xref: /openbmc/linux/kernel/fork.c (revision 2f5947df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	if (likely(page)) {
252 		tsk->stack = page_address(page);
253 		return tsk->stack;
254 	}
255 	return NULL;
256 #endif
257 }
258 
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 	struct vm_struct *vm = task_stack_vm_area(tsk);
263 
264 	if (vm) {
265 		int i;
266 
267 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 			mod_memcg_page_state(vm->pages[i],
269 					     MEMCG_KERNEL_STACK_KB,
270 					     -(int)(PAGE_SIZE / 1024));
271 
272 			memcg_kmem_uncharge(vm->pages[i], 0);
273 		}
274 
275 		for (i = 0; i < NR_CACHED_STACKS; i++) {
276 			if (this_cpu_cmpxchg(cached_stacks[i],
277 					NULL, tsk->stack_vm_area) != NULL)
278 				continue;
279 
280 			return;
281 		}
282 
283 		vfree_atomic(tsk->stack);
284 		return;
285 	}
286 #endif
287 
288 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292 
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 						  int node)
295 {
296 	unsigned long *stack;
297 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 	tsk->stack = stack;
299 	return stack;
300 }
301 
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 	kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306 
307 void thread_stack_cache_init(void)
308 {
309 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 					THREAD_SIZE, THREAD_SIZE, 0, 0,
311 					THREAD_SIZE, NULL);
312 	BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316 
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319 
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322 
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325 
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328 
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331 
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334 
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 	struct vm_area_struct *vma;
338 
339 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 	if (vma)
341 		vma_init(vma, mm);
342 	return vma;
343 }
344 
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 
349 	if (new) {
350 		*new = *orig;
351 		INIT_LIST_HEAD(&new->anon_vma_chain);
352 	}
353 	return new;
354 }
355 
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 	kmem_cache_free(vm_area_cachep, vma);
359 }
360 
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 	void *stack = task_stack_page(tsk);
364 	struct vm_struct *vm = task_stack_vm_area(tsk);
365 
366 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367 
368 	if (vm) {
369 		int i;
370 
371 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372 
373 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 			mod_zone_page_state(page_zone(vm->pages[i]),
375 					    NR_KERNEL_STACK_KB,
376 					    PAGE_SIZE / 1024 * account);
377 		}
378 	} else {
379 		/*
380 		 * All stack pages are in the same zone and belong to the
381 		 * same memcg.
382 		 */
383 		struct page *first_page = virt_to_page(stack);
384 
385 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 				    THREAD_SIZE / 1024 * account);
387 
388 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 				     account * (THREAD_SIZE / 1024));
390 	}
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	if (vm) {
400 		int i;
401 
402 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 			/*
404 			 * If memcg_kmem_charge() fails, page->mem_cgroup
405 			 * pointer is NULL, and both memcg_kmem_uncharge()
406 			 * and mod_memcg_page_state() in free_thread_stack()
407 			 * will ignore this page. So it's safe.
408 			 */
409 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 			if (ret)
411 				return ret;
412 
413 			mod_memcg_page_state(vm->pages[i],
414 					     MEMCG_KERNEL_STACK_KB,
415 					     PAGE_SIZE / 1024);
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	put_seccomp_filter(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (down_write_killable(&oldmm->mmap_sem)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/* VM_WIPEONFORK gets a clean slate in the child. */
544 			tmp->anon_vma = NULL;
545 			if (anon_vma_prepare(tmp))
546 				goto fail_nomem_anon_vma_fork;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		tmp->vm_next = tmp->vm_prev = NULL;
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	up_write(&mm->mmap_sem);
604 	flush_tlb_mm(oldmm);
605 	up_write(&oldmm->mmap_sem);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	down_write(&oldmm->mmap_sem);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	up_write(&oldmm->mmap_sem);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	for (i = 0; i < NR_MM_COUNTERS; i++) {
649 		long x = atomic_long_read(&mm->rss_stat.count[i]);
650 
651 		if (unlikely(x))
652 			printk(KERN_ALERT "BUG: Bad rss-counter state "
653 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
654 	}
655 
656 	if (mm_pgtables_bytes(mm))
657 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 				mm_pgtables_bytes(mm));
659 
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664 
665 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
667 
668 /*
669  * Called when the last reference to the mm
670  * is dropped: either by a lazy thread or by
671  * mmput. Free the page directory and the mm.
672  */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 	BUG_ON(mm == &init_mm);
676 	WARN_ON_ONCE(mm == current->mm);
677 	WARN_ON_ONCE(mm == current->active_mm);
678 	mm_free_pgd(mm);
679 	destroy_context(mm);
680 	hmm_mm_destroy(mm);
681 	mmu_notifier_mm_destroy(mm);
682 	check_mm(mm);
683 	put_user_ns(mm->user_ns);
684 	free_mm(mm);
685 }
686 EXPORT_SYMBOL_GPL(__mmdrop);
687 
688 static void mmdrop_async_fn(struct work_struct *work)
689 {
690 	struct mm_struct *mm;
691 
692 	mm = container_of(work, struct mm_struct, async_put_work);
693 	__mmdrop(mm);
694 }
695 
696 static void mmdrop_async(struct mm_struct *mm)
697 {
698 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
699 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
700 		schedule_work(&mm->async_put_work);
701 	}
702 }
703 
704 static inline void free_signal_struct(struct signal_struct *sig)
705 {
706 	taskstats_tgid_free(sig);
707 	sched_autogroup_exit(sig);
708 	/*
709 	 * __mmdrop is not safe to call from softirq context on x86 due to
710 	 * pgd_dtor so postpone it to the async context
711 	 */
712 	if (sig->oom_mm)
713 		mmdrop_async(sig->oom_mm);
714 	kmem_cache_free(signal_cachep, sig);
715 }
716 
717 static inline void put_signal_struct(struct signal_struct *sig)
718 {
719 	if (refcount_dec_and_test(&sig->sigcnt))
720 		free_signal_struct(sig);
721 }
722 
723 void __put_task_struct(struct task_struct *tsk)
724 {
725 	WARN_ON(!tsk->exit_state);
726 	WARN_ON(refcount_read(&tsk->usage));
727 	WARN_ON(tsk == current);
728 
729 	cgroup_free(tsk);
730 	task_numa_free(tsk);
731 	security_task_free(tsk);
732 	exit_creds(tsk);
733 	delayacct_tsk_free(tsk);
734 	put_signal_struct(tsk->signal);
735 
736 	if (!profile_handoff_task(tsk))
737 		free_task(tsk);
738 }
739 EXPORT_SYMBOL_GPL(__put_task_struct);
740 
741 void __init __weak arch_task_cache_init(void) { }
742 
743 /*
744  * set_max_threads
745  */
746 static void set_max_threads(unsigned int max_threads_suggested)
747 {
748 	u64 threads;
749 	unsigned long nr_pages = totalram_pages();
750 
751 	/*
752 	 * The number of threads shall be limited such that the thread
753 	 * structures may only consume a small part of the available memory.
754 	 */
755 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
756 		threads = MAX_THREADS;
757 	else
758 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
759 				    (u64) THREAD_SIZE * 8UL);
760 
761 	if (threads > max_threads_suggested)
762 		threads = max_threads_suggested;
763 
764 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
765 }
766 
767 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
768 /* Initialized by the architecture: */
769 int arch_task_struct_size __read_mostly;
770 #endif
771 
772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
773 {
774 	/* Fetch thread_struct whitelist for the architecture. */
775 	arch_thread_struct_whitelist(offset, size);
776 
777 	/*
778 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
779 	 * adjust offset to position of thread_struct in task_struct.
780 	 */
781 	if (unlikely(*size == 0))
782 		*offset = 0;
783 	else
784 		*offset += offsetof(struct task_struct, thread);
785 }
786 
787 void __init fork_init(void)
788 {
789 	int i;
790 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
791 #ifndef ARCH_MIN_TASKALIGN
792 #define ARCH_MIN_TASKALIGN	0
793 #endif
794 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
795 	unsigned long useroffset, usersize;
796 
797 	/* create a slab on which task_structs can be allocated */
798 	task_struct_whitelist(&useroffset, &usersize);
799 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
800 			arch_task_struct_size, align,
801 			SLAB_PANIC|SLAB_ACCOUNT,
802 			useroffset, usersize, NULL);
803 #endif
804 
805 	/* do the arch specific task caches init */
806 	arch_task_cache_init();
807 
808 	set_max_threads(MAX_THREADS);
809 
810 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
811 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
812 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
813 		init_task.signal->rlim[RLIMIT_NPROC];
814 
815 	for (i = 0; i < UCOUNT_COUNTS; i++) {
816 		init_user_ns.ucount_max[i] = max_threads/2;
817 	}
818 
819 #ifdef CONFIG_VMAP_STACK
820 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
821 			  NULL, free_vm_stack_cache);
822 #endif
823 
824 	lockdep_init_task(&init_task);
825 	uprobes_init();
826 }
827 
828 int __weak arch_dup_task_struct(struct task_struct *dst,
829 					       struct task_struct *src)
830 {
831 	*dst = *src;
832 	return 0;
833 }
834 
835 void set_task_stack_end_magic(struct task_struct *tsk)
836 {
837 	unsigned long *stackend;
838 
839 	stackend = end_of_stack(tsk);
840 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
841 }
842 
843 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
844 {
845 	struct task_struct *tsk;
846 	unsigned long *stack;
847 	struct vm_struct *stack_vm_area __maybe_unused;
848 	int err;
849 
850 	if (node == NUMA_NO_NODE)
851 		node = tsk_fork_get_node(orig);
852 	tsk = alloc_task_struct_node(node);
853 	if (!tsk)
854 		return NULL;
855 
856 	stack = alloc_thread_stack_node(tsk, node);
857 	if (!stack)
858 		goto free_tsk;
859 
860 	if (memcg_charge_kernel_stack(tsk))
861 		goto free_stack;
862 
863 	stack_vm_area = task_stack_vm_area(tsk);
864 
865 	err = arch_dup_task_struct(tsk, orig);
866 
867 	/*
868 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
869 	 * sure they're properly initialized before using any stack-related
870 	 * functions again.
871 	 */
872 	tsk->stack = stack;
873 #ifdef CONFIG_VMAP_STACK
874 	tsk->stack_vm_area = stack_vm_area;
875 #endif
876 #ifdef CONFIG_THREAD_INFO_IN_TASK
877 	refcount_set(&tsk->stack_refcount, 1);
878 #endif
879 
880 	if (err)
881 		goto free_stack;
882 
883 #ifdef CONFIG_SECCOMP
884 	/*
885 	 * We must handle setting up seccomp filters once we're under
886 	 * the sighand lock in case orig has changed between now and
887 	 * then. Until then, filter must be NULL to avoid messing up
888 	 * the usage counts on the error path calling free_task.
889 	 */
890 	tsk->seccomp.filter = NULL;
891 #endif
892 
893 	setup_thread_stack(tsk, orig);
894 	clear_user_return_notifier(tsk);
895 	clear_tsk_need_resched(tsk);
896 	set_task_stack_end_magic(tsk);
897 
898 #ifdef CONFIG_STACKPROTECTOR
899 	tsk->stack_canary = get_random_canary();
900 #endif
901 	if (orig->cpus_ptr == &orig->cpus_mask)
902 		tsk->cpus_ptr = &tsk->cpus_mask;
903 
904 	/*
905 	 * One for us, one for whoever does the "release_task()" (usually
906 	 * parent)
907 	 */
908 	refcount_set(&tsk->usage, 2);
909 #ifdef CONFIG_BLK_DEV_IO_TRACE
910 	tsk->btrace_seq = 0;
911 #endif
912 	tsk->splice_pipe = NULL;
913 	tsk->task_frag.page = NULL;
914 	tsk->wake_q.next = NULL;
915 
916 	account_kernel_stack(tsk, 1);
917 
918 	kcov_task_init(tsk);
919 
920 #ifdef CONFIG_FAULT_INJECTION
921 	tsk->fail_nth = 0;
922 #endif
923 
924 #ifdef CONFIG_BLK_CGROUP
925 	tsk->throttle_queue = NULL;
926 	tsk->use_memdelay = 0;
927 #endif
928 
929 #ifdef CONFIG_MEMCG
930 	tsk->active_memcg = NULL;
931 #endif
932 	return tsk;
933 
934 free_stack:
935 	free_thread_stack(tsk);
936 free_tsk:
937 	free_task_struct(tsk);
938 	return NULL;
939 }
940 
941 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
942 
943 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
944 
945 static int __init coredump_filter_setup(char *s)
946 {
947 	default_dump_filter =
948 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
949 		MMF_DUMP_FILTER_MASK;
950 	return 1;
951 }
952 
953 __setup("coredump_filter=", coredump_filter_setup);
954 
955 #include <linux/init_task.h>
956 
957 static void mm_init_aio(struct mm_struct *mm)
958 {
959 #ifdef CONFIG_AIO
960 	spin_lock_init(&mm->ioctx_lock);
961 	mm->ioctx_table = NULL;
962 #endif
963 }
964 
965 static __always_inline void mm_clear_owner(struct mm_struct *mm,
966 					   struct task_struct *p)
967 {
968 #ifdef CONFIG_MEMCG
969 	if (mm->owner == p)
970 		WRITE_ONCE(mm->owner, NULL);
971 #endif
972 }
973 
974 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
975 {
976 #ifdef CONFIG_MEMCG
977 	mm->owner = p;
978 #endif
979 }
980 
981 static void mm_init_uprobes_state(struct mm_struct *mm)
982 {
983 #ifdef CONFIG_UPROBES
984 	mm->uprobes_state.xol_area = NULL;
985 #endif
986 }
987 
988 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
989 	struct user_namespace *user_ns)
990 {
991 	mm->mmap = NULL;
992 	mm->mm_rb = RB_ROOT;
993 	mm->vmacache_seqnum = 0;
994 	atomic_set(&mm->mm_users, 1);
995 	atomic_set(&mm->mm_count, 1);
996 	init_rwsem(&mm->mmap_sem);
997 	INIT_LIST_HEAD(&mm->mmlist);
998 	mm->core_state = NULL;
999 	mm_pgtables_bytes_init(mm);
1000 	mm->map_count = 0;
1001 	mm->locked_vm = 0;
1002 	atomic64_set(&mm->pinned_vm, 0);
1003 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1004 	spin_lock_init(&mm->page_table_lock);
1005 	spin_lock_init(&mm->arg_lock);
1006 	mm_init_cpumask(mm);
1007 	mm_init_aio(mm);
1008 	mm_init_owner(mm, p);
1009 	RCU_INIT_POINTER(mm->exe_file, NULL);
1010 	mmu_notifier_mm_init(mm);
1011 	hmm_mm_init(mm);
1012 	init_tlb_flush_pending(mm);
1013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1014 	mm->pmd_huge_pte = NULL;
1015 #endif
1016 	mm_init_uprobes_state(mm);
1017 
1018 	if (current->mm) {
1019 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1020 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1021 	} else {
1022 		mm->flags = default_dump_filter;
1023 		mm->def_flags = 0;
1024 	}
1025 
1026 	if (mm_alloc_pgd(mm))
1027 		goto fail_nopgd;
1028 
1029 	if (init_new_context(p, mm))
1030 		goto fail_nocontext;
1031 
1032 	mm->user_ns = get_user_ns(user_ns);
1033 	return mm;
1034 
1035 fail_nocontext:
1036 	mm_free_pgd(mm);
1037 fail_nopgd:
1038 	free_mm(mm);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Allocate and initialize an mm_struct.
1044  */
1045 struct mm_struct *mm_alloc(void)
1046 {
1047 	struct mm_struct *mm;
1048 
1049 	mm = allocate_mm();
1050 	if (!mm)
1051 		return NULL;
1052 
1053 	memset(mm, 0, sizeof(*mm));
1054 	return mm_init(mm, current, current_user_ns());
1055 }
1056 
1057 static inline void __mmput(struct mm_struct *mm)
1058 {
1059 	VM_BUG_ON(atomic_read(&mm->mm_users));
1060 
1061 	uprobe_clear_state(mm);
1062 	exit_aio(mm);
1063 	ksm_exit(mm);
1064 	khugepaged_exit(mm); /* must run before exit_mmap */
1065 	exit_mmap(mm);
1066 	mm_put_huge_zero_page(mm);
1067 	set_mm_exe_file(mm, NULL);
1068 	if (!list_empty(&mm->mmlist)) {
1069 		spin_lock(&mmlist_lock);
1070 		list_del(&mm->mmlist);
1071 		spin_unlock(&mmlist_lock);
1072 	}
1073 	if (mm->binfmt)
1074 		module_put(mm->binfmt->module);
1075 	mmdrop(mm);
1076 }
1077 
1078 /*
1079  * Decrement the use count and release all resources for an mm.
1080  */
1081 void mmput(struct mm_struct *mm)
1082 {
1083 	might_sleep();
1084 
1085 	if (atomic_dec_and_test(&mm->mm_users))
1086 		__mmput(mm);
1087 }
1088 EXPORT_SYMBOL_GPL(mmput);
1089 
1090 #ifdef CONFIG_MMU
1091 static void mmput_async_fn(struct work_struct *work)
1092 {
1093 	struct mm_struct *mm = container_of(work, struct mm_struct,
1094 					    async_put_work);
1095 
1096 	__mmput(mm);
1097 }
1098 
1099 void mmput_async(struct mm_struct *mm)
1100 {
1101 	if (atomic_dec_and_test(&mm->mm_users)) {
1102 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1103 		schedule_work(&mm->async_put_work);
1104 	}
1105 }
1106 #endif
1107 
1108 /**
1109  * set_mm_exe_file - change a reference to the mm's executable file
1110  *
1111  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1112  *
1113  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1114  * invocations: in mmput() nobody alive left, in execve task is single
1115  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1116  * mm->exe_file, but does so without using set_mm_exe_file() in order
1117  * to do avoid the need for any locks.
1118  */
1119 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1120 {
1121 	struct file *old_exe_file;
1122 
1123 	/*
1124 	 * It is safe to dereference the exe_file without RCU as
1125 	 * this function is only called if nobody else can access
1126 	 * this mm -- see comment above for justification.
1127 	 */
1128 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1129 
1130 	if (new_exe_file)
1131 		get_file(new_exe_file);
1132 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1133 	if (old_exe_file)
1134 		fput(old_exe_file);
1135 }
1136 
1137 /**
1138  * get_mm_exe_file - acquire a reference to the mm's executable file
1139  *
1140  * Returns %NULL if mm has no associated executable file.
1141  * User must release file via fput().
1142  */
1143 struct file *get_mm_exe_file(struct mm_struct *mm)
1144 {
1145 	struct file *exe_file;
1146 
1147 	rcu_read_lock();
1148 	exe_file = rcu_dereference(mm->exe_file);
1149 	if (exe_file && !get_file_rcu(exe_file))
1150 		exe_file = NULL;
1151 	rcu_read_unlock();
1152 	return exe_file;
1153 }
1154 EXPORT_SYMBOL(get_mm_exe_file);
1155 
1156 /**
1157  * get_task_exe_file - acquire a reference to the task's executable file
1158  *
1159  * Returns %NULL if task's mm (if any) has no associated executable file or
1160  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1161  * User must release file via fput().
1162  */
1163 struct file *get_task_exe_file(struct task_struct *task)
1164 {
1165 	struct file *exe_file = NULL;
1166 	struct mm_struct *mm;
1167 
1168 	task_lock(task);
1169 	mm = task->mm;
1170 	if (mm) {
1171 		if (!(task->flags & PF_KTHREAD))
1172 			exe_file = get_mm_exe_file(mm);
1173 	}
1174 	task_unlock(task);
1175 	return exe_file;
1176 }
1177 EXPORT_SYMBOL(get_task_exe_file);
1178 
1179 /**
1180  * get_task_mm - acquire a reference to the task's mm
1181  *
1182  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1183  * this kernel workthread has transiently adopted a user mm with use_mm,
1184  * to do its AIO) is not set and if so returns a reference to it, after
1185  * bumping up the use count.  User must release the mm via mmput()
1186  * after use.  Typically used by /proc and ptrace.
1187  */
1188 struct mm_struct *get_task_mm(struct task_struct *task)
1189 {
1190 	struct mm_struct *mm;
1191 
1192 	task_lock(task);
1193 	mm = task->mm;
1194 	if (mm) {
1195 		if (task->flags & PF_KTHREAD)
1196 			mm = NULL;
1197 		else
1198 			mmget(mm);
1199 	}
1200 	task_unlock(task);
1201 	return mm;
1202 }
1203 EXPORT_SYMBOL_GPL(get_task_mm);
1204 
1205 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1206 {
1207 	struct mm_struct *mm;
1208 	int err;
1209 
1210 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1211 	if (err)
1212 		return ERR_PTR(err);
1213 
1214 	mm = get_task_mm(task);
1215 	if (mm && mm != current->mm &&
1216 			!ptrace_may_access(task, mode)) {
1217 		mmput(mm);
1218 		mm = ERR_PTR(-EACCES);
1219 	}
1220 	mutex_unlock(&task->signal->cred_guard_mutex);
1221 
1222 	return mm;
1223 }
1224 
1225 static void complete_vfork_done(struct task_struct *tsk)
1226 {
1227 	struct completion *vfork;
1228 
1229 	task_lock(tsk);
1230 	vfork = tsk->vfork_done;
1231 	if (likely(vfork)) {
1232 		tsk->vfork_done = NULL;
1233 		complete(vfork);
1234 	}
1235 	task_unlock(tsk);
1236 }
1237 
1238 static int wait_for_vfork_done(struct task_struct *child,
1239 				struct completion *vfork)
1240 {
1241 	int killed;
1242 
1243 	freezer_do_not_count();
1244 	cgroup_enter_frozen();
1245 	killed = wait_for_completion_killable(vfork);
1246 	cgroup_leave_frozen(false);
1247 	freezer_count();
1248 
1249 	if (killed) {
1250 		task_lock(child);
1251 		child->vfork_done = NULL;
1252 		task_unlock(child);
1253 	}
1254 
1255 	put_task_struct(child);
1256 	return killed;
1257 }
1258 
1259 /* Please note the differences between mmput and mm_release.
1260  * mmput is called whenever we stop holding onto a mm_struct,
1261  * error success whatever.
1262  *
1263  * mm_release is called after a mm_struct has been removed
1264  * from the current process.
1265  *
1266  * This difference is important for error handling, when we
1267  * only half set up a mm_struct for a new process and need to restore
1268  * the old one.  Because we mmput the new mm_struct before
1269  * restoring the old one. . .
1270  * Eric Biederman 10 January 1998
1271  */
1272 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1273 {
1274 	/* Get rid of any futexes when releasing the mm */
1275 #ifdef CONFIG_FUTEX
1276 	if (unlikely(tsk->robust_list)) {
1277 		exit_robust_list(tsk);
1278 		tsk->robust_list = NULL;
1279 	}
1280 #ifdef CONFIG_COMPAT
1281 	if (unlikely(tsk->compat_robust_list)) {
1282 		compat_exit_robust_list(tsk);
1283 		tsk->compat_robust_list = NULL;
1284 	}
1285 #endif
1286 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1287 		exit_pi_state_list(tsk);
1288 #endif
1289 
1290 	uprobe_free_utask(tsk);
1291 
1292 	/* Get rid of any cached register state */
1293 	deactivate_mm(tsk, mm);
1294 
1295 	/*
1296 	 * Signal userspace if we're not exiting with a core dump
1297 	 * because we want to leave the value intact for debugging
1298 	 * purposes.
1299 	 */
1300 	if (tsk->clear_child_tid) {
1301 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1302 		    atomic_read(&mm->mm_users) > 1) {
1303 			/*
1304 			 * We don't check the error code - if userspace has
1305 			 * not set up a proper pointer then tough luck.
1306 			 */
1307 			put_user(0, tsk->clear_child_tid);
1308 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1309 					1, NULL, NULL, 0, 0);
1310 		}
1311 		tsk->clear_child_tid = NULL;
1312 	}
1313 
1314 	/*
1315 	 * All done, finally we can wake up parent and return this mm to him.
1316 	 * Also kthread_stop() uses this completion for synchronization.
1317 	 */
1318 	if (tsk->vfork_done)
1319 		complete_vfork_done(tsk);
1320 }
1321 
1322 /**
1323  * dup_mm() - duplicates an existing mm structure
1324  * @tsk: the task_struct with which the new mm will be associated.
1325  * @oldmm: the mm to duplicate.
1326  *
1327  * Allocates a new mm structure and duplicates the provided @oldmm structure
1328  * content into it.
1329  *
1330  * Return: the duplicated mm or NULL on failure.
1331  */
1332 static struct mm_struct *dup_mm(struct task_struct *tsk,
1333 				struct mm_struct *oldmm)
1334 {
1335 	struct mm_struct *mm;
1336 	int err;
1337 
1338 	mm = allocate_mm();
1339 	if (!mm)
1340 		goto fail_nomem;
1341 
1342 	memcpy(mm, oldmm, sizeof(*mm));
1343 
1344 	if (!mm_init(mm, tsk, mm->user_ns))
1345 		goto fail_nomem;
1346 
1347 	err = dup_mmap(mm, oldmm);
1348 	if (err)
1349 		goto free_pt;
1350 
1351 	mm->hiwater_rss = get_mm_rss(mm);
1352 	mm->hiwater_vm = mm->total_vm;
1353 
1354 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1355 		goto free_pt;
1356 
1357 	return mm;
1358 
1359 free_pt:
1360 	/* don't put binfmt in mmput, we haven't got module yet */
1361 	mm->binfmt = NULL;
1362 	mm_init_owner(mm, NULL);
1363 	mmput(mm);
1364 
1365 fail_nomem:
1366 	return NULL;
1367 }
1368 
1369 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1370 {
1371 	struct mm_struct *mm, *oldmm;
1372 	int retval;
1373 
1374 	tsk->min_flt = tsk->maj_flt = 0;
1375 	tsk->nvcsw = tsk->nivcsw = 0;
1376 #ifdef CONFIG_DETECT_HUNG_TASK
1377 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1378 	tsk->last_switch_time = 0;
1379 #endif
1380 
1381 	tsk->mm = NULL;
1382 	tsk->active_mm = NULL;
1383 
1384 	/*
1385 	 * Are we cloning a kernel thread?
1386 	 *
1387 	 * We need to steal a active VM for that..
1388 	 */
1389 	oldmm = current->mm;
1390 	if (!oldmm)
1391 		return 0;
1392 
1393 	/* initialize the new vmacache entries */
1394 	vmacache_flush(tsk);
1395 
1396 	if (clone_flags & CLONE_VM) {
1397 		mmget(oldmm);
1398 		mm = oldmm;
1399 		goto good_mm;
1400 	}
1401 
1402 	retval = -ENOMEM;
1403 	mm = dup_mm(tsk, current->mm);
1404 	if (!mm)
1405 		goto fail_nomem;
1406 
1407 good_mm:
1408 	tsk->mm = mm;
1409 	tsk->active_mm = mm;
1410 	return 0;
1411 
1412 fail_nomem:
1413 	return retval;
1414 }
1415 
1416 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1417 {
1418 	struct fs_struct *fs = current->fs;
1419 	if (clone_flags & CLONE_FS) {
1420 		/* tsk->fs is already what we want */
1421 		spin_lock(&fs->lock);
1422 		if (fs->in_exec) {
1423 			spin_unlock(&fs->lock);
1424 			return -EAGAIN;
1425 		}
1426 		fs->users++;
1427 		spin_unlock(&fs->lock);
1428 		return 0;
1429 	}
1430 	tsk->fs = copy_fs_struct(fs);
1431 	if (!tsk->fs)
1432 		return -ENOMEM;
1433 	return 0;
1434 }
1435 
1436 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1437 {
1438 	struct files_struct *oldf, *newf;
1439 	int error = 0;
1440 
1441 	/*
1442 	 * A background process may not have any files ...
1443 	 */
1444 	oldf = current->files;
1445 	if (!oldf)
1446 		goto out;
1447 
1448 	if (clone_flags & CLONE_FILES) {
1449 		atomic_inc(&oldf->count);
1450 		goto out;
1451 	}
1452 
1453 	newf = dup_fd(oldf, &error);
1454 	if (!newf)
1455 		goto out;
1456 
1457 	tsk->files = newf;
1458 	error = 0;
1459 out:
1460 	return error;
1461 }
1462 
1463 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1464 {
1465 #ifdef CONFIG_BLOCK
1466 	struct io_context *ioc = current->io_context;
1467 	struct io_context *new_ioc;
1468 
1469 	if (!ioc)
1470 		return 0;
1471 	/*
1472 	 * Share io context with parent, if CLONE_IO is set
1473 	 */
1474 	if (clone_flags & CLONE_IO) {
1475 		ioc_task_link(ioc);
1476 		tsk->io_context = ioc;
1477 	} else if (ioprio_valid(ioc->ioprio)) {
1478 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1479 		if (unlikely(!new_ioc))
1480 			return -ENOMEM;
1481 
1482 		new_ioc->ioprio = ioc->ioprio;
1483 		put_io_context(new_ioc);
1484 	}
1485 #endif
1486 	return 0;
1487 }
1488 
1489 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1490 {
1491 	struct sighand_struct *sig;
1492 
1493 	if (clone_flags & CLONE_SIGHAND) {
1494 		refcount_inc(&current->sighand->count);
1495 		return 0;
1496 	}
1497 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1498 	rcu_assign_pointer(tsk->sighand, sig);
1499 	if (!sig)
1500 		return -ENOMEM;
1501 
1502 	refcount_set(&sig->count, 1);
1503 	spin_lock_irq(&current->sighand->siglock);
1504 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1505 	spin_unlock_irq(&current->sighand->siglock);
1506 	return 0;
1507 }
1508 
1509 void __cleanup_sighand(struct sighand_struct *sighand)
1510 {
1511 	if (refcount_dec_and_test(&sighand->count)) {
1512 		signalfd_cleanup(sighand);
1513 		/*
1514 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1515 		 * without an RCU grace period, see __lock_task_sighand().
1516 		 */
1517 		kmem_cache_free(sighand_cachep, sighand);
1518 	}
1519 }
1520 
1521 #ifdef CONFIG_POSIX_TIMERS
1522 /*
1523  * Initialize POSIX timer handling for a thread group.
1524  */
1525 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1526 {
1527 	unsigned long cpu_limit;
1528 
1529 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1530 	if (cpu_limit != RLIM_INFINITY) {
1531 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1532 		sig->cputimer.running = true;
1533 	}
1534 
1535 	/* The timer lists. */
1536 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1537 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1538 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1539 }
1540 #else
1541 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1542 #endif
1543 
1544 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1545 {
1546 	struct signal_struct *sig;
1547 
1548 	if (clone_flags & CLONE_THREAD)
1549 		return 0;
1550 
1551 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1552 	tsk->signal = sig;
1553 	if (!sig)
1554 		return -ENOMEM;
1555 
1556 	sig->nr_threads = 1;
1557 	atomic_set(&sig->live, 1);
1558 	refcount_set(&sig->sigcnt, 1);
1559 
1560 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1561 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1562 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1563 
1564 	init_waitqueue_head(&sig->wait_chldexit);
1565 	sig->curr_target = tsk;
1566 	init_sigpending(&sig->shared_pending);
1567 	INIT_HLIST_HEAD(&sig->multiprocess);
1568 	seqlock_init(&sig->stats_lock);
1569 	prev_cputime_init(&sig->prev_cputime);
1570 
1571 #ifdef CONFIG_POSIX_TIMERS
1572 	INIT_LIST_HEAD(&sig->posix_timers);
1573 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1574 	sig->real_timer.function = it_real_fn;
1575 #endif
1576 
1577 	task_lock(current->group_leader);
1578 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1579 	task_unlock(current->group_leader);
1580 
1581 	posix_cpu_timers_init_group(sig);
1582 
1583 	tty_audit_fork(sig);
1584 	sched_autogroup_fork(sig);
1585 
1586 	sig->oom_score_adj = current->signal->oom_score_adj;
1587 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1588 
1589 	mutex_init(&sig->cred_guard_mutex);
1590 
1591 	return 0;
1592 }
1593 
1594 static void copy_seccomp(struct task_struct *p)
1595 {
1596 #ifdef CONFIG_SECCOMP
1597 	/*
1598 	 * Must be called with sighand->lock held, which is common to
1599 	 * all threads in the group. Holding cred_guard_mutex is not
1600 	 * needed because this new task is not yet running and cannot
1601 	 * be racing exec.
1602 	 */
1603 	assert_spin_locked(&current->sighand->siglock);
1604 
1605 	/* Ref-count the new filter user, and assign it. */
1606 	get_seccomp_filter(current);
1607 	p->seccomp = current->seccomp;
1608 
1609 	/*
1610 	 * Explicitly enable no_new_privs here in case it got set
1611 	 * between the task_struct being duplicated and holding the
1612 	 * sighand lock. The seccomp state and nnp must be in sync.
1613 	 */
1614 	if (task_no_new_privs(current))
1615 		task_set_no_new_privs(p);
1616 
1617 	/*
1618 	 * If the parent gained a seccomp mode after copying thread
1619 	 * flags and between before we held the sighand lock, we have
1620 	 * to manually enable the seccomp thread flag here.
1621 	 */
1622 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1623 		set_tsk_thread_flag(p, TIF_SECCOMP);
1624 #endif
1625 }
1626 
1627 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1628 {
1629 	current->clear_child_tid = tidptr;
1630 
1631 	return task_pid_vnr(current);
1632 }
1633 
1634 static void rt_mutex_init_task(struct task_struct *p)
1635 {
1636 	raw_spin_lock_init(&p->pi_lock);
1637 #ifdef CONFIG_RT_MUTEXES
1638 	p->pi_waiters = RB_ROOT_CACHED;
1639 	p->pi_top_task = NULL;
1640 	p->pi_blocked_on = NULL;
1641 #endif
1642 }
1643 
1644 #ifdef CONFIG_POSIX_TIMERS
1645 /*
1646  * Initialize POSIX timer handling for a single task.
1647  */
1648 static void posix_cpu_timers_init(struct task_struct *tsk)
1649 {
1650 	tsk->cputime_expires.prof_exp = 0;
1651 	tsk->cputime_expires.virt_exp = 0;
1652 	tsk->cputime_expires.sched_exp = 0;
1653 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1654 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1655 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1656 }
1657 #else
1658 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1659 #endif
1660 
1661 static inline void init_task_pid_links(struct task_struct *task)
1662 {
1663 	enum pid_type type;
1664 
1665 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1666 		INIT_HLIST_NODE(&task->pid_links[type]);
1667 	}
1668 }
1669 
1670 static inline void
1671 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1672 {
1673 	if (type == PIDTYPE_PID)
1674 		task->thread_pid = pid;
1675 	else
1676 		task->signal->pids[type] = pid;
1677 }
1678 
1679 static inline void rcu_copy_process(struct task_struct *p)
1680 {
1681 #ifdef CONFIG_PREEMPT_RCU
1682 	p->rcu_read_lock_nesting = 0;
1683 	p->rcu_read_unlock_special.s = 0;
1684 	p->rcu_blocked_node = NULL;
1685 	INIT_LIST_HEAD(&p->rcu_node_entry);
1686 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1687 #ifdef CONFIG_TASKS_RCU
1688 	p->rcu_tasks_holdout = false;
1689 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1690 	p->rcu_tasks_idle_cpu = -1;
1691 #endif /* #ifdef CONFIG_TASKS_RCU */
1692 }
1693 
1694 static int pidfd_release(struct inode *inode, struct file *file)
1695 {
1696 	struct pid *pid = file->private_data;
1697 
1698 	file->private_data = NULL;
1699 	put_pid(pid);
1700 	return 0;
1701 }
1702 
1703 #ifdef CONFIG_PROC_FS
1704 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1705 {
1706 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1707 	struct pid *pid = f->private_data;
1708 
1709 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1710 	seq_putc(m, '\n');
1711 }
1712 #endif
1713 
1714 /*
1715  * Poll support for process exit notification.
1716  */
1717 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1718 {
1719 	struct task_struct *task;
1720 	struct pid *pid = file->private_data;
1721 	int poll_flags = 0;
1722 
1723 	poll_wait(file, &pid->wait_pidfd, pts);
1724 
1725 	rcu_read_lock();
1726 	task = pid_task(pid, PIDTYPE_PID);
1727 	/*
1728 	 * Inform pollers only when the whole thread group exits.
1729 	 * If the thread group leader exits before all other threads in the
1730 	 * group, then poll(2) should block, similar to the wait(2) family.
1731 	 */
1732 	if (!task || (task->exit_state && thread_group_empty(task)))
1733 		poll_flags = POLLIN | POLLRDNORM;
1734 	rcu_read_unlock();
1735 
1736 	return poll_flags;
1737 }
1738 
1739 const struct file_operations pidfd_fops = {
1740 	.release = pidfd_release,
1741 	.poll = pidfd_poll,
1742 #ifdef CONFIG_PROC_FS
1743 	.show_fdinfo = pidfd_show_fdinfo,
1744 #endif
1745 };
1746 
1747 static void __delayed_free_task(struct rcu_head *rhp)
1748 {
1749 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1750 
1751 	free_task(tsk);
1752 }
1753 
1754 static __always_inline void delayed_free_task(struct task_struct *tsk)
1755 {
1756 	if (IS_ENABLED(CONFIG_MEMCG))
1757 		call_rcu(&tsk->rcu, __delayed_free_task);
1758 	else
1759 		free_task(tsk);
1760 }
1761 
1762 /*
1763  * This creates a new process as a copy of the old one,
1764  * but does not actually start it yet.
1765  *
1766  * It copies the registers, and all the appropriate
1767  * parts of the process environment (as per the clone
1768  * flags). The actual kick-off is left to the caller.
1769  */
1770 static __latent_entropy struct task_struct *copy_process(
1771 					struct pid *pid,
1772 					int trace,
1773 					int node,
1774 					struct kernel_clone_args *args)
1775 {
1776 	int pidfd = -1, retval;
1777 	struct task_struct *p;
1778 	struct multiprocess_signals delayed;
1779 	struct file *pidfile = NULL;
1780 	u64 clone_flags = args->flags;
1781 
1782 	/*
1783 	 * Don't allow sharing the root directory with processes in a different
1784 	 * namespace
1785 	 */
1786 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1787 		return ERR_PTR(-EINVAL);
1788 
1789 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1790 		return ERR_PTR(-EINVAL);
1791 
1792 	/*
1793 	 * Thread groups must share signals as well, and detached threads
1794 	 * can only be started up within the thread group.
1795 	 */
1796 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1797 		return ERR_PTR(-EINVAL);
1798 
1799 	/*
1800 	 * Shared signal handlers imply shared VM. By way of the above,
1801 	 * thread groups also imply shared VM. Blocking this case allows
1802 	 * for various simplifications in other code.
1803 	 */
1804 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1805 		return ERR_PTR(-EINVAL);
1806 
1807 	/*
1808 	 * Siblings of global init remain as zombies on exit since they are
1809 	 * not reaped by their parent (swapper). To solve this and to avoid
1810 	 * multi-rooted process trees, prevent global and container-inits
1811 	 * from creating siblings.
1812 	 */
1813 	if ((clone_flags & CLONE_PARENT) &&
1814 				current->signal->flags & SIGNAL_UNKILLABLE)
1815 		return ERR_PTR(-EINVAL);
1816 
1817 	/*
1818 	 * If the new process will be in a different pid or user namespace
1819 	 * do not allow it to share a thread group with the forking task.
1820 	 */
1821 	if (clone_flags & CLONE_THREAD) {
1822 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1823 		    (task_active_pid_ns(current) !=
1824 				current->nsproxy->pid_ns_for_children))
1825 			return ERR_PTR(-EINVAL);
1826 	}
1827 
1828 	if (clone_flags & CLONE_PIDFD) {
1829 		/*
1830 		 * - CLONE_DETACHED is blocked so that we can potentially
1831 		 *   reuse it later for CLONE_PIDFD.
1832 		 * - CLONE_THREAD is blocked until someone really needs it.
1833 		 */
1834 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1835 			return ERR_PTR(-EINVAL);
1836 	}
1837 
1838 	/*
1839 	 * Force any signals received before this point to be delivered
1840 	 * before the fork happens.  Collect up signals sent to multiple
1841 	 * processes that happen during the fork and delay them so that
1842 	 * they appear to happen after the fork.
1843 	 */
1844 	sigemptyset(&delayed.signal);
1845 	INIT_HLIST_NODE(&delayed.node);
1846 
1847 	spin_lock_irq(&current->sighand->siglock);
1848 	if (!(clone_flags & CLONE_THREAD))
1849 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1850 	recalc_sigpending();
1851 	spin_unlock_irq(&current->sighand->siglock);
1852 	retval = -ERESTARTNOINTR;
1853 	if (signal_pending(current))
1854 		goto fork_out;
1855 
1856 	retval = -ENOMEM;
1857 	p = dup_task_struct(current, node);
1858 	if (!p)
1859 		goto fork_out;
1860 
1861 	/*
1862 	 * This _must_ happen before we call free_task(), i.e. before we jump
1863 	 * to any of the bad_fork_* labels. This is to avoid freeing
1864 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1865 	 * kernel threads (PF_KTHREAD).
1866 	 */
1867 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1868 	/*
1869 	 * Clear TID on mm_release()?
1870 	 */
1871 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1872 
1873 	ftrace_graph_init_task(p);
1874 
1875 	rt_mutex_init_task(p);
1876 
1877 #ifdef CONFIG_PROVE_LOCKING
1878 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1879 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1880 #endif
1881 	retval = -EAGAIN;
1882 	if (atomic_read(&p->real_cred->user->processes) >=
1883 			task_rlimit(p, RLIMIT_NPROC)) {
1884 		if (p->real_cred->user != INIT_USER &&
1885 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1886 			goto bad_fork_free;
1887 	}
1888 	current->flags &= ~PF_NPROC_EXCEEDED;
1889 
1890 	retval = copy_creds(p, clone_flags);
1891 	if (retval < 0)
1892 		goto bad_fork_free;
1893 
1894 	/*
1895 	 * If multiple threads are within copy_process(), then this check
1896 	 * triggers too late. This doesn't hurt, the check is only there
1897 	 * to stop root fork bombs.
1898 	 */
1899 	retval = -EAGAIN;
1900 	if (nr_threads >= max_threads)
1901 		goto bad_fork_cleanup_count;
1902 
1903 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1904 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1905 	p->flags |= PF_FORKNOEXEC;
1906 	INIT_LIST_HEAD(&p->children);
1907 	INIT_LIST_HEAD(&p->sibling);
1908 	rcu_copy_process(p);
1909 	p->vfork_done = NULL;
1910 	spin_lock_init(&p->alloc_lock);
1911 
1912 	init_sigpending(&p->pending);
1913 
1914 	p->utime = p->stime = p->gtime = 0;
1915 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1916 	p->utimescaled = p->stimescaled = 0;
1917 #endif
1918 	prev_cputime_init(&p->prev_cputime);
1919 
1920 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1921 	seqcount_init(&p->vtime.seqcount);
1922 	p->vtime.starttime = 0;
1923 	p->vtime.state = VTIME_INACTIVE;
1924 #endif
1925 
1926 #if defined(SPLIT_RSS_COUNTING)
1927 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1928 #endif
1929 
1930 	p->default_timer_slack_ns = current->timer_slack_ns;
1931 
1932 #ifdef CONFIG_PSI
1933 	p->psi_flags = 0;
1934 #endif
1935 
1936 	task_io_accounting_init(&p->ioac);
1937 	acct_clear_integrals(p);
1938 
1939 	posix_cpu_timers_init(p);
1940 
1941 	p->io_context = NULL;
1942 	audit_set_context(p, NULL);
1943 	cgroup_fork(p);
1944 #ifdef CONFIG_NUMA
1945 	p->mempolicy = mpol_dup(p->mempolicy);
1946 	if (IS_ERR(p->mempolicy)) {
1947 		retval = PTR_ERR(p->mempolicy);
1948 		p->mempolicy = NULL;
1949 		goto bad_fork_cleanup_threadgroup_lock;
1950 	}
1951 #endif
1952 #ifdef CONFIG_CPUSETS
1953 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1954 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1955 	seqcount_init(&p->mems_allowed_seq);
1956 #endif
1957 #ifdef CONFIG_TRACE_IRQFLAGS
1958 	p->irq_events = 0;
1959 	p->hardirqs_enabled = 0;
1960 	p->hardirq_enable_ip = 0;
1961 	p->hardirq_enable_event = 0;
1962 	p->hardirq_disable_ip = _THIS_IP_;
1963 	p->hardirq_disable_event = 0;
1964 	p->softirqs_enabled = 1;
1965 	p->softirq_enable_ip = _THIS_IP_;
1966 	p->softirq_enable_event = 0;
1967 	p->softirq_disable_ip = 0;
1968 	p->softirq_disable_event = 0;
1969 	p->hardirq_context = 0;
1970 	p->softirq_context = 0;
1971 #endif
1972 
1973 	p->pagefault_disabled = 0;
1974 
1975 #ifdef CONFIG_LOCKDEP
1976 	lockdep_init_task(p);
1977 #endif
1978 
1979 #ifdef CONFIG_DEBUG_MUTEXES
1980 	p->blocked_on = NULL; /* not blocked yet */
1981 #endif
1982 #ifdef CONFIG_BCACHE
1983 	p->sequential_io	= 0;
1984 	p->sequential_io_avg	= 0;
1985 #endif
1986 
1987 	/* Perform scheduler related setup. Assign this task to a CPU. */
1988 	retval = sched_fork(clone_flags, p);
1989 	if (retval)
1990 		goto bad_fork_cleanup_policy;
1991 
1992 	retval = perf_event_init_task(p);
1993 	if (retval)
1994 		goto bad_fork_cleanup_policy;
1995 	retval = audit_alloc(p);
1996 	if (retval)
1997 		goto bad_fork_cleanup_perf;
1998 	/* copy all the process information */
1999 	shm_init_task(p);
2000 	retval = security_task_alloc(p, clone_flags);
2001 	if (retval)
2002 		goto bad_fork_cleanup_audit;
2003 	retval = copy_semundo(clone_flags, p);
2004 	if (retval)
2005 		goto bad_fork_cleanup_security;
2006 	retval = copy_files(clone_flags, p);
2007 	if (retval)
2008 		goto bad_fork_cleanup_semundo;
2009 	retval = copy_fs(clone_flags, p);
2010 	if (retval)
2011 		goto bad_fork_cleanup_files;
2012 	retval = copy_sighand(clone_flags, p);
2013 	if (retval)
2014 		goto bad_fork_cleanup_fs;
2015 	retval = copy_signal(clone_flags, p);
2016 	if (retval)
2017 		goto bad_fork_cleanup_sighand;
2018 	retval = copy_mm(clone_flags, p);
2019 	if (retval)
2020 		goto bad_fork_cleanup_signal;
2021 	retval = copy_namespaces(clone_flags, p);
2022 	if (retval)
2023 		goto bad_fork_cleanup_mm;
2024 	retval = copy_io(clone_flags, p);
2025 	if (retval)
2026 		goto bad_fork_cleanup_namespaces;
2027 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2028 				 args->tls);
2029 	if (retval)
2030 		goto bad_fork_cleanup_io;
2031 
2032 	stackleak_task_init(p);
2033 
2034 	if (pid != &init_struct_pid) {
2035 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2036 		if (IS_ERR(pid)) {
2037 			retval = PTR_ERR(pid);
2038 			goto bad_fork_cleanup_thread;
2039 		}
2040 	}
2041 
2042 	/*
2043 	 * This has to happen after we've potentially unshared the file
2044 	 * descriptor table (so that the pidfd doesn't leak into the child
2045 	 * if the fd table isn't shared).
2046 	 */
2047 	if (clone_flags & CLONE_PIDFD) {
2048 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2049 		if (retval < 0)
2050 			goto bad_fork_free_pid;
2051 
2052 		pidfd = retval;
2053 
2054 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2055 					      O_RDWR | O_CLOEXEC);
2056 		if (IS_ERR(pidfile)) {
2057 			put_unused_fd(pidfd);
2058 			retval = PTR_ERR(pidfile);
2059 			goto bad_fork_free_pid;
2060 		}
2061 		get_pid(pid);	/* held by pidfile now */
2062 
2063 		retval = put_user(pidfd, args->pidfd);
2064 		if (retval)
2065 			goto bad_fork_put_pidfd;
2066 	}
2067 
2068 #ifdef CONFIG_BLOCK
2069 	p->plug = NULL;
2070 #endif
2071 #ifdef CONFIG_FUTEX
2072 	p->robust_list = NULL;
2073 #ifdef CONFIG_COMPAT
2074 	p->compat_robust_list = NULL;
2075 #endif
2076 	INIT_LIST_HEAD(&p->pi_state_list);
2077 	p->pi_state_cache = NULL;
2078 #endif
2079 	/*
2080 	 * sigaltstack should be cleared when sharing the same VM
2081 	 */
2082 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2083 		sas_ss_reset(p);
2084 
2085 	/*
2086 	 * Syscall tracing and stepping should be turned off in the
2087 	 * child regardless of CLONE_PTRACE.
2088 	 */
2089 	user_disable_single_step(p);
2090 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2091 #ifdef TIF_SYSCALL_EMU
2092 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2093 #endif
2094 	clear_tsk_latency_tracing(p);
2095 
2096 	/* ok, now we should be set up.. */
2097 	p->pid = pid_nr(pid);
2098 	if (clone_flags & CLONE_THREAD) {
2099 		p->exit_signal = -1;
2100 		p->group_leader = current->group_leader;
2101 		p->tgid = current->tgid;
2102 	} else {
2103 		if (clone_flags & CLONE_PARENT)
2104 			p->exit_signal = current->group_leader->exit_signal;
2105 		else
2106 			p->exit_signal = args->exit_signal;
2107 		p->group_leader = p;
2108 		p->tgid = p->pid;
2109 	}
2110 
2111 	p->nr_dirtied = 0;
2112 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2113 	p->dirty_paused_when = 0;
2114 
2115 	p->pdeath_signal = 0;
2116 	INIT_LIST_HEAD(&p->thread_group);
2117 	p->task_works = NULL;
2118 
2119 	cgroup_threadgroup_change_begin(current);
2120 	/*
2121 	 * Ensure that the cgroup subsystem policies allow the new process to be
2122 	 * forked. It should be noted the the new process's css_set can be changed
2123 	 * between here and cgroup_post_fork() if an organisation operation is in
2124 	 * progress.
2125 	 */
2126 	retval = cgroup_can_fork(p);
2127 	if (retval)
2128 		goto bad_fork_cgroup_threadgroup_change_end;
2129 
2130 	/*
2131 	 * From this point on we must avoid any synchronous user-space
2132 	 * communication until we take the tasklist-lock. In particular, we do
2133 	 * not want user-space to be able to predict the process start-time by
2134 	 * stalling fork(2) after we recorded the start_time but before it is
2135 	 * visible to the system.
2136 	 */
2137 
2138 	p->start_time = ktime_get_ns();
2139 	p->real_start_time = ktime_get_boottime_ns();
2140 
2141 	/*
2142 	 * Make it visible to the rest of the system, but dont wake it up yet.
2143 	 * Need tasklist lock for parent etc handling!
2144 	 */
2145 	write_lock_irq(&tasklist_lock);
2146 
2147 	/* CLONE_PARENT re-uses the old parent */
2148 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2149 		p->real_parent = current->real_parent;
2150 		p->parent_exec_id = current->parent_exec_id;
2151 	} else {
2152 		p->real_parent = current;
2153 		p->parent_exec_id = current->self_exec_id;
2154 	}
2155 
2156 	klp_copy_process(p);
2157 
2158 	spin_lock(&current->sighand->siglock);
2159 
2160 	/*
2161 	 * Copy seccomp details explicitly here, in case they were changed
2162 	 * before holding sighand lock.
2163 	 */
2164 	copy_seccomp(p);
2165 
2166 	rseq_fork(p, clone_flags);
2167 
2168 	/* Don't start children in a dying pid namespace */
2169 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2170 		retval = -ENOMEM;
2171 		goto bad_fork_cancel_cgroup;
2172 	}
2173 
2174 	/* Let kill terminate clone/fork in the middle */
2175 	if (fatal_signal_pending(current)) {
2176 		retval = -EINTR;
2177 		goto bad_fork_cancel_cgroup;
2178 	}
2179 
2180 	/* past the last point of failure */
2181 	if (pidfile)
2182 		fd_install(pidfd, pidfile);
2183 
2184 	init_task_pid_links(p);
2185 	if (likely(p->pid)) {
2186 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2187 
2188 		init_task_pid(p, PIDTYPE_PID, pid);
2189 		if (thread_group_leader(p)) {
2190 			init_task_pid(p, PIDTYPE_TGID, pid);
2191 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2192 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2193 
2194 			if (is_child_reaper(pid)) {
2195 				ns_of_pid(pid)->child_reaper = p;
2196 				p->signal->flags |= SIGNAL_UNKILLABLE;
2197 			}
2198 			p->signal->shared_pending.signal = delayed.signal;
2199 			p->signal->tty = tty_kref_get(current->signal->tty);
2200 			/*
2201 			 * Inherit has_child_subreaper flag under the same
2202 			 * tasklist_lock with adding child to the process tree
2203 			 * for propagate_has_child_subreaper optimization.
2204 			 */
2205 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2206 							 p->real_parent->signal->is_child_subreaper;
2207 			list_add_tail(&p->sibling, &p->real_parent->children);
2208 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2209 			attach_pid(p, PIDTYPE_TGID);
2210 			attach_pid(p, PIDTYPE_PGID);
2211 			attach_pid(p, PIDTYPE_SID);
2212 			__this_cpu_inc(process_counts);
2213 		} else {
2214 			current->signal->nr_threads++;
2215 			atomic_inc(&current->signal->live);
2216 			refcount_inc(&current->signal->sigcnt);
2217 			task_join_group_stop(p);
2218 			list_add_tail_rcu(&p->thread_group,
2219 					  &p->group_leader->thread_group);
2220 			list_add_tail_rcu(&p->thread_node,
2221 					  &p->signal->thread_head);
2222 		}
2223 		attach_pid(p, PIDTYPE_PID);
2224 		nr_threads++;
2225 	}
2226 	total_forks++;
2227 	hlist_del_init(&delayed.node);
2228 	spin_unlock(&current->sighand->siglock);
2229 	syscall_tracepoint_update(p);
2230 	write_unlock_irq(&tasklist_lock);
2231 
2232 	proc_fork_connector(p);
2233 	cgroup_post_fork(p);
2234 	cgroup_threadgroup_change_end(current);
2235 	perf_event_fork(p);
2236 
2237 	trace_task_newtask(p, clone_flags);
2238 	uprobe_copy_process(p, clone_flags);
2239 
2240 	return p;
2241 
2242 bad_fork_cancel_cgroup:
2243 	spin_unlock(&current->sighand->siglock);
2244 	write_unlock_irq(&tasklist_lock);
2245 	cgroup_cancel_fork(p);
2246 bad_fork_cgroup_threadgroup_change_end:
2247 	cgroup_threadgroup_change_end(current);
2248 bad_fork_put_pidfd:
2249 	if (clone_flags & CLONE_PIDFD) {
2250 		fput(pidfile);
2251 		put_unused_fd(pidfd);
2252 	}
2253 bad_fork_free_pid:
2254 	if (pid != &init_struct_pid)
2255 		free_pid(pid);
2256 bad_fork_cleanup_thread:
2257 	exit_thread(p);
2258 bad_fork_cleanup_io:
2259 	if (p->io_context)
2260 		exit_io_context(p);
2261 bad_fork_cleanup_namespaces:
2262 	exit_task_namespaces(p);
2263 bad_fork_cleanup_mm:
2264 	if (p->mm) {
2265 		mm_clear_owner(p->mm, p);
2266 		mmput(p->mm);
2267 	}
2268 bad_fork_cleanup_signal:
2269 	if (!(clone_flags & CLONE_THREAD))
2270 		free_signal_struct(p->signal);
2271 bad_fork_cleanup_sighand:
2272 	__cleanup_sighand(p->sighand);
2273 bad_fork_cleanup_fs:
2274 	exit_fs(p); /* blocking */
2275 bad_fork_cleanup_files:
2276 	exit_files(p); /* blocking */
2277 bad_fork_cleanup_semundo:
2278 	exit_sem(p);
2279 bad_fork_cleanup_security:
2280 	security_task_free(p);
2281 bad_fork_cleanup_audit:
2282 	audit_free(p);
2283 bad_fork_cleanup_perf:
2284 	perf_event_free_task(p);
2285 bad_fork_cleanup_policy:
2286 	lockdep_free_task(p);
2287 #ifdef CONFIG_NUMA
2288 	mpol_put(p->mempolicy);
2289 bad_fork_cleanup_threadgroup_lock:
2290 #endif
2291 	delayacct_tsk_free(p);
2292 bad_fork_cleanup_count:
2293 	atomic_dec(&p->cred->user->processes);
2294 	exit_creds(p);
2295 bad_fork_free:
2296 	p->state = TASK_DEAD;
2297 	put_task_stack(p);
2298 	delayed_free_task(p);
2299 fork_out:
2300 	spin_lock_irq(&current->sighand->siglock);
2301 	hlist_del_init(&delayed.node);
2302 	spin_unlock_irq(&current->sighand->siglock);
2303 	return ERR_PTR(retval);
2304 }
2305 
2306 static inline void init_idle_pids(struct task_struct *idle)
2307 {
2308 	enum pid_type type;
2309 
2310 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2311 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2312 		init_task_pid(idle, type, &init_struct_pid);
2313 	}
2314 }
2315 
2316 struct task_struct *fork_idle(int cpu)
2317 {
2318 	struct task_struct *task;
2319 	struct kernel_clone_args args = {
2320 		.flags = CLONE_VM,
2321 	};
2322 
2323 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2324 	if (!IS_ERR(task)) {
2325 		init_idle_pids(task);
2326 		init_idle(task, cpu);
2327 	}
2328 
2329 	return task;
2330 }
2331 
2332 struct mm_struct *copy_init_mm(void)
2333 {
2334 	return dup_mm(NULL, &init_mm);
2335 }
2336 
2337 /*
2338  *  Ok, this is the main fork-routine.
2339  *
2340  * It copies the process, and if successful kick-starts
2341  * it and waits for it to finish using the VM if required.
2342  */
2343 long _do_fork(struct kernel_clone_args *args)
2344 {
2345 	u64 clone_flags = args->flags;
2346 	struct completion vfork;
2347 	struct pid *pid;
2348 	struct task_struct *p;
2349 	int trace = 0;
2350 	long nr;
2351 
2352 	/*
2353 	 * Determine whether and which event to report to ptracer.  When
2354 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2355 	 * requested, no event is reported; otherwise, report if the event
2356 	 * for the type of forking is enabled.
2357 	 */
2358 	if (!(clone_flags & CLONE_UNTRACED)) {
2359 		if (clone_flags & CLONE_VFORK)
2360 			trace = PTRACE_EVENT_VFORK;
2361 		else if (args->exit_signal != SIGCHLD)
2362 			trace = PTRACE_EVENT_CLONE;
2363 		else
2364 			trace = PTRACE_EVENT_FORK;
2365 
2366 		if (likely(!ptrace_event_enabled(current, trace)))
2367 			trace = 0;
2368 	}
2369 
2370 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2371 	add_latent_entropy();
2372 
2373 	if (IS_ERR(p))
2374 		return PTR_ERR(p);
2375 
2376 	/*
2377 	 * Do this prior waking up the new thread - the thread pointer
2378 	 * might get invalid after that point, if the thread exits quickly.
2379 	 */
2380 	trace_sched_process_fork(current, p);
2381 
2382 	pid = get_task_pid(p, PIDTYPE_PID);
2383 	nr = pid_vnr(pid);
2384 
2385 	if (clone_flags & CLONE_PARENT_SETTID)
2386 		put_user(nr, args->parent_tid);
2387 
2388 	if (clone_flags & CLONE_VFORK) {
2389 		p->vfork_done = &vfork;
2390 		init_completion(&vfork);
2391 		get_task_struct(p);
2392 	}
2393 
2394 	wake_up_new_task(p);
2395 
2396 	/* forking complete and child started to run, tell ptracer */
2397 	if (unlikely(trace))
2398 		ptrace_event_pid(trace, pid);
2399 
2400 	if (clone_flags & CLONE_VFORK) {
2401 		if (!wait_for_vfork_done(p, &vfork))
2402 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2403 	}
2404 
2405 	put_pid(pid);
2406 	return nr;
2407 }
2408 
2409 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2410 /* For compatibility with architectures that call do_fork directly rather than
2411  * using the syscall entry points below. */
2412 long do_fork(unsigned long clone_flags,
2413 	      unsigned long stack_start,
2414 	      unsigned long stack_size,
2415 	      int __user *parent_tidptr,
2416 	      int __user *child_tidptr)
2417 {
2418 	struct kernel_clone_args args = {
2419 		.flags		= (clone_flags & ~CSIGNAL),
2420 		.child_tid	= child_tidptr,
2421 		.parent_tid	= parent_tidptr,
2422 		.exit_signal	= (clone_flags & CSIGNAL),
2423 		.stack		= stack_start,
2424 		.stack_size	= stack_size,
2425 	};
2426 
2427 	return _do_fork(&args);
2428 }
2429 #endif
2430 
2431 /*
2432  * Create a kernel thread.
2433  */
2434 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2435 {
2436 	struct kernel_clone_args args = {
2437 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2438 		.exit_signal	= (flags & CSIGNAL),
2439 		.stack		= (unsigned long)fn,
2440 		.stack_size	= (unsigned long)arg,
2441 	};
2442 
2443 	return _do_fork(&args);
2444 }
2445 
2446 #ifdef __ARCH_WANT_SYS_FORK
2447 SYSCALL_DEFINE0(fork)
2448 {
2449 #ifdef CONFIG_MMU
2450 	struct kernel_clone_args args = {
2451 		.exit_signal = SIGCHLD,
2452 	};
2453 
2454 	return _do_fork(&args);
2455 #else
2456 	/* can not support in nommu mode */
2457 	return -EINVAL;
2458 #endif
2459 }
2460 #endif
2461 
2462 #ifdef __ARCH_WANT_SYS_VFORK
2463 SYSCALL_DEFINE0(vfork)
2464 {
2465 	struct kernel_clone_args args = {
2466 		.flags		= CLONE_VFORK | CLONE_VM,
2467 		.exit_signal	= SIGCHLD,
2468 	};
2469 
2470 	return _do_fork(&args);
2471 }
2472 #endif
2473 
2474 #ifdef __ARCH_WANT_SYS_CLONE
2475 #ifdef CONFIG_CLONE_BACKWARDS
2476 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2477 		 int __user *, parent_tidptr,
2478 		 unsigned long, tls,
2479 		 int __user *, child_tidptr)
2480 #elif defined(CONFIG_CLONE_BACKWARDS2)
2481 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2482 		 int __user *, parent_tidptr,
2483 		 int __user *, child_tidptr,
2484 		 unsigned long, tls)
2485 #elif defined(CONFIG_CLONE_BACKWARDS3)
2486 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2487 		int, stack_size,
2488 		int __user *, parent_tidptr,
2489 		int __user *, child_tidptr,
2490 		unsigned long, tls)
2491 #else
2492 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2493 		 int __user *, parent_tidptr,
2494 		 int __user *, child_tidptr,
2495 		 unsigned long, tls)
2496 #endif
2497 {
2498 	struct kernel_clone_args args = {
2499 		.flags		= (clone_flags & ~CSIGNAL),
2500 		.pidfd		= parent_tidptr,
2501 		.child_tid	= child_tidptr,
2502 		.parent_tid	= parent_tidptr,
2503 		.exit_signal	= (clone_flags & CSIGNAL),
2504 		.stack		= newsp,
2505 		.tls		= tls,
2506 	};
2507 
2508 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2509 	if ((clone_flags & CLONE_PIDFD) && (clone_flags & CLONE_PARENT_SETTID))
2510 		return -EINVAL;
2511 
2512 	return _do_fork(&args);
2513 }
2514 #endif
2515 
2516 #ifdef __ARCH_WANT_SYS_CLONE3
2517 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2518 					      struct clone_args __user *uargs,
2519 					      size_t size)
2520 {
2521 	struct clone_args args;
2522 
2523 	if (unlikely(size > PAGE_SIZE))
2524 		return -E2BIG;
2525 
2526 	if (unlikely(size < sizeof(struct clone_args)))
2527 		return -EINVAL;
2528 
2529 	if (unlikely(!access_ok(uargs, size)))
2530 		return -EFAULT;
2531 
2532 	if (size > sizeof(struct clone_args)) {
2533 		unsigned char __user *addr;
2534 		unsigned char __user *end;
2535 		unsigned char val;
2536 
2537 		addr = (void __user *)uargs + sizeof(struct clone_args);
2538 		end = (void __user *)uargs + size;
2539 
2540 		for (; addr < end; addr++) {
2541 			if (get_user(val, addr))
2542 				return -EFAULT;
2543 			if (val)
2544 				return -E2BIG;
2545 		}
2546 
2547 		size = sizeof(struct clone_args);
2548 	}
2549 
2550 	if (copy_from_user(&args, uargs, size))
2551 		return -EFAULT;
2552 
2553 	*kargs = (struct kernel_clone_args){
2554 		.flags		= args.flags,
2555 		.pidfd		= u64_to_user_ptr(args.pidfd),
2556 		.child_tid	= u64_to_user_ptr(args.child_tid),
2557 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2558 		.exit_signal	= args.exit_signal,
2559 		.stack		= args.stack,
2560 		.stack_size	= args.stack_size,
2561 		.tls		= args.tls,
2562 	};
2563 
2564 	return 0;
2565 }
2566 
2567 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2568 {
2569 	/*
2570 	 * All lower bits of the flag word are taken.
2571 	 * Verify that no other unknown flags are passed along.
2572 	 */
2573 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2574 		return false;
2575 
2576 	/*
2577 	 * - make the CLONE_DETACHED bit reuseable for clone3
2578 	 * - make the CSIGNAL bits reuseable for clone3
2579 	 */
2580 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2581 		return false;
2582 
2583 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2584 	    kargs->exit_signal)
2585 		return false;
2586 
2587 	return true;
2588 }
2589 
2590 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2591 {
2592 	int err;
2593 
2594 	struct kernel_clone_args kargs;
2595 
2596 	err = copy_clone_args_from_user(&kargs, uargs, size);
2597 	if (err)
2598 		return err;
2599 
2600 	if (!clone3_args_valid(&kargs))
2601 		return -EINVAL;
2602 
2603 	return _do_fork(&kargs);
2604 }
2605 #endif
2606 
2607 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2608 {
2609 	struct task_struct *leader, *parent, *child;
2610 	int res;
2611 
2612 	read_lock(&tasklist_lock);
2613 	leader = top = top->group_leader;
2614 down:
2615 	for_each_thread(leader, parent) {
2616 		list_for_each_entry(child, &parent->children, sibling) {
2617 			res = visitor(child, data);
2618 			if (res) {
2619 				if (res < 0)
2620 					goto out;
2621 				leader = child;
2622 				goto down;
2623 			}
2624 up:
2625 			;
2626 		}
2627 	}
2628 
2629 	if (leader != top) {
2630 		child = leader;
2631 		parent = child->real_parent;
2632 		leader = parent->group_leader;
2633 		goto up;
2634 	}
2635 out:
2636 	read_unlock(&tasklist_lock);
2637 }
2638 
2639 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2640 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2641 #endif
2642 
2643 static void sighand_ctor(void *data)
2644 {
2645 	struct sighand_struct *sighand = data;
2646 
2647 	spin_lock_init(&sighand->siglock);
2648 	init_waitqueue_head(&sighand->signalfd_wqh);
2649 }
2650 
2651 void __init proc_caches_init(void)
2652 {
2653 	unsigned int mm_size;
2654 
2655 	sighand_cachep = kmem_cache_create("sighand_cache",
2656 			sizeof(struct sighand_struct), 0,
2657 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2658 			SLAB_ACCOUNT, sighand_ctor);
2659 	signal_cachep = kmem_cache_create("signal_cache",
2660 			sizeof(struct signal_struct), 0,
2661 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2662 			NULL);
2663 	files_cachep = kmem_cache_create("files_cache",
2664 			sizeof(struct files_struct), 0,
2665 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2666 			NULL);
2667 	fs_cachep = kmem_cache_create("fs_cache",
2668 			sizeof(struct fs_struct), 0,
2669 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2670 			NULL);
2671 
2672 	/*
2673 	 * The mm_cpumask is located at the end of mm_struct, and is
2674 	 * dynamically sized based on the maximum CPU number this system
2675 	 * can have, taking hotplug into account (nr_cpu_ids).
2676 	 */
2677 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2678 
2679 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2680 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2681 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2682 			offsetof(struct mm_struct, saved_auxv),
2683 			sizeof_field(struct mm_struct, saved_auxv),
2684 			NULL);
2685 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2686 	mmap_init();
2687 	nsproxy_cache_init();
2688 }
2689 
2690 /*
2691  * Check constraints on flags passed to the unshare system call.
2692  */
2693 static int check_unshare_flags(unsigned long unshare_flags)
2694 {
2695 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2696 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2697 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2698 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2699 		return -EINVAL;
2700 	/*
2701 	 * Not implemented, but pretend it works if there is nothing
2702 	 * to unshare.  Note that unsharing the address space or the
2703 	 * signal handlers also need to unshare the signal queues (aka
2704 	 * CLONE_THREAD).
2705 	 */
2706 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2707 		if (!thread_group_empty(current))
2708 			return -EINVAL;
2709 	}
2710 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2711 		if (refcount_read(&current->sighand->count) > 1)
2712 			return -EINVAL;
2713 	}
2714 	if (unshare_flags & CLONE_VM) {
2715 		if (!current_is_single_threaded())
2716 			return -EINVAL;
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 /*
2723  * Unshare the filesystem structure if it is being shared
2724  */
2725 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2726 {
2727 	struct fs_struct *fs = current->fs;
2728 
2729 	if (!(unshare_flags & CLONE_FS) || !fs)
2730 		return 0;
2731 
2732 	/* don't need lock here; in the worst case we'll do useless copy */
2733 	if (fs->users == 1)
2734 		return 0;
2735 
2736 	*new_fsp = copy_fs_struct(fs);
2737 	if (!*new_fsp)
2738 		return -ENOMEM;
2739 
2740 	return 0;
2741 }
2742 
2743 /*
2744  * Unshare file descriptor table if it is being shared
2745  */
2746 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2747 {
2748 	struct files_struct *fd = current->files;
2749 	int error = 0;
2750 
2751 	if ((unshare_flags & CLONE_FILES) &&
2752 	    (fd && atomic_read(&fd->count) > 1)) {
2753 		*new_fdp = dup_fd(fd, &error);
2754 		if (!*new_fdp)
2755 			return error;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * unshare allows a process to 'unshare' part of the process
2763  * context which was originally shared using clone.  copy_*
2764  * functions used by do_fork() cannot be used here directly
2765  * because they modify an inactive task_struct that is being
2766  * constructed. Here we are modifying the current, active,
2767  * task_struct.
2768  */
2769 int ksys_unshare(unsigned long unshare_flags)
2770 {
2771 	struct fs_struct *fs, *new_fs = NULL;
2772 	struct files_struct *fd, *new_fd = NULL;
2773 	struct cred *new_cred = NULL;
2774 	struct nsproxy *new_nsproxy = NULL;
2775 	int do_sysvsem = 0;
2776 	int err;
2777 
2778 	/*
2779 	 * If unsharing a user namespace must also unshare the thread group
2780 	 * and unshare the filesystem root and working directories.
2781 	 */
2782 	if (unshare_flags & CLONE_NEWUSER)
2783 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2784 	/*
2785 	 * If unsharing vm, must also unshare signal handlers.
2786 	 */
2787 	if (unshare_flags & CLONE_VM)
2788 		unshare_flags |= CLONE_SIGHAND;
2789 	/*
2790 	 * If unsharing a signal handlers, must also unshare the signal queues.
2791 	 */
2792 	if (unshare_flags & CLONE_SIGHAND)
2793 		unshare_flags |= CLONE_THREAD;
2794 	/*
2795 	 * If unsharing namespace, must also unshare filesystem information.
2796 	 */
2797 	if (unshare_flags & CLONE_NEWNS)
2798 		unshare_flags |= CLONE_FS;
2799 
2800 	err = check_unshare_flags(unshare_flags);
2801 	if (err)
2802 		goto bad_unshare_out;
2803 	/*
2804 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2805 	 * to a new ipc namespace, the semaphore arrays from the old
2806 	 * namespace are unreachable.
2807 	 */
2808 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2809 		do_sysvsem = 1;
2810 	err = unshare_fs(unshare_flags, &new_fs);
2811 	if (err)
2812 		goto bad_unshare_out;
2813 	err = unshare_fd(unshare_flags, &new_fd);
2814 	if (err)
2815 		goto bad_unshare_cleanup_fs;
2816 	err = unshare_userns(unshare_flags, &new_cred);
2817 	if (err)
2818 		goto bad_unshare_cleanup_fd;
2819 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2820 					 new_cred, new_fs);
2821 	if (err)
2822 		goto bad_unshare_cleanup_cred;
2823 
2824 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2825 		if (do_sysvsem) {
2826 			/*
2827 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2828 			 */
2829 			exit_sem(current);
2830 		}
2831 		if (unshare_flags & CLONE_NEWIPC) {
2832 			/* Orphan segments in old ns (see sem above). */
2833 			exit_shm(current);
2834 			shm_init_task(current);
2835 		}
2836 
2837 		if (new_nsproxy)
2838 			switch_task_namespaces(current, new_nsproxy);
2839 
2840 		task_lock(current);
2841 
2842 		if (new_fs) {
2843 			fs = current->fs;
2844 			spin_lock(&fs->lock);
2845 			current->fs = new_fs;
2846 			if (--fs->users)
2847 				new_fs = NULL;
2848 			else
2849 				new_fs = fs;
2850 			spin_unlock(&fs->lock);
2851 		}
2852 
2853 		if (new_fd) {
2854 			fd = current->files;
2855 			current->files = new_fd;
2856 			new_fd = fd;
2857 		}
2858 
2859 		task_unlock(current);
2860 
2861 		if (new_cred) {
2862 			/* Install the new user namespace */
2863 			commit_creds(new_cred);
2864 			new_cred = NULL;
2865 		}
2866 	}
2867 
2868 	perf_event_namespaces(current);
2869 
2870 bad_unshare_cleanup_cred:
2871 	if (new_cred)
2872 		put_cred(new_cred);
2873 bad_unshare_cleanup_fd:
2874 	if (new_fd)
2875 		put_files_struct(new_fd);
2876 
2877 bad_unshare_cleanup_fs:
2878 	if (new_fs)
2879 		free_fs_struct(new_fs);
2880 
2881 bad_unshare_out:
2882 	return err;
2883 }
2884 
2885 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2886 {
2887 	return ksys_unshare(unshare_flags);
2888 }
2889 
2890 /*
2891  *	Helper to unshare the files of the current task.
2892  *	We don't want to expose copy_files internals to
2893  *	the exec layer of the kernel.
2894  */
2895 
2896 int unshare_files(struct files_struct **displaced)
2897 {
2898 	struct task_struct *task = current;
2899 	struct files_struct *copy = NULL;
2900 	int error;
2901 
2902 	error = unshare_fd(CLONE_FILES, &copy);
2903 	if (error || !copy) {
2904 		*displaced = NULL;
2905 		return error;
2906 	}
2907 	*displaced = task->files;
2908 	task_lock(task);
2909 	task->files = copy;
2910 	task_unlock(task);
2911 	return 0;
2912 }
2913 
2914 int sysctl_max_threads(struct ctl_table *table, int write,
2915 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2916 {
2917 	struct ctl_table t;
2918 	int ret;
2919 	int threads = max_threads;
2920 	int min = MIN_THREADS;
2921 	int max = MAX_THREADS;
2922 
2923 	t = *table;
2924 	t.data = &threads;
2925 	t.extra1 = &min;
2926 	t.extra2 = &max;
2927 
2928 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2929 	if (ret || !write)
2930 		return ret;
2931 
2932 	set_max_threads(threads);
2933 
2934 	return 0;
2935 }
2936