1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/sched/mm.h> 101 102 #include <asm/pgalloc.h> 103 #include <linux/uaccess.h> 104 #include <asm/mmu_context.h> 105 #include <asm/cacheflush.h> 106 #include <asm/tlbflush.h> 107 108 #include <trace/events/sched.h> 109 110 #define CREATE_TRACE_POINTS 111 #include <trace/events/task.h> 112 113 /* 114 * Minimum number of threads to boot the kernel 115 */ 116 #define MIN_THREADS 20 117 118 /* 119 * Maximum number of threads 120 */ 121 #define MAX_THREADS FUTEX_TID_MASK 122 123 /* 124 * Protected counters by write_lock_irq(&tasklist_lock) 125 */ 126 unsigned long total_forks; /* Handle normal Linux uptimes. */ 127 int nr_threads; /* The idle threads do not count.. */ 128 129 static int max_threads; /* tunable limit on nr_threads */ 130 131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 132 133 static const char * const resident_page_types[] = { 134 NAMED_ARRAY_INDEX(MM_FILEPAGES), 135 NAMED_ARRAY_INDEX(MM_ANONPAGES), 136 NAMED_ARRAY_INDEX(MM_SWAPENTS), 137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 138 }; 139 140 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 141 142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 143 144 #ifdef CONFIG_PROVE_RCU 145 int lockdep_tasklist_lock_is_held(void) 146 { 147 return lockdep_is_held(&tasklist_lock); 148 } 149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 150 #endif /* #ifdef CONFIG_PROVE_RCU */ 151 152 int nr_processes(void) 153 { 154 int cpu; 155 int total = 0; 156 157 for_each_possible_cpu(cpu) 158 total += per_cpu(process_counts, cpu); 159 160 return total; 161 } 162 163 void __weak arch_release_task_struct(struct task_struct *tsk) 164 { 165 } 166 167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 #endif 180 181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 182 183 /* 184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 185 * kmemcache based allocator. 186 */ 187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 188 189 # ifdef CONFIG_VMAP_STACK 190 /* 191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 192 * flush. Try to minimize the number of calls by caching stacks. 193 */ 194 #define NR_CACHED_STACKS 2 195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 196 197 struct vm_stack { 198 struct rcu_head rcu; 199 struct vm_struct *stack_vm_area; 200 }; 201 202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 203 { 204 unsigned int i; 205 206 for (i = 0; i < NR_CACHED_STACKS; i++) { 207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 208 continue; 209 return true; 210 } 211 return false; 212 } 213 214 static void thread_stack_free_rcu(struct rcu_head *rh) 215 { 216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 217 218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 219 return; 220 221 vfree(vm_stack); 222 } 223 224 static void thread_stack_delayed_free(struct task_struct *tsk) 225 { 226 struct vm_stack *vm_stack = tsk->stack; 227 228 vm_stack->stack_vm_area = tsk->stack_vm_area; 229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 230 } 231 232 static int free_vm_stack_cache(unsigned int cpu) 233 { 234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 235 int i; 236 237 for (i = 0; i < NR_CACHED_STACKS; i++) { 238 struct vm_struct *vm_stack = cached_vm_stacks[i]; 239 240 if (!vm_stack) 241 continue; 242 243 vfree(vm_stack->addr); 244 cached_vm_stacks[i] = NULL; 245 } 246 247 return 0; 248 } 249 250 static int memcg_charge_kernel_stack(struct vm_struct *vm) 251 { 252 int i; 253 int ret; 254 255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 257 258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 260 if (ret) 261 goto err; 262 } 263 return 0; 264 err: 265 /* 266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 268 * ignore this page. 269 */ 270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 271 memcg_kmem_uncharge_page(vm->pages[i], 0); 272 return ret; 273 } 274 275 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 276 { 277 struct vm_struct *vm; 278 void *stack; 279 int i; 280 281 for (i = 0; i < NR_CACHED_STACKS; i++) { 282 struct vm_struct *s; 283 284 s = this_cpu_xchg(cached_stacks[i], NULL); 285 286 if (!s) 287 continue; 288 289 /* Reset stack metadata. */ 290 kasan_unpoison_range(s->addr, THREAD_SIZE); 291 292 stack = kasan_reset_tag(s->addr); 293 294 /* Clear stale pointers from reused stack. */ 295 memset(stack, 0, THREAD_SIZE); 296 297 if (memcg_charge_kernel_stack(s)) { 298 vfree(s->addr); 299 return -ENOMEM; 300 } 301 302 tsk->stack_vm_area = s; 303 tsk->stack = stack; 304 return 0; 305 } 306 307 /* 308 * Allocated stacks are cached and later reused by new threads, 309 * so memcg accounting is performed manually on assigning/releasing 310 * stacks to tasks. Drop __GFP_ACCOUNT. 311 */ 312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 313 VMALLOC_START, VMALLOC_END, 314 THREADINFO_GFP & ~__GFP_ACCOUNT, 315 PAGE_KERNEL, 316 0, node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 419 420 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 421 { 422 unsigned long *stack; 423 424 stack = arch_alloc_thread_stack_node(tsk, node); 425 tsk->stack = stack; 426 return stack ? 0 : -ENOMEM; 427 } 428 429 static void free_thread_stack(struct task_struct *tsk) 430 { 431 arch_free_thread_stack(tsk); 432 tsk->stack = NULL; 433 } 434 435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 436 437 /* SLAB cache for signal_struct structures (tsk->signal) */ 438 static struct kmem_cache *signal_cachep; 439 440 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 441 struct kmem_cache *sighand_cachep; 442 443 /* SLAB cache for files_struct structures (tsk->files) */ 444 struct kmem_cache *files_cachep; 445 446 /* SLAB cache for fs_struct structures (tsk->fs) */ 447 struct kmem_cache *fs_cachep; 448 449 /* SLAB cache for vm_area_struct structures */ 450 static struct kmem_cache *vm_area_cachep; 451 452 /* SLAB cache for mm_struct structures (tsk->mm) */ 453 static struct kmem_cache *mm_cachep; 454 455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 456 { 457 struct vm_area_struct *vma; 458 459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 460 if (vma) 461 vma_init(vma, mm); 462 return vma; 463 } 464 465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 466 { 467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 469 if (new) { 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 472 /* 473 * orig->shared.rb may be modified concurrently, but the clone 474 * will be reinitialized. 475 */ 476 *new = data_race(*orig); 477 INIT_LIST_HEAD(&new->anon_vma_chain); 478 new->vm_next = new->vm_prev = NULL; 479 dup_anon_vma_name(orig, new); 480 } 481 return new; 482 } 483 484 void vm_area_free(struct vm_area_struct *vma) 485 { 486 free_anon_vma_name(vma); 487 kmem_cache_free(vm_area_cachep, vma); 488 } 489 490 static void account_kernel_stack(struct task_struct *tsk, int account) 491 { 492 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 493 struct vm_struct *vm = task_stack_vm_area(tsk); 494 int i; 495 496 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 497 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 498 account * (PAGE_SIZE / 1024)); 499 } else { 500 void *stack = task_stack_page(tsk); 501 502 /* All stack pages are in the same node. */ 503 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 504 account * (THREAD_SIZE / 1024)); 505 } 506 } 507 508 void exit_task_stack_account(struct task_struct *tsk) 509 { 510 account_kernel_stack(tsk, -1); 511 512 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 513 struct vm_struct *vm; 514 int i; 515 516 vm = task_stack_vm_area(tsk); 517 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 518 memcg_kmem_uncharge_page(vm->pages[i], 0); 519 } 520 } 521 522 static void release_task_stack(struct task_struct *tsk) 523 { 524 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 525 return; /* Better to leak the stack than to free prematurely */ 526 527 free_thread_stack(tsk); 528 } 529 530 #ifdef CONFIG_THREAD_INFO_IN_TASK 531 void put_task_stack(struct task_struct *tsk) 532 { 533 if (refcount_dec_and_test(&tsk->stack_refcount)) 534 release_task_stack(tsk); 535 } 536 #endif 537 538 void free_task(struct task_struct *tsk) 539 { 540 release_user_cpus_ptr(tsk); 541 scs_release(tsk); 542 543 #ifndef CONFIG_THREAD_INFO_IN_TASK 544 /* 545 * The task is finally done with both the stack and thread_info, 546 * so free both. 547 */ 548 release_task_stack(tsk); 549 #else 550 /* 551 * If the task had a separate stack allocation, it should be gone 552 * by now. 553 */ 554 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 555 #endif 556 rt_mutex_debug_task_free(tsk); 557 ftrace_graph_exit_task(tsk); 558 arch_release_task_struct(tsk); 559 if (tsk->flags & PF_KTHREAD) 560 free_kthread_struct(tsk); 561 free_task_struct(tsk); 562 } 563 EXPORT_SYMBOL(free_task); 564 565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 566 { 567 struct file *exe_file; 568 569 exe_file = get_mm_exe_file(oldmm); 570 RCU_INIT_POINTER(mm->exe_file, exe_file); 571 /* 572 * We depend on the oldmm having properly denied write access to the 573 * exe_file already. 574 */ 575 if (exe_file && deny_write_access(exe_file)) 576 pr_warn_once("deny_write_access() failed in %s\n", __func__); 577 } 578 579 #ifdef CONFIG_MMU 580 static __latent_entropy int dup_mmap(struct mm_struct *mm, 581 struct mm_struct *oldmm) 582 { 583 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 584 struct rb_node **rb_link, *rb_parent; 585 int retval; 586 unsigned long charge; 587 LIST_HEAD(uf); 588 589 uprobe_start_dup_mmap(); 590 if (mmap_write_lock_killable(oldmm)) { 591 retval = -EINTR; 592 goto fail_uprobe_end; 593 } 594 flush_cache_dup_mm(oldmm); 595 uprobe_dup_mmap(oldmm, mm); 596 /* 597 * Not linked in yet - no deadlock potential: 598 */ 599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 600 601 /* No ordering required: file already has been exposed. */ 602 dup_mm_exe_file(mm, oldmm); 603 604 mm->total_vm = oldmm->total_vm; 605 mm->data_vm = oldmm->data_vm; 606 mm->exec_vm = oldmm->exec_vm; 607 mm->stack_vm = oldmm->stack_vm; 608 609 rb_link = &mm->mm_rb.rb_node; 610 rb_parent = NULL; 611 pprev = &mm->mmap; 612 retval = ksm_fork(mm, oldmm); 613 if (retval) 614 goto out; 615 retval = khugepaged_fork(mm, oldmm); 616 if (retval) 617 goto out; 618 619 prev = NULL; 620 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Clear hugetlb-related page reserves for children. This only 681 * affects MAP_PRIVATE mappings. Faults generated by the child 682 * are not guaranteed to succeed, even if read-only 683 */ 684 if (is_vm_hugetlb_page(tmp)) 685 reset_vma_resv_huge_pages(tmp); 686 687 /* 688 * Link in the new vma and copy the page table entries. 689 */ 690 *pprev = tmp; 691 pprev = &tmp->vm_next; 692 tmp->vm_prev = prev; 693 prev = tmp; 694 695 __vma_link_rb(mm, tmp, rb_link, rb_parent); 696 rb_link = &tmp->vm_rb.rb_right; 697 rb_parent = &tmp->vm_rb; 698 699 mm->map_count++; 700 if (!(tmp->vm_flags & VM_WIPEONFORK)) 701 retval = copy_page_range(tmp, mpnt); 702 703 if (tmp->vm_ops && tmp->vm_ops->open) 704 tmp->vm_ops->open(tmp); 705 706 if (retval) 707 goto out; 708 } 709 /* a new mm has just been created */ 710 retval = arch_dup_mmap(oldmm, mm); 711 out: 712 mmap_write_unlock(mm); 713 flush_tlb_mm(oldmm); 714 mmap_write_unlock(oldmm); 715 dup_userfaultfd_complete(&uf); 716 fail_uprobe_end: 717 uprobe_end_dup_mmap(); 718 return retval; 719 fail_nomem_anon_vma_fork: 720 mpol_put(vma_policy(tmp)); 721 fail_nomem_policy: 722 vm_area_free(tmp); 723 fail_nomem: 724 retval = -ENOMEM; 725 vm_unacct_memory(charge); 726 goto out; 727 } 728 729 static inline int mm_alloc_pgd(struct mm_struct *mm) 730 { 731 mm->pgd = pgd_alloc(mm); 732 if (unlikely(!mm->pgd)) 733 return -ENOMEM; 734 return 0; 735 } 736 737 static inline void mm_free_pgd(struct mm_struct *mm) 738 { 739 pgd_free(mm, mm->pgd); 740 } 741 #else 742 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 743 { 744 mmap_write_lock(oldmm); 745 dup_mm_exe_file(mm, oldmm); 746 mmap_write_unlock(oldmm); 747 return 0; 748 } 749 #define mm_alloc_pgd(mm) (0) 750 #define mm_free_pgd(mm) 751 #endif /* CONFIG_MMU */ 752 753 static void check_mm(struct mm_struct *mm) 754 { 755 int i; 756 757 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 758 "Please make sure 'struct resident_page_types[]' is updated as well"); 759 760 for (i = 0; i < NR_MM_COUNTERS; i++) { 761 long x = atomic_long_read(&mm->rss_stat.count[i]); 762 763 if (unlikely(x)) 764 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 765 mm, resident_page_types[i], x); 766 } 767 768 if (mm_pgtables_bytes(mm)) 769 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 770 mm_pgtables_bytes(mm)); 771 772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 773 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 774 #endif 775 } 776 777 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 778 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 779 780 /* 781 * Called when the last reference to the mm 782 * is dropped: either by a lazy thread or by 783 * mmput. Free the page directory and the mm. 784 */ 785 void __mmdrop(struct mm_struct *mm) 786 { 787 BUG_ON(mm == &init_mm); 788 WARN_ON_ONCE(mm == current->mm); 789 WARN_ON_ONCE(mm == current->active_mm); 790 mm_free_pgd(mm); 791 destroy_context(mm); 792 mmu_notifier_subscriptions_destroy(mm); 793 check_mm(mm); 794 put_user_ns(mm->user_ns); 795 free_mm(mm); 796 } 797 EXPORT_SYMBOL_GPL(__mmdrop); 798 799 static void mmdrop_async_fn(struct work_struct *work) 800 { 801 struct mm_struct *mm; 802 803 mm = container_of(work, struct mm_struct, async_put_work); 804 __mmdrop(mm); 805 } 806 807 static void mmdrop_async(struct mm_struct *mm) 808 { 809 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 810 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 811 schedule_work(&mm->async_put_work); 812 } 813 } 814 815 static inline void free_signal_struct(struct signal_struct *sig) 816 { 817 taskstats_tgid_free(sig); 818 sched_autogroup_exit(sig); 819 /* 820 * __mmdrop is not safe to call from softirq context on x86 due to 821 * pgd_dtor so postpone it to the async context 822 */ 823 if (sig->oom_mm) 824 mmdrop_async(sig->oom_mm); 825 kmem_cache_free(signal_cachep, sig); 826 } 827 828 static inline void put_signal_struct(struct signal_struct *sig) 829 { 830 if (refcount_dec_and_test(&sig->sigcnt)) 831 free_signal_struct(sig); 832 } 833 834 void __put_task_struct(struct task_struct *tsk) 835 { 836 WARN_ON(!tsk->exit_state); 837 WARN_ON(refcount_read(&tsk->usage)); 838 WARN_ON(tsk == current); 839 840 io_uring_free(tsk); 841 cgroup_free(tsk); 842 task_numa_free(tsk, true); 843 security_task_free(tsk); 844 bpf_task_storage_free(tsk); 845 exit_creds(tsk); 846 delayacct_tsk_free(tsk); 847 put_signal_struct(tsk->signal); 848 sched_core_free(tsk); 849 free_task(tsk); 850 } 851 EXPORT_SYMBOL_GPL(__put_task_struct); 852 853 void __init __weak arch_task_cache_init(void) { } 854 855 /* 856 * set_max_threads 857 */ 858 static void set_max_threads(unsigned int max_threads_suggested) 859 { 860 u64 threads; 861 unsigned long nr_pages = totalram_pages(); 862 863 /* 864 * The number of threads shall be limited such that the thread 865 * structures may only consume a small part of the available memory. 866 */ 867 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 868 threads = MAX_THREADS; 869 else 870 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 871 (u64) THREAD_SIZE * 8UL); 872 873 if (threads > max_threads_suggested) 874 threads = max_threads_suggested; 875 876 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 877 } 878 879 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 880 /* Initialized by the architecture: */ 881 int arch_task_struct_size __read_mostly; 882 #endif 883 884 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 885 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 886 { 887 /* Fetch thread_struct whitelist for the architecture. */ 888 arch_thread_struct_whitelist(offset, size); 889 890 /* 891 * Handle zero-sized whitelist or empty thread_struct, otherwise 892 * adjust offset to position of thread_struct in task_struct. 893 */ 894 if (unlikely(*size == 0)) 895 *offset = 0; 896 else 897 *offset += offsetof(struct task_struct, thread); 898 } 899 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 900 901 void __init fork_init(void) 902 { 903 int i; 904 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 905 #ifndef ARCH_MIN_TASKALIGN 906 #define ARCH_MIN_TASKALIGN 0 907 #endif 908 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 909 unsigned long useroffset, usersize; 910 911 /* create a slab on which task_structs can be allocated */ 912 task_struct_whitelist(&useroffset, &usersize); 913 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 914 arch_task_struct_size, align, 915 SLAB_PANIC|SLAB_ACCOUNT, 916 useroffset, usersize, NULL); 917 #endif 918 919 /* do the arch specific task caches init */ 920 arch_task_cache_init(); 921 922 set_max_threads(MAX_THREADS); 923 924 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 925 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 926 init_task.signal->rlim[RLIMIT_SIGPENDING] = 927 init_task.signal->rlim[RLIMIT_NPROC]; 928 929 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 930 init_user_ns.ucount_max[i] = max_threads/2; 931 932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 934 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 935 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 936 937 #ifdef CONFIG_VMAP_STACK 938 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 939 NULL, free_vm_stack_cache); 940 #endif 941 942 scs_init(); 943 944 lockdep_init_task(&init_task); 945 uprobes_init(); 946 } 947 948 int __weak arch_dup_task_struct(struct task_struct *dst, 949 struct task_struct *src) 950 { 951 *dst = *src; 952 return 0; 953 } 954 955 void set_task_stack_end_magic(struct task_struct *tsk) 956 { 957 unsigned long *stackend; 958 959 stackend = end_of_stack(tsk); 960 *stackend = STACK_END_MAGIC; /* for overflow detection */ 961 } 962 963 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 964 { 965 struct task_struct *tsk; 966 int err; 967 968 if (node == NUMA_NO_NODE) 969 node = tsk_fork_get_node(orig); 970 tsk = alloc_task_struct_node(node); 971 if (!tsk) 972 return NULL; 973 974 err = arch_dup_task_struct(tsk, orig); 975 if (err) 976 goto free_tsk; 977 978 err = alloc_thread_stack_node(tsk, node); 979 if (err) 980 goto free_tsk; 981 982 #ifdef CONFIG_THREAD_INFO_IN_TASK 983 refcount_set(&tsk->stack_refcount, 1); 984 #endif 985 account_kernel_stack(tsk, 1); 986 987 err = scs_prepare(tsk, node); 988 if (err) 989 goto free_stack; 990 991 #ifdef CONFIG_SECCOMP 992 /* 993 * We must handle setting up seccomp filters once we're under 994 * the sighand lock in case orig has changed between now and 995 * then. Until then, filter must be NULL to avoid messing up 996 * the usage counts on the error path calling free_task. 997 */ 998 tsk->seccomp.filter = NULL; 999 #endif 1000 1001 setup_thread_stack(tsk, orig); 1002 clear_user_return_notifier(tsk); 1003 clear_tsk_need_resched(tsk); 1004 set_task_stack_end_magic(tsk); 1005 clear_syscall_work_syscall_user_dispatch(tsk); 1006 1007 #ifdef CONFIG_STACKPROTECTOR 1008 tsk->stack_canary = get_random_canary(); 1009 #endif 1010 if (orig->cpus_ptr == &orig->cpus_mask) 1011 tsk->cpus_ptr = &tsk->cpus_mask; 1012 dup_user_cpus_ptr(tsk, orig, node); 1013 1014 /* 1015 * One for the user space visible state that goes away when reaped. 1016 * One for the scheduler. 1017 */ 1018 refcount_set(&tsk->rcu_users, 2); 1019 /* One for the rcu users */ 1020 refcount_set(&tsk->usage, 1); 1021 #ifdef CONFIG_BLK_DEV_IO_TRACE 1022 tsk->btrace_seq = 0; 1023 #endif 1024 tsk->splice_pipe = NULL; 1025 tsk->task_frag.page = NULL; 1026 tsk->wake_q.next = NULL; 1027 tsk->worker_private = NULL; 1028 1029 kcov_task_init(tsk); 1030 kmap_local_fork(tsk); 1031 1032 #ifdef CONFIG_FAULT_INJECTION 1033 tsk->fail_nth = 0; 1034 #endif 1035 1036 #ifdef CONFIG_BLK_CGROUP 1037 tsk->throttle_queue = NULL; 1038 tsk->use_memdelay = 0; 1039 #endif 1040 1041 #ifdef CONFIG_IOMMU_SVA 1042 tsk->pasid_activated = 0; 1043 #endif 1044 1045 #ifdef CONFIG_MEMCG 1046 tsk->active_memcg = NULL; 1047 #endif 1048 return tsk; 1049 1050 free_stack: 1051 exit_task_stack_account(tsk); 1052 free_thread_stack(tsk); 1053 free_tsk: 1054 free_task_struct(tsk); 1055 return NULL; 1056 } 1057 1058 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1059 1060 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1061 1062 static int __init coredump_filter_setup(char *s) 1063 { 1064 default_dump_filter = 1065 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1066 MMF_DUMP_FILTER_MASK; 1067 return 1; 1068 } 1069 1070 __setup("coredump_filter=", coredump_filter_setup); 1071 1072 #include <linux/init_task.h> 1073 1074 static void mm_init_aio(struct mm_struct *mm) 1075 { 1076 #ifdef CONFIG_AIO 1077 spin_lock_init(&mm->ioctx_lock); 1078 mm->ioctx_table = NULL; 1079 #endif 1080 } 1081 1082 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1083 struct task_struct *p) 1084 { 1085 #ifdef CONFIG_MEMCG 1086 if (mm->owner == p) 1087 WRITE_ONCE(mm->owner, NULL); 1088 #endif 1089 } 1090 1091 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1092 { 1093 #ifdef CONFIG_MEMCG 1094 mm->owner = p; 1095 #endif 1096 } 1097 1098 static void mm_init_uprobes_state(struct mm_struct *mm) 1099 { 1100 #ifdef CONFIG_UPROBES 1101 mm->uprobes_state.xol_area = NULL; 1102 #endif 1103 } 1104 1105 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1106 struct user_namespace *user_ns) 1107 { 1108 mm->mmap = NULL; 1109 mm->mm_rb = RB_ROOT; 1110 mm->vmacache_seqnum = 0; 1111 atomic_set(&mm->mm_users, 1); 1112 atomic_set(&mm->mm_count, 1); 1113 seqcount_init(&mm->write_protect_seq); 1114 mmap_init_lock(mm); 1115 INIT_LIST_HEAD(&mm->mmlist); 1116 mm_pgtables_bytes_init(mm); 1117 mm->map_count = 0; 1118 mm->locked_vm = 0; 1119 atomic64_set(&mm->pinned_vm, 0); 1120 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1121 spin_lock_init(&mm->page_table_lock); 1122 spin_lock_init(&mm->arg_lock); 1123 mm_init_cpumask(mm); 1124 mm_init_aio(mm); 1125 mm_init_owner(mm, p); 1126 mm_pasid_init(mm); 1127 RCU_INIT_POINTER(mm->exe_file, NULL); 1128 mmu_notifier_subscriptions_init(mm); 1129 init_tlb_flush_pending(mm); 1130 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1131 mm->pmd_huge_pte = NULL; 1132 #endif 1133 mm_init_uprobes_state(mm); 1134 hugetlb_count_init(mm); 1135 1136 if (current->mm) { 1137 mm->flags = current->mm->flags & MMF_INIT_MASK; 1138 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1139 } else { 1140 mm->flags = default_dump_filter; 1141 mm->def_flags = 0; 1142 } 1143 1144 if (mm_alloc_pgd(mm)) 1145 goto fail_nopgd; 1146 1147 if (init_new_context(p, mm)) 1148 goto fail_nocontext; 1149 1150 mm->user_ns = get_user_ns(user_ns); 1151 return mm; 1152 1153 fail_nocontext: 1154 mm_free_pgd(mm); 1155 fail_nopgd: 1156 free_mm(mm); 1157 return NULL; 1158 } 1159 1160 /* 1161 * Allocate and initialize an mm_struct. 1162 */ 1163 struct mm_struct *mm_alloc(void) 1164 { 1165 struct mm_struct *mm; 1166 1167 mm = allocate_mm(); 1168 if (!mm) 1169 return NULL; 1170 1171 memset(mm, 0, sizeof(*mm)); 1172 return mm_init(mm, current, current_user_ns()); 1173 } 1174 1175 static inline void __mmput(struct mm_struct *mm) 1176 { 1177 VM_BUG_ON(atomic_read(&mm->mm_users)); 1178 1179 uprobe_clear_state(mm); 1180 exit_aio(mm); 1181 ksm_exit(mm); 1182 khugepaged_exit(mm); /* must run before exit_mmap */ 1183 exit_mmap(mm); 1184 mm_put_huge_zero_page(mm); 1185 set_mm_exe_file(mm, NULL); 1186 if (!list_empty(&mm->mmlist)) { 1187 spin_lock(&mmlist_lock); 1188 list_del(&mm->mmlist); 1189 spin_unlock(&mmlist_lock); 1190 } 1191 if (mm->binfmt) 1192 module_put(mm->binfmt->module); 1193 mm_pasid_drop(mm); 1194 mmdrop(mm); 1195 } 1196 1197 /* 1198 * Decrement the use count and release all resources for an mm. 1199 */ 1200 void mmput(struct mm_struct *mm) 1201 { 1202 might_sleep(); 1203 1204 if (atomic_dec_and_test(&mm->mm_users)) 1205 __mmput(mm); 1206 } 1207 EXPORT_SYMBOL_GPL(mmput); 1208 1209 #ifdef CONFIG_MMU 1210 static void mmput_async_fn(struct work_struct *work) 1211 { 1212 struct mm_struct *mm = container_of(work, struct mm_struct, 1213 async_put_work); 1214 1215 __mmput(mm); 1216 } 1217 1218 void mmput_async(struct mm_struct *mm) 1219 { 1220 if (atomic_dec_and_test(&mm->mm_users)) { 1221 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1222 schedule_work(&mm->async_put_work); 1223 } 1224 } 1225 #endif 1226 1227 /** 1228 * set_mm_exe_file - change a reference to the mm's executable file 1229 * 1230 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1231 * 1232 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1233 * invocations: in mmput() nobody alive left, in execve task is single 1234 * threaded. 1235 * 1236 * Can only fail if new_exe_file != NULL. 1237 */ 1238 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1239 { 1240 struct file *old_exe_file; 1241 1242 /* 1243 * It is safe to dereference the exe_file without RCU as 1244 * this function is only called if nobody else can access 1245 * this mm -- see comment above for justification. 1246 */ 1247 old_exe_file = rcu_dereference_raw(mm->exe_file); 1248 1249 if (new_exe_file) { 1250 /* 1251 * We expect the caller (i.e., sys_execve) to already denied 1252 * write access, so this is unlikely to fail. 1253 */ 1254 if (unlikely(deny_write_access(new_exe_file))) 1255 return -EACCES; 1256 get_file(new_exe_file); 1257 } 1258 rcu_assign_pointer(mm->exe_file, new_exe_file); 1259 if (old_exe_file) { 1260 allow_write_access(old_exe_file); 1261 fput(old_exe_file); 1262 } 1263 return 0; 1264 } 1265 1266 /** 1267 * replace_mm_exe_file - replace a reference to the mm's executable file 1268 * 1269 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1270 * dealing with concurrent invocation and without grabbing the mmap lock in 1271 * write mode. 1272 * 1273 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1274 */ 1275 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1276 { 1277 struct vm_area_struct *vma; 1278 struct file *old_exe_file; 1279 int ret = 0; 1280 1281 /* Forbid mm->exe_file change if old file still mapped. */ 1282 old_exe_file = get_mm_exe_file(mm); 1283 if (old_exe_file) { 1284 mmap_read_lock(mm); 1285 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1286 if (!vma->vm_file) 1287 continue; 1288 if (path_equal(&vma->vm_file->f_path, 1289 &old_exe_file->f_path)) 1290 ret = -EBUSY; 1291 } 1292 mmap_read_unlock(mm); 1293 fput(old_exe_file); 1294 if (ret) 1295 return ret; 1296 } 1297 1298 /* set the new file, lockless */ 1299 ret = deny_write_access(new_exe_file); 1300 if (ret) 1301 return -EACCES; 1302 get_file(new_exe_file); 1303 1304 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1305 if (old_exe_file) { 1306 /* 1307 * Don't race with dup_mmap() getting the file and disallowing 1308 * write access while someone might open the file writable. 1309 */ 1310 mmap_read_lock(mm); 1311 allow_write_access(old_exe_file); 1312 fput(old_exe_file); 1313 mmap_read_unlock(mm); 1314 } 1315 return 0; 1316 } 1317 1318 /** 1319 * get_mm_exe_file - acquire a reference to the mm's executable file 1320 * 1321 * Returns %NULL if mm has no associated executable file. 1322 * User must release file via fput(). 1323 */ 1324 struct file *get_mm_exe_file(struct mm_struct *mm) 1325 { 1326 struct file *exe_file; 1327 1328 rcu_read_lock(); 1329 exe_file = rcu_dereference(mm->exe_file); 1330 if (exe_file && !get_file_rcu(exe_file)) 1331 exe_file = NULL; 1332 rcu_read_unlock(); 1333 return exe_file; 1334 } 1335 1336 /** 1337 * get_task_exe_file - acquire a reference to the task's executable file 1338 * 1339 * Returns %NULL if task's mm (if any) has no associated executable file or 1340 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1341 * User must release file via fput(). 1342 */ 1343 struct file *get_task_exe_file(struct task_struct *task) 1344 { 1345 struct file *exe_file = NULL; 1346 struct mm_struct *mm; 1347 1348 task_lock(task); 1349 mm = task->mm; 1350 if (mm) { 1351 if (!(task->flags & PF_KTHREAD)) 1352 exe_file = get_mm_exe_file(mm); 1353 } 1354 task_unlock(task); 1355 return exe_file; 1356 } 1357 1358 /** 1359 * get_task_mm - acquire a reference to the task's mm 1360 * 1361 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1362 * this kernel workthread has transiently adopted a user mm with use_mm, 1363 * to do its AIO) is not set and if so returns a reference to it, after 1364 * bumping up the use count. User must release the mm via mmput() 1365 * after use. Typically used by /proc and ptrace. 1366 */ 1367 struct mm_struct *get_task_mm(struct task_struct *task) 1368 { 1369 struct mm_struct *mm; 1370 1371 task_lock(task); 1372 mm = task->mm; 1373 if (mm) { 1374 if (task->flags & PF_KTHREAD) 1375 mm = NULL; 1376 else 1377 mmget(mm); 1378 } 1379 task_unlock(task); 1380 return mm; 1381 } 1382 EXPORT_SYMBOL_GPL(get_task_mm); 1383 1384 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1385 { 1386 struct mm_struct *mm; 1387 int err; 1388 1389 err = down_read_killable(&task->signal->exec_update_lock); 1390 if (err) 1391 return ERR_PTR(err); 1392 1393 mm = get_task_mm(task); 1394 if (mm && mm != current->mm && 1395 !ptrace_may_access(task, mode)) { 1396 mmput(mm); 1397 mm = ERR_PTR(-EACCES); 1398 } 1399 up_read(&task->signal->exec_update_lock); 1400 1401 return mm; 1402 } 1403 1404 static void complete_vfork_done(struct task_struct *tsk) 1405 { 1406 struct completion *vfork; 1407 1408 task_lock(tsk); 1409 vfork = tsk->vfork_done; 1410 if (likely(vfork)) { 1411 tsk->vfork_done = NULL; 1412 complete(vfork); 1413 } 1414 task_unlock(tsk); 1415 } 1416 1417 static int wait_for_vfork_done(struct task_struct *child, 1418 struct completion *vfork) 1419 { 1420 int killed; 1421 1422 freezer_do_not_count(); 1423 cgroup_enter_frozen(); 1424 killed = wait_for_completion_killable(vfork); 1425 cgroup_leave_frozen(false); 1426 freezer_count(); 1427 1428 if (killed) { 1429 task_lock(child); 1430 child->vfork_done = NULL; 1431 task_unlock(child); 1432 } 1433 1434 put_task_struct(child); 1435 return killed; 1436 } 1437 1438 /* Please note the differences between mmput and mm_release. 1439 * mmput is called whenever we stop holding onto a mm_struct, 1440 * error success whatever. 1441 * 1442 * mm_release is called after a mm_struct has been removed 1443 * from the current process. 1444 * 1445 * This difference is important for error handling, when we 1446 * only half set up a mm_struct for a new process and need to restore 1447 * the old one. Because we mmput the new mm_struct before 1448 * restoring the old one. . . 1449 * Eric Biederman 10 January 1998 1450 */ 1451 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1452 { 1453 uprobe_free_utask(tsk); 1454 1455 /* Get rid of any cached register state */ 1456 deactivate_mm(tsk, mm); 1457 1458 /* 1459 * Signal userspace if we're not exiting with a core dump 1460 * because we want to leave the value intact for debugging 1461 * purposes. 1462 */ 1463 if (tsk->clear_child_tid) { 1464 if (atomic_read(&mm->mm_users) > 1) { 1465 /* 1466 * We don't check the error code - if userspace has 1467 * not set up a proper pointer then tough luck. 1468 */ 1469 put_user(0, tsk->clear_child_tid); 1470 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1471 1, NULL, NULL, 0, 0); 1472 } 1473 tsk->clear_child_tid = NULL; 1474 } 1475 1476 /* 1477 * All done, finally we can wake up parent and return this mm to him. 1478 * Also kthread_stop() uses this completion for synchronization. 1479 */ 1480 if (tsk->vfork_done) 1481 complete_vfork_done(tsk); 1482 } 1483 1484 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1485 { 1486 futex_exit_release(tsk); 1487 mm_release(tsk, mm); 1488 } 1489 1490 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1491 { 1492 futex_exec_release(tsk); 1493 mm_release(tsk, mm); 1494 } 1495 1496 /** 1497 * dup_mm() - duplicates an existing mm structure 1498 * @tsk: the task_struct with which the new mm will be associated. 1499 * @oldmm: the mm to duplicate. 1500 * 1501 * Allocates a new mm structure and duplicates the provided @oldmm structure 1502 * content into it. 1503 * 1504 * Return: the duplicated mm or NULL on failure. 1505 */ 1506 static struct mm_struct *dup_mm(struct task_struct *tsk, 1507 struct mm_struct *oldmm) 1508 { 1509 struct mm_struct *mm; 1510 int err; 1511 1512 mm = allocate_mm(); 1513 if (!mm) 1514 goto fail_nomem; 1515 1516 memcpy(mm, oldmm, sizeof(*mm)); 1517 1518 if (!mm_init(mm, tsk, mm->user_ns)) 1519 goto fail_nomem; 1520 1521 err = dup_mmap(mm, oldmm); 1522 if (err) 1523 goto free_pt; 1524 1525 mm->hiwater_rss = get_mm_rss(mm); 1526 mm->hiwater_vm = mm->total_vm; 1527 1528 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1529 goto free_pt; 1530 1531 return mm; 1532 1533 free_pt: 1534 /* don't put binfmt in mmput, we haven't got module yet */ 1535 mm->binfmt = NULL; 1536 mm_init_owner(mm, NULL); 1537 mmput(mm); 1538 1539 fail_nomem: 1540 return NULL; 1541 } 1542 1543 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1544 { 1545 struct mm_struct *mm, *oldmm; 1546 1547 tsk->min_flt = tsk->maj_flt = 0; 1548 tsk->nvcsw = tsk->nivcsw = 0; 1549 #ifdef CONFIG_DETECT_HUNG_TASK 1550 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1551 tsk->last_switch_time = 0; 1552 #endif 1553 1554 tsk->mm = NULL; 1555 tsk->active_mm = NULL; 1556 1557 /* 1558 * Are we cloning a kernel thread? 1559 * 1560 * We need to steal a active VM for that.. 1561 */ 1562 oldmm = current->mm; 1563 if (!oldmm) 1564 return 0; 1565 1566 /* initialize the new vmacache entries */ 1567 vmacache_flush(tsk); 1568 1569 if (clone_flags & CLONE_VM) { 1570 mmget(oldmm); 1571 mm = oldmm; 1572 } else { 1573 mm = dup_mm(tsk, current->mm); 1574 if (!mm) 1575 return -ENOMEM; 1576 } 1577 1578 tsk->mm = mm; 1579 tsk->active_mm = mm; 1580 return 0; 1581 } 1582 1583 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1584 { 1585 struct fs_struct *fs = current->fs; 1586 if (clone_flags & CLONE_FS) { 1587 /* tsk->fs is already what we want */ 1588 spin_lock(&fs->lock); 1589 if (fs->in_exec) { 1590 spin_unlock(&fs->lock); 1591 return -EAGAIN; 1592 } 1593 fs->users++; 1594 spin_unlock(&fs->lock); 1595 return 0; 1596 } 1597 tsk->fs = copy_fs_struct(fs); 1598 if (!tsk->fs) 1599 return -ENOMEM; 1600 return 0; 1601 } 1602 1603 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1604 { 1605 struct files_struct *oldf, *newf; 1606 int error = 0; 1607 1608 /* 1609 * A background process may not have any files ... 1610 */ 1611 oldf = current->files; 1612 if (!oldf) 1613 goto out; 1614 1615 if (clone_flags & CLONE_FILES) { 1616 atomic_inc(&oldf->count); 1617 goto out; 1618 } 1619 1620 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1621 if (!newf) 1622 goto out; 1623 1624 tsk->files = newf; 1625 error = 0; 1626 out: 1627 return error; 1628 } 1629 1630 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1631 { 1632 struct sighand_struct *sig; 1633 1634 if (clone_flags & CLONE_SIGHAND) { 1635 refcount_inc(¤t->sighand->count); 1636 return 0; 1637 } 1638 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1639 RCU_INIT_POINTER(tsk->sighand, sig); 1640 if (!sig) 1641 return -ENOMEM; 1642 1643 refcount_set(&sig->count, 1); 1644 spin_lock_irq(¤t->sighand->siglock); 1645 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1646 spin_unlock_irq(¤t->sighand->siglock); 1647 1648 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1649 if (clone_flags & CLONE_CLEAR_SIGHAND) 1650 flush_signal_handlers(tsk, 0); 1651 1652 return 0; 1653 } 1654 1655 void __cleanup_sighand(struct sighand_struct *sighand) 1656 { 1657 if (refcount_dec_and_test(&sighand->count)) { 1658 signalfd_cleanup(sighand); 1659 /* 1660 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1661 * without an RCU grace period, see __lock_task_sighand(). 1662 */ 1663 kmem_cache_free(sighand_cachep, sighand); 1664 } 1665 } 1666 1667 /* 1668 * Initialize POSIX timer handling for a thread group. 1669 */ 1670 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1671 { 1672 struct posix_cputimers *pct = &sig->posix_cputimers; 1673 unsigned long cpu_limit; 1674 1675 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1676 posix_cputimers_group_init(pct, cpu_limit); 1677 } 1678 1679 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1680 { 1681 struct signal_struct *sig; 1682 1683 if (clone_flags & CLONE_THREAD) 1684 return 0; 1685 1686 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1687 tsk->signal = sig; 1688 if (!sig) 1689 return -ENOMEM; 1690 1691 sig->nr_threads = 1; 1692 atomic_set(&sig->live, 1); 1693 refcount_set(&sig->sigcnt, 1); 1694 1695 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1696 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1697 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1698 1699 init_waitqueue_head(&sig->wait_chldexit); 1700 sig->curr_target = tsk; 1701 init_sigpending(&sig->shared_pending); 1702 INIT_HLIST_HEAD(&sig->multiprocess); 1703 seqlock_init(&sig->stats_lock); 1704 prev_cputime_init(&sig->prev_cputime); 1705 1706 #ifdef CONFIG_POSIX_TIMERS 1707 INIT_LIST_HEAD(&sig->posix_timers); 1708 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1709 sig->real_timer.function = it_real_fn; 1710 #endif 1711 1712 task_lock(current->group_leader); 1713 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1714 task_unlock(current->group_leader); 1715 1716 posix_cpu_timers_init_group(sig); 1717 1718 tty_audit_fork(sig); 1719 sched_autogroup_fork(sig); 1720 1721 sig->oom_score_adj = current->signal->oom_score_adj; 1722 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1723 1724 mutex_init(&sig->cred_guard_mutex); 1725 init_rwsem(&sig->exec_update_lock); 1726 1727 return 0; 1728 } 1729 1730 static void copy_seccomp(struct task_struct *p) 1731 { 1732 #ifdef CONFIG_SECCOMP 1733 /* 1734 * Must be called with sighand->lock held, which is common to 1735 * all threads in the group. Holding cred_guard_mutex is not 1736 * needed because this new task is not yet running and cannot 1737 * be racing exec. 1738 */ 1739 assert_spin_locked(¤t->sighand->siglock); 1740 1741 /* Ref-count the new filter user, and assign it. */ 1742 get_seccomp_filter(current); 1743 p->seccomp = current->seccomp; 1744 1745 /* 1746 * Explicitly enable no_new_privs here in case it got set 1747 * between the task_struct being duplicated and holding the 1748 * sighand lock. The seccomp state and nnp must be in sync. 1749 */ 1750 if (task_no_new_privs(current)) 1751 task_set_no_new_privs(p); 1752 1753 /* 1754 * If the parent gained a seccomp mode after copying thread 1755 * flags and between before we held the sighand lock, we have 1756 * to manually enable the seccomp thread flag here. 1757 */ 1758 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1759 set_task_syscall_work(p, SECCOMP); 1760 #endif 1761 } 1762 1763 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1764 { 1765 current->clear_child_tid = tidptr; 1766 1767 return task_pid_vnr(current); 1768 } 1769 1770 static void rt_mutex_init_task(struct task_struct *p) 1771 { 1772 raw_spin_lock_init(&p->pi_lock); 1773 #ifdef CONFIG_RT_MUTEXES 1774 p->pi_waiters = RB_ROOT_CACHED; 1775 p->pi_top_task = NULL; 1776 p->pi_blocked_on = NULL; 1777 #endif 1778 } 1779 1780 static inline void init_task_pid_links(struct task_struct *task) 1781 { 1782 enum pid_type type; 1783 1784 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1785 INIT_HLIST_NODE(&task->pid_links[type]); 1786 } 1787 1788 static inline void 1789 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1790 { 1791 if (type == PIDTYPE_PID) 1792 task->thread_pid = pid; 1793 else 1794 task->signal->pids[type] = pid; 1795 } 1796 1797 static inline void rcu_copy_process(struct task_struct *p) 1798 { 1799 #ifdef CONFIG_PREEMPT_RCU 1800 p->rcu_read_lock_nesting = 0; 1801 p->rcu_read_unlock_special.s = 0; 1802 p->rcu_blocked_node = NULL; 1803 INIT_LIST_HEAD(&p->rcu_node_entry); 1804 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1805 #ifdef CONFIG_TASKS_RCU 1806 p->rcu_tasks_holdout = false; 1807 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1808 p->rcu_tasks_idle_cpu = -1; 1809 #endif /* #ifdef CONFIG_TASKS_RCU */ 1810 #ifdef CONFIG_TASKS_TRACE_RCU 1811 p->trc_reader_nesting = 0; 1812 p->trc_reader_special.s = 0; 1813 INIT_LIST_HEAD(&p->trc_holdout_list); 1814 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1815 } 1816 1817 struct pid *pidfd_pid(const struct file *file) 1818 { 1819 if (file->f_op == &pidfd_fops) 1820 return file->private_data; 1821 1822 return ERR_PTR(-EBADF); 1823 } 1824 1825 static int pidfd_release(struct inode *inode, struct file *file) 1826 { 1827 struct pid *pid = file->private_data; 1828 1829 file->private_data = NULL; 1830 put_pid(pid); 1831 return 0; 1832 } 1833 1834 #ifdef CONFIG_PROC_FS 1835 /** 1836 * pidfd_show_fdinfo - print information about a pidfd 1837 * @m: proc fdinfo file 1838 * @f: file referencing a pidfd 1839 * 1840 * Pid: 1841 * This function will print the pid that a given pidfd refers to in the 1842 * pid namespace of the procfs instance. 1843 * If the pid namespace of the process is not a descendant of the pid 1844 * namespace of the procfs instance 0 will be shown as its pid. This is 1845 * similar to calling getppid() on a process whose parent is outside of 1846 * its pid namespace. 1847 * 1848 * NSpid: 1849 * If pid namespaces are supported then this function will also print 1850 * the pid of a given pidfd refers to for all descendant pid namespaces 1851 * starting from the current pid namespace of the instance, i.e. the 1852 * Pid field and the first entry in the NSpid field will be identical. 1853 * If the pid namespace of the process is not a descendant of the pid 1854 * namespace of the procfs instance 0 will be shown as its first NSpid 1855 * entry and no others will be shown. 1856 * Note that this differs from the Pid and NSpid fields in 1857 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1858 * the pid namespace of the procfs instance. The difference becomes 1859 * obvious when sending around a pidfd between pid namespaces from a 1860 * different branch of the tree, i.e. where no ancestral relation is 1861 * present between the pid namespaces: 1862 * - create two new pid namespaces ns1 and ns2 in the initial pid 1863 * namespace (also take care to create new mount namespaces in the 1864 * new pid namespace and mount procfs) 1865 * - create a process with a pidfd in ns1 1866 * - send pidfd from ns1 to ns2 1867 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1868 * have exactly one entry, which is 0 1869 */ 1870 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1871 { 1872 struct pid *pid = f->private_data; 1873 struct pid_namespace *ns; 1874 pid_t nr = -1; 1875 1876 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1877 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1878 nr = pid_nr_ns(pid, ns); 1879 } 1880 1881 seq_put_decimal_ll(m, "Pid:\t", nr); 1882 1883 #ifdef CONFIG_PID_NS 1884 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1885 if (nr > 0) { 1886 int i; 1887 1888 /* If nr is non-zero it means that 'pid' is valid and that 1889 * ns, i.e. the pid namespace associated with the procfs 1890 * instance, is in the pid namespace hierarchy of pid. 1891 * Start at one below the already printed level. 1892 */ 1893 for (i = ns->level + 1; i <= pid->level; i++) 1894 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1895 } 1896 #endif 1897 seq_putc(m, '\n'); 1898 } 1899 #endif 1900 1901 /* 1902 * Poll support for process exit notification. 1903 */ 1904 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1905 { 1906 struct pid *pid = file->private_data; 1907 __poll_t poll_flags = 0; 1908 1909 poll_wait(file, &pid->wait_pidfd, pts); 1910 1911 /* 1912 * Inform pollers only when the whole thread group exits. 1913 * If the thread group leader exits before all other threads in the 1914 * group, then poll(2) should block, similar to the wait(2) family. 1915 */ 1916 if (thread_group_exited(pid)) 1917 poll_flags = EPOLLIN | EPOLLRDNORM; 1918 1919 return poll_flags; 1920 } 1921 1922 const struct file_operations pidfd_fops = { 1923 .release = pidfd_release, 1924 .poll = pidfd_poll, 1925 #ifdef CONFIG_PROC_FS 1926 .show_fdinfo = pidfd_show_fdinfo, 1927 #endif 1928 }; 1929 1930 static void __delayed_free_task(struct rcu_head *rhp) 1931 { 1932 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1933 1934 free_task(tsk); 1935 } 1936 1937 static __always_inline void delayed_free_task(struct task_struct *tsk) 1938 { 1939 if (IS_ENABLED(CONFIG_MEMCG)) 1940 call_rcu(&tsk->rcu, __delayed_free_task); 1941 else 1942 free_task(tsk); 1943 } 1944 1945 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1946 { 1947 /* Skip if kernel thread */ 1948 if (!tsk->mm) 1949 return; 1950 1951 /* Skip if spawning a thread or using vfork */ 1952 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1953 return; 1954 1955 /* We need to synchronize with __set_oom_adj */ 1956 mutex_lock(&oom_adj_mutex); 1957 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1958 /* Update the values in case they were changed after copy_signal */ 1959 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1960 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1961 mutex_unlock(&oom_adj_mutex); 1962 } 1963 1964 /* 1965 * This creates a new process as a copy of the old one, 1966 * but does not actually start it yet. 1967 * 1968 * It copies the registers, and all the appropriate 1969 * parts of the process environment (as per the clone 1970 * flags). The actual kick-off is left to the caller. 1971 */ 1972 static __latent_entropy struct task_struct *copy_process( 1973 struct pid *pid, 1974 int trace, 1975 int node, 1976 struct kernel_clone_args *args) 1977 { 1978 int pidfd = -1, retval; 1979 struct task_struct *p; 1980 struct multiprocess_signals delayed; 1981 struct file *pidfile = NULL; 1982 u64 clone_flags = args->flags; 1983 struct nsproxy *nsp = current->nsproxy; 1984 1985 /* 1986 * Don't allow sharing the root directory with processes in a different 1987 * namespace 1988 */ 1989 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1990 return ERR_PTR(-EINVAL); 1991 1992 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1993 return ERR_PTR(-EINVAL); 1994 1995 /* 1996 * Thread groups must share signals as well, and detached threads 1997 * can only be started up within the thread group. 1998 */ 1999 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2000 return ERR_PTR(-EINVAL); 2001 2002 /* 2003 * Shared signal handlers imply shared VM. By way of the above, 2004 * thread groups also imply shared VM. Blocking this case allows 2005 * for various simplifications in other code. 2006 */ 2007 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2008 return ERR_PTR(-EINVAL); 2009 2010 /* 2011 * Siblings of global init remain as zombies on exit since they are 2012 * not reaped by their parent (swapper). To solve this and to avoid 2013 * multi-rooted process trees, prevent global and container-inits 2014 * from creating siblings. 2015 */ 2016 if ((clone_flags & CLONE_PARENT) && 2017 current->signal->flags & SIGNAL_UNKILLABLE) 2018 return ERR_PTR(-EINVAL); 2019 2020 /* 2021 * If the new process will be in a different pid or user namespace 2022 * do not allow it to share a thread group with the forking task. 2023 */ 2024 if (clone_flags & CLONE_THREAD) { 2025 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2026 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2027 return ERR_PTR(-EINVAL); 2028 } 2029 2030 /* 2031 * If the new process will be in a different time namespace 2032 * do not allow it to share VM or a thread group with the forking task. 2033 */ 2034 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 2035 if (nsp->time_ns != nsp->time_ns_for_children) 2036 return ERR_PTR(-EINVAL); 2037 } 2038 2039 if (clone_flags & CLONE_PIDFD) { 2040 /* 2041 * - CLONE_DETACHED is blocked so that we can potentially 2042 * reuse it later for CLONE_PIDFD. 2043 * - CLONE_THREAD is blocked until someone really needs it. 2044 */ 2045 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2046 return ERR_PTR(-EINVAL); 2047 } 2048 2049 /* 2050 * Force any signals received before this point to be delivered 2051 * before the fork happens. Collect up signals sent to multiple 2052 * processes that happen during the fork and delay them so that 2053 * they appear to happen after the fork. 2054 */ 2055 sigemptyset(&delayed.signal); 2056 INIT_HLIST_NODE(&delayed.node); 2057 2058 spin_lock_irq(¤t->sighand->siglock); 2059 if (!(clone_flags & CLONE_THREAD)) 2060 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2061 recalc_sigpending(); 2062 spin_unlock_irq(¤t->sighand->siglock); 2063 retval = -ERESTARTNOINTR; 2064 if (task_sigpending(current)) 2065 goto fork_out; 2066 2067 retval = -ENOMEM; 2068 p = dup_task_struct(current, node); 2069 if (!p) 2070 goto fork_out; 2071 if (args->io_thread) { 2072 /* 2073 * Mark us an IO worker, and block any signal that isn't 2074 * fatal or STOP 2075 */ 2076 p->flags |= PF_IO_WORKER; 2077 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2078 } 2079 2080 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2081 /* 2082 * Clear TID on mm_release()? 2083 */ 2084 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2085 2086 ftrace_graph_init_task(p); 2087 2088 rt_mutex_init_task(p); 2089 2090 lockdep_assert_irqs_enabled(); 2091 #ifdef CONFIG_PROVE_LOCKING 2092 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2093 #endif 2094 retval = copy_creds(p, clone_flags); 2095 if (retval < 0) 2096 goto bad_fork_free; 2097 2098 retval = -EAGAIN; 2099 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2100 if (p->real_cred->user != INIT_USER && 2101 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2102 goto bad_fork_cleanup_count; 2103 } 2104 current->flags &= ~PF_NPROC_EXCEEDED; 2105 2106 /* 2107 * If multiple threads are within copy_process(), then this check 2108 * triggers too late. This doesn't hurt, the check is only there 2109 * to stop root fork bombs. 2110 */ 2111 retval = -EAGAIN; 2112 if (data_race(nr_threads >= max_threads)) 2113 goto bad_fork_cleanup_count; 2114 2115 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2116 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2117 p->flags |= PF_FORKNOEXEC; 2118 INIT_LIST_HEAD(&p->children); 2119 INIT_LIST_HEAD(&p->sibling); 2120 rcu_copy_process(p); 2121 p->vfork_done = NULL; 2122 spin_lock_init(&p->alloc_lock); 2123 2124 init_sigpending(&p->pending); 2125 2126 p->utime = p->stime = p->gtime = 0; 2127 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2128 p->utimescaled = p->stimescaled = 0; 2129 #endif 2130 prev_cputime_init(&p->prev_cputime); 2131 2132 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2133 seqcount_init(&p->vtime.seqcount); 2134 p->vtime.starttime = 0; 2135 p->vtime.state = VTIME_INACTIVE; 2136 #endif 2137 2138 #ifdef CONFIG_IO_URING 2139 p->io_uring = NULL; 2140 #endif 2141 2142 #if defined(SPLIT_RSS_COUNTING) 2143 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2144 #endif 2145 2146 p->default_timer_slack_ns = current->timer_slack_ns; 2147 2148 #ifdef CONFIG_PSI 2149 p->psi_flags = 0; 2150 #endif 2151 2152 task_io_accounting_init(&p->ioac); 2153 acct_clear_integrals(p); 2154 2155 posix_cputimers_init(&p->posix_cputimers); 2156 2157 p->io_context = NULL; 2158 audit_set_context(p, NULL); 2159 cgroup_fork(p); 2160 if (p->flags & PF_KTHREAD) { 2161 if (!set_kthread_struct(p)) 2162 goto bad_fork_cleanup_delayacct; 2163 } 2164 #ifdef CONFIG_NUMA 2165 p->mempolicy = mpol_dup(p->mempolicy); 2166 if (IS_ERR(p->mempolicy)) { 2167 retval = PTR_ERR(p->mempolicy); 2168 p->mempolicy = NULL; 2169 goto bad_fork_cleanup_delayacct; 2170 } 2171 #endif 2172 #ifdef CONFIG_CPUSETS 2173 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2174 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2175 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2176 #endif 2177 #ifdef CONFIG_TRACE_IRQFLAGS 2178 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2179 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2180 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2181 p->softirqs_enabled = 1; 2182 p->softirq_context = 0; 2183 #endif 2184 2185 p->pagefault_disabled = 0; 2186 2187 #ifdef CONFIG_LOCKDEP 2188 lockdep_init_task(p); 2189 #endif 2190 2191 #ifdef CONFIG_DEBUG_MUTEXES 2192 p->blocked_on = NULL; /* not blocked yet */ 2193 #endif 2194 #ifdef CONFIG_BCACHE 2195 p->sequential_io = 0; 2196 p->sequential_io_avg = 0; 2197 #endif 2198 #ifdef CONFIG_BPF_SYSCALL 2199 RCU_INIT_POINTER(p->bpf_storage, NULL); 2200 p->bpf_ctx = NULL; 2201 #endif 2202 2203 /* Perform scheduler related setup. Assign this task to a CPU. */ 2204 retval = sched_fork(clone_flags, p); 2205 if (retval) 2206 goto bad_fork_cleanup_policy; 2207 2208 retval = perf_event_init_task(p, clone_flags); 2209 if (retval) 2210 goto bad_fork_cleanup_policy; 2211 retval = audit_alloc(p); 2212 if (retval) 2213 goto bad_fork_cleanup_perf; 2214 /* copy all the process information */ 2215 shm_init_task(p); 2216 retval = security_task_alloc(p, clone_flags); 2217 if (retval) 2218 goto bad_fork_cleanup_audit; 2219 retval = copy_semundo(clone_flags, p); 2220 if (retval) 2221 goto bad_fork_cleanup_security; 2222 retval = copy_files(clone_flags, p); 2223 if (retval) 2224 goto bad_fork_cleanup_semundo; 2225 retval = copy_fs(clone_flags, p); 2226 if (retval) 2227 goto bad_fork_cleanup_files; 2228 retval = copy_sighand(clone_flags, p); 2229 if (retval) 2230 goto bad_fork_cleanup_fs; 2231 retval = copy_signal(clone_flags, p); 2232 if (retval) 2233 goto bad_fork_cleanup_sighand; 2234 retval = copy_mm(clone_flags, p); 2235 if (retval) 2236 goto bad_fork_cleanup_signal; 2237 retval = copy_namespaces(clone_flags, p); 2238 if (retval) 2239 goto bad_fork_cleanup_mm; 2240 retval = copy_io(clone_flags, p); 2241 if (retval) 2242 goto bad_fork_cleanup_namespaces; 2243 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2244 if (retval) 2245 goto bad_fork_cleanup_io; 2246 2247 stackleak_task_init(p); 2248 2249 if (pid != &init_struct_pid) { 2250 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2251 args->set_tid_size); 2252 if (IS_ERR(pid)) { 2253 retval = PTR_ERR(pid); 2254 goto bad_fork_cleanup_thread; 2255 } 2256 } 2257 2258 /* 2259 * This has to happen after we've potentially unshared the file 2260 * descriptor table (so that the pidfd doesn't leak into the child 2261 * if the fd table isn't shared). 2262 */ 2263 if (clone_flags & CLONE_PIDFD) { 2264 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2265 if (retval < 0) 2266 goto bad_fork_free_pid; 2267 2268 pidfd = retval; 2269 2270 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2271 O_RDWR | O_CLOEXEC); 2272 if (IS_ERR(pidfile)) { 2273 put_unused_fd(pidfd); 2274 retval = PTR_ERR(pidfile); 2275 goto bad_fork_free_pid; 2276 } 2277 get_pid(pid); /* held by pidfile now */ 2278 2279 retval = put_user(pidfd, args->pidfd); 2280 if (retval) 2281 goto bad_fork_put_pidfd; 2282 } 2283 2284 #ifdef CONFIG_BLOCK 2285 p->plug = NULL; 2286 #endif 2287 futex_init_task(p); 2288 2289 /* 2290 * sigaltstack should be cleared when sharing the same VM 2291 */ 2292 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2293 sas_ss_reset(p); 2294 2295 /* 2296 * Syscall tracing and stepping should be turned off in the 2297 * child regardless of CLONE_PTRACE. 2298 */ 2299 user_disable_single_step(p); 2300 clear_task_syscall_work(p, SYSCALL_TRACE); 2301 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2302 clear_task_syscall_work(p, SYSCALL_EMU); 2303 #endif 2304 clear_tsk_latency_tracing(p); 2305 2306 /* ok, now we should be set up.. */ 2307 p->pid = pid_nr(pid); 2308 if (clone_flags & CLONE_THREAD) { 2309 p->group_leader = current->group_leader; 2310 p->tgid = current->tgid; 2311 } else { 2312 p->group_leader = p; 2313 p->tgid = p->pid; 2314 } 2315 2316 p->nr_dirtied = 0; 2317 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2318 p->dirty_paused_when = 0; 2319 2320 p->pdeath_signal = 0; 2321 INIT_LIST_HEAD(&p->thread_group); 2322 p->task_works = NULL; 2323 clear_posix_cputimers_work(p); 2324 2325 #ifdef CONFIG_KRETPROBES 2326 p->kretprobe_instances.first = NULL; 2327 #endif 2328 #ifdef CONFIG_RETHOOK 2329 p->rethooks.first = NULL; 2330 #endif 2331 2332 /* 2333 * Ensure that the cgroup subsystem policies allow the new process to be 2334 * forked. It should be noted that the new process's css_set can be changed 2335 * between here and cgroup_post_fork() if an organisation operation is in 2336 * progress. 2337 */ 2338 retval = cgroup_can_fork(p, args); 2339 if (retval) 2340 goto bad_fork_put_pidfd; 2341 2342 /* 2343 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2344 * the new task on the correct runqueue. All this *before* the task 2345 * becomes visible. 2346 * 2347 * This isn't part of ->can_fork() because while the re-cloning is 2348 * cgroup specific, it unconditionally needs to place the task on a 2349 * runqueue. 2350 */ 2351 sched_cgroup_fork(p, args); 2352 2353 /* 2354 * From this point on we must avoid any synchronous user-space 2355 * communication until we take the tasklist-lock. In particular, we do 2356 * not want user-space to be able to predict the process start-time by 2357 * stalling fork(2) after we recorded the start_time but before it is 2358 * visible to the system. 2359 */ 2360 2361 p->start_time = ktime_get_ns(); 2362 p->start_boottime = ktime_get_boottime_ns(); 2363 2364 /* 2365 * Make it visible to the rest of the system, but dont wake it up yet. 2366 * Need tasklist lock for parent etc handling! 2367 */ 2368 write_lock_irq(&tasklist_lock); 2369 2370 /* CLONE_PARENT re-uses the old parent */ 2371 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2372 p->real_parent = current->real_parent; 2373 p->parent_exec_id = current->parent_exec_id; 2374 if (clone_flags & CLONE_THREAD) 2375 p->exit_signal = -1; 2376 else 2377 p->exit_signal = current->group_leader->exit_signal; 2378 } else { 2379 p->real_parent = current; 2380 p->parent_exec_id = current->self_exec_id; 2381 p->exit_signal = args->exit_signal; 2382 } 2383 2384 klp_copy_process(p); 2385 2386 sched_core_fork(p); 2387 2388 spin_lock(¤t->sighand->siglock); 2389 2390 /* 2391 * Copy seccomp details explicitly here, in case they were changed 2392 * before holding sighand lock. 2393 */ 2394 copy_seccomp(p); 2395 2396 rseq_fork(p, clone_flags); 2397 2398 /* Don't start children in a dying pid namespace */ 2399 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2400 retval = -ENOMEM; 2401 goto bad_fork_cancel_cgroup; 2402 } 2403 2404 /* Let kill terminate clone/fork in the middle */ 2405 if (fatal_signal_pending(current)) { 2406 retval = -EINTR; 2407 goto bad_fork_cancel_cgroup; 2408 } 2409 2410 init_task_pid_links(p); 2411 if (likely(p->pid)) { 2412 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2413 2414 init_task_pid(p, PIDTYPE_PID, pid); 2415 if (thread_group_leader(p)) { 2416 init_task_pid(p, PIDTYPE_TGID, pid); 2417 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2418 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2419 2420 if (is_child_reaper(pid)) { 2421 ns_of_pid(pid)->child_reaper = p; 2422 p->signal->flags |= SIGNAL_UNKILLABLE; 2423 } 2424 p->signal->shared_pending.signal = delayed.signal; 2425 p->signal->tty = tty_kref_get(current->signal->tty); 2426 /* 2427 * Inherit has_child_subreaper flag under the same 2428 * tasklist_lock with adding child to the process tree 2429 * for propagate_has_child_subreaper optimization. 2430 */ 2431 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2432 p->real_parent->signal->is_child_subreaper; 2433 list_add_tail(&p->sibling, &p->real_parent->children); 2434 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2435 attach_pid(p, PIDTYPE_TGID); 2436 attach_pid(p, PIDTYPE_PGID); 2437 attach_pid(p, PIDTYPE_SID); 2438 __this_cpu_inc(process_counts); 2439 } else { 2440 current->signal->nr_threads++; 2441 atomic_inc(¤t->signal->live); 2442 refcount_inc(¤t->signal->sigcnt); 2443 task_join_group_stop(p); 2444 list_add_tail_rcu(&p->thread_group, 2445 &p->group_leader->thread_group); 2446 list_add_tail_rcu(&p->thread_node, 2447 &p->signal->thread_head); 2448 } 2449 attach_pid(p, PIDTYPE_PID); 2450 nr_threads++; 2451 } 2452 total_forks++; 2453 hlist_del_init(&delayed.node); 2454 spin_unlock(¤t->sighand->siglock); 2455 syscall_tracepoint_update(p); 2456 write_unlock_irq(&tasklist_lock); 2457 2458 if (pidfile) 2459 fd_install(pidfd, pidfile); 2460 2461 proc_fork_connector(p); 2462 sched_post_fork(p); 2463 cgroup_post_fork(p, args); 2464 perf_event_fork(p); 2465 2466 trace_task_newtask(p, clone_flags); 2467 uprobe_copy_process(p, clone_flags); 2468 2469 copy_oom_score_adj(clone_flags, p); 2470 2471 return p; 2472 2473 bad_fork_cancel_cgroup: 2474 sched_core_free(p); 2475 spin_unlock(¤t->sighand->siglock); 2476 write_unlock_irq(&tasklist_lock); 2477 cgroup_cancel_fork(p, args); 2478 bad_fork_put_pidfd: 2479 if (clone_flags & CLONE_PIDFD) { 2480 fput(pidfile); 2481 put_unused_fd(pidfd); 2482 } 2483 bad_fork_free_pid: 2484 if (pid != &init_struct_pid) 2485 free_pid(pid); 2486 bad_fork_cleanup_thread: 2487 exit_thread(p); 2488 bad_fork_cleanup_io: 2489 if (p->io_context) 2490 exit_io_context(p); 2491 bad_fork_cleanup_namespaces: 2492 exit_task_namespaces(p); 2493 bad_fork_cleanup_mm: 2494 if (p->mm) { 2495 mm_clear_owner(p->mm, p); 2496 mmput(p->mm); 2497 } 2498 bad_fork_cleanup_signal: 2499 if (!(clone_flags & CLONE_THREAD)) 2500 free_signal_struct(p->signal); 2501 bad_fork_cleanup_sighand: 2502 __cleanup_sighand(p->sighand); 2503 bad_fork_cleanup_fs: 2504 exit_fs(p); /* blocking */ 2505 bad_fork_cleanup_files: 2506 exit_files(p); /* blocking */ 2507 bad_fork_cleanup_semundo: 2508 exit_sem(p); 2509 bad_fork_cleanup_security: 2510 security_task_free(p); 2511 bad_fork_cleanup_audit: 2512 audit_free(p); 2513 bad_fork_cleanup_perf: 2514 perf_event_free_task(p); 2515 bad_fork_cleanup_policy: 2516 lockdep_free_task(p); 2517 #ifdef CONFIG_NUMA 2518 mpol_put(p->mempolicy); 2519 #endif 2520 bad_fork_cleanup_delayacct: 2521 delayacct_tsk_free(p); 2522 bad_fork_cleanup_count: 2523 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2524 exit_creds(p); 2525 bad_fork_free: 2526 WRITE_ONCE(p->__state, TASK_DEAD); 2527 exit_task_stack_account(p); 2528 put_task_stack(p); 2529 delayed_free_task(p); 2530 fork_out: 2531 spin_lock_irq(¤t->sighand->siglock); 2532 hlist_del_init(&delayed.node); 2533 spin_unlock_irq(¤t->sighand->siglock); 2534 return ERR_PTR(retval); 2535 } 2536 2537 static inline void init_idle_pids(struct task_struct *idle) 2538 { 2539 enum pid_type type; 2540 2541 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2542 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2543 init_task_pid(idle, type, &init_struct_pid); 2544 } 2545 } 2546 2547 struct task_struct * __init fork_idle(int cpu) 2548 { 2549 struct task_struct *task; 2550 struct kernel_clone_args args = { 2551 .flags = CLONE_VM, 2552 }; 2553 2554 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2555 if (!IS_ERR(task)) { 2556 init_idle_pids(task); 2557 init_idle(task, cpu); 2558 } 2559 2560 return task; 2561 } 2562 2563 struct mm_struct *copy_init_mm(void) 2564 { 2565 return dup_mm(NULL, &init_mm); 2566 } 2567 2568 /* 2569 * This is like kernel_clone(), but shaved down and tailored to just 2570 * creating io_uring workers. It returns a created task, or an error pointer. 2571 * The returned task is inactive, and the caller must fire it up through 2572 * wake_up_new_task(p). All signals are blocked in the created task. 2573 */ 2574 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2575 { 2576 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2577 CLONE_IO; 2578 struct kernel_clone_args args = { 2579 .flags = ((lower_32_bits(flags) | CLONE_VM | 2580 CLONE_UNTRACED) & ~CSIGNAL), 2581 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2582 .stack = (unsigned long)fn, 2583 .stack_size = (unsigned long)arg, 2584 .io_thread = 1, 2585 }; 2586 2587 return copy_process(NULL, 0, node, &args); 2588 } 2589 2590 /* 2591 * Ok, this is the main fork-routine. 2592 * 2593 * It copies the process, and if successful kick-starts 2594 * it and waits for it to finish using the VM if required. 2595 * 2596 * args->exit_signal is expected to be checked for sanity by the caller. 2597 */ 2598 pid_t kernel_clone(struct kernel_clone_args *args) 2599 { 2600 u64 clone_flags = args->flags; 2601 struct completion vfork; 2602 struct pid *pid; 2603 struct task_struct *p; 2604 int trace = 0; 2605 pid_t nr; 2606 2607 /* 2608 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2609 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2610 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2611 * field in struct clone_args and it still doesn't make sense to have 2612 * them both point at the same memory location. Performing this check 2613 * here has the advantage that we don't need to have a separate helper 2614 * to check for legacy clone(). 2615 */ 2616 if ((args->flags & CLONE_PIDFD) && 2617 (args->flags & CLONE_PARENT_SETTID) && 2618 (args->pidfd == args->parent_tid)) 2619 return -EINVAL; 2620 2621 /* 2622 * Determine whether and which event to report to ptracer. When 2623 * called from kernel_thread or CLONE_UNTRACED is explicitly 2624 * requested, no event is reported; otherwise, report if the event 2625 * for the type of forking is enabled. 2626 */ 2627 if (!(clone_flags & CLONE_UNTRACED)) { 2628 if (clone_flags & CLONE_VFORK) 2629 trace = PTRACE_EVENT_VFORK; 2630 else if (args->exit_signal != SIGCHLD) 2631 trace = PTRACE_EVENT_CLONE; 2632 else 2633 trace = PTRACE_EVENT_FORK; 2634 2635 if (likely(!ptrace_event_enabled(current, trace))) 2636 trace = 0; 2637 } 2638 2639 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2640 add_latent_entropy(); 2641 2642 if (IS_ERR(p)) 2643 return PTR_ERR(p); 2644 2645 /* 2646 * Do this prior waking up the new thread - the thread pointer 2647 * might get invalid after that point, if the thread exits quickly. 2648 */ 2649 trace_sched_process_fork(current, p); 2650 2651 pid = get_task_pid(p, PIDTYPE_PID); 2652 nr = pid_vnr(pid); 2653 2654 if (clone_flags & CLONE_PARENT_SETTID) 2655 put_user(nr, args->parent_tid); 2656 2657 if (clone_flags & CLONE_VFORK) { 2658 p->vfork_done = &vfork; 2659 init_completion(&vfork); 2660 get_task_struct(p); 2661 } 2662 2663 wake_up_new_task(p); 2664 2665 /* forking complete and child started to run, tell ptracer */ 2666 if (unlikely(trace)) 2667 ptrace_event_pid(trace, pid); 2668 2669 if (clone_flags & CLONE_VFORK) { 2670 if (!wait_for_vfork_done(p, &vfork)) 2671 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2672 } 2673 2674 put_pid(pid); 2675 return nr; 2676 } 2677 2678 /* 2679 * Create a kernel thread. 2680 */ 2681 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2682 { 2683 struct kernel_clone_args args = { 2684 .flags = ((lower_32_bits(flags) | CLONE_VM | 2685 CLONE_UNTRACED) & ~CSIGNAL), 2686 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2687 .stack = (unsigned long)fn, 2688 .stack_size = (unsigned long)arg, 2689 }; 2690 2691 return kernel_clone(&args); 2692 } 2693 2694 #ifdef __ARCH_WANT_SYS_FORK 2695 SYSCALL_DEFINE0(fork) 2696 { 2697 #ifdef CONFIG_MMU 2698 struct kernel_clone_args args = { 2699 .exit_signal = SIGCHLD, 2700 }; 2701 2702 return kernel_clone(&args); 2703 #else 2704 /* can not support in nommu mode */ 2705 return -EINVAL; 2706 #endif 2707 } 2708 #endif 2709 2710 #ifdef __ARCH_WANT_SYS_VFORK 2711 SYSCALL_DEFINE0(vfork) 2712 { 2713 struct kernel_clone_args args = { 2714 .flags = CLONE_VFORK | CLONE_VM, 2715 .exit_signal = SIGCHLD, 2716 }; 2717 2718 return kernel_clone(&args); 2719 } 2720 #endif 2721 2722 #ifdef __ARCH_WANT_SYS_CLONE 2723 #ifdef CONFIG_CLONE_BACKWARDS 2724 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2725 int __user *, parent_tidptr, 2726 unsigned long, tls, 2727 int __user *, child_tidptr) 2728 #elif defined(CONFIG_CLONE_BACKWARDS2) 2729 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2730 int __user *, parent_tidptr, 2731 int __user *, child_tidptr, 2732 unsigned long, tls) 2733 #elif defined(CONFIG_CLONE_BACKWARDS3) 2734 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2735 int, stack_size, 2736 int __user *, parent_tidptr, 2737 int __user *, child_tidptr, 2738 unsigned long, tls) 2739 #else 2740 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2741 int __user *, parent_tidptr, 2742 int __user *, child_tidptr, 2743 unsigned long, tls) 2744 #endif 2745 { 2746 struct kernel_clone_args args = { 2747 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2748 .pidfd = parent_tidptr, 2749 .child_tid = child_tidptr, 2750 .parent_tid = parent_tidptr, 2751 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2752 .stack = newsp, 2753 .tls = tls, 2754 }; 2755 2756 return kernel_clone(&args); 2757 } 2758 #endif 2759 2760 #ifdef __ARCH_WANT_SYS_CLONE3 2761 2762 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2763 struct clone_args __user *uargs, 2764 size_t usize) 2765 { 2766 int err; 2767 struct clone_args args; 2768 pid_t *kset_tid = kargs->set_tid; 2769 2770 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2771 CLONE_ARGS_SIZE_VER0); 2772 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2773 CLONE_ARGS_SIZE_VER1); 2774 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2775 CLONE_ARGS_SIZE_VER2); 2776 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2777 2778 if (unlikely(usize > PAGE_SIZE)) 2779 return -E2BIG; 2780 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2781 return -EINVAL; 2782 2783 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2784 if (err) 2785 return err; 2786 2787 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2788 return -EINVAL; 2789 2790 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2791 return -EINVAL; 2792 2793 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2794 return -EINVAL; 2795 2796 /* 2797 * Verify that higher 32bits of exit_signal are unset and that 2798 * it is a valid signal 2799 */ 2800 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2801 !valid_signal(args.exit_signal))) 2802 return -EINVAL; 2803 2804 if ((args.flags & CLONE_INTO_CGROUP) && 2805 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2806 return -EINVAL; 2807 2808 *kargs = (struct kernel_clone_args){ 2809 .flags = args.flags, 2810 .pidfd = u64_to_user_ptr(args.pidfd), 2811 .child_tid = u64_to_user_ptr(args.child_tid), 2812 .parent_tid = u64_to_user_ptr(args.parent_tid), 2813 .exit_signal = args.exit_signal, 2814 .stack = args.stack, 2815 .stack_size = args.stack_size, 2816 .tls = args.tls, 2817 .set_tid_size = args.set_tid_size, 2818 .cgroup = args.cgroup, 2819 }; 2820 2821 if (args.set_tid && 2822 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2823 (kargs->set_tid_size * sizeof(pid_t)))) 2824 return -EFAULT; 2825 2826 kargs->set_tid = kset_tid; 2827 2828 return 0; 2829 } 2830 2831 /** 2832 * clone3_stack_valid - check and prepare stack 2833 * @kargs: kernel clone args 2834 * 2835 * Verify that the stack arguments userspace gave us are sane. 2836 * In addition, set the stack direction for userspace since it's easy for us to 2837 * determine. 2838 */ 2839 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2840 { 2841 if (kargs->stack == 0) { 2842 if (kargs->stack_size > 0) 2843 return false; 2844 } else { 2845 if (kargs->stack_size == 0) 2846 return false; 2847 2848 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2849 return false; 2850 2851 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2852 kargs->stack += kargs->stack_size; 2853 #endif 2854 } 2855 2856 return true; 2857 } 2858 2859 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2860 { 2861 /* Verify that no unknown flags are passed along. */ 2862 if (kargs->flags & 2863 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2864 return false; 2865 2866 /* 2867 * - make the CLONE_DETACHED bit reusable for clone3 2868 * - make the CSIGNAL bits reusable for clone3 2869 */ 2870 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2871 return false; 2872 2873 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2874 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2875 return false; 2876 2877 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2878 kargs->exit_signal) 2879 return false; 2880 2881 if (!clone3_stack_valid(kargs)) 2882 return false; 2883 2884 return true; 2885 } 2886 2887 /** 2888 * clone3 - create a new process with specific properties 2889 * @uargs: argument structure 2890 * @size: size of @uargs 2891 * 2892 * clone3() is the extensible successor to clone()/clone2(). 2893 * It takes a struct as argument that is versioned by its size. 2894 * 2895 * Return: On success, a positive PID for the child process. 2896 * On error, a negative errno number. 2897 */ 2898 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2899 { 2900 int err; 2901 2902 struct kernel_clone_args kargs; 2903 pid_t set_tid[MAX_PID_NS_LEVEL]; 2904 2905 kargs.set_tid = set_tid; 2906 2907 err = copy_clone_args_from_user(&kargs, uargs, size); 2908 if (err) 2909 return err; 2910 2911 if (!clone3_args_valid(&kargs)) 2912 return -EINVAL; 2913 2914 return kernel_clone(&kargs); 2915 } 2916 #endif 2917 2918 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2919 { 2920 struct task_struct *leader, *parent, *child; 2921 int res; 2922 2923 read_lock(&tasklist_lock); 2924 leader = top = top->group_leader; 2925 down: 2926 for_each_thread(leader, parent) { 2927 list_for_each_entry(child, &parent->children, sibling) { 2928 res = visitor(child, data); 2929 if (res) { 2930 if (res < 0) 2931 goto out; 2932 leader = child; 2933 goto down; 2934 } 2935 up: 2936 ; 2937 } 2938 } 2939 2940 if (leader != top) { 2941 child = leader; 2942 parent = child->real_parent; 2943 leader = parent->group_leader; 2944 goto up; 2945 } 2946 out: 2947 read_unlock(&tasklist_lock); 2948 } 2949 2950 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2951 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2952 #endif 2953 2954 static void sighand_ctor(void *data) 2955 { 2956 struct sighand_struct *sighand = data; 2957 2958 spin_lock_init(&sighand->siglock); 2959 init_waitqueue_head(&sighand->signalfd_wqh); 2960 } 2961 2962 void __init proc_caches_init(void) 2963 { 2964 unsigned int mm_size; 2965 2966 sighand_cachep = kmem_cache_create("sighand_cache", 2967 sizeof(struct sighand_struct), 0, 2968 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2969 SLAB_ACCOUNT, sighand_ctor); 2970 signal_cachep = kmem_cache_create("signal_cache", 2971 sizeof(struct signal_struct), 0, 2972 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2973 NULL); 2974 files_cachep = kmem_cache_create("files_cache", 2975 sizeof(struct files_struct), 0, 2976 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2977 NULL); 2978 fs_cachep = kmem_cache_create("fs_cache", 2979 sizeof(struct fs_struct), 0, 2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2981 NULL); 2982 2983 /* 2984 * The mm_cpumask is located at the end of mm_struct, and is 2985 * dynamically sized based on the maximum CPU number this system 2986 * can have, taking hotplug into account (nr_cpu_ids). 2987 */ 2988 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2989 2990 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2991 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2992 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2993 offsetof(struct mm_struct, saved_auxv), 2994 sizeof_field(struct mm_struct, saved_auxv), 2995 NULL); 2996 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2997 mmap_init(); 2998 nsproxy_cache_init(); 2999 } 3000 3001 /* 3002 * Check constraints on flags passed to the unshare system call. 3003 */ 3004 static int check_unshare_flags(unsigned long unshare_flags) 3005 { 3006 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3007 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3008 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3009 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3010 CLONE_NEWTIME)) 3011 return -EINVAL; 3012 /* 3013 * Not implemented, but pretend it works if there is nothing 3014 * to unshare. Note that unsharing the address space or the 3015 * signal handlers also need to unshare the signal queues (aka 3016 * CLONE_THREAD). 3017 */ 3018 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3019 if (!thread_group_empty(current)) 3020 return -EINVAL; 3021 } 3022 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3023 if (refcount_read(¤t->sighand->count) > 1) 3024 return -EINVAL; 3025 } 3026 if (unshare_flags & CLONE_VM) { 3027 if (!current_is_single_threaded()) 3028 return -EINVAL; 3029 } 3030 3031 return 0; 3032 } 3033 3034 /* 3035 * Unshare the filesystem structure if it is being shared 3036 */ 3037 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3038 { 3039 struct fs_struct *fs = current->fs; 3040 3041 if (!(unshare_flags & CLONE_FS) || !fs) 3042 return 0; 3043 3044 /* don't need lock here; in the worst case we'll do useless copy */ 3045 if (fs->users == 1) 3046 return 0; 3047 3048 *new_fsp = copy_fs_struct(fs); 3049 if (!*new_fsp) 3050 return -ENOMEM; 3051 3052 return 0; 3053 } 3054 3055 /* 3056 * Unshare file descriptor table if it is being shared 3057 */ 3058 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3059 struct files_struct **new_fdp) 3060 { 3061 struct files_struct *fd = current->files; 3062 int error = 0; 3063 3064 if ((unshare_flags & CLONE_FILES) && 3065 (fd && atomic_read(&fd->count) > 1)) { 3066 *new_fdp = dup_fd(fd, max_fds, &error); 3067 if (!*new_fdp) 3068 return error; 3069 } 3070 3071 return 0; 3072 } 3073 3074 /* 3075 * unshare allows a process to 'unshare' part of the process 3076 * context which was originally shared using clone. copy_* 3077 * functions used by kernel_clone() cannot be used here directly 3078 * because they modify an inactive task_struct that is being 3079 * constructed. Here we are modifying the current, active, 3080 * task_struct. 3081 */ 3082 int ksys_unshare(unsigned long unshare_flags) 3083 { 3084 struct fs_struct *fs, *new_fs = NULL; 3085 struct files_struct *new_fd = NULL; 3086 struct cred *new_cred = NULL; 3087 struct nsproxy *new_nsproxy = NULL; 3088 int do_sysvsem = 0; 3089 int err; 3090 3091 /* 3092 * If unsharing a user namespace must also unshare the thread group 3093 * and unshare the filesystem root and working directories. 3094 */ 3095 if (unshare_flags & CLONE_NEWUSER) 3096 unshare_flags |= CLONE_THREAD | CLONE_FS; 3097 /* 3098 * If unsharing vm, must also unshare signal handlers. 3099 */ 3100 if (unshare_flags & CLONE_VM) 3101 unshare_flags |= CLONE_SIGHAND; 3102 /* 3103 * If unsharing a signal handlers, must also unshare the signal queues. 3104 */ 3105 if (unshare_flags & CLONE_SIGHAND) 3106 unshare_flags |= CLONE_THREAD; 3107 /* 3108 * If unsharing namespace, must also unshare filesystem information. 3109 */ 3110 if (unshare_flags & CLONE_NEWNS) 3111 unshare_flags |= CLONE_FS; 3112 3113 err = check_unshare_flags(unshare_flags); 3114 if (err) 3115 goto bad_unshare_out; 3116 /* 3117 * CLONE_NEWIPC must also detach from the undolist: after switching 3118 * to a new ipc namespace, the semaphore arrays from the old 3119 * namespace are unreachable. 3120 */ 3121 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3122 do_sysvsem = 1; 3123 err = unshare_fs(unshare_flags, &new_fs); 3124 if (err) 3125 goto bad_unshare_out; 3126 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3127 if (err) 3128 goto bad_unshare_cleanup_fs; 3129 err = unshare_userns(unshare_flags, &new_cred); 3130 if (err) 3131 goto bad_unshare_cleanup_fd; 3132 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3133 new_cred, new_fs); 3134 if (err) 3135 goto bad_unshare_cleanup_cred; 3136 3137 if (new_cred) { 3138 err = set_cred_ucounts(new_cred); 3139 if (err) 3140 goto bad_unshare_cleanup_cred; 3141 } 3142 3143 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3144 if (do_sysvsem) { 3145 /* 3146 * CLONE_SYSVSEM is equivalent to sys_exit(). 3147 */ 3148 exit_sem(current); 3149 } 3150 if (unshare_flags & CLONE_NEWIPC) { 3151 /* Orphan segments in old ns (see sem above). */ 3152 exit_shm(current); 3153 shm_init_task(current); 3154 } 3155 3156 if (new_nsproxy) 3157 switch_task_namespaces(current, new_nsproxy); 3158 3159 task_lock(current); 3160 3161 if (new_fs) { 3162 fs = current->fs; 3163 spin_lock(&fs->lock); 3164 current->fs = new_fs; 3165 if (--fs->users) 3166 new_fs = NULL; 3167 else 3168 new_fs = fs; 3169 spin_unlock(&fs->lock); 3170 } 3171 3172 if (new_fd) 3173 swap(current->files, new_fd); 3174 3175 task_unlock(current); 3176 3177 if (new_cred) { 3178 /* Install the new user namespace */ 3179 commit_creds(new_cred); 3180 new_cred = NULL; 3181 } 3182 } 3183 3184 perf_event_namespaces(current); 3185 3186 bad_unshare_cleanup_cred: 3187 if (new_cred) 3188 put_cred(new_cred); 3189 bad_unshare_cleanup_fd: 3190 if (new_fd) 3191 put_files_struct(new_fd); 3192 3193 bad_unshare_cleanup_fs: 3194 if (new_fs) 3195 free_fs_struct(new_fs); 3196 3197 bad_unshare_out: 3198 return err; 3199 } 3200 3201 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3202 { 3203 return ksys_unshare(unshare_flags); 3204 } 3205 3206 /* 3207 * Helper to unshare the files of the current task. 3208 * We don't want to expose copy_files internals to 3209 * the exec layer of the kernel. 3210 */ 3211 3212 int unshare_files(void) 3213 { 3214 struct task_struct *task = current; 3215 struct files_struct *old, *copy = NULL; 3216 int error; 3217 3218 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3219 if (error || !copy) 3220 return error; 3221 3222 old = task->files; 3223 task_lock(task); 3224 task->files = copy; 3225 task_unlock(task); 3226 put_files_struct(old); 3227 return 0; 3228 } 3229 3230 int sysctl_max_threads(struct ctl_table *table, int write, 3231 void *buffer, size_t *lenp, loff_t *ppos) 3232 { 3233 struct ctl_table t; 3234 int ret; 3235 int threads = max_threads; 3236 int min = 1; 3237 int max = MAX_THREADS; 3238 3239 t = *table; 3240 t.data = &threads; 3241 t.extra1 = &min; 3242 t.extra2 = &max; 3243 3244 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3245 if (ret || !write) 3246 return ret; 3247 3248 max_threads = threads; 3249 3250 return 0; 3251 } 3252