xref: /openbmc/linux/kernel/fork.c (revision 367b8112)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 #include <trace/sched.h>
62 
63 #include <asm/pgtable.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
69 
70 /*
71  * Protected counters by write_lock_irq(&tasklist_lock)
72  */
73 unsigned long total_forks;	/* Handle normal Linux uptimes. */
74 int nr_threads; 		/* The idle threads do not count.. */
75 
76 int max_threads;		/* tunable limit on nr_threads */
77 
78 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79 
80 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
81 
82 int nr_processes(void)
83 {
84 	int cpu;
85 	int total = 0;
86 
87 	for_each_online_cpu(cpu)
88 		total += per_cpu(process_counts, cpu);
89 
90 	return total;
91 }
92 
93 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
94 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
95 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
96 static struct kmem_cache *task_struct_cachep;
97 #endif
98 
99 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
100 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 {
102 #ifdef CONFIG_DEBUG_STACK_USAGE
103 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
104 #else
105 	gfp_t mask = GFP_KERNEL;
106 #endif
107 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
108 }
109 
110 static inline void free_thread_info(struct thread_info *ti)
111 {
112 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 }
114 #endif
115 
116 /* SLAB cache for signal_struct structures (tsk->signal) */
117 static struct kmem_cache *signal_cachep;
118 
119 /* SLAB cache for sighand_struct structures (tsk->sighand) */
120 struct kmem_cache *sighand_cachep;
121 
122 /* SLAB cache for files_struct structures (tsk->files) */
123 struct kmem_cache *files_cachep;
124 
125 /* SLAB cache for fs_struct structures (tsk->fs) */
126 struct kmem_cache *fs_cachep;
127 
128 /* SLAB cache for vm_area_struct structures */
129 struct kmem_cache *vm_area_cachep;
130 
131 /* SLAB cache for mm_struct structures (tsk->mm) */
132 static struct kmem_cache *mm_cachep;
133 
134 void free_task(struct task_struct *tsk)
135 {
136 	prop_local_destroy_single(&tsk->dirties);
137 	free_thread_info(tsk->stack);
138 	rt_mutex_debug_task_free(tsk);
139 	free_task_struct(tsk);
140 }
141 EXPORT_SYMBOL(free_task);
142 
143 void __put_task_struct(struct task_struct *tsk)
144 {
145 	WARN_ON(!tsk->exit_state);
146 	WARN_ON(atomic_read(&tsk->usage));
147 	WARN_ON(tsk == current);
148 
149 	security_task_free(tsk);
150 	free_uid(tsk->user);
151 	put_group_info(tsk->group_info);
152 	delayacct_tsk_free(tsk);
153 
154 	if (!profile_handoff_task(tsk))
155 		free_task(tsk);
156 }
157 
158 /*
159  * macro override instead of weak attribute alias, to workaround
160  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
161  */
162 #ifndef arch_task_cache_init
163 #define arch_task_cache_init()
164 #endif
165 
166 void __init fork_init(unsigned long mempages)
167 {
168 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
169 #ifndef ARCH_MIN_TASKALIGN
170 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
171 #endif
172 	/* create a slab on which task_structs can be allocated */
173 	task_struct_cachep =
174 		kmem_cache_create("task_struct", sizeof(struct task_struct),
175 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
176 #endif
177 
178 	/* do the arch specific task caches init */
179 	arch_task_cache_init();
180 
181 	/*
182 	 * The default maximum number of threads is set to a safe
183 	 * value: the thread structures can take up at most half
184 	 * of memory.
185 	 */
186 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
187 
188 	/*
189 	 * we need to allow at least 20 threads to boot a system
190 	 */
191 	if(max_threads < 20)
192 		max_threads = 20;
193 
194 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
195 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
196 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
197 		init_task.signal->rlim[RLIMIT_NPROC];
198 }
199 
200 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
201 					       struct task_struct *src)
202 {
203 	*dst = *src;
204 	return 0;
205 }
206 
207 static struct task_struct *dup_task_struct(struct task_struct *orig)
208 {
209 	struct task_struct *tsk;
210 	struct thread_info *ti;
211 	int err;
212 
213 	prepare_to_copy(orig);
214 
215 	tsk = alloc_task_struct();
216 	if (!tsk)
217 		return NULL;
218 
219 	ti = alloc_thread_info(tsk);
220 	if (!ti) {
221 		free_task_struct(tsk);
222 		return NULL;
223 	}
224 
225  	err = arch_dup_task_struct(tsk, orig);
226 	if (err)
227 		goto out;
228 
229 	tsk->stack = ti;
230 
231 	err = prop_local_init_single(&tsk->dirties);
232 	if (err)
233 		goto out;
234 
235 	setup_thread_stack(tsk, orig);
236 
237 #ifdef CONFIG_CC_STACKPROTECTOR
238 	tsk->stack_canary = get_random_int();
239 #endif
240 
241 	/* One for us, one for whoever does the "release_task()" (usually parent) */
242 	atomic_set(&tsk->usage,2);
243 	atomic_set(&tsk->fs_excl, 0);
244 #ifdef CONFIG_BLK_DEV_IO_TRACE
245 	tsk->btrace_seq = 0;
246 #endif
247 	tsk->splice_pipe = NULL;
248 	return tsk;
249 
250 out:
251 	free_thread_info(ti);
252 	free_task_struct(tsk);
253 	return NULL;
254 }
255 
256 #ifdef CONFIG_MMU
257 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
258 {
259 	struct vm_area_struct *mpnt, *tmp, **pprev;
260 	struct rb_node **rb_link, *rb_parent;
261 	int retval;
262 	unsigned long charge;
263 	struct mempolicy *pol;
264 
265 	down_write(&oldmm->mmap_sem);
266 	flush_cache_dup_mm(oldmm);
267 	/*
268 	 * Not linked in yet - no deadlock potential:
269 	 */
270 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
271 
272 	mm->locked_vm = 0;
273 	mm->mmap = NULL;
274 	mm->mmap_cache = NULL;
275 	mm->free_area_cache = oldmm->mmap_base;
276 	mm->cached_hole_size = ~0UL;
277 	mm->map_count = 0;
278 	cpus_clear(mm->cpu_vm_mask);
279 	mm->mm_rb = RB_ROOT;
280 	rb_link = &mm->mm_rb.rb_node;
281 	rb_parent = NULL;
282 	pprev = &mm->mmap;
283 
284 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
285 		struct file *file;
286 
287 		if (mpnt->vm_flags & VM_DONTCOPY) {
288 			long pages = vma_pages(mpnt);
289 			mm->total_vm -= pages;
290 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
291 								-pages);
292 			continue;
293 		}
294 		charge = 0;
295 		if (mpnt->vm_flags & VM_ACCOUNT) {
296 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
297 			if (security_vm_enough_memory(len))
298 				goto fail_nomem;
299 			charge = len;
300 		}
301 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
302 		if (!tmp)
303 			goto fail_nomem;
304 		*tmp = *mpnt;
305 		pol = mpol_dup(vma_policy(mpnt));
306 		retval = PTR_ERR(pol);
307 		if (IS_ERR(pol))
308 			goto fail_nomem_policy;
309 		vma_set_policy(tmp, pol);
310 		tmp->vm_flags &= ~VM_LOCKED;
311 		tmp->vm_mm = mm;
312 		tmp->vm_next = NULL;
313 		anon_vma_link(tmp);
314 		file = tmp->vm_file;
315 		if (file) {
316 			struct inode *inode = file->f_path.dentry->d_inode;
317 			get_file(file);
318 			if (tmp->vm_flags & VM_DENYWRITE)
319 				atomic_dec(&inode->i_writecount);
320 
321 			/* insert tmp into the share list, just after mpnt */
322 			spin_lock(&file->f_mapping->i_mmap_lock);
323 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
324 			flush_dcache_mmap_lock(file->f_mapping);
325 			vma_prio_tree_add(tmp, mpnt);
326 			flush_dcache_mmap_unlock(file->f_mapping);
327 			spin_unlock(&file->f_mapping->i_mmap_lock);
328 		}
329 
330 		/*
331 		 * Clear hugetlb-related page reserves for children. This only
332 		 * affects MAP_PRIVATE mappings. Faults generated by the child
333 		 * are not guaranteed to succeed, even if read-only
334 		 */
335 		if (is_vm_hugetlb_page(tmp))
336 			reset_vma_resv_huge_pages(tmp);
337 
338 		/*
339 		 * Link in the new vma and copy the page table entries.
340 		 */
341 		*pprev = tmp;
342 		pprev = &tmp->vm_next;
343 
344 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
345 		rb_link = &tmp->vm_rb.rb_right;
346 		rb_parent = &tmp->vm_rb;
347 
348 		mm->map_count++;
349 		retval = copy_page_range(mm, oldmm, mpnt);
350 
351 		if (tmp->vm_ops && tmp->vm_ops->open)
352 			tmp->vm_ops->open(tmp);
353 
354 		if (retval)
355 			goto out;
356 	}
357 	/* a new mm has just been created */
358 	arch_dup_mmap(oldmm, mm);
359 	retval = 0;
360 out:
361 	up_write(&mm->mmap_sem);
362 	flush_tlb_mm(oldmm);
363 	up_write(&oldmm->mmap_sem);
364 	return retval;
365 fail_nomem_policy:
366 	kmem_cache_free(vm_area_cachep, tmp);
367 fail_nomem:
368 	retval = -ENOMEM;
369 	vm_unacct_memory(charge);
370 	goto out;
371 }
372 
373 static inline int mm_alloc_pgd(struct mm_struct * mm)
374 {
375 	mm->pgd = pgd_alloc(mm);
376 	if (unlikely(!mm->pgd))
377 		return -ENOMEM;
378 	return 0;
379 }
380 
381 static inline void mm_free_pgd(struct mm_struct * mm)
382 {
383 	pgd_free(mm, mm->pgd);
384 }
385 #else
386 #define dup_mmap(mm, oldmm)	(0)
387 #define mm_alloc_pgd(mm)	(0)
388 #define mm_free_pgd(mm)
389 #endif /* CONFIG_MMU */
390 
391 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
392 
393 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
394 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
395 
396 #include <linux/init_task.h>
397 
398 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
399 {
400 	atomic_set(&mm->mm_users, 1);
401 	atomic_set(&mm->mm_count, 1);
402 	init_rwsem(&mm->mmap_sem);
403 	INIT_LIST_HEAD(&mm->mmlist);
404 	mm->flags = (current->mm) ? current->mm->flags
405 				  : MMF_DUMP_FILTER_DEFAULT;
406 	mm->core_state = NULL;
407 	mm->nr_ptes = 0;
408 	set_mm_counter(mm, file_rss, 0);
409 	set_mm_counter(mm, anon_rss, 0);
410 	spin_lock_init(&mm->page_table_lock);
411 	rwlock_init(&mm->ioctx_list_lock);
412 	mm->ioctx_list = NULL;
413 	mm->free_area_cache = TASK_UNMAPPED_BASE;
414 	mm->cached_hole_size = ~0UL;
415 	mm_init_owner(mm, p);
416 
417 	if (likely(!mm_alloc_pgd(mm))) {
418 		mm->def_flags = 0;
419 		mmu_notifier_mm_init(mm);
420 		return mm;
421 	}
422 
423 	free_mm(mm);
424 	return NULL;
425 }
426 
427 /*
428  * Allocate and initialize an mm_struct.
429  */
430 struct mm_struct * mm_alloc(void)
431 {
432 	struct mm_struct * mm;
433 
434 	mm = allocate_mm();
435 	if (mm) {
436 		memset(mm, 0, sizeof(*mm));
437 		mm = mm_init(mm, current);
438 	}
439 	return mm;
440 }
441 
442 /*
443  * Called when the last reference to the mm
444  * is dropped: either by a lazy thread or by
445  * mmput. Free the page directory and the mm.
446  */
447 void __mmdrop(struct mm_struct *mm)
448 {
449 	BUG_ON(mm == &init_mm);
450 	mm_free_pgd(mm);
451 	destroy_context(mm);
452 	mmu_notifier_mm_destroy(mm);
453 	free_mm(mm);
454 }
455 EXPORT_SYMBOL_GPL(__mmdrop);
456 
457 /*
458  * Decrement the use count and release all resources for an mm.
459  */
460 void mmput(struct mm_struct *mm)
461 {
462 	might_sleep();
463 
464 	if (atomic_dec_and_test(&mm->mm_users)) {
465 		exit_aio(mm);
466 		exit_mmap(mm);
467 		set_mm_exe_file(mm, NULL);
468 		if (!list_empty(&mm->mmlist)) {
469 			spin_lock(&mmlist_lock);
470 			list_del(&mm->mmlist);
471 			spin_unlock(&mmlist_lock);
472 		}
473 		put_swap_token(mm);
474 		mmdrop(mm);
475 	}
476 }
477 EXPORT_SYMBOL_GPL(mmput);
478 
479 /**
480  * get_task_mm - acquire a reference to the task's mm
481  *
482  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
483  * this kernel workthread has transiently adopted a user mm with use_mm,
484  * to do its AIO) is not set and if so returns a reference to it, after
485  * bumping up the use count.  User must release the mm via mmput()
486  * after use.  Typically used by /proc and ptrace.
487  */
488 struct mm_struct *get_task_mm(struct task_struct *task)
489 {
490 	struct mm_struct *mm;
491 
492 	task_lock(task);
493 	mm = task->mm;
494 	if (mm) {
495 		if (task->flags & PF_KTHREAD)
496 			mm = NULL;
497 		else
498 			atomic_inc(&mm->mm_users);
499 	}
500 	task_unlock(task);
501 	return mm;
502 }
503 EXPORT_SYMBOL_GPL(get_task_mm);
504 
505 /* Please note the differences between mmput and mm_release.
506  * mmput is called whenever we stop holding onto a mm_struct,
507  * error success whatever.
508  *
509  * mm_release is called after a mm_struct has been removed
510  * from the current process.
511  *
512  * This difference is important for error handling, when we
513  * only half set up a mm_struct for a new process and need to restore
514  * the old one.  Because we mmput the new mm_struct before
515  * restoring the old one. . .
516  * Eric Biederman 10 January 1998
517  */
518 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
519 {
520 	struct completion *vfork_done = tsk->vfork_done;
521 
522 	/* Get rid of any cached register state */
523 	deactivate_mm(tsk, mm);
524 
525 	/* notify parent sleeping on vfork() */
526 	if (vfork_done) {
527 		tsk->vfork_done = NULL;
528 		complete(vfork_done);
529 	}
530 
531 	/*
532 	 * If we're exiting normally, clear a user-space tid field if
533 	 * requested.  We leave this alone when dying by signal, to leave
534 	 * the value intact in a core dump, and to save the unnecessary
535 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
536 	 */
537 	if (tsk->clear_child_tid
538 	    && !(tsk->flags & PF_SIGNALED)
539 	    && atomic_read(&mm->mm_users) > 1) {
540 		u32 __user * tidptr = tsk->clear_child_tid;
541 		tsk->clear_child_tid = NULL;
542 
543 		/*
544 		 * We don't check the error code - if userspace has
545 		 * not set up a proper pointer then tough luck.
546 		 */
547 		put_user(0, tidptr);
548 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
549 	}
550 }
551 
552 /*
553  * Allocate a new mm structure and copy contents from the
554  * mm structure of the passed in task structure.
555  */
556 struct mm_struct *dup_mm(struct task_struct *tsk)
557 {
558 	struct mm_struct *mm, *oldmm = current->mm;
559 	int err;
560 
561 	if (!oldmm)
562 		return NULL;
563 
564 	mm = allocate_mm();
565 	if (!mm)
566 		goto fail_nomem;
567 
568 	memcpy(mm, oldmm, sizeof(*mm));
569 
570 	/* Initializing for Swap token stuff */
571 	mm->token_priority = 0;
572 	mm->last_interval = 0;
573 
574 	if (!mm_init(mm, tsk))
575 		goto fail_nomem;
576 
577 	if (init_new_context(tsk, mm))
578 		goto fail_nocontext;
579 
580 	dup_mm_exe_file(oldmm, mm);
581 
582 	err = dup_mmap(mm, oldmm);
583 	if (err)
584 		goto free_pt;
585 
586 	mm->hiwater_rss = get_mm_rss(mm);
587 	mm->hiwater_vm = mm->total_vm;
588 
589 	return mm;
590 
591 free_pt:
592 	mmput(mm);
593 
594 fail_nomem:
595 	return NULL;
596 
597 fail_nocontext:
598 	/*
599 	 * If init_new_context() failed, we cannot use mmput() to free the mm
600 	 * because it calls destroy_context()
601 	 */
602 	mm_free_pgd(mm);
603 	free_mm(mm);
604 	return NULL;
605 }
606 
607 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
608 {
609 	struct mm_struct * mm, *oldmm;
610 	int retval;
611 
612 	tsk->min_flt = tsk->maj_flt = 0;
613 	tsk->nvcsw = tsk->nivcsw = 0;
614 
615 	tsk->mm = NULL;
616 	tsk->active_mm = NULL;
617 
618 	/*
619 	 * Are we cloning a kernel thread?
620 	 *
621 	 * We need to steal a active VM for that..
622 	 */
623 	oldmm = current->mm;
624 	if (!oldmm)
625 		return 0;
626 
627 	if (clone_flags & CLONE_VM) {
628 		atomic_inc(&oldmm->mm_users);
629 		mm = oldmm;
630 		goto good_mm;
631 	}
632 
633 	retval = -ENOMEM;
634 	mm = dup_mm(tsk);
635 	if (!mm)
636 		goto fail_nomem;
637 
638 good_mm:
639 	/* Initializing for Swap token stuff */
640 	mm->token_priority = 0;
641 	mm->last_interval = 0;
642 
643 	tsk->mm = mm;
644 	tsk->active_mm = mm;
645 	return 0;
646 
647 fail_nomem:
648 	return retval;
649 }
650 
651 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
652 {
653 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
654 	/* We don't need to lock fs - think why ;-) */
655 	if (fs) {
656 		atomic_set(&fs->count, 1);
657 		rwlock_init(&fs->lock);
658 		fs->umask = old->umask;
659 		read_lock(&old->lock);
660 		fs->root = old->root;
661 		path_get(&old->root);
662 		fs->pwd = old->pwd;
663 		path_get(&old->pwd);
664 		read_unlock(&old->lock);
665 	}
666 	return fs;
667 }
668 
669 struct fs_struct *copy_fs_struct(struct fs_struct *old)
670 {
671 	return __copy_fs_struct(old);
672 }
673 
674 EXPORT_SYMBOL_GPL(copy_fs_struct);
675 
676 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
677 {
678 	if (clone_flags & CLONE_FS) {
679 		atomic_inc(&current->fs->count);
680 		return 0;
681 	}
682 	tsk->fs = __copy_fs_struct(current->fs);
683 	if (!tsk->fs)
684 		return -ENOMEM;
685 	return 0;
686 }
687 
688 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
689 {
690 	struct files_struct *oldf, *newf;
691 	int error = 0;
692 
693 	/*
694 	 * A background process may not have any files ...
695 	 */
696 	oldf = current->files;
697 	if (!oldf)
698 		goto out;
699 
700 	if (clone_flags & CLONE_FILES) {
701 		atomic_inc(&oldf->count);
702 		goto out;
703 	}
704 
705 	newf = dup_fd(oldf, &error);
706 	if (!newf)
707 		goto out;
708 
709 	tsk->files = newf;
710 	error = 0;
711 out:
712 	return error;
713 }
714 
715 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
716 {
717 #ifdef CONFIG_BLOCK
718 	struct io_context *ioc = current->io_context;
719 
720 	if (!ioc)
721 		return 0;
722 	/*
723 	 * Share io context with parent, if CLONE_IO is set
724 	 */
725 	if (clone_flags & CLONE_IO) {
726 		tsk->io_context = ioc_task_link(ioc);
727 		if (unlikely(!tsk->io_context))
728 			return -ENOMEM;
729 	} else if (ioprio_valid(ioc->ioprio)) {
730 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
731 		if (unlikely(!tsk->io_context))
732 			return -ENOMEM;
733 
734 		tsk->io_context->ioprio = ioc->ioprio;
735 	}
736 #endif
737 	return 0;
738 }
739 
740 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
741 {
742 	struct sighand_struct *sig;
743 
744 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
745 		atomic_inc(&current->sighand->count);
746 		return 0;
747 	}
748 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
749 	rcu_assign_pointer(tsk->sighand, sig);
750 	if (!sig)
751 		return -ENOMEM;
752 	atomic_set(&sig->count, 1);
753 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
754 	return 0;
755 }
756 
757 void __cleanup_sighand(struct sighand_struct *sighand)
758 {
759 	if (atomic_dec_and_test(&sighand->count))
760 		kmem_cache_free(sighand_cachep, sighand);
761 }
762 
763 
764 /*
765  * Initialize POSIX timer handling for a thread group.
766  */
767 static void posix_cpu_timers_init_group(struct signal_struct *sig)
768 {
769 	/* Thread group counters. */
770 	thread_group_cputime_init(sig);
771 
772 	/* Expiration times and increments. */
773 	sig->it_virt_expires = cputime_zero;
774 	sig->it_virt_incr = cputime_zero;
775 	sig->it_prof_expires = cputime_zero;
776 	sig->it_prof_incr = cputime_zero;
777 
778 	/* Cached expiration times. */
779 	sig->cputime_expires.prof_exp = cputime_zero;
780 	sig->cputime_expires.virt_exp = cputime_zero;
781 	sig->cputime_expires.sched_exp = 0;
782 
783 	/* The timer lists. */
784 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
785 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
786 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
787 }
788 
789 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
790 {
791 	struct signal_struct *sig;
792 	int ret;
793 
794 	if (clone_flags & CLONE_THREAD) {
795 		ret = thread_group_cputime_clone_thread(current);
796 		if (likely(!ret)) {
797 			atomic_inc(&current->signal->count);
798 			atomic_inc(&current->signal->live);
799 		}
800 		return ret;
801 	}
802 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
803 	tsk->signal = sig;
804 	if (!sig)
805 		return -ENOMEM;
806 
807 	ret = copy_thread_group_keys(tsk);
808 	if (ret < 0) {
809 		kmem_cache_free(signal_cachep, sig);
810 		return ret;
811 	}
812 
813 	atomic_set(&sig->count, 1);
814 	atomic_set(&sig->live, 1);
815 	init_waitqueue_head(&sig->wait_chldexit);
816 	sig->flags = 0;
817 	sig->group_exit_code = 0;
818 	sig->group_exit_task = NULL;
819 	sig->group_stop_count = 0;
820 	sig->curr_target = tsk;
821 	init_sigpending(&sig->shared_pending);
822 	INIT_LIST_HEAD(&sig->posix_timers);
823 
824 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
825 	sig->it_real_incr.tv64 = 0;
826 	sig->real_timer.function = it_real_fn;
827 
828 	sig->leader = 0;	/* session leadership doesn't inherit */
829 	sig->tty_old_pgrp = NULL;
830 	sig->tty = NULL;
831 
832 	sig->cutime = sig->cstime = cputime_zero;
833 	sig->gtime = cputime_zero;
834 	sig->cgtime = cputime_zero;
835 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
836 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
837 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
838 	task_io_accounting_init(&sig->ioac);
839 	taskstats_tgid_init(sig);
840 
841 	task_lock(current->group_leader);
842 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
843 	task_unlock(current->group_leader);
844 
845 	posix_cpu_timers_init_group(sig);
846 
847 	acct_init_pacct(&sig->pacct);
848 
849 	tty_audit_fork(sig);
850 
851 	return 0;
852 }
853 
854 void __cleanup_signal(struct signal_struct *sig)
855 {
856 	thread_group_cputime_free(sig);
857 	exit_thread_group_keys(sig);
858 	tty_kref_put(sig->tty);
859 	kmem_cache_free(signal_cachep, sig);
860 }
861 
862 static void cleanup_signal(struct task_struct *tsk)
863 {
864 	struct signal_struct *sig = tsk->signal;
865 
866 	atomic_dec(&sig->live);
867 
868 	if (atomic_dec_and_test(&sig->count))
869 		__cleanup_signal(sig);
870 }
871 
872 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
873 {
874 	unsigned long new_flags = p->flags;
875 
876 	new_flags &= ~PF_SUPERPRIV;
877 	new_flags |= PF_FORKNOEXEC;
878 	new_flags |= PF_STARTING;
879 	p->flags = new_flags;
880 	clear_freeze_flag(p);
881 }
882 
883 asmlinkage long sys_set_tid_address(int __user *tidptr)
884 {
885 	current->clear_child_tid = tidptr;
886 
887 	return task_pid_vnr(current);
888 }
889 
890 static void rt_mutex_init_task(struct task_struct *p)
891 {
892 	spin_lock_init(&p->pi_lock);
893 #ifdef CONFIG_RT_MUTEXES
894 	plist_head_init(&p->pi_waiters, &p->pi_lock);
895 	p->pi_blocked_on = NULL;
896 #endif
897 }
898 
899 #ifdef CONFIG_MM_OWNER
900 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
901 {
902 	mm->owner = p;
903 }
904 #endif /* CONFIG_MM_OWNER */
905 
906 /*
907  * Initialize POSIX timer handling for a single task.
908  */
909 static void posix_cpu_timers_init(struct task_struct *tsk)
910 {
911 	tsk->cputime_expires.prof_exp = cputime_zero;
912 	tsk->cputime_expires.virt_exp = cputime_zero;
913 	tsk->cputime_expires.sched_exp = 0;
914 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
915 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
916 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
917 }
918 
919 /*
920  * This creates a new process as a copy of the old one,
921  * but does not actually start it yet.
922  *
923  * It copies the registers, and all the appropriate
924  * parts of the process environment (as per the clone
925  * flags). The actual kick-off is left to the caller.
926  */
927 static struct task_struct *copy_process(unsigned long clone_flags,
928 					unsigned long stack_start,
929 					struct pt_regs *regs,
930 					unsigned long stack_size,
931 					int __user *child_tidptr,
932 					struct pid *pid,
933 					int trace)
934 {
935 	int retval;
936 	struct task_struct *p;
937 	int cgroup_callbacks_done = 0;
938 
939 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
940 		return ERR_PTR(-EINVAL);
941 
942 	/*
943 	 * Thread groups must share signals as well, and detached threads
944 	 * can only be started up within the thread group.
945 	 */
946 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
947 		return ERR_PTR(-EINVAL);
948 
949 	/*
950 	 * Shared signal handlers imply shared VM. By way of the above,
951 	 * thread groups also imply shared VM. Blocking this case allows
952 	 * for various simplifications in other code.
953 	 */
954 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
955 		return ERR_PTR(-EINVAL);
956 
957 	retval = security_task_create(clone_flags);
958 	if (retval)
959 		goto fork_out;
960 
961 	retval = -ENOMEM;
962 	p = dup_task_struct(current);
963 	if (!p)
964 		goto fork_out;
965 
966 	rt_mutex_init_task(p);
967 
968 #ifdef CONFIG_PROVE_LOCKING
969 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
970 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
971 #endif
972 	retval = -EAGAIN;
973 	if (atomic_read(&p->user->processes) >=
974 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
975 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
976 		    p->user != current->nsproxy->user_ns->root_user)
977 			goto bad_fork_free;
978 	}
979 
980 	atomic_inc(&p->user->__count);
981 	atomic_inc(&p->user->processes);
982 	get_group_info(p->group_info);
983 
984 	/*
985 	 * If multiple threads are within copy_process(), then this check
986 	 * triggers too late. This doesn't hurt, the check is only there
987 	 * to stop root fork bombs.
988 	 */
989 	if (nr_threads >= max_threads)
990 		goto bad_fork_cleanup_count;
991 
992 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
993 		goto bad_fork_cleanup_count;
994 
995 	if (p->binfmt && !try_module_get(p->binfmt->module))
996 		goto bad_fork_cleanup_put_domain;
997 
998 	p->did_exec = 0;
999 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1000 	copy_flags(clone_flags, p);
1001 	INIT_LIST_HEAD(&p->children);
1002 	INIT_LIST_HEAD(&p->sibling);
1003 #ifdef CONFIG_PREEMPT_RCU
1004 	p->rcu_read_lock_nesting = 0;
1005 	p->rcu_flipctr_idx = 0;
1006 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1007 	p->vfork_done = NULL;
1008 	spin_lock_init(&p->alloc_lock);
1009 
1010 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1011 	init_sigpending(&p->pending);
1012 
1013 	p->utime = cputime_zero;
1014 	p->stime = cputime_zero;
1015 	p->gtime = cputime_zero;
1016 	p->utimescaled = cputime_zero;
1017 	p->stimescaled = cputime_zero;
1018 	p->prev_utime = cputime_zero;
1019 	p->prev_stime = cputime_zero;
1020 
1021 	p->default_timer_slack_ns = current->timer_slack_ns;
1022 
1023 #ifdef CONFIG_DETECT_SOFTLOCKUP
1024 	p->last_switch_count = 0;
1025 	p->last_switch_timestamp = 0;
1026 #endif
1027 
1028 	task_io_accounting_init(&p->ioac);
1029 	acct_clear_integrals(p);
1030 
1031 	posix_cpu_timers_init(p);
1032 
1033 	p->lock_depth = -1;		/* -1 = no lock */
1034 	do_posix_clock_monotonic_gettime(&p->start_time);
1035 	p->real_start_time = p->start_time;
1036 	monotonic_to_bootbased(&p->real_start_time);
1037 #ifdef CONFIG_SECURITY
1038 	p->security = NULL;
1039 #endif
1040 	p->cap_bset = current->cap_bset;
1041 	p->io_context = NULL;
1042 	p->audit_context = NULL;
1043 	cgroup_fork(p);
1044 #ifdef CONFIG_NUMA
1045 	p->mempolicy = mpol_dup(p->mempolicy);
1046  	if (IS_ERR(p->mempolicy)) {
1047  		retval = PTR_ERR(p->mempolicy);
1048  		p->mempolicy = NULL;
1049  		goto bad_fork_cleanup_cgroup;
1050  	}
1051 	mpol_fix_fork_child_flag(p);
1052 #endif
1053 #ifdef CONFIG_TRACE_IRQFLAGS
1054 	p->irq_events = 0;
1055 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1056 	p->hardirqs_enabled = 1;
1057 #else
1058 	p->hardirqs_enabled = 0;
1059 #endif
1060 	p->hardirq_enable_ip = 0;
1061 	p->hardirq_enable_event = 0;
1062 	p->hardirq_disable_ip = _THIS_IP_;
1063 	p->hardirq_disable_event = 0;
1064 	p->softirqs_enabled = 1;
1065 	p->softirq_enable_ip = _THIS_IP_;
1066 	p->softirq_enable_event = 0;
1067 	p->softirq_disable_ip = 0;
1068 	p->softirq_disable_event = 0;
1069 	p->hardirq_context = 0;
1070 	p->softirq_context = 0;
1071 #endif
1072 #ifdef CONFIG_LOCKDEP
1073 	p->lockdep_depth = 0; /* no locks held yet */
1074 	p->curr_chain_key = 0;
1075 	p->lockdep_recursion = 0;
1076 #endif
1077 
1078 #ifdef CONFIG_DEBUG_MUTEXES
1079 	p->blocked_on = NULL; /* not blocked yet */
1080 #endif
1081 
1082 	/* Perform scheduler related setup. Assign this task to a CPU. */
1083 	sched_fork(p, clone_flags);
1084 
1085 	if ((retval = security_task_alloc(p)))
1086 		goto bad_fork_cleanup_policy;
1087 	if ((retval = audit_alloc(p)))
1088 		goto bad_fork_cleanup_security;
1089 	/* copy all the process information */
1090 	if ((retval = copy_semundo(clone_flags, p)))
1091 		goto bad_fork_cleanup_audit;
1092 	if ((retval = copy_files(clone_flags, p)))
1093 		goto bad_fork_cleanup_semundo;
1094 	if ((retval = copy_fs(clone_flags, p)))
1095 		goto bad_fork_cleanup_files;
1096 	if ((retval = copy_sighand(clone_flags, p)))
1097 		goto bad_fork_cleanup_fs;
1098 	if ((retval = copy_signal(clone_flags, p)))
1099 		goto bad_fork_cleanup_sighand;
1100 	if ((retval = copy_mm(clone_flags, p)))
1101 		goto bad_fork_cleanup_signal;
1102 	if ((retval = copy_keys(clone_flags, p)))
1103 		goto bad_fork_cleanup_mm;
1104 	if ((retval = copy_namespaces(clone_flags, p)))
1105 		goto bad_fork_cleanup_keys;
1106 	if ((retval = copy_io(clone_flags, p)))
1107 		goto bad_fork_cleanup_namespaces;
1108 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1109 	if (retval)
1110 		goto bad_fork_cleanup_io;
1111 
1112 	if (pid != &init_struct_pid) {
1113 		retval = -ENOMEM;
1114 		pid = alloc_pid(task_active_pid_ns(p));
1115 		if (!pid)
1116 			goto bad_fork_cleanup_io;
1117 
1118 		if (clone_flags & CLONE_NEWPID) {
1119 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1120 			if (retval < 0)
1121 				goto bad_fork_free_pid;
1122 		}
1123 	}
1124 
1125 	p->pid = pid_nr(pid);
1126 	p->tgid = p->pid;
1127 	if (clone_flags & CLONE_THREAD)
1128 		p->tgid = current->tgid;
1129 
1130 	if (current->nsproxy != p->nsproxy) {
1131 		retval = ns_cgroup_clone(p, pid);
1132 		if (retval)
1133 			goto bad_fork_free_pid;
1134 	}
1135 
1136 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1137 	/*
1138 	 * Clear TID on mm_release()?
1139 	 */
1140 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1141 #ifdef CONFIG_FUTEX
1142 	p->robust_list = NULL;
1143 #ifdef CONFIG_COMPAT
1144 	p->compat_robust_list = NULL;
1145 #endif
1146 	INIT_LIST_HEAD(&p->pi_state_list);
1147 	p->pi_state_cache = NULL;
1148 #endif
1149 	/*
1150 	 * sigaltstack should be cleared when sharing the same VM
1151 	 */
1152 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1153 		p->sas_ss_sp = p->sas_ss_size = 0;
1154 
1155 	/*
1156 	 * Syscall tracing should be turned off in the child regardless
1157 	 * of CLONE_PTRACE.
1158 	 */
1159 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1160 #ifdef TIF_SYSCALL_EMU
1161 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1162 #endif
1163 	clear_all_latency_tracing(p);
1164 
1165 	/* Our parent execution domain becomes current domain
1166 	   These must match for thread signalling to apply */
1167 	p->parent_exec_id = p->self_exec_id;
1168 
1169 	/* ok, now we should be set up.. */
1170 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1171 	p->pdeath_signal = 0;
1172 	p->exit_state = 0;
1173 
1174 	/*
1175 	 * Ok, make it visible to the rest of the system.
1176 	 * We dont wake it up yet.
1177 	 */
1178 	p->group_leader = p;
1179 	INIT_LIST_HEAD(&p->thread_group);
1180 
1181 	/* Now that the task is set up, run cgroup callbacks if
1182 	 * necessary. We need to run them before the task is visible
1183 	 * on the tasklist. */
1184 	cgroup_fork_callbacks(p);
1185 	cgroup_callbacks_done = 1;
1186 
1187 	/* Need tasklist lock for parent etc handling! */
1188 	write_lock_irq(&tasklist_lock);
1189 
1190 	/*
1191 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1192 	 * not be changed, nor will its assigned CPU.
1193 	 *
1194 	 * The cpus_allowed mask of the parent may have changed after it was
1195 	 * copied first time - so re-copy it here, then check the child's CPU
1196 	 * to ensure it is on a valid CPU (and if not, just force it back to
1197 	 * parent's CPU). This avoids alot of nasty races.
1198 	 */
1199 	p->cpus_allowed = current->cpus_allowed;
1200 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1201 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1202 			!cpu_online(task_cpu(p))))
1203 		set_task_cpu(p, smp_processor_id());
1204 
1205 	/* CLONE_PARENT re-uses the old parent */
1206 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1207 		p->real_parent = current->real_parent;
1208 	else
1209 		p->real_parent = current;
1210 
1211 	spin_lock(&current->sighand->siglock);
1212 
1213 	/*
1214 	 * Process group and session signals need to be delivered to just the
1215 	 * parent before the fork or both the parent and the child after the
1216 	 * fork. Restart if a signal comes in before we add the new process to
1217 	 * it's process group.
1218 	 * A fatal signal pending means that current will exit, so the new
1219 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1220  	 */
1221 	recalc_sigpending();
1222 	if (signal_pending(current)) {
1223 		spin_unlock(&current->sighand->siglock);
1224 		write_unlock_irq(&tasklist_lock);
1225 		retval = -ERESTARTNOINTR;
1226 		goto bad_fork_free_pid;
1227 	}
1228 
1229 	if (clone_flags & CLONE_THREAD) {
1230 		p->group_leader = current->group_leader;
1231 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1232 	}
1233 
1234 	if (likely(p->pid)) {
1235 		list_add_tail(&p->sibling, &p->real_parent->children);
1236 		tracehook_finish_clone(p, clone_flags, trace);
1237 
1238 		if (thread_group_leader(p)) {
1239 			if (clone_flags & CLONE_NEWPID)
1240 				p->nsproxy->pid_ns->child_reaper = p;
1241 
1242 			p->signal->leader_pid = pid;
1243 			tty_kref_put(p->signal->tty);
1244 			p->signal->tty = tty_kref_get(current->signal->tty);
1245 			set_task_pgrp(p, task_pgrp_nr(current));
1246 			set_task_session(p, task_session_nr(current));
1247 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1248 			attach_pid(p, PIDTYPE_SID, task_session(current));
1249 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1250 			__get_cpu_var(process_counts)++;
1251 		}
1252 		attach_pid(p, PIDTYPE_PID, pid);
1253 		nr_threads++;
1254 	}
1255 
1256 	total_forks++;
1257 	spin_unlock(&current->sighand->siglock);
1258 	write_unlock_irq(&tasklist_lock);
1259 	proc_fork_connector(p);
1260 	cgroup_post_fork(p);
1261 	return p;
1262 
1263 bad_fork_free_pid:
1264 	if (pid != &init_struct_pid)
1265 		free_pid(pid);
1266 bad_fork_cleanup_io:
1267 	put_io_context(p->io_context);
1268 bad_fork_cleanup_namespaces:
1269 	exit_task_namespaces(p);
1270 bad_fork_cleanup_keys:
1271 	exit_keys(p);
1272 bad_fork_cleanup_mm:
1273 	if (p->mm)
1274 		mmput(p->mm);
1275 bad_fork_cleanup_signal:
1276 	cleanup_signal(p);
1277 bad_fork_cleanup_sighand:
1278 	__cleanup_sighand(p->sighand);
1279 bad_fork_cleanup_fs:
1280 	exit_fs(p); /* blocking */
1281 bad_fork_cleanup_files:
1282 	exit_files(p); /* blocking */
1283 bad_fork_cleanup_semundo:
1284 	exit_sem(p);
1285 bad_fork_cleanup_audit:
1286 	audit_free(p);
1287 bad_fork_cleanup_security:
1288 	security_task_free(p);
1289 bad_fork_cleanup_policy:
1290 #ifdef CONFIG_NUMA
1291 	mpol_put(p->mempolicy);
1292 bad_fork_cleanup_cgroup:
1293 #endif
1294 	cgroup_exit(p, cgroup_callbacks_done);
1295 	delayacct_tsk_free(p);
1296 	if (p->binfmt)
1297 		module_put(p->binfmt->module);
1298 bad_fork_cleanup_put_domain:
1299 	module_put(task_thread_info(p)->exec_domain->module);
1300 bad_fork_cleanup_count:
1301 	put_group_info(p->group_info);
1302 	atomic_dec(&p->user->processes);
1303 	free_uid(p->user);
1304 bad_fork_free:
1305 	free_task(p);
1306 fork_out:
1307 	return ERR_PTR(retval);
1308 }
1309 
1310 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1311 {
1312 	memset(regs, 0, sizeof(struct pt_regs));
1313 	return regs;
1314 }
1315 
1316 struct task_struct * __cpuinit fork_idle(int cpu)
1317 {
1318 	struct task_struct *task;
1319 	struct pt_regs regs;
1320 
1321 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1322 			    &init_struct_pid, 0);
1323 	if (!IS_ERR(task))
1324 		init_idle(task, cpu);
1325 
1326 	return task;
1327 }
1328 
1329 /*
1330  *  Ok, this is the main fork-routine.
1331  *
1332  * It copies the process, and if successful kick-starts
1333  * it and waits for it to finish using the VM if required.
1334  */
1335 long do_fork(unsigned long clone_flags,
1336 	      unsigned long stack_start,
1337 	      struct pt_regs *regs,
1338 	      unsigned long stack_size,
1339 	      int __user *parent_tidptr,
1340 	      int __user *child_tidptr)
1341 {
1342 	struct task_struct *p;
1343 	int trace = 0;
1344 	long nr;
1345 
1346 	/*
1347 	 * We hope to recycle these flags after 2.6.26
1348 	 */
1349 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1350 		static int __read_mostly count = 100;
1351 
1352 		if (count > 0 && printk_ratelimit()) {
1353 			char comm[TASK_COMM_LEN];
1354 
1355 			count--;
1356 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1357 					"clone flags 0x%lx\n",
1358 				get_task_comm(comm, current),
1359 				clone_flags & CLONE_STOPPED);
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * When called from kernel_thread, don't do user tracing stuff.
1365 	 */
1366 	if (likely(user_mode(regs)))
1367 		trace = tracehook_prepare_clone(clone_flags);
1368 
1369 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1370 			 child_tidptr, NULL, trace);
1371 	/*
1372 	 * Do this prior waking up the new thread - the thread pointer
1373 	 * might get invalid after that point, if the thread exits quickly.
1374 	 */
1375 	if (!IS_ERR(p)) {
1376 		struct completion vfork;
1377 
1378 		trace_sched_process_fork(current, p);
1379 
1380 		nr = task_pid_vnr(p);
1381 
1382 		if (clone_flags & CLONE_PARENT_SETTID)
1383 			put_user(nr, parent_tidptr);
1384 
1385 		if (clone_flags & CLONE_VFORK) {
1386 			p->vfork_done = &vfork;
1387 			init_completion(&vfork);
1388 		}
1389 
1390 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1391 
1392 		/*
1393 		 * We set PF_STARTING at creation in case tracing wants to
1394 		 * use this to distinguish a fully live task from one that
1395 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1396 		 * clear it and set the child going.
1397 		 */
1398 		p->flags &= ~PF_STARTING;
1399 
1400 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1401 			/*
1402 			 * We'll start up with an immediate SIGSTOP.
1403 			 */
1404 			sigaddset(&p->pending.signal, SIGSTOP);
1405 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1406 			__set_task_state(p, TASK_STOPPED);
1407 		} else {
1408 			wake_up_new_task(p, clone_flags);
1409 		}
1410 
1411 		tracehook_report_clone_complete(trace, regs,
1412 						clone_flags, nr, p);
1413 
1414 		if (clone_flags & CLONE_VFORK) {
1415 			freezer_do_not_count();
1416 			wait_for_completion(&vfork);
1417 			freezer_count();
1418 			tracehook_report_vfork_done(p, nr);
1419 		}
1420 	} else {
1421 		nr = PTR_ERR(p);
1422 	}
1423 	return nr;
1424 }
1425 
1426 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1427 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1428 #endif
1429 
1430 static void sighand_ctor(void *data)
1431 {
1432 	struct sighand_struct *sighand = data;
1433 
1434 	spin_lock_init(&sighand->siglock);
1435 	init_waitqueue_head(&sighand->signalfd_wqh);
1436 }
1437 
1438 void __init proc_caches_init(void)
1439 {
1440 	sighand_cachep = kmem_cache_create("sighand_cache",
1441 			sizeof(struct sighand_struct), 0,
1442 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1443 			sighand_ctor);
1444 	signal_cachep = kmem_cache_create("signal_cache",
1445 			sizeof(struct signal_struct), 0,
1446 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1447 	files_cachep = kmem_cache_create("files_cache",
1448 			sizeof(struct files_struct), 0,
1449 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1450 	fs_cachep = kmem_cache_create("fs_cache",
1451 			sizeof(struct fs_struct), 0,
1452 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1453 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1454 			sizeof(struct vm_area_struct), 0,
1455 			SLAB_PANIC, NULL);
1456 	mm_cachep = kmem_cache_create("mm_struct",
1457 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1458 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1459 }
1460 
1461 /*
1462  * Check constraints on flags passed to the unshare system call and
1463  * force unsharing of additional process context as appropriate.
1464  */
1465 static void check_unshare_flags(unsigned long *flags_ptr)
1466 {
1467 	/*
1468 	 * If unsharing a thread from a thread group, must also
1469 	 * unshare vm.
1470 	 */
1471 	if (*flags_ptr & CLONE_THREAD)
1472 		*flags_ptr |= CLONE_VM;
1473 
1474 	/*
1475 	 * If unsharing vm, must also unshare signal handlers.
1476 	 */
1477 	if (*flags_ptr & CLONE_VM)
1478 		*flags_ptr |= CLONE_SIGHAND;
1479 
1480 	/*
1481 	 * If unsharing signal handlers and the task was created
1482 	 * using CLONE_THREAD, then must unshare the thread
1483 	 */
1484 	if ((*flags_ptr & CLONE_SIGHAND) &&
1485 	    (atomic_read(&current->signal->count) > 1))
1486 		*flags_ptr |= CLONE_THREAD;
1487 
1488 	/*
1489 	 * If unsharing namespace, must also unshare filesystem information.
1490 	 */
1491 	if (*flags_ptr & CLONE_NEWNS)
1492 		*flags_ptr |= CLONE_FS;
1493 }
1494 
1495 /*
1496  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1497  */
1498 static int unshare_thread(unsigned long unshare_flags)
1499 {
1500 	if (unshare_flags & CLONE_THREAD)
1501 		return -EINVAL;
1502 
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Unshare the filesystem structure if it is being shared
1508  */
1509 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1510 {
1511 	struct fs_struct *fs = current->fs;
1512 
1513 	if ((unshare_flags & CLONE_FS) &&
1514 	    (fs && atomic_read(&fs->count) > 1)) {
1515 		*new_fsp = __copy_fs_struct(current->fs);
1516 		if (!*new_fsp)
1517 			return -ENOMEM;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Unsharing of sighand is not supported yet
1525  */
1526 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1527 {
1528 	struct sighand_struct *sigh = current->sighand;
1529 
1530 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1531 		return -EINVAL;
1532 	else
1533 		return 0;
1534 }
1535 
1536 /*
1537  * Unshare vm if it is being shared
1538  */
1539 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1540 {
1541 	struct mm_struct *mm = current->mm;
1542 
1543 	if ((unshare_flags & CLONE_VM) &&
1544 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1545 		return -EINVAL;
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 /*
1552  * Unshare file descriptor table if it is being shared
1553  */
1554 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1555 {
1556 	struct files_struct *fd = current->files;
1557 	int error = 0;
1558 
1559 	if ((unshare_flags & CLONE_FILES) &&
1560 	    (fd && atomic_read(&fd->count) > 1)) {
1561 		*new_fdp = dup_fd(fd, &error);
1562 		if (!*new_fdp)
1563 			return error;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * unshare allows a process to 'unshare' part of the process
1571  * context which was originally shared using clone.  copy_*
1572  * functions used by do_fork() cannot be used here directly
1573  * because they modify an inactive task_struct that is being
1574  * constructed. Here we are modifying the current, active,
1575  * task_struct.
1576  */
1577 asmlinkage long sys_unshare(unsigned long unshare_flags)
1578 {
1579 	int err = 0;
1580 	struct fs_struct *fs, *new_fs = NULL;
1581 	struct sighand_struct *new_sigh = NULL;
1582 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1583 	struct files_struct *fd, *new_fd = NULL;
1584 	struct nsproxy *new_nsproxy = NULL;
1585 	int do_sysvsem = 0;
1586 
1587 	check_unshare_flags(&unshare_flags);
1588 
1589 	/* Return -EINVAL for all unsupported flags */
1590 	err = -EINVAL;
1591 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1592 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1593 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1594 				CLONE_NEWNET))
1595 		goto bad_unshare_out;
1596 
1597 	/*
1598 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1599 	 * to a new ipc namespace, the semaphore arrays from the old
1600 	 * namespace are unreachable.
1601 	 */
1602 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1603 		do_sysvsem = 1;
1604 	if ((err = unshare_thread(unshare_flags)))
1605 		goto bad_unshare_out;
1606 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1607 		goto bad_unshare_cleanup_thread;
1608 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1609 		goto bad_unshare_cleanup_fs;
1610 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1611 		goto bad_unshare_cleanup_sigh;
1612 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1613 		goto bad_unshare_cleanup_vm;
1614 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1615 			new_fs)))
1616 		goto bad_unshare_cleanup_fd;
1617 
1618 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1619 		if (do_sysvsem) {
1620 			/*
1621 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1622 			 */
1623 			exit_sem(current);
1624 		}
1625 
1626 		if (new_nsproxy) {
1627 			switch_task_namespaces(current, new_nsproxy);
1628 			new_nsproxy = NULL;
1629 		}
1630 
1631 		task_lock(current);
1632 
1633 		if (new_fs) {
1634 			fs = current->fs;
1635 			current->fs = new_fs;
1636 			new_fs = fs;
1637 		}
1638 
1639 		if (new_mm) {
1640 			mm = current->mm;
1641 			active_mm = current->active_mm;
1642 			current->mm = new_mm;
1643 			current->active_mm = new_mm;
1644 			activate_mm(active_mm, new_mm);
1645 			new_mm = mm;
1646 		}
1647 
1648 		if (new_fd) {
1649 			fd = current->files;
1650 			current->files = new_fd;
1651 			new_fd = fd;
1652 		}
1653 
1654 		task_unlock(current);
1655 	}
1656 
1657 	if (new_nsproxy)
1658 		put_nsproxy(new_nsproxy);
1659 
1660 bad_unshare_cleanup_fd:
1661 	if (new_fd)
1662 		put_files_struct(new_fd);
1663 
1664 bad_unshare_cleanup_vm:
1665 	if (new_mm)
1666 		mmput(new_mm);
1667 
1668 bad_unshare_cleanup_sigh:
1669 	if (new_sigh)
1670 		if (atomic_dec_and_test(&new_sigh->count))
1671 			kmem_cache_free(sighand_cachep, new_sigh);
1672 
1673 bad_unshare_cleanup_fs:
1674 	if (new_fs)
1675 		put_fs_struct(new_fs);
1676 
1677 bad_unshare_cleanup_thread:
1678 bad_unshare_out:
1679 	return err;
1680 }
1681 
1682 /*
1683  *	Helper to unshare the files of the current task.
1684  *	We don't want to expose copy_files internals to
1685  *	the exec layer of the kernel.
1686  */
1687 
1688 int unshare_files(struct files_struct **displaced)
1689 {
1690 	struct task_struct *task = current;
1691 	struct files_struct *copy = NULL;
1692 	int error;
1693 
1694 	error = unshare_fd(CLONE_FILES, &copy);
1695 	if (error || !copy) {
1696 		*displaced = NULL;
1697 		return error;
1698 	}
1699 	*displaced = task->files;
1700 	task_lock(task);
1701 	task->files = copy;
1702 	task_unlock(task);
1703 	return 0;
1704 }
1705