xref: /openbmc/linux/kernel/fork.c (revision 32981ea5)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_info(struct thread_info *ti)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 						  THREAD_SIZE_ORDER);
167 
168 	if (page)
169 		memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 					    1 << THREAD_SIZE_ORDER);
171 
172 	return page ? page_address(page) : NULL;
173 }
174 
175 static inline void free_thread_info(struct thread_info *ti)
176 {
177 	struct page *page = virt_to_page(ti);
178 
179 	memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 				    -(1 << THREAD_SIZE_ORDER));
181 	__free_kmem_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_info_cache;
185 
186 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
187 						  int node)
188 {
189 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
190 }
191 
192 static void free_thread_info(struct thread_info *ti)
193 {
194 	kmem_cache_free(thread_info_cache, ti);
195 }
196 
197 void thread_info_cache_init(void)
198 {
199 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
200 					      THREAD_SIZE, 0, NULL);
201 	BUG_ON(thread_info_cache == NULL);
202 }
203 # endif
204 #endif
205 
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208 
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211 
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214 
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217 
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220 
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223 
224 static void account_kernel_stack(struct thread_info *ti, int account)
225 {
226 	struct zone *zone = page_zone(virt_to_page(ti));
227 
228 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
229 }
230 
231 void free_task(struct task_struct *tsk)
232 {
233 	account_kernel_stack(tsk->stack, -1);
234 	arch_release_thread_info(tsk->stack);
235 	free_thread_info(tsk->stack);
236 	rt_mutex_debug_task_free(tsk);
237 	ftrace_graph_exit_task(tsk);
238 	put_seccomp_filter(tsk);
239 	arch_release_task_struct(tsk);
240 	free_task_struct(tsk);
241 }
242 EXPORT_SYMBOL(free_task);
243 
244 static inline void free_signal_struct(struct signal_struct *sig)
245 {
246 	taskstats_tgid_free(sig);
247 	sched_autogroup_exit(sig);
248 	kmem_cache_free(signal_cachep, sig);
249 }
250 
251 static inline void put_signal_struct(struct signal_struct *sig)
252 {
253 	if (atomic_dec_and_test(&sig->sigcnt))
254 		free_signal_struct(sig);
255 }
256 
257 void __put_task_struct(struct task_struct *tsk)
258 {
259 	WARN_ON(!tsk->exit_state);
260 	WARN_ON(atomic_read(&tsk->usage));
261 	WARN_ON(tsk == current);
262 
263 	cgroup_free(tsk);
264 	task_numa_free(tsk);
265 	security_task_free(tsk);
266 	exit_creds(tsk);
267 	delayacct_tsk_free(tsk);
268 	put_signal_struct(tsk->signal);
269 
270 	if (!profile_handoff_task(tsk))
271 		free_task(tsk);
272 }
273 EXPORT_SYMBOL_GPL(__put_task_struct);
274 
275 void __init __weak arch_task_cache_init(void) { }
276 
277 /*
278  * set_max_threads
279  */
280 static void set_max_threads(unsigned int max_threads_suggested)
281 {
282 	u64 threads;
283 
284 	/*
285 	 * The number of threads shall be limited such that the thread
286 	 * structures may only consume a small part of the available memory.
287 	 */
288 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 		threads = MAX_THREADS;
290 	else
291 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 				    (u64) THREAD_SIZE * 8UL);
293 
294 	if (threads > max_threads_suggested)
295 		threads = max_threads_suggested;
296 
297 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
298 }
299 
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
304 
305 void __init fork_init(void)
306 {
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
310 #endif
311 	/* create a slab on which task_structs can be allocated */
312 	task_struct_cachep = kmem_cache_create("task_struct",
313 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
314 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
315 #endif
316 
317 	/* do the arch specific task caches init */
318 	arch_task_cache_init();
319 
320 	set_max_threads(MAX_THREADS);
321 
322 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 		init_task.signal->rlim[RLIMIT_NPROC];
326 }
327 
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 					       struct task_struct *src)
330 {
331 	*dst = *src;
332 	return 0;
333 }
334 
335 void set_task_stack_end_magic(struct task_struct *tsk)
336 {
337 	unsigned long *stackend;
338 
339 	stackend = end_of_stack(tsk);
340 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
341 }
342 
343 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
344 {
345 	struct task_struct *tsk;
346 	struct thread_info *ti;
347 	int err;
348 
349 	if (node == NUMA_NO_NODE)
350 		node = tsk_fork_get_node(orig);
351 	tsk = alloc_task_struct_node(node);
352 	if (!tsk)
353 		return NULL;
354 
355 	ti = alloc_thread_info_node(tsk, node);
356 	if (!ti)
357 		goto free_tsk;
358 
359 	err = arch_dup_task_struct(tsk, orig);
360 	if (err)
361 		goto free_ti;
362 
363 	tsk->stack = ti;
364 #ifdef CONFIG_SECCOMP
365 	/*
366 	 * We must handle setting up seccomp filters once we're under
367 	 * the sighand lock in case orig has changed between now and
368 	 * then. Until then, filter must be NULL to avoid messing up
369 	 * the usage counts on the error path calling free_task.
370 	 */
371 	tsk->seccomp.filter = NULL;
372 #endif
373 
374 	setup_thread_stack(tsk, orig);
375 	clear_user_return_notifier(tsk);
376 	clear_tsk_need_resched(tsk);
377 	set_task_stack_end_magic(tsk);
378 
379 #ifdef CONFIG_CC_STACKPROTECTOR
380 	tsk->stack_canary = get_random_int();
381 #endif
382 
383 	/*
384 	 * One for us, one for whoever does the "release_task()" (usually
385 	 * parent)
386 	 */
387 	atomic_set(&tsk->usage, 2);
388 #ifdef CONFIG_BLK_DEV_IO_TRACE
389 	tsk->btrace_seq = 0;
390 #endif
391 	tsk->splice_pipe = NULL;
392 	tsk->task_frag.page = NULL;
393 	tsk->wake_q.next = NULL;
394 
395 	account_kernel_stack(ti, 1);
396 
397 	kcov_task_init(tsk);
398 
399 	return tsk;
400 
401 free_ti:
402 	free_thread_info(ti);
403 free_tsk:
404 	free_task_struct(tsk);
405 	return NULL;
406 }
407 
408 #ifdef CONFIG_MMU
409 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
410 {
411 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
412 	struct rb_node **rb_link, *rb_parent;
413 	int retval;
414 	unsigned long charge;
415 
416 	uprobe_start_dup_mmap();
417 	if (down_write_killable(&oldmm->mmap_sem)) {
418 		retval = -EINTR;
419 		goto fail_uprobe_end;
420 	}
421 	flush_cache_dup_mm(oldmm);
422 	uprobe_dup_mmap(oldmm, mm);
423 	/*
424 	 * Not linked in yet - no deadlock potential:
425 	 */
426 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
427 
428 	/* No ordering required: file already has been exposed. */
429 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
430 
431 	mm->total_vm = oldmm->total_vm;
432 	mm->data_vm = oldmm->data_vm;
433 	mm->exec_vm = oldmm->exec_vm;
434 	mm->stack_vm = oldmm->stack_vm;
435 
436 	rb_link = &mm->mm_rb.rb_node;
437 	rb_parent = NULL;
438 	pprev = &mm->mmap;
439 	retval = ksm_fork(mm, oldmm);
440 	if (retval)
441 		goto out;
442 	retval = khugepaged_fork(mm, oldmm);
443 	if (retval)
444 		goto out;
445 
446 	prev = NULL;
447 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
448 		struct file *file;
449 
450 		if (mpnt->vm_flags & VM_DONTCOPY) {
451 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
452 			continue;
453 		}
454 		charge = 0;
455 		if (mpnt->vm_flags & VM_ACCOUNT) {
456 			unsigned long len = vma_pages(mpnt);
457 
458 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
459 				goto fail_nomem;
460 			charge = len;
461 		}
462 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
463 		if (!tmp)
464 			goto fail_nomem;
465 		*tmp = *mpnt;
466 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
467 		retval = vma_dup_policy(mpnt, tmp);
468 		if (retval)
469 			goto fail_nomem_policy;
470 		tmp->vm_mm = mm;
471 		if (anon_vma_fork(tmp, mpnt))
472 			goto fail_nomem_anon_vma_fork;
473 		tmp->vm_flags &=
474 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
475 		tmp->vm_next = tmp->vm_prev = NULL;
476 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
477 		file = tmp->vm_file;
478 		if (file) {
479 			struct inode *inode = file_inode(file);
480 			struct address_space *mapping = file->f_mapping;
481 
482 			get_file(file);
483 			if (tmp->vm_flags & VM_DENYWRITE)
484 				atomic_dec(&inode->i_writecount);
485 			i_mmap_lock_write(mapping);
486 			if (tmp->vm_flags & VM_SHARED)
487 				atomic_inc(&mapping->i_mmap_writable);
488 			flush_dcache_mmap_lock(mapping);
489 			/* insert tmp into the share list, just after mpnt */
490 			vma_interval_tree_insert_after(tmp, mpnt,
491 					&mapping->i_mmap);
492 			flush_dcache_mmap_unlock(mapping);
493 			i_mmap_unlock_write(mapping);
494 		}
495 
496 		/*
497 		 * Clear hugetlb-related page reserves for children. This only
498 		 * affects MAP_PRIVATE mappings. Faults generated by the child
499 		 * are not guaranteed to succeed, even if read-only
500 		 */
501 		if (is_vm_hugetlb_page(tmp))
502 			reset_vma_resv_huge_pages(tmp);
503 
504 		/*
505 		 * Link in the new vma and copy the page table entries.
506 		 */
507 		*pprev = tmp;
508 		pprev = &tmp->vm_next;
509 		tmp->vm_prev = prev;
510 		prev = tmp;
511 
512 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
513 		rb_link = &tmp->vm_rb.rb_right;
514 		rb_parent = &tmp->vm_rb;
515 
516 		mm->map_count++;
517 		retval = copy_page_range(mm, oldmm, mpnt);
518 
519 		if (tmp->vm_ops && tmp->vm_ops->open)
520 			tmp->vm_ops->open(tmp);
521 
522 		if (retval)
523 			goto out;
524 	}
525 	/* a new mm has just been created */
526 	arch_dup_mmap(oldmm, mm);
527 	retval = 0;
528 out:
529 	up_write(&mm->mmap_sem);
530 	flush_tlb_mm(oldmm);
531 	up_write(&oldmm->mmap_sem);
532 fail_uprobe_end:
533 	uprobe_end_dup_mmap();
534 	return retval;
535 fail_nomem_anon_vma_fork:
536 	mpol_put(vma_policy(tmp));
537 fail_nomem_policy:
538 	kmem_cache_free(vm_area_cachep, tmp);
539 fail_nomem:
540 	retval = -ENOMEM;
541 	vm_unacct_memory(charge);
542 	goto out;
543 }
544 
545 static inline int mm_alloc_pgd(struct mm_struct *mm)
546 {
547 	mm->pgd = pgd_alloc(mm);
548 	if (unlikely(!mm->pgd))
549 		return -ENOMEM;
550 	return 0;
551 }
552 
553 static inline void mm_free_pgd(struct mm_struct *mm)
554 {
555 	pgd_free(mm, mm->pgd);
556 }
557 #else
558 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
559 {
560 	down_write(&oldmm->mmap_sem);
561 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
562 	up_write(&oldmm->mmap_sem);
563 	return 0;
564 }
565 #define mm_alloc_pgd(mm)	(0)
566 #define mm_free_pgd(mm)
567 #endif /* CONFIG_MMU */
568 
569 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
570 
571 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
572 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
573 
574 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
575 
576 static int __init coredump_filter_setup(char *s)
577 {
578 	default_dump_filter =
579 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
580 		MMF_DUMP_FILTER_MASK;
581 	return 1;
582 }
583 
584 __setup("coredump_filter=", coredump_filter_setup);
585 
586 #include <linux/init_task.h>
587 
588 static void mm_init_aio(struct mm_struct *mm)
589 {
590 #ifdef CONFIG_AIO
591 	spin_lock_init(&mm->ioctx_lock);
592 	mm->ioctx_table = NULL;
593 #endif
594 }
595 
596 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
597 {
598 #ifdef CONFIG_MEMCG
599 	mm->owner = p;
600 #endif
601 }
602 
603 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
604 {
605 	mm->mmap = NULL;
606 	mm->mm_rb = RB_ROOT;
607 	mm->vmacache_seqnum = 0;
608 	atomic_set(&mm->mm_users, 1);
609 	atomic_set(&mm->mm_count, 1);
610 	init_rwsem(&mm->mmap_sem);
611 	INIT_LIST_HEAD(&mm->mmlist);
612 	mm->core_state = NULL;
613 	atomic_long_set(&mm->nr_ptes, 0);
614 	mm_nr_pmds_init(mm);
615 	mm->map_count = 0;
616 	mm->locked_vm = 0;
617 	mm->pinned_vm = 0;
618 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
619 	spin_lock_init(&mm->page_table_lock);
620 	mm_init_cpumask(mm);
621 	mm_init_aio(mm);
622 	mm_init_owner(mm, p);
623 	mmu_notifier_mm_init(mm);
624 	clear_tlb_flush_pending(mm);
625 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
626 	mm->pmd_huge_pte = NULL;
627 #endif
628 
629 	if (current->mm) {
630 		mm->flags = current->mm->flags & MMF_INIT_MASK;
631 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
632 	} else {
633 		mm->flags = default_dump_filter;
634 		mm->def_flags = 0;
635 	}
636 
637 	if (mm_alloc_pgd(mm))
638 		goto fail_nopgd;
639 
640 	if (init_new_context(p, mm))
641 		goto fail_nocontext;
642 
643 	return mm;
644 
645 fail_nocontext:
646 	mm_free_pgd(mm);
647 fail_nopgd:
648 	free_mm(mm);
649 	return NULL;
650 }
651 
652 static void check_mm(struct mm_struct *mm)
653 {
654 	int i;
655 
656 	for (i = 0; i < NR_MM_COUNTERS; i++) {
657 		long x = atomic_long_read(&mm->rss_stat.count[i]);
658 
659 		if (unlikely(x))
660 			printk(KERN_ALERT "BUG: Bad rss-counter state "
661 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
662 	}
663 
664 	if (atomic_long_read(&mm->nr_ptes))
665 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
666 				atomic_long_read(&mm->nr_ptes));
667 	if (mm_nr_pmds(mm))
668 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
669 				mm_nr_pmds(mm));
670 
671 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
672 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
673 #endif
674 }
675 
676 /*
677  * Allocate and initialize an mm_struct.
678  */
679 struct mm_struct *mm_alloc(void)
680 {
681 	struct mm_struct *mm;
682 
683 	mm = allocate_mm();
684 	if (!mm)
685 		return NULL;
686 
687 	memset(mm, 0, sizeof(*mm));
688 	return mm_init(mm, current);
689 }
690 
691 /*
692  * Called when the last reference to the mm
693  * is dropped: either by a lazy thread or by
694  * mmput. Free the page directory and the mm.
695  */
696 void __mmdrop(struct mm_struct *mm)
697 {
698 	BUG_ON(mm == &init_mm);
699 	mm_free_pgd(mm);
700 	destroy_context(mm);
701 	mmu_notifier_mm_destroy(mm);
702 	check_mm(mm);
703 	free_mm(mm);
704 }
705 EXPORT_SYMBOL_GPL(__mmdrop);
706 
707 static inline void __mmput(struct mm_struct *mm)
708 {
709 	VM_BUG_ON(atomic_read(&mm->mm_users));
710 
711 	uprobe_clear_state(mm);
712 	exit_aio(mm);
713 	ksm_exit(mm);
714 	khugepaged_exit(mm); /* must run before exit_mmap */
715 	exit_mmap(mm);
716 	set_mm_exe_file(mm, NULL);
717 	if (!list_empty(&mm->mmlist)) {
718 		spin_lock(&mmlist_lock);
719 		list_del(&mm->mmlist);
720 		spin_unlock(&mmlist_lock);
721 	}
722 	if (mm->binfmt)
723 		module_put(mm->binfmt->module);
724 	mmdrop(mm);
725 }
726 
727 /*
728  * Decrement the use count and release all resources for an mm.
729  */
730 void mmput(struct mm_struct *mm)
731 {
732 	might_sleep();
733 
734 	if (atomic_dec_and_test(&mm->mm_users))
735 		__mmput(mm);
736 }
737 EXPORT_SYMBOL_GPL(mmput);
738 
739 #ifdef CONFIG_MMU
740 static void mmput_async_fn(struct work_struct *work)
741 {
742 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
743 	__mmput(mm);
744 }
745 
746 void mmput_async(struct mm_struct *mm)
747 {
748 	if (atomic_dec_and_test(&mm->mm_users)) {
749 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
750 		schedule_work(&mm->async_put_work);
751 	}
752 }
753 #endif
754 
755 /**
756  * set_mm_exe_file - change a reference to the mm's executable file
757  *
758  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
759  *
760  * Main users are mmput() and sys_execve(). Callers prevent concurrent
761  * invocations: in mmput() nobody alive left, in execve task is single
762  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
763  * mm->exe_file, but does so without using set_mm_exe_file() in order
764  * to do avoid the need for any locks.
765  */
766 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
767 {
768 	struct file *old_exe_file;
769 
770 	/*
771 	 * It is safe to dereference the exe_file without RCU as
772 	 * this function is only called if nobody else can access
773 	 * this mm -- see comment above for justification.
774 	 */
775 	old_exe_file = rcu_dereference_raw(mm->exe_file);
776 
777 	if (new_exe_file)
778 		get_file(new_exe_file);
779 	rcu_assign_pointer(mm->exe_file, new_exe_file);
780 	if (old_exe_file)
781 		fput(old_exe_file);
782 }
783 
784 /**
785  * get_mm_exe_file - acquire a reference to the mm's executable file
786  *
787  * Returns %NULL if mm has no associated executable file.
788  * User must release file via fput().
789  */
790 struct file *get_mm_exe_file(struct mm_struct *mm)
791 {
792 	struct file *exe_file;
793 
794 	rcu_read_lock();
795 	exe_file = rcu_dereference(mm->exe_file);
796 	if (exe_file && !get_file_rcu(exe_file))
797 		exe_file = NULL;
798 	rcu_read_unlock();
799 	return exe_file;
800 }
801 EXPORT_SYMBOL(get_mm_exe_file);
802 
803 /**
804  * get_task_mm - acquire a reference to the task's mm
805  *
806  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
807  * this kernel workthread has transiently adopted a user mm with use_mm,
808  * to do its AIO) is not set and if so returns a reference to it, after
809  * bumping up the use count.  User must release the mm via mmput()
810  * after use.  Typically used by /proc and ptrace.
811  */
812 struct mm_struct *get_task_mm(struct task_struct *task)
813 {
814 	struct mm_struct *mm;
815 
816 	task_lock(task);
817 	mm = task->mm;
818 	if (mm) {
819 		if (task->flags & PF_KTHREAD)
820 			mm = NULL;
821 		else
822 			atomic_inc(&mm->mm_users);
823 	}
824 	task_unlock(task);
825 	return mm;
826 }
827 EXPORT_SYMBOL_GPL(get_task_mm);
828 
829 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
830 {
831 	struct mm_struct *mm;
832 	int err;
833 
834 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
835 	if (err)
836 		return ERR_PTR(err);
837 
838 	mm = get_task_mm(task);
839 	if (mm && mm != current->mm &&
840 			!ptrace_may_access(task, mode)) {
841 		mmput(mm);
842 		mm = ERR_PTR(-EACCES);
843 	}
844 	mutex_unlock(&task->signal->cred_guard_mutex);
845 
846 	return mm;
847 }
848 
849 static void complete_vfork_done(struct task_struct *tsk)
850 {
851 	struct completion *vfork;
852 
853 	task_lock(tsk);
854 	vfork = tsk->vfork_done;
855 	if (likely(vfork)) {
856 		tsk->vfork_done = NULL;
857 		complete(vfork);
858 	}
859 	task_unlock(tsk);
860 }
861 
862 static int wait_for_vfork_done(struct task_struct *child,
863 				struct completion *vfork)
864 {
865 	int killed;
866 
867 	freezer_do_not_count();
868 	killed = wait_for_completion_killable(vfork);
869 	freezer_count();
870 
871 	if (killed) {
872 		task_lock(child);
873 		child->vfork_done = NULL;
874 		task_unlock(child);
875 	}
876 
877 	put_task_struct(child);
878 	return killed;
879 }
880 
881 /* Please note the differences between mmput and mm_release.
882  * mmput is called whenever we stop holding onto a mm_struct,
883  * error success whatever.
884  *
885  * mm_release is called after a mm_struct has been removed
886  * from the current process.
887  *
888  * This difference is important for error handling, when we
889  * only half set up a mm_struct for a new process and need to restore
890  * the old one.  Because we mmput the new mm_struct before
891  * restoring the old one. . .
892  * Eric Biederman 10 January 1998
893  */
894 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
895 {
896 	/* Get rid of any futexes when releasing the mm */
897 #ifdef CONFIG_FUTEX
898 	if (unlikely(tsk->robust_list)) {
899 		exit_robust_list(tsk);
900 		tsk->robust_list = NULL;
901 	}
902 #ifdef CONFIG_COMPAT
903 	if (unlikely(tsk->compat_robust_list)) {
904 		compat_exit_robust_list(tsk);
905 		tsk->compat_robust_list = NULL;
906 	}
907 #endif
908 	if (unlikely(!list_empty(&tsk->pi_state_list)))
909 		exit_pi_state_list(tsk);
910 #endif
911 
912 	uprobe_free_utask(tsk);
913 
914 	/* Get rid of any cached register state */
915 	deactivate_mm(tsk, mm);
916 
917 	/*
918 	 * If we're exiting normally, clear a user-space tid field if
919 	 * requested.  We leave this alone when dying by signal, to leave
920 	 * the value intact in a core dump, and to save the unnecessary
921 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
922 	 * Userland only wants this done for a sys_exit.
923 	 */
924 	if (tsk->clear_child_tid) {
925 		if (!(tsk->flags & PF_SIGNALED) &&
926 		    atomic_read(&mm->mm_users) > 1) {
927 			/*
928 			 * We don't check the error code - if userspace has
929 			 * not set up a proper pointer then tough luck.
930 			 */
931 			put_user(0, tsk->clear_child_tid);
932 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
933 					1, NULL, NULL, 0);
934 		}
935 		tsk->clear_child_tid = NULL;
936 	}
937 
938 	/*
939 	 * All done, finally we can wake up parent and return this mm to him.
940 	 * Also kthread_stop() uses this completion for synchronization.
941 	 */
942 	if (tsk->vfork_done)
943 		complete_vfork_done(tsk);
944 }
945 
946 /*
947  * Allocate a new mm structure and copy contents from the
948  * mm structure of the passed in task structure.
949  */
950 static struct mm_struct *dup_mm(struct task_struct *tsk)
951 {
952 	struct mm_struct *mm, *oldmm = current->mm;
953 	int err;
954 
955 	mm = allocate_mm();
956 	if (!mm)
957 		goto fail_nomem;
958 
959 	memcpy(mm, oldmm, sizeof(*mm));
960 
961 	if (!mm_init(mm, tsk))
962 		goto fail_nomem;
963 
964 	err = dup_mmap(mm, oldmm);
965 	if (err)
966 		goto free_pt;
967 
968 	mm->hiwater_rss = get_mm_rss(mm);
969 	mm->hiwater_vm = mm->total_vm;
970 
971 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
972 		goto free_pt;
973 
974 	return mm;
975 
976 free_pt:
977 	/* don't put binfmt in mmput, we haven't got module yet */
978 	mm->binfmt = NULL;
979 	mmput(mm);
980 
981 fail_nomem:
982 	return NULL;
983 }
984 
985 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 	struct mm_struct *mm, *oldmm;
988 	int retval;
989 
990 	tsk->min_flt = tsk->maj_flt = 0;
991 	tsk->nvcsw = tsk->nivcsw = 0;
992 #ifdef CONFIG_DETECT_HUNG_TASK
993 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
994 #endif
995 
996 	tsk->mm = NULL;
997 	tsk->active_mm = NULL;
998 
999 	/*
1000 	 * Are we cloning a kernel thread?
1001 	 *
1002 	 * We need to steal a active VM for that..
1003 	 */
1004 	oldmm = current->mm;
1005 	if (!oldmm)
1006 		return 0;
1007 
1008 	/* initialize the new vmacache entries */
1009 	vmacache_flush(tsk);
1010 
1011 	if (clone_flags & CLONE_VM) {
1012 		atomic_inc(&oldmm->mm_users);
1013 		mm = oldmm;
1014 		goto good_mm;
1015 	}
1016 
1017 	retval = -ENOMEM;
1018 	mm = dup_mm(tsk);
1019 	if (!mm)
1020 		goto fail_nomem;
1021 
1022 good_mm:
1023 	tsk->mm = mm;
1024 	tsk->active_mm = mm;
1025 	return 0;
1026 
1027 fail_nomem:
1028 	return retval;
1029 }
1030 
1031 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033 	struct fs_struct *fs = current->fs;
1034 	if (clone_flags & CLONE_FS) {
1035 		/* tsk->fs is already what we want */
1036 		spin_lock(&fs->lock);
1037 		if (fs->in_exec) {
1038 			spin_unlock(&fs->lock);
1039 			return -EAGAIN;
1040 		}
1041 		fs->users++;
1042 		spin_unlock(&fs->lock);
1043 		return 0;
1044 	}
1045 	tsk->fs = copy_fs_struct(fs);
1046 	if (!tsk->fs)
1047 		return -ENOMEM;
1048 	return 0;
1049 }
1050 
1051 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1052 {
1053 	struct files_struct *oldf, *newf;
1054 	int error = 0;
1055 
1056 	/*
1057 	 * A background process may not have any files ...
1058 	 */
1059 	oldf = current->files;
1060 	if (!oldf)
1061 		goto out;
1062 
1063 	if (clone_flags & CLONE_FILES) {
1064 		atomic_inc(&oldf->count);
1065 		goto out;
1066 	}
1067 
1068 	newf = dup_fd(oldf, &error);
1069 	if (!newf)
1070 		goto out;
1071 
1072 	tsk->files = newf;
1073 	error = 0;
1074 out:
1075 	return error;
1076 }
1077 
1078 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1079 {
1080 #ifdef CONFIG_BLOCK
1081 	struct io_context *ioc = current->io_context;
1082 	struct io_context *new_ioc;
1083 
1084 	if (!ioc)
1085 		return 0;
1086 	/*
1087 	 * Share io context with parent, if CLONE_IO is set
1088 	 */
1089 	if (clone_flags & CLONE_IO) {
1090 		ioc_task_link(ioc);
1091 		tsk->io_context = ioc;
1092 	} else if (ioprio_valid(ioc->ioprio)) {
1093 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1094 		if (unlikely(!new_ioc))
1095 			return -ENOMEM;
1096 
1097 		new_ioc->ioprio = ioc->ioprio;
1098 		put_io_context(new_ioc);
1099 	}
1100 #endif
1101 	return 0;
1102 }
1103 
1104 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1105 {
1106 	struct sighand_struct *sig;
1107 
1108 	if (clone_flags & CLONE_SIGHAND) {
1109 		atomic_inc(&current->sighand->count);
1110 		return 0;
1111 	}
1112 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1113 	rcu_assign_pointer(tsk->sighand, sig);
1114 	if (!sig)
1115 		return -ENOMEM;
1116 
1117 	atomic_set(&sig->count, 1);
1118 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1119 	return 0;
1120 }
1121 
1122 void __cleanup_sighand(struct sighand_struct *sighand)
1123 {
1124 	if (atomic_dec_and_test(&sighand->count)) {
1125 		signalfd_cleanup(sighand);
1126 		/*
1127 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1128 		 * without an RCU grace period, see __lock_task_sighand().
1129 		 */
1130 		kmem_cache_free(sighand_cachep, sighand);
1131 	}
1132 }
1133 
1134 /*
1135  * Initialize POSIX timer handling for a thread group.
1136  */
1137 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1138 {
1139 	unsigned long cpu_limit;
1140 
1141 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1142 	if (cpu_limit != RLIM_INFINITY) {
1143 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1144 		sig->cputimer.running = true;
1145 	}
1146 
1147 	/* The timer lists. */
1148 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1149 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1150 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1151 }
1152 
1153 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1154 {
1155 	struct signal_struct *sig;
1156 
1157 	if (clone_flags & CLONE_THREAD)
1158 		return 0;
1159 
1160 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1161 	tsk->signal = sig;
1162 	if (!sig)
1163 		return -ENOMEM;
1164 
1165 	sig->nr_threads = 1;
1166 	atomic_set(&sig->live, 1);
1167 	atomic_set(&sig->sigcnt, 1);
1168 
1169 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1170 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1171 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1172 
1173 	init_waitqueue_head(&sig->wait_chldexit);
1174 	sig->curr_target = tsk;
1175 	init_sigpending(&sig->shared_pending);
1176 	INIT_LIST_HEAD(&sig->posix_timers);
1177 	seqlock_init(&sig->stats_lock);
1178 	prev_cputime_init(&sig->prev_cputime);
1179 
1180 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1181 	sig->real_timer.function = it_real_fn;
1182 
1183 	task_lock(current->group_leader);
1184 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1185 	task_unlock(current->group_leader);
1186 
1187 	posix_cpu_timers_init_group(sig);
1188 
1189 	tty_audit_fork(sig);
1190 	sched_autogroup_fork(sig);
1191 
1192 	sig->oom_score_adj = current->signal->oom_score_adj;
1193 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1194 
1195 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1196 				   current->signal->is_child_subreaper;
1197 
1198 	mutex_init(&sig->cred_guard_mutex);
1199 
1200 	return 0;
1201 }
1202 
1203 static void copy_seccomp(struct task_struct *p)
1204 {
1205 #ifdef CONFIG_SECCOMP
1206 	/*
1207 	 * Must be called with sighand->lock held, which is common to
1208 	 * all threads in the group. Holding cred_guard_mutex is not
1209 	 * needed because this new task is not yet running and cannot
1210 	 * be racing exec.
1211 	 */
1212 	assert_spin_locked(&current->sighand->siglock);
1213 
1214 	/* Ref-count the new filter user, and assign it. */
1215 	get_seccomp_filter(current);
1216 	p->seccomp = current->seccomp;
1217 
1218 	/*
1219 	 * Explicitly enable no_new_privs here in case it got set
1220 	 * between the task_struct being duplicated and holding the
1221 	 * sighand lock. The seccomp state and nnp must be in sync.
1222 	 */
1223 	if (task_no_new_privs(current))
1224 		task_set_no_new_privs(p);
1225 
1226 	/*
1227 	 * If the parent gained a seccomp mode after copying thread
1228 	 * flags and between before we held the sighand lock, we have
1229 	 * to manually enable the seccomp thread flag here.
1230 	 */
1231 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1232 		set_tsk_thread_flag(p, TIF_SECCOMP);
1233 #endif
1234 }
1235 
1236 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1237 {
1238 	current->clear_child_tid = tidptr;
1239 
1240 	return task_pid_vnr(current);
1241 }
1242 
1243 static void rt_mutex_init_task(struct task_struct *p)
1244 {
1245 	raw_spin_lock_init(&p->pi_lock);
1246 #ifdef CONFIG_RT_MUTEXES
1247 	p->pi_waiters = RB_ROOT;
1248 	p->pi_waiters_leftmost = NULL;
1249 	p->pi_blocked_on = NULL;
1250 #endif
1251 }
1252 
1253 /*
1254  * Initialize POSIX timer handling for a single task.
1255  */
1256 static void posix_cpu_timers_init(struct task_struct *tsk)
1257 {
1258 	tsk->cputime_expires.prof_exp = 0;
1259 	tsk->cputime_expires.virt_exp = 0;
1260 	tsk->cputime_expires.sched_exp = 0;
1261 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1262 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1263 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1264 }
1265 
1266 static inline void
1267 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1268 {
1269 	 task->pids[type].pid = pid;
1270 }
1271 
1272 /*
1273  * This creates a new process as a copy of the old one,
1274  * but does not actually start it yet.
1275  *
1276  * It copies the registers, and all the appropriate
1277  * parts of the process environment (as per the clone
1278  * flags). The actual kick-off is left to the caller.
1279  */
1280 static struct task_struct *copy_process(unsigned long clone_flags,
1281 					unsigned long stack_start,
1282 					unsigned long stack_size,
1283 					int __user *child_tidptr,
1284 					struct pid *pid,
1285 					int trace,
1286 					unsigned long tls,
1287 					int node)
1288 {
1289 	int retval;
1290 	struct task_struct *p;
1291 
1292 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1296 		return ERR_PTR(-EINVAL);
1297 
1298 	/*
1299 	 * Thread groups must share signals as well, and detached threads
1300 	 * can only be started up within the thread group.
1301 	 */
1302 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1303 		return ERR_PTR(-EINVAL);
1304 
1305 	/*
1306 	 * Shared signal handlers imply shared VM. By way of the above,
1307 	 * thread groups also imply shared VM. Blocking this case allows
1308 	 * for various simplifications in other code.
1309 	 */
1310 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1311 		return ERR_PTR(-EINVAL);
1312 
1313 	/*
1314 	 * Siblings of global init remain as zombies on exit since they are
1315 	 * not reaped by their parent (swapper). To solve this and to avoid
1316 	 * multi-rooted process trees, prevent global and container-inits
1317 	 * from creating siblings.
1318 	 */
1319 	if ((clone_flags & CLONE_PARENT) &&
1320 				current->signal->flags & SIGNAL_UNKILLABLE)
1321 		return ERR_PTR(-EINVAL);
1322 
1323 	/*
1324 	 * If the new process will be in a different pid or user namespace
1325 	 * do not allow it to share a thread group with the forking task.
1326 	 */
1327 	if (clone_flags & CLONE_THREAD) {
1328 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1329 		    (task_active_pid_ns(current) !=
1330 				current->nsproxy->pid_ns_for_children))
1331 			return ERR_PTR(-EINVAL);
1332 	}
1333 
1334 	retval = security_task_create(clone_flags);
1335 	if (retval)
1336 		goto fork_out;
1337 
1338 	retval = -ENOMEM;
1339 	p = dup_task_struct(current, node);
1340 	if (!p)
1341 		goto fork_out;
1342 
1343 	ftrace_graph_init_task(p);
1344 
1345 	rt_mutex_init_task(p);
1346 
1347 #ifdef CONFIG_PROVE_LOCKING
1348 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1349 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1350 #endif
1351 	retval = -EAGAIN;
1352 	if (atomic_read(&p->real_cred->user->processes) >=
1353 			task_rlimit(p, RLIMIT_NPROC)) {
1354 		if (p->real_cred->user != INIT_USER &&
1355 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1356 			goto bad_fork_free;
1357 	}
1358 	current->flags &= ~PF_NPROC_EXCEEDED;
1359 
1360 	retval = copy_creds(p, clone_flags);
1361 	if (retval < 0)
1362 		goto bad_fork_free;
1363 
1364 	/*
1365 	 * If multiple threads are within copy_process(), then this check
1366 	 * triggers too late. This doesn't hurt, the check is only there
1367 	 * to stop root fork bombs.
1368 	 */
1369 	retval = -EAGAIN;
1370 	if (nr_threads >= max_threads)
1371 		goto bad_fork_cleanup_count;
1372 
1373 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1374 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1375 	p->flags |= PF_FORKNOEXEC;
1376 	INIT_LIST_HEAD(&p->children);
1377 	INIT_LIST_HEAD(&p->sibling);
1378 	rcu_copy_process(p);
1379 	p->vfork_done = NULL;
1380 	spin_lock_init(&p->alloc_lock);
1381 
1382 	init_sigpending(&p->pending);
1383 
1384 	p->utime = p->stime = p->gtime = 0;
1385 	p->utimescaled = p->stimescaled = 0;
1386 	prev_cputime_init(&p->prev_cputime);
1387 
1388 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1389 	seqcount_init(&p->vtime_seqcount);
1390 	p->vtime_snap = 0;
1391 	p->vtime_snap_whence = VTIME_INACTIVE;
1392 #endif
1393 
1394 #if defined(SPLIT_RSS_COUNTING)
1395 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1396 #endif
1397 
1398 	p->default_timer_slack_ns = current->timer_slack_ns;
1399 
1400 	task_io_accounting_init(&p->ioac);
1401 	acct_clear_integrals(p);
1402 
1403 	posix_cpu_timers_init(p);
1404 
1405 	p->start_time = ktime_get_ns();
1406 	p->real_start_time = ktime_get_boot_ns();
1407 	p->io_context = NULL;
1408 	p->audit_context = NULL;
1409 	threadgroup_change_begin(current);
1410 	cgroup_fork(p);
1411 #ifdef CONFIG_NUMA
1412 	p->mempolicy = mpol_dup(p->mempolicy);
1413 	if (IS_ERR(p->mempolicy)) {
1414 		retval = PTR_ERR(p->mempolicy);
1415 		p->mempolicy = NULL;
1416 		goto bad_fork_cleanup_threadgroup_lock;
1417 	}
1418 #endif
1419 #ifdef CONFIG_CPUSETS
1420 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1421 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1422 	seqcount_init(&p->mems_allowed_seq);
1423 #endif
1424 #ifdef CONFIG_TRACE_IRQFLAGS
1425 	p->irq_events = 0;
1426 	p->hardirqs_enabled = 0;
1427 	p->hardirq_enable_ip = 0;
1428 	p->hardirq_enable_event = 0;
1429 	p->hardirq_disable_ip = _THIS_IP_;
1430 	p->hardirq_disable_event = 0;
1431 	p->softirqs_enabled = 1;
1432 	p->softirq_enable_ip = _THIS_IP_;
1433 	p->softirq_enable_event = 0;
1434 	p->softirq_disable_ip = 0;
1435 	p->softirq_disable_event = 0;
1436 	p->hardirq_context = 0;
1437 	p->softirq_context = 0;
1438 #endif
1439 
1440 	p->pagefault_disabled = 0;
1441 
1442 #ifdef CONFIG_LOCKDEP
1443 	p->lockdep_depth = 0; /* no locks held yet */
1444 	p->curr_chain_key = 0;
1445 	p->lockdep_recursion = 0;
1446 #endif
1447 
1448 #ifdef CONFIG_DEBUG_MUTEXES
1449 	p->blocked_on = NULL; /* not blocked yet */
1450 #endif
1451 #ifdef CONFIG_BCACHE
1452 	p->sequential_io	= 0;
1453 	p->sequential_io_avg	= 0;
1454 #endif
1455 
1456 	/* Perform scheduler related setup. Assign this task to a CPU. */
1457 	retval = sched_fork(clone_flags, p);
1458 	if (retval)
1459 		goto bad_fork_cleanup_policy;
1460 
1461 	retval = perf_event_init_task(p);
1462 	if (retval)
1463 		goto bad_fork_cleanup_policy;
1464 	retval = audit_alloc(p);
1465 	if (retval)
1466 		goto bad_fork_cleanup_perf;
1467 	/* copy all the process information */
1468 	shm_init_task(p);
1469 	retval = copy_semundo(clone_flags, p);
1470 	if (retval)
1471 		goto bad_fork_cleanup_audit;
1472 	retval = copy_files(clone_flags, p);
1473 	if (retval)
1474 		goto bad_fork_cleanup_semundo;
1475 	retval = copy_fs(clone_flags, p);
1476 	if (retval)
1477 		goto bad_fork_cleanup_files;
1478 	retval = copy_sighand(clone_flags, p);
1479 	if (retval)
1480 		goto bad_fork_cleanup_fs;
1481 	retval = copy_signal(clone_flags, p);
1482 	if (retval)
1483 		goto bad_fork_cleanup_sighand;
1484 	retval = copy_mm(clone_flags, p);
1485 	if (retval)
1486 		goto bad_fork_cleanup_signal;
1487 	retval = copy_namespaces(clone_flags, p);
1488 	if (retval)
1489 		goto bad_fork_cleanup_mm;
1490 	retval = copy_io(clone_flags, p);
1491 	if (retval)
1492 		goto bad_fork_cleanup_namespaces;
1493 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1494 	if (retval)
1495 		goto bad_fork_cleanup_io;
1496 
1497 	if (pid != &init_struct_pid) {
1498 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1499 		if (IS_ERR(pid)) {
1500 			retval = PTR_ERR(pid);
1501 			goto bad_fork_cleanup_thread;
1502 		}
1503 	}
1504 
1505 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1506 	/*
1507 	 * Clear TID on mm_release()?
1508 	 */
1509 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1510 #ifdef CONFIG_BLOCK
1511 	p->plug = NULL;
1512 #endif
1513 #ifdef CONFIG_FUTEX
1514 	p->robust_list = NULL;
1515 #ifdef CONFIG_COMPAT
1516 	p->compat_robust_list = NULL;
1517 #endif
1518 	INIT_LIST_HEAD(&p->pi_state_list);
1519 	p->pi_state_cache = NULL;
1520 #endif
1521 	/*
1522 	 * sigaltstack should be cleared when sharing the same VM
1523 	 */
1524 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1525 		sas_ss_reset(p);
1526 
1527 	/*
1528 	 * Syscall tracing and stepping should be turned off in the
1529 	 * child regardless of CLONE_PTRACE.
1530 	 */
1531 	user_disable_single_step(p);
1532 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1533 #ifdef TIF_SYSCALL_EMU
1534 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1535 #endif
1536 	clear_all_latency_tracing(p);
1537 
1538 	/* ok, now we should be set up.. */
1539 	p->pid = pid_nr(pid);
1540 	if (clone_flags & CLONE_THREAD) {
1541 		p->exit_signal = -1;
1542 		p->group_leader = current->group_leader;
1543 		p->tgid = current->tgid;
1544 	} else {
1545 		if (clone_flags & CLONE_PARENT)
1546 			p->exit_signal = current->group_leader->exit_signal;
1547 		else
1548 			p->exit_signal = (clone_flags & CSIGNAL);
1549 		p->group_leader = p;
1550 		p->tgid = p->pid;
1551 	}
1552 
1553 	p->nr_dirtied = 0;
1554 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1555 	p->dirty_paused_when = 0;
1556 
1557 	p->pdeath_signal = 0;
1558 	INIT_LIST_HEAD(&p->thread_group);
1559 	p->task_works = NULL;
1560 
1561 	/*
1562 	 * Ensure that the cgroup subsystem policies allow the new process to be
1563 	 * forked. It should be noted the the new process's css_set can be changed
1564 	 * between here and cgroup_post_fork() if an organisation operation is in
1565 	 * progress.
1566 	 */
1567 	retval = cgroup_can_fork(p);
1568 	if (retval)
1569 		goto bad_fork_free_pid;
1570 
1571 	/*
1572 	 * Make it visible to the rest of the system, but dont wake it up yet.
1573 	 * Need tasklist lock for parent etc handling!
1574 	 */
1575 	write_lock_irq(&tasklist_lock);
1576 
1577 	/* CLONE_PARENT re-uses the old parent */
1578 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1579 		p->real_parent = current->real_parent;
1580 		p->parent_exec_id = current->parent_exec_id;
1581 	} else {
1582 		p->real_parent = current;
1583 		p->parent_exec_id = current->self_exec_id;
1584 	}
1585 
1586 	spin_lock(&current->sighand->siglock);
1587 
1588 	/*
1589 	 * Copy seccomp details explicitly here, in case they were changed
1590 	 * before holding sighand lock.
1591 	 */
1592 	copy_seccomp(p);
1593 
1594 	/*
1595 	 * Process group and session signals need to be delivered to just the
1596 	 * parent before the fork or both the parent and the child after the
1597 	 * fork. Restart if a signal comes in before we add the new process to
1598 	 * it's process group.
1599 	 * A fatal signal pending means that current will exit, so the new
1600 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1601 	*/
1602 	recalc_sigpending();
1603 	if (signal_pending(current)) {
1604 		spin_unlock(&current->sighand->siglock);
1605 		write_unlock_irq(&tasklist_lock);
1606 		retval = -ERESTARTNOINTR;
1607 		goto bad_fork_cancel_cgroup;
1608 	}
1609 
1610 	if (likely(p->pid)) {
1611 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1612 
1613 		init_task_pid(p, PIDTYPE_PID, pid);
1614 		if (thread_group_leader(p)) {
1615 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1616 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1617 
1618 			if (is_child_reaper(pid)) {
1619 				ns_of_pid(pid)->child_reaper = p;
1620 				p->signal->flags |= SIGNAL_UNKILLABLE;
1621 			}
1622 
1623 			p->signal->leader_pid = pid;
1624 			p->signal->tty = tty_kref_get(current->signal->tty);
1625 			list_add_tail(&p->sibling, &p->real_parent->children);
1626 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1627 			attach_pid(p, PIDTYPE_PGID);
1628 			attach_pid(p, PIDTYPE_SID);
1629 			__this_cpu_inc(process_counts);
1630 		} else {
1631 			current->signal->nr_threads++;
1632 			atomic_inc(&current->signal->live);
1633 			atomic_inc(&current->signal->sigcnt);
1634 			list_add_tail_rcu(&p->thread_group,
1635 					  &p->group_leader->thread_group);
1636 			list_add_tail_rcu(&p->thread_node,
1637 					  &p->signal->thread_head);
1638 		}
1639 		attach_pid(p, PIDTYPE_PID);
1640 		nr_threads++;
1641 	}
1642 
1643 	total_forks++;
1644 	spin_unlock(&current->sighand->siglock);
1645 	syscall_tracepoint_update(p);
1646 	write_unlock_irq(&tasklist_lock);
1647 
1648 	proc_fork_connector(p);
1649 	cgroup_post_fork(p);
1650 	threadgroup_change_end(current);
1651 	perf_event_fork(p);
1652 
1653 	trace_task_newtask(p, clone_flags);
1654 	uprobe_copy_process(p, clone_flags);
1655 
1656 	return p;
1657 
1658 bad_fork_cancel_cgroup:
1659 	cgroup_cancel_fork(p);
1660 bad_fork_free_pid:
1661 	if (pid != &init_struct_pid)
1662 		free_pid(pid);
1663 bad_fork_cleanup_thread:
1664 	exit_thread(p);
1665 bad_fork_cleanup_io:
1666 	if (p->io_context)
1667 		exit_io_context(p);
1668 bad_fork_cleanup_namespaces:
1669 	exit_task_namespaces(p);
1670 bad_fork_cleanup_mm:
1671 	if (p->mm)
1672 		mmput(p->mm);
1673 bad_fork_cleanup_signal:
1674 	if (!(clone_flags & CLONE_THREAD))
1675 		free_signal_struct(p->signal);
1676 bad_fork_cleanup_sighand:
1677 	__cleanup_sighand(p->sighand);
1678 bad_fork_cleanup_fs:
1679 	exit_fs(p); /* blocking */
1680 bad_fork_cleanup_files:
1681 	exit_files(p); /* blocking */
1682 bad_fork_cleanup_semundo:
1683 	exit_sem(p);
1684 bad_fork_cleanup_audit:
1685 	audit_free(p);
1686 bad_fork_cleanup_perf:
1687 	perf_event_free_task(p);
1688 bad_fork_cleanup_policy:
1689 #ifdef CONFIG_NUMA
1690 	mpol_put(p->mempolicy);
1691 bad_fork_cleanup_threadgroup_lock:
1692 #endif
1693 	threadgroup_change_end(current);
1694 	delayacct_tsk_free(p);
1695 bad_fork_cleanup_count:
1696 	atomic_dec(&p->cred->user->processes);
1697 	exit_creds(p);
1698 bad_fork_free:
1699 	free_task(p);
1700 fork_out:
1701 	return ERR_PTR(retval);
1702 }
1703 
1704 static inline void init_idle_pids(struct pid_link *links)
1705 {
1706 	enum pid_type type;
1707 
1708 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1709 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1710 		links[type].pid = &init_struct_pid;
1711 	}
1712 }
1713 
1714 struct task_struct *fork_idle(int cpu)
1715 {
1716 	struct task_struct *task;
1717 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1718 			    cpu_to_node(cpu));
1719 	if (!IS_ERR(task)) {
1720 		init_idle_pids(task->pids);
1721 		init_idle(task, cpu);
1722 	}
1723 
1724 	return task;
1725 }
1726 
1727 /*
1728  *  Ok, this is the main fork-routine.
1729  *
1730  * It copies the process, and if successful kick-starts
1731  * it and waits for it to finish using the VM if required.
1732  */
1733 long _do_fork(unsigned long clone_flags,
1734 	      unsigned long stack_start,
1735 	      unsigned long stack_size,
1736 	      int __user *parent_tidptr,
1737 	      int __user *child_tidptr,
1738 	      unsigned long tls)
1739 {
1740 	struct task_struct *p;
1741 	int trace = 0;
1742 	long nr;
1743 
1744 	/*
1745 	 * Determine whether and which event to report to ptracer.  When
1746 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1747 	 * requested, no event is reported; otherwise, report if the event
1748 	 * for the type of forking is enabled.
1749 	 */
1750 	if (!(clone_flags & CLONE_UNTRACED)) {
1751 		if (clone_flags & CLONE_VFORK)
1752 			trace = PTRACE_EVENT_VFORK;
1753 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1754 			trace = PTRACE_EVENT_CLONE;
1755 		else
1756 			trace = PTRACE_EVENT_FORK;
1757 
1758 		if (likely(!ptrace_event_enabled(current, trace)))
1759 			trace = 0;
1760 	}
1761 
1762 	p = copy_process(clone_flags, stack_start, stack_size,
1763 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1764 	/*
1765 	 * Do this prior waking up the new thread - the thread pointer
1766 	 * might get invalid after that point, if the thread exits quickly.
1767 	 */
1768 	if (!IS_ERR(p)) {
1769 		struct completion vfork;
1770 		struct pid *pid;
1771 
1772 		trace_sched_process_fork(current, p);
1773 
1774 		pid = get_task_pid(p, PIDTYPE_PID);
1775 		nr = pid_vnr(pid);
1776 
1777 		if (clone_flags & CLONE_PARENT_SETTID)
1778 			put_user(nr, parent_tidptr);
1779 
1780 		if (clone_flags & CLONE_VFORK) {
1781 			p->vfork_done = &vfork;
1782 			init_completion(&vfork);
1783 			get_task_struct(p);
1784 		}
1785 
1786 		wake_up_new_task(p);
1787 
1788 		/* forking complete and child started to run, tell ptracer */
1789 		if (unlikely(trace))
1790 			ptrace_event_pid(trace, pid);
1791 
1792 		if (clone_flags & CLONE_VFORK) {
1793 			if (!wait_for_vfork_done(p, &vfork))
1794 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1795 		}
1796 
1797 		put_pid(pid);
1798 	} else {
1799 		nr = PTR_ERR(p);
1800 	}
1801 	return nr;
1802 }
1803 
1804 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1805 /* For compatibility with architectures that call do_fork directly rather than
1806  * using the syscall entry points below. */
1807 long do_fork(unsigned long clone_flags,
1808 	      unsigned long stack_start,
1809 	      unsigned long stack_size,
1810 	      int __user *parent_tidptr,
1811 	      int __user *child_tidptr)
1812 {
1813 	return _do_fork(clone_flags, stack_start, stack_size,
1814 			parent_tidptr, child_tidptr, 0);
1815 }
1816 #endif
1817 
1818 /*
1819  * Create a kernel thread.
1820  */
1821 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1822 {
1823 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1824 		(unsigned long)arg, NULL, NULL, 0);
1825 }
1826 
1827 #ifdef __ARCH_WANT_SYS_FORK
1828 SYSCALL_DEFINE0(fork)
1829 {
1830 #ifdef CONFIG_MMU
1831 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1832 #else
1833 	/* can not support in nommu mode */
1834 	return -EINVAL;
1835 #endif
1836 }
1837 #endif
1838 
1839 #ifdef __ARCH_WANT_SYS_VFORK
1840 SYSCALL_DEFINE0(vfork)
1841 {
1842 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1843 			0, NULL, NULL, 0);
1844 }
1845 #endif
1846 
1847 #ifdef __ARCH_WANT_SYS_CLONE
1848 #ifdef CONFIG_CLONE_BACKWARDS
1849 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1850 		 int __user *, parent_tidptr,
1851 		 unsigned long, tls,
1852 		 int __user *, child_tidptr)
1853 #elif defined(CONFIG_CLONE_BACKWARDS2)
1854 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1855 		 int __user *, parent_tidptr,
1856 		 int __user *, child_tidptr,
1857 		 unsigned long, tls)
1858 #elif defined(CONFIG_CLONE_BACKWARDS3)
1859 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1860 		int, stack_size,
1861 		int __user *, parent_tidptr,
1862 		int __user *, child_tidptr,
1863 		unsigned long, tls)
1864 #else
1865 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1866 		 int __user *, parent_tidptr,
1867 		 int __user *, child_tidptr,
1868 		 unsigned long, tls)
1869 #endif
1870 {
1871 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1872 }
1873 #endif
1874 
1875 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1876 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1877 #endif
1878 
1879 static void sighand_ctor(void *data)
1880 {
1881 	struct sighand_struct *sighand = data;
1882 
1883 	spin_lock_init(&sighand->siglock);
1884 	init_waitqueue_head(&sighand->signalfd_wqh);
1885 }
1886 
1887 void __init proc_caches_init(void)
1888 {
1889 	sighand_cachep = kmem_cache_create("sighand_cache",
1890 			sizeof(struct sighand_struct), 0,
1891 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1892 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1893 	signal_cachep = kmem_cache_create("signal_cache",
1894 			sizeof(struct signal_struct), 0,
1895 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1896 			NULL);
1897 	files_cachep = kmem_cache_create("files_cache",
1898 			sizeof(struct files_struct), 0,
1899 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1900 			NULL);
1901 	fs_cachep = kmem_cache_create("fs_cache",
1902 			sizeof(struct fs_struct), 0,
1903 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1904 			NULL);
1905 	/*
1906 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1907 	 * whole struct cpumask for the OFFSTACK case. We could change
1908 	 * this to *only* allocate as much of it as required by the
1909 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1910 	 * is at the end of the structure, exactly for that reason.
1911 	 */
1912 	mm_cachep = kmem_cache_create("mm_struct",
1913 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1914 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1915 			NULL);
1916 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1917 	mmap_init();
1918 	nsproxy_cache_init();
1919 }
1920 
1921 /*
1922  * Check constraints on flags passed to the unshare system call.
1923  */
1924 static int check_unshare_flags(unsigned long unshare_flags)
1925 {
1926 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1927 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1928 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1929 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1930 		return -EINVAL;
1931 	/*
1932 	 * Not implemented, but pretend it works if there is nothing
1933 	 * to unshare.  Note that unsharing the address space or the
1934 	 * signal handlers also need to unshare the signal queues (aka
1935 	 * CLONE_THREAD).
1936 	 */
1937 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1938 		if (!thread_group_empty(current))
1939 			return -EINVAL;
1940 	}
1941 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1942 		if (atomic_read(&current->sighand->count) > 1)
1943 			return -EINVAL;
1944 	}
1945 	if (unshare_flags & CLONE_VM) {
1946 		if (!current_is_single_threaded())
1947 			return -EINVAL;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Unshare the filesystem structure if it is being shared
1955  */
1956 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1957 {
1958 	struct fs_struct *fs = current->fs;
1959 
1960 	if (!(unshare_flags & CLONE_FS) || !fs)
1961 		return 0;
1962 
1963 	/* don't need lock here; in the worst case we'll do useless copy */
1964 	if (fs->users == 1)
1965 		return 0;
1966 
1967 	*new_fsp = copy_fs_struct(fs);
1968 	if (!*new_fsp)
1969 		return -ENOMEM;
1970 
1971 	return 0;
1972 }
1973 
1974 /*
1975  * Unshare file descriptor table if it is being shared
1976  */
1977 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1978 {
1979 	struct files_struct *fd = current->files;
1980 	int error = 0;
1981 
1982 	if ((unshare_flags & CLONE_FILES) &&
1983 	    (fd && atomic_read(&fd->count) > 1)) {
1984 		*new_fdp = dup_fd(fd, &error);
1985 		if (!*new_fdp)
1986 			return error;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * unshare allows a process to 'unshare' part of the process
1994  * context which was originally shared using clone.  copy_*
1995  * functions used by do_fork() cannot be used here directly
1996  * because they modify an inactive task_struct that is being
1997  * constructed. Here we are modifying the current, active,
1998  * task_struct.
1999  */
2000 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2001 {
2002 	struct fs_struct *fs, *new_fs = NULL;
2003 	struct files_struct *fd, *new_fd = NULL;
2004 	struct cred *new_cred = NULL;
2005 	struct nsproxy *new_nsproxy = NULL;
2006 	int do_sysvsem = 0;
2007 	int err;
2008 
2009 	/*
2010 	 * If unsharing a user namespace must also unshare the thread group
2011 	 * and unshare the filesystem root and working directories.
2012 	 */
2013 	if (unshare_flags & CLONE_NEWUSER)
2014 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2015 	/*
2016 	 * If unsharing vm, must also unshare signal handlers.
2017 	 */
2018 	if (unshare_flags & CLONE_VM)
2019 		unshare_flags |= CLONE_SIGHAND;
2020 	/*
2021 	 * If unsharing a signal handlers, must also unshare the signal queues.
2022 	 */
2023 	if (unshare_flags & CLONE_SIGHAND)
2024 		unshare_flags |= CLONE_THREAD;
2025 	/*
2026 	 * If unsharing namespace, must also unshare filesystem information.
2027 	 */
2028 	if (unshare_flags & CLONE_NEWNS)
2029 		unshare_flags |= CLONE_FS;
2030 
2031 	err = check_unshare_flags(unshare_flags);
2032 	if (err)
2033 		goto bad_unshare_out;
2034 	/*
2035 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2036 	 * to a new ipc namespace, the semaphore arrays from the old
2037 	 * namespace are unreachable.
2038 	 */
2039 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2040 		do_sysvsem = 1;
2041 	err = unshare_fs(unshare_flags, &new_fs);
2042 	if (err)
2043 		goto bad_unshare_out;
2044 	err = unshare_fd(unshare_flags, &new_fd);
2045 	if (err)
2046 		goto bad_unshare_cleanup_fs;
2047 	err = unshare_userns(unshare_flags, &new_cred);
2048 	if (err)
2049 		goto bad_unshare_cleanup_fd;
2050 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2051 					 new_cred, new_fs);
2052 	if (err)
2053 		goto bad_unshare_cleanup_cred;
2054 
2055 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2056 		if (do_sysvsem) {
2057 			/*
2058 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2059 			 */
2060 			exit_sem(current);
2061 		}
2062 		if (unshare_flags & CLONE_NEWIPC) {
2063 			/* Orphan segments in old ns (see sem above). */
2064 			exit_shm(current);
2065 			shm_init_task(current);
2066 		}
2067 
2068 		if (new_nsproxy)
2069 			switch_task_namespaces(current, new_nsproxy);
2070 
2071 		task_lock(current);
2072 
2073 		if (new_fs) {
2074 			fs = current->fs;
2075 			spin_lock(&fs->lock);
2076 			current->fs = new_fs;
2077 			if (--fs->users)
2078 				new_fs = NULL;
2079 			else
2080 				new_fs = fs;
2081 			spin_unlock(&fs->lock);
2082 		}
2083 
2084 		if (new_fd) {
2085 			fd = current->files;
2086 			current->files = new_fd;
2087 			new_fd = fd;
2088 		}
2089 
2090 		task_unlock(current);
2091 
2092 		if (new_cred) {
2093 			/* Install the new user namespace */
2094 			commit_creds(new_cred);
2095 			new_cred = NULL;
2096 		}
2097 	}
2098 
2099 bad_unshare_cleanup_cred:
2100 	if (new_cred)
2101 		put_cred(new_cred);
2102 bad_unshare_cleanup_fd:
2103 	if (new_fd)
2104 		put_files_struct(new_fd);
2105 
2106 bad_unshare_cleanup_fs:
2107 	if (new_fs)
2108 		free_fs_struct(new_fs);
2109 
2110 bad_unshare_out:
2111 	return err;
2112 }
2113 
2114 /*
2115  *	Helper to unshare the files of the current task.
2116  *	We don't want to expose copy_files internals to
2117  *	the exec layer of the kernel.
2118  */
2119 
2120 int unshare_files(struct files_struct **displaced)
2121 {
2122 	struct task_struct *task = current;
2123 	struct files_struct *copy = NULL;
2124 	int error;
2125 
2126 	error = unshare_fd(CLONE_FILES, &copy);
2127 	if (error || !copy) {
2128 		*displaced = NULL;
2129 		return error;
2130 	}
2131 	*displaced = task->files;
2132 	task_lock(task);
2133 	task->files = copy;
2134 	task_unlock(task);
2135 	return 0;
2136 }
2137 
2138 int sysctl_max_threads(struct ctl_table *table, int write,
2139 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2140 {
2141 	struct ctl_table t;
2142 	int ret;
2143 	int threads = max_threads;
2144 	int min = MIN_THREADS;
2145 	int max = MAX_THREADS;
2146 
2147 	t = *table;
2148 	t.data = &threads;
2149 	t.extra1 = &min;
2150 	t.extra2 = &max;
2151 
2152 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2153 	if (ret || !write)
2154 		return ret;
2155 
2156 	set_max_threads(threads);
2157 
2158 	return 0;
2159 }
2160