags & CLONE_VM) { 2893 if (!current_is_single_threaded()) 2894 return -EINVAL; 2895 } 2896 2897 return 0; 2898 } 2899 2900 /* 2901 * Unshare the filesystem structure if it is being shared 2902 */ 2903 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2904 { 2905 struct fs_struct *fs = current->fs; 2906 2907 if (!(unshare_flags & CLONE_FS) || !fs) 2908 return 0; 2909 2910 /* don't need lock here; in the worst case we'll do useless copy */ 2911 if (fs->users == 1) 2912 return 0; 2913 2914 *new_fsp = copy_fs_struct(fs); 2915 if (!*new_fsp) 2916 return -ENOMEM; 2917 2918 return 0; 2919 } 2920 2921 /* 2922 * Unshare file descriptor table if it is being shared 2923 */ 2924 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2925 struct files_struct **new_fdp) 2926 { 2927 struct files_struct *fd = current->files; 2928 int error = 0; 2929 2930 if ((unshare_flags & CLONE_FILES) && 2931 (fd && atomic_read(&fd->count) > 1)) { 2932 *new_fdp = dup_fd(fd, max_fds, &error); 2933 if (!*new_fdp) 2934 return error; 2935 } 2936 2937 return 0; 2938 } 2939 2940 /* 2941 * unshare allows a process to 'unshare' part of the process 2942 * context which was originally shared using clone. copy_* 2943 * functions used by kernel_clone() cannot be used here directly 2944 * because they modify an inactive task_struct that is being 2945 * constructed. Here we are modifying the current, active, 2946 * task_struct. 2947 */ 2948 int ksys_unshare(unsigned long unshare_flags) 2949 { 2950 struct fs_struct *fs, *new_fs = NULL; 2951 struct files_struct *fd, *new_fd = NULL; 2952 struct cred *new_cred = NULL; 2953 struct nsproxy *new_nsproxy = NULL; 2954 int do_sysvsem = 0; 2955 int err; 2956 2957 /* 2958 * If unsharing a user namespace must also unshare the thread group 2959 * and unshare the filesystem root and working directories. 2960 */ 2961 if (unshare_flags & CLONE_NEWUSER) 2962 unshare_flags |= CLONE_THREAD | CLONE_FS; 2963 /* 2964 * If unsharing vm, must also unshare signal handlers. 2965 */ 2966 if (unshare_flags & CLONE_VM) 2967 unshare_flags |= CLONE_SIGHAND; 2968 /* 2969 * If unsharing a signal handlers, must also unshare the signal queues. 2970 */ 2971 if (unshare_flags & CLONE_SIGHAND) 2972 unshare_flags |= CLONE_THREAD; 2973 /* 2974 * If unsharing namespace, must also unshare filesystem information. 2975 */ 2976 if (unshare_flags & CLONE_NEWNS) 2977 unshare_flags |= CLONE_FS; 2978 2979 err = check_unshare_flags(unshare_flags); 2980 if (err) 2981 goto bad_unshare_out; 2982 /* 2983 * CLONE_NEWIPC must also detach from the undolist: after switching 2984 * to a new ipc namespace, the semaphore arrays from the old 2985 * namespace are unreachable. 2986 */ 2987 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2988 do_sysvsem = 1; 2989 err = unshare_fs(unshare_flags, &new_fs); 2990 if (err) 2991 goto bad_unshare_out; 2992 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2993 if (err) 2994 goto bad_unshare_cleanup_fs; 2995 err = unshare_userns(unshare_flags, &new_cred); 2996 if (err) 2997 goto bad_unshare_cleanup_fd; 2998 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2999 new_cred, new_fs); 3000 if (err) 3001 goto bad_unshare_cleanup_cred; 3002 3003 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3004 if (do_sysvsem) { 3005 /* 3006 * CLONE_SYSVSEM is equivalent to sys_exit(). 3007 */ 3008 exit_sem(current); 3009 } 3010 if (unshare_flags & CLONE_NEWIPC) { 3011 /* Orphan segments in old ns (see sem above). */ 3012 exit_shm(current); 3013 shm_init_task(current); 3014 } 3015 3016 if (new_nsproxy) 3017 switch_task_namespaces(current, new_nsproxy); 3018 3019 task_lock(current); 3020 3021 if (new_fs) { 3022 fs = current->fs; 3023 spin_lock(&fs->lock); 3024 current->fs = new_fs; 3025 if (--fs->users) 3026 new_fs = NULL; 3027 else 3028 new_fs = fs; 3029 spin_unlock(&fs->lock); 3030 } 3031 3032 if (new_fd) { 3033 fd = current->files; 3034 current->files = new_fd; 3035 new_fd = fd; 3036 } 3037 3038 task_unlock(current); 3039 3040 if (new_cred) { 3041 /* Install the new user namespace */ 3042 commit_creds(new_cred); 3043 new_cred = NULL; 3044 } 3045 } 3046 3047 perf_event_namespaces(current); 3048 3049 bad_unshare_cleanup_cred: 3050 if (new_cred) 3051 put_cred(new_cred); 3052 bad_unshare_cleanup_fd: 3053 if (new_fd) 3054 put_files_struct(new_fd); 3055 3056 bad_unshare_cleanup_fs: 3057 if (new_fs) 3058 free_fs_struct(new_fs); 3059 3060 bad_unshare_out: 3061 return err; 3062 } 3063 3064 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3065 { 3066 return ksys_unshare(unshare_flags); 3067 } 3068 3069 /* 3070 * Helper to unshare the files of the current task. 3071 * We don't want to expose copy_files internals to 3072 * the exec layer of the kernel. 3073 */ 3074 3075 int unshare_files(void) 3076 { 3077 struct task_struct *task = current; 3078 struct files_struct *old, *copy = NULL; 3079 int error; 3080 3081 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3082 if (error || !copy) 3083 return error; 3084 3085 old = task->files; 3086 task_lock(task); 3087 task->files = copy; 3088 task_unlock(task); 3089 put_files_struct(old); 3090 return 0; 3091 } 3092 3093 int sysctl_max_threads(struct ctl_table *table, int write, 3094 void *buffer, size_t *lenp, loff_t *ppos) 3095 { 3096 struct ctl_table t; 3097 int ret; 3098 int threads = max_threads; 3099 int min = 1; 3100 int max = MAX_THREADS; 3101 3102 t = *table; 3103 t.data = &threads; 3104 t.extra1 = &min; 3105 t.extra2 = &max; 3106 3107 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3108 if (ret || !write) 3109 return ret; 3110 3111 max_threads = threads; 3112 3113 return 0; 3114 } 3115