1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/mm.h> 32 #include <linux/vmacache.h> 33 #include <linux/nsproxy.h> 34 #include <linux/capability.h> 35 #include <linux/cpu.h> 36 #include <linux/cgroup.h> 37 #include <linux/security.h> 38 #include <linux/hugetlb.h> 39 #include <linux/seccomp.h> 40 #include <linux/swap.h> 41 #include <linux/syscalls.h> 42 #include <linux/jiffies.h> 43 #include <linux/futex.h> 44 #include <linux/compat.h> 45 #include <linux/kthread.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/rcupdate.h> 48 #include <linux/ptrace.h> 49 #include <linux/mount.h> 50 #include <linux/audit.h> 51 #include <linux/memcontrol.h> 52 #include <linux/ftrace.h> 53 #include <linux/proc_fs.h> 54 #include <linux/profile.h> 55 #include <linux/rmap.h> 56 #include <linux/ksm.h> 57 #include <linux/acct.h> 58 #include <linux/tsacct_kern.h> 59 #include <linux/cn_proc.h> 60 #include <linux/freezer.h> 61 #include <linux/delayacct.h> 62 #include <linux/taskstats_kern.h> 63 #include <linux/random.h> 64 #include <linux/tty.h> 65 #include <linux/blkdev.h> 66 #include <linux/fs_struct.h> 67 #include <linux/magic.h> 68 #include <linux/perf_event.h> 69 #include <linux/posix-timers.h> 70 #include <linux/user-return-notifier.h> 71 #include <linux/oom.h> 72 #include <linux/khugepaged.h> 73 #include <linux/signalfd.h> 74 #include <linux/uprobes.h> 75 #include <linux/aio.h> 76 #include <linux/compiler.h> 77 #include <linux/sysctl.h> 78 #include <linux/kcov.h> 79 80 #include <asm/pgtable.h> 81 #include <asm/pgalloc.h> 82 #include <asm/uaccess.h> 83 #include <asm/mmu_context.h> 84 #include <asm/cacheflush.h> 85 #include <asm/tlbflush.h> 86 87 #include <trace/events/sched.h> 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/task.h> 91 92 /* 93 * Minimum number of threads to boot the kernel 94 */ 95 #define MIN_THREADS 20 96 97 /* 98 * Maximum number of threads 99 */ 100 #define MAX_THREADS FUTEX_TID_MASK 101 102 /* 103 * Protected counters by write_lock_irq(&tasklist_lock) 104 */ 105 unsigned long total_forks; /* Handle normal Linux uptimes. */ 106 int nr_threads; /* The idle threads do not count.. */ 107 108 int max_threads; /* tunable limit on nr_threads */ 109 110 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 111 112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 113 114 #ifdef CONFIG_PROVE_RCU 115 int lockdep_tasklist_lock_is_held(void) 116 { 117 return lockdep_is_held(&tasklist_lock); 118 } 119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 120 #endif /* #ifdef CONFIG_PROVE_RCU */ 121 122 int nr_processes(void) 123 { 124 int cpu; 125 int total = 0; 126 127 for_each_possible_cpu(cpu) 128 total += per_cpu(process_counts, cpu); 129 130 return total; 131 } 132 133 void __weak arch_release_task_struct(struct task_struct *tsk) 134 { 135 } 136 137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 138 static struct kmem_cache *task_struct_cachep; 139 140 static inline struct task_struct *alloc_task_struct_node(int node) 141 { 142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 143 } 144 145 static inline void free_task_struct(struct task_struct *tsk) 146 { 147 kmem_cache_free(task_struct_cachep, tsk); 148 } 149 #endif 150 151 void __weak arch_release_thread_stack(unsigned long *stack) 152 { 153 } 154 155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 156 157 /* 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 159 * kmemcache based allocator. 160 */ 161 # if THREAD_SIZE >= PAGE_SIZE 162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 163 int node) 164 { 165 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 166 THREAD_SIZE_ORDER); 167 168 return page ? page_address(page) : NULL; 169 } 170 171 static inline void free_thread_stack(unsigned long *stack) 172 { 173 __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER); 174 } 175 # else 176 static struct kmem_cache *thread_stack_cache; 177 178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 179 int node) 180 { 181 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 182 } 183 184 static void free_thread_stack(unsigned long *stack) 185 { 186 kmem_cache_free(thread_stack_cache, stack); 187 } 188 189 void thread_stack_cache_init(void) 190 { 191 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE, 192 THREAD_SIZE, 0, NULL); 193 BUG_ON(thread_stack_cache == NULL); 194 } 195 # endif 196 #endif 197 198 /* SLAB cache for signal_struct structures (tsk->signal) */ 199 static struct kmem_cache *signal_cachep; 200 201 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 202 struct kmem_cache *sighand_cachep; 203 204 /* SLAB cache for files_struct structures (tsk->files) */ 205 struct kmem_cache *files_cachep; 206 207 /* SLAB cache for fs_struct structures (tsk->fs) */ 208 struct kmem_cache *fs_cachep; 209 210 /* SLAB cache for vm_area_struct structures */ 211 struct kmem_cache *vm_area_cachep; 212 213 /* SLAB cache for mm_struct structures (tsk->mm) */ 214 static struct kmem_cache *mm_cachep; 215 216 static void account_kernel_stack(unsigned long *stack, int account) 217 { 218 /* All stack pages are in the same zone and belong to the same memcg. */ 219 struct page *first_page = virt_to_page(stack); 220 221 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 222 THREAD_SIZE / 1024 * account); 223 224 memcg_kmem_update_page_stat( 225 first_page, MEMCG_KERNEL_STACK_KB, 226 account * (THREAD_SIZE / 1024)); 227 } 228 229 void free_task(struct task_struct *tsk) 230 { 231 account_kernel_stack(tsk->stack, -1); 232 arch_release_thread_stack(tsk->stack); 233 free_thread_stack(tsk->stack); 234 rt_mutex_debug_task_free(tsk); 235 ftrace_graph_exit_task(tsk); 236 put_seccomp_filter(tsk); 237 arch_release_task_struct(tsk); 238 free_task_struct(tsk); 239 } 240 EXPORT_SYMBOL(free_task); 241 242 static inline void free_signal_struct(struct signal_struct *sig) 243 { 244 taskstats_tgid_free(sig); 245 sched_autogroup_exit(sig); 246 kmem_cache_free(signal_cachep, sig); 247 } 248 249 static inline void put_signal_struct(struct signal_struct *sig) 250 { 251 if (atomic_dec_and_test(&sig->sigcnt)) 252 free_signal_struct(sig); 253 } 254 255 void __put_task_struct(struct task_struct *tsk) 256 { 257 WARN_ON(!tsk->exit_state); 258 WARN_ON(atomic_read(&tsk->usage)); 259 WARN_ON(tsk == current); 260 261 cgroup_free(tsk); 262 task_numa_free(tsk); 263 security_task_free(tsk); 264 exit_creds(tsk); 265 delayacct_tsk_free(tsk); 266 put_signal_struct(tsk->signal); 267 268 if (!profile_handoff_task(tsk)) 269 free_task(tsk); 270 } 271 EXPORT_SYMBOL_GPL(__put_task_struct); 272 273 void __init __weak arch_task_cache_init(void) { } 274 275 /* 276 * set_max_threads 277 */ 278 static void set_max_threads(unsigned int max_threads_suggested) 279 { 280 u64 threads; 281 282 /* 283 * The number of threads shall be limited such that the thread 284 * structures may only consume a small part of the available memory. 285 */ 286 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64) 287 threads = MAX_THREADS; 288 else 289 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE, 290 (u64) THREAD_SIZE * 8UL); 291 292 if (threads > max_threads_suggested) 293 threads = max_threads_suggested; 294 295 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 296 } 297 298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 299 /* Initialized by the architecture: */ 300 int arch_task_struct_size __read_mostly; 301 #endif 302 303 void __init fork_init(void) 304 { 305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 306 #ifndef ARCH_MIN_TASKALIGN 307 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 308 #endif 309 /* create a slab on which task_structs can be allocated */ 310 task_struct_cachep = kmem_cache_create("task_struct", 311 arch_task_struct_size, ARCH_MIN_TASKALIGN, 312 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL); 313 #endif 314 315 /* do the arch specific task caches init */ 316 arch_task_cache_init(); 317 318 set_max_threads(MAX_THREADS); 319 320 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 321 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 322 init_task.signal->rlim[RLIMIT_SIGPENDING] = 323 init_task.signal->rlim[RLIMIT_NPROC]; 324 } 325 326 int __weak arch_dup_task_struct(struct task_struct *dst, 327 struct task_struct *src) 328 { 329 *dst = *src; 330 return 0; 331 } 332 333 void set_task_stack_end_magic(struct task_struct *tsk) 334 { 335 unsigned long *stackend; 336 337 stackend = end_of_stack(tsk); 338 *stackend = STACK_END_MAGIC; /* for overflow detection */ 339 } 340 341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 342 { 343 struct task_struct *tsk; 344 unsigned long *stack; 345 int err; 346 347 if (node == NUMA_NO_NODE) 348 node = tsk_fork_get_node(orig); 349 tsk = alloc_task_struct_node(node); 350 if (!tsk) 351 return NULL; 352 353 stack = alloc_thread_stack_node(tsk, node); 354 if (!stack) 355 goto free_tsk; 356 357 err = arch_dup_task_struct(tsk, orig); 358 if (err) 359 goto free_stack; 360 361 tsk->stack = stack; 362 #ifdef CONFIG_SECCOMP 363 /* 364 * We must handle setting up seccomp filters once we're under 365 * the sighand lock in case orig has changed between now and 366 * then. Until then, filter must be NULL to avoid messing up 367 * the usage counts on the error path calling free_task. 368 */ 369 tsk->seccomp.filter = NULL; 370 #endif 371 372 setup_thread_stack(tsk, orig); 373 clear_user_return_notifier(tsk); 374 clear_tsk_need_resched(tsk); 375 set_task_stack_end_magic(tsk); 376 377 #ifdef CONFIG_CC_STACKPROTECTOR 378 tsk->stack_canary = get_random_int(); 379 #endif 380 381 /* 382 * One for us, one for whoever does the "release_task()" (usually 383 * parent) 384 */ 385 atomic_set(&tsk->usage, 2); 386 #ifdef CONFIG_BLK_DEV_IO_TRACE 387 tsk->btrace_seq = 0; 388 #endif 389 tsk->splice_pipe = NULL; 390 tsk->task_frag.page = NULL; 391 tsk->wake_q.next = NULL; 392 393 account_kernel_stack(stack, 1); 394 395 kcov_task_init(tsk); 396 397 return tsk; 398 399 free_stack: 400 free_thread_stack(stack); 401 free_tsk: 402 free_task_struct(tsk); 403 return NULL; 404 } 405 406 #ifdef CONFIG_MMU 407 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 408 { 409 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 410 struct rb_node **rb_link, *rb_parent; 411 int retval; 412 unsigned long charge; 413 414 uprobe_start_dup_mmap(); 415 if (down_write_killable(&oldmm->mmap_sem)) { 416 retval = -EINTR; 417 goto fail_uprobe_end; 418 } 419 flush_cache_dup_mm(oldmm); 420 uprobe_dup_mmap(oldmm, mm); 421 /* 422 * Not linked in yet - no deadlock potential: 423 */ 424 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 425 426 /* No ordering required: file already has been exposed. */ 427 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 428 429 mm->total_vm = oldmm->total_vm; 430 mm->data_vm = oldmm->data_vm; 431 mm->exec_vm = oldmm->exec_vm; 432 mm->stack_vm = oldmm->stack_vm; 433 434 rb_link = &mm->mm_rb.rb_node; 435 rb_parent = NULL; 436 pprev = &mm->mmap; 437 retval = ksm_fork(mm, oldmm); 438 if (retval) 439 goto out; 440 retval = khugepaged_fork(mm, oldmm); 441 if (retval) 442 goto out; 443 444 prev = NULL; 445 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 446 struct file *file; 447 448 if (mpnt->vm_flags & VM_DONTCOPY) { 449 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 450 continue; 451 } 452 charge = 0; 453 if (mpnt->vm_flags & VM_ACCOUNT) { 454 unsigned long len = vma_pages(mpnt); 455 456 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 457 goto fail_nomem; 458 charge = len; 459 } 460 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 461 if (!tmp) 462 goto fail_nomem; 463 *tmp = *mpnt; 464 INIT_LIST_HEAD(&tmp->anon_vma_chain); 465 retval = vma_dup_policy(mpnt, tmp); 466 if (retval) 467 goto fail_nomem_policy; 468 tmp->vm_mm = mm; 469 if (anon_vma_fork(tmp, mpnt)) 470 goto fail_nomem_anon_vma_fork; 471 tmp->vm_flags &= 472 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP); 473 tmp->vm_next = tmp->vm_prev = NULL; 474 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 475 file = tmp->vm_file; 476 if (file) { 477 struct inode *inode = file_inode(file); 478 struct address_space *mapping = file->f_mapping; 479 480 get_file(file); 481 if (tmp->vm_flags & VM_DENYWRITE) 482 atomic_dec(&inode->i_writecount); 483 i_mmap_lock_write(mapping); 484 if (tmp->vm_flags & VM_SHARED) 485 atomic_inc(&mapping->i_mmap_writable); 486 flush_dcache_mmap_lock(mapping); 487 /* insert tmp into the share list, just after mpnt */ 488 vma_interval_tree_insert_after(tmp, mpnt, 489 &mapping->i_mmap); 490 flush_dcache_mmap_unlock(mapping); 491 i_mmap_unlock_write(mapping); 492 } 493 494 /* 495 * Clear hugetlb-related page reserves for children. This only 496 * affects MAP_PRIVATE mappings. Faults generated by the child 497 * are not guaranteed to succeed, even if read-only 498 */ 499 if (is_vm_hugetlb_page(tmp)) 500 reset_vma_resv_huge_pages(tmp); 501 502 /* 503 * Link in the new vma and copy the page table entries. 504 */ 505 *pprev = tmp; 506 pprev = &tmp->vm_next; 507 tmp->vm_prev = prev; 508 prev = tmp; 509 510 __vma_link_rb(mm, tmp, rb_link, rb_parent); 511 rb_link = &tmp->vm_rb.rb_right; 512 rb_parent = &tmp->vm_rb; 513 514 mm->map_count++; 515 retval = copy_page_range(mm, oldmm, mpnt); 516 517 if (tmp->vm_ops && tmp->vm_ops->open) 518 tmp->vm_ops->open(tmp); 519 520 if (retval) 521 goto out; 522 } 523 /* a new mm has just been created */ 524 arch_dup_mmap(oldmm, mm); 525 retval = 0; 526 out: 527 up_write(&mm->mmap_sem); 528 flush_tlb_mm(oldmm); 529 up_write(&oldmm->mmap_sem); 530 fail_uprobe_end: 531 uprobe_end_dup_mmap(); 532 return retval; 533 fail_nomem_anon_vma_fork: 534 mpol_put(vma_policy(tmp)); 535 fail_nomem_policy: 536 kmem_cache_free(vm_area_cachep, tmp); 537 fail_nomem: 538 retval = -ENOMEM; 539 vm_unacct_memory(charge); 540 goto out; 541 } 542 543 static inline int mm_alloc_pgd(struct mm_struct *mm) 544 { 545 mm->pgd = pgd_alloc(mm); 546 if (unlikely(!mm->pgd)) 547 return -ENOMEM; 548 return 0; 549 } 550 551 static inline void mm_free_pgd(struct mm_struct *mm) 552 { 553 pgd_free(mm, mm->pgd); 554 } 555 #else 556 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 557 { 558 down_write(&oldmm->mmap_sem); 559 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 560 up_write(&oldmm->mmap_sem); 561 return 0; 562 } 563 #define mm_alloc_pgd(mm) (0) 564 #define mm_free_pgd(mm) 565 #endif /* CONFIG_MMU */ 566 567 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 568 569 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 570 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 571 572 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 573 574 static int __init coredump_filter_setup(char *s) 575 { 576 default_dump_filter = 577 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 578 MMF_DUMP_FILTER_MASK; 579 return 1; 580 } 581 582 __setup("coredump_filter=", coredump_filter_setup); 583 584 #include <linux/init_task.h> 585 586 static void mm_init_aio(struct mm_struct *mm) 587 { 588 #ifdef CONFIG_AIO 589 spin_lock_init(&mm->ioctx_lock); 590 mm->ioctx_table = NULL; 591 #endif 592 } 593 594 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 595 { 596 #ifdef CONFIG_MEMCG 597 mm->owner = p; 598 #endif 599 } 600 601 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 602 { 603 mm->mmap = NULL; 604 mm->mm_rb = RB_ROOT; 605 mm->vmacache_seqnum = 0; 606 atomic_set(&mm->mm_users, 1); 607 atomic_set(&mm->mm_count, 1); 608 init_rwsem(&mm->mmap_sem); 609 INIT_LIST_HEAD(&mm->mmlist); 610 mm->core_state = NULL; 611 atomic_long_set(&mm->nr_ptes, 0); 612 mm_nr_pmds_init(mm); 613 mm->map_count = 0; 614 mm->locked_vm = 0; 615 mm->pinned_vm = 0; 616 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 617 spin_lock_init(&mm->page_table_lock); 618 mm_init_cpumask(mm); 619 mm_init_aio(mm); 620 mm_init_owner(mm, p); 621 mmu_notifier_mm_init(mm); 622 clear_tlb_flush_pending(mm); 623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 624 mm->pmd_huge_pte = NULL; 625 #endif 626 627 if (current->mm) { 628 mm->flags = current->mm->flags & MMF_INIT_MASK; 629 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 630 } else { 631 mm->flags = default_dump_filter; 632 mm->def_flags = 0; 633 } 634 635 if (mm_alloc_pgd(mm)) 636 goto fail_nopgd; 637 638 if (init_new_context(p, mm)) 639 goto fail_nocontext; 640 641 return mm; 642 643 fail_nocontext: 644 mm_free_pgd(mm); 645 fail_nopgd: 646 free_mm(mm); 647 return NULL; 648 } 649 650 static void check_mm(struct mm_struct *mm) 651 { 652 int i; 653 654 for (i = 0; i < NR_MM_COUNTERS; i++) { 655 long x = atomic_long_read(&mm->rss_stat.count[i]); 656 657 if (unlikely(x)) 658 printk(KERN_ALERT "BUG: Bad rss-counter state " 659 "mm:%p idx:%d val:%ld\n", mm, i, x); 660 } 661 662 if (atomic_long_read(&mm->nr_ptes)) 663 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n", 664 atomic_long_read(&mm->nr_ptes)); 665 if (mm_nr_pmds(mm)) 666 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n", 667 mm_nr_pmds(mm)); 668 669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 671 #endif 672 } 673 674 /* 675 * Allocate and initialize an mm_struct. 676 */ 677 struct mm_struct *mm_alloc(void) 678 { 679 struct mm_struct *mm; 680 681 mm = allocate_mm(); 682 if (!mm) 683 return NULL; 684 685 memset(mm, 0, sizeof(*mm)); 686 return mm_init(mm, current); 687 } 688 689 /* 690 * Called when the last reference to the mm 691 * is dropped: either by a lazy thread or by 692 * mmput. Free the page directory and the mm. 693 */ 694 void __mmdrop(struct mm_struct *mm) 695 { 696 BUG_ON(mm == &init_mm); 697 mm_free_pgd(mm); 698 destroy_context(mm); 699 mmu_notifier_mm_destroy(mm); 700 check_mm(mm); 701 free_mm(mm); 702 } 703 EXPORT_SYMBOL_GPL(__mmdrop); 704 705 static inline void __mmput(struct mm_struct *mm) 706 { 707 VM_BUG_ON(atomic_read(&mm->mm_users)); 708 709 uprobe_clear_state(mm); 710 exit_aio(mm); 711 ksm_exit(mm); 712 khugepaged_exit(mm); /* must run before exit_mmap */ 713 exit_mmap(mm); 714 set_mm_exe_file(mm, NULL); 715 if (!list_empty(&mm->mmlist)) { 716 spin_lock(&mmlist_lock); 717 list_del(&mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 if (mm->binfmt) 721 module_put(mm->binfmt->module); 722 mmdrop(mm); 723 } 724 725 /* 726 * Decrement the use count and release all resources for an mm. 727 */ 728 void mmput(struct mm_struct *mm) 729 { 730 might_sleep(); 731 732 if (atomic_dec_and_test(&mm->mm_users)) 733 __mmput(mm); 734 } 735 EXPORT_SYMBOL_GPL(mmput); 736 737 #ifdef CONFIG_MMU 738 static void mmput_async_fn(struct work_struct *work) 739 { 740 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); 741 __mmput(mm); 742 } 743 744 void mmput_async(struct mm_struct *mm) 745 { 746 if (atomic_dec_and_test(&mm->mm_users)) { 747 INIT_WORK(&mm->async_put_work, mmput_async_fn); 748 schedule_work(&mm->async_put_work); 749 } 750 } 751 #endif 752 753 /** 754 * set_mm_exe_file - change a reference to the mm's executable file 755 * 756 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 757 * 758 * Main users are mmput() and sys_execve(). Callers prevent concurrent 759 * invocations: in mmput() nobody alive left, in execve task is single 760 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 761 * mm->exe_file, but does so without using set_mm_exe_file() in order 762 * to do avoid the need for any locks. 763 */ 764 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 765 { 766 struct file *old_exe_file; 767 768 /* 769 * It is safe to dereference the exe_file without RCU as 770 * this function is only called if nobody else can access 771 * this mm -- see comment above for justification. 772 */ 773 old_exe_file = rcu_dereference_raw(mm->exe_file); 774 775 if (new_exe_file) 776 get_file(new_exe_file); 777 rcu_assign_pointer(mm->exe_file, new_exe_file); 778 if (old_exe_file) 779 fput(old_exe_file); 780 } 781 782 /** 783 * get_mm_exe_file - acquire a reference to the mm's executable file 784 * 785 * Returns %NULL if mm has no associated executable file. 786 * User must release file via fput(). 787 */ 788 struct file *get_mm_exe_file(struct mm_struct *mm) 789 { 790 struct file *exe_file; 791 792 rcu_read_lock(); 793 exe_file = rcu_dereference(mm->exe_file); 794 if (exe_file && !get_file_rcu(exe_file)) 795 exe_file = NULL; 796 rcu_read_unlock(); 797 return exe_file; 798 } 799 EXPORT_SYMBOL(get_mm_exe_file); 800 801 /** 802 * get_task_mm - acquire a reference to the task's mm 803 * 804 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 805 * this kernel workthread has transiently adopted a user mm with use_mm, 806 * to do its AIO) is not set and if so returns a reference to it, after 807 * bumping up the use count. User must release the mm via mmput() 808 * after use. Typically used by /proc and ptrace. 809 */ 810 struct mm_struct *get_task_mm(struct task_struct *task) 811 { 812 struct mm_struct *mm; 813 814 task_lock(task); 815 mm = task->mm; 816 if (mm) { 817 if (task->flags & PF_KTHREAD) 818 mm = NULL; 819 else 820 atomic_inc(&mm->mm_users); 821 } 822 task_unlock(task); 823 return mm; 824 } 825 EXPORT_SYMBOL_GPL(get_task_mm); 826 827 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 828 { 829 struct mm_struct *mm; 830 int err; 831 832 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 833 if (err) 834 return ERR_PTR(err); 835 836 mm = get_task_mm(task); 837 if (mm && mm != current->mm && 838 !ptrace_may_access(task, mode)) { 839 mmput(mm); 840 mm = ERR_PTR(-EACCES); 841 } 842 mutex_unlock(&task->signal->cred_guard_mutex); 843 844 return mm; 845 } 846 847 static void complete_vfork_done(struct task_struct *tsk) 848 { 849 struct completion *vfork; 850 851 task_lock(tsk); 852 vfork = tsk->vfork_done; 853 if (likely(vfork)) { 854 tsk->vfork_done = NULL; 855 complete(vfork); 856 } 857 task_unlock(tsk); 858 } 859 860 static int wait_for_vfork_done(struct task_struct *child, 861 struct completion *vfork) 862 { 863 int killed; 864 865 freezer_do_not_count(); 866 killed = wait_for_completion_killable(vfork); 867 freezer_count(); 868 869 if (killed) { 870 task_lock(child); 871 child->vfork_done = NULL; 872 task_unlock(child); 873 } 874 875 put_task_struct(child); 876 return killed; 877 } 878 879 /* Please note the differences between mmput and mm_release. 880 * mmput is called whenever we stop holding onto a mm_struct, 881 * error success whatever. 882 * 883 * mm_release is called after a mm_struct has been removed 884 * from the current process. 885 * 886 * This difference is important for error handling, when we 887 * only half set up a mm_struct for a new process and need to restore 888 * the old one. Because we mmput the new mm_struct before 889 * restoring the old one. . . 890 * Eric Biederman 10 January 1998 891 */ 892 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 893 { 894 /* Get rid of any futexes when releasing the mm */ 895 #ifdef CONFIG_FUTEX 896 if (unlikely(tsk->robust_list)) { 897 exit_robust_list(tsk); 898 tsk->robust_list = NULL; 899 } 900 #ifdef CONFIG_COMPAT 901 if (unlikely(tsk->compat_robust_list)) { 902 compat_exit_robust_list(tsk); 903 tsk->compat_robust_list = NULL; 904 } 905 #endif 906 if (unlikely(!list_empty(&tsk->pi_state_list))) 907 exit_pi_state_list(tsk); 908 #endif 909 910 uprobe_free_utask(tsk); 911 912 /* Get rid of any cached register state */ 913 deactivate_mm(tsk, mm); 914 915 /* 916 * If we're exiting normally, clear a user-space tid field if 917 * requested. We leave this alone when dying by signal, to leave 918 * the value intact in a core dump, and to save the unnecessary 919 * trouble, say, a killed vfork parent shouldn't touch this mm. 920 * Userland only wants this done for a sys_exit. 921 */ 922 if (tsk->clear_child_tid) { 923 if (!(tsk->flags & PF_SIGNALED) && 924 atomic_read(&mm->mm_users) > 1) { 925 /* 926 * We don't check the error code - if userspace has 927 * not set up a proper pointer then tough luck. 928 */ 929 put_user(0, tsk->clear_child_tid); 930 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 931 1, NULL, NULL, 0); 932 } 933 tsk->clear_child_tid = NULL; 934 } 935 936 /* 937 * All done, finally we can wake up parent and return this mm to him. 938 * Also kthread_stop() uses this completion for synchronization. 939 */ 940 if (tsk->vfork_done) 941 complete_vfork_done(tsk); 942 } 943 944 /* 945 * Allocate a new mm structure and copy contents from the 946 * mm structure of the passed in task structure. 947 */ 948 static struct mm_struct *dup_mm(struct task_struct *tsk) 949 { 950 struct mm_struct *mm, *oldmm = current->mm; 951 int err; 952 953 mm = allocate_mm(); 954 if (!mm) 955 goto fail_nomem; 956 957 memcpy(mm, oldmm, sizeof(*mm)); 958 959 if (!mm_init(mm, tsk)) 960 goto fail_nomem; 961 962 err = dup_mmap(mm, oldmm); 963 if (err) 964 goto free_pt; 965 966 mm->hiwater_rss = get_mm_rss(mm); 967 mm->hiwater_vm = mm->total_vm; 968 969 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 970 goto free_pt; 971 972 return mm; 973 974 free_pt: 975 /* don't put binfmt in mmput, we haven't got module yet */ 976 mm->binfmt = NULL; 977 mmput(mm); 978 979 fail_nomem: 980 return NULL; 981 } 982 983 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 984 { 985 struct mm_struct *mm, *oldmm; 986 int retval; 987 988 tsk->min_flt = tsk->maj_flt = 0; 989 tsk->nvcsw = tsk->nivcsw = 0; 990 #ifdef CONFIG_DETECT_HUNG_TASK 991 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 992 #endif 993 994 tsk->mm = NULL; 995 tsk->active_mm = NULL; 996 997 /* 998 * Are we cloning a kernel thread? 999 * 1000 * We need to steal a active VM for that.. 1001 */ 1002 oldmm = current->mm; 1003 if (!oldmm) 1004 return 0; 1005 1006 /* initialize the new vmacache entries */ 1007 vmacache_flush(tsk); 1008 1009 if (clone_flags & CLONE_VM) { 1010 atomic_inc(&oldmm->mm_users); 1011 mm = oldmm; 1012 goto good_mm; 1013 } 1014 1015 retval = -ENOMEM; 1016 mm = dup_mm(tsk); 1017 if (!mm) 1018 goto fail_nomem; 1019 1020 good_mm: 1021 tsk->mm = mm; 1022 tsk->active_mm = mm; 1023 return 0; 1024 1025 fail_nomem: 1026 return retval; 1027 } 1028 1029 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1030 { 1031 struct fs_struct *fs = current->fs; 1032 if (clone_flags & CLONE_FS) { 1033 /* tsk->fs is already what we want */ 1034 spin_lock(&fs->lock); 1035 if (fs->in_exec) { 1036 spin_unlock(&fs->lock); 1037 return -EAGAIN; 1038 } 1039 fs->users++; 1040 spin_unlock(&fs->lock); 1041 return 0; 1042 } 1043 tsk->fs = copy_fs_struct(fs); 1044 if (!tsk->fs) 1045 return -ENOMEM; 1046 return 0; 1047 } 1048 1049 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1050 { 1051 struct files_struct *oldf, *newf; 1052 int error = 0; 1053 1054 /* 1055 * A background process may not have any files ... 1056 */ 1057 oldf = current->files; 1058 if (!oldf) 1059 goto out; 1060 1061 if (clone_flags & CLONE_FILES) { 1062 atomic_inc(&oldf->count); 1063 goto out; 1064 } 1065 1066 newf = dup_fd(oldf, &error); 1067 if (!newf) 1068 goto out; 1069 1070 tsk->files = newf; 1071 error = 0; 1072 out: 1073 return error; 1074 } 1075 1076 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1077 { 1078 #ifdef CONFIG_BLOCK 1079 struct io_context *ioc = current->io_context; 1080 struct io_context *new_ioc; 1081 1082 if (!ioc) 1083 return 0; 1084 /* 1085 * Share io context with parent, if CLONE_IO is set 1086 */ 1087 if (clone_flags & CLONE_IO) { 1088 ioc_task_link(ioc); 1089 tsk->io_context = ioc; 1090 } else if (ioprio_valid(ioc->ioprio)) { 1091 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1092 if (unlikely(!new_ioc)) 1093 return -ENOMEM; 1094 1095 new_ioc->ioprio = ioc->ioprio; 1096 put_io_context(new_ioc); 1097 } 1098 #endif 1099 return 0; 1100 } 1101 1102 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1103 { 1104 struct sighand_struct *sig; 1105 1106 if (clone_flags & CLONE_SIGHAND) { 1107 atomic_inc(¤t->sighand->count); 1108 return 0; 1109 } 1110 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1111 rcu_assign_pointer(tsk->sighand, sig); 1112 if (!sig) 1113 return -ENOMEM; 1114 1115 atomic_set(&sig->count, 1); 1116 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1117 return 0; 1118 } 1119 1120 void __cleanup_sighand(struct sighand_struct *sighand) 1121 { 1122 if (atomic_dec_and_test(&sighand->count)) { 1123 signalfd_cleanup(sighand); 1124 /* 1125 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it 1126 * without an RCU grace period, see __lock_task_sighand(). 1127 */ 1128 kmem_cache_free(sighand_cachep, sighand); 1129 } 1130 } 1131 1132 /* 1133 * Initialize POSIX timer handling for a thread group. 1134 */ 1135 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1136 { 1137 unsigned long cpu_limit; 1138 1139 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1140 if (cpu_limit != RLIM_INFINITY) { 1141 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1142 sig->cputimer.running = true; 1143 } 1144 1145 /* The timer lists. */ 1146 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1147 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1148 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1149 } 1150 1151 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1152 { 1153 struct signal_struct *sig; 1154 1155 if (clone_flags & CLONE_THREAD) 1156 return 0; 1157 1158 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1159 tsk->signal = sig; 1160 if (!sig) 1161 return -ENOMEM; 1162 1163 sig->nr_threads = 1; 1164 atomic_set(&sig->live, 1); 1165 atomic_set(&sig->sigcnt, 1); 1166 1167 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1168 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1169 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1170 1171 init_waitqueue_head(&sig->wait_chldexit); 1172 sig->curr_target = tsk; 1173 init_sigpending(&sig->shared_pending); 1174 INIT_LIST_HEAD(&sig->posix_timers); 1175 seqlock_init(&sig->stats_lock); 1176 prev_cputime_init(&sig->prev_cputime); 1177 1178 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1179 sig->real_timer.function = it_real_fn; 1180 1181 task_lock(current->group_leader); 1182 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1183 task_unlock(current->group_leader); 1184 1185 posix_cpu_timers_init_group(sig); 1186 1187 tty_audit_fork(sig); 1188 sched_autogroup_fork(sig); 1189 1190 sig->oom_score_adj = current->signal->oom_score_adj; 1191 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1192 1193 sig->has_child_subreaper = current->signal->has_child_subreaper || 1194 current->signal->is_child_subreaper; 1195 1196 mutex_init(&sig->cred_guard_mutex); 1197 1198 return 0; 1199 } 1200 1201 static void copy_seccomp(struct task_struct *p) 1202 { 1203 #ifdef CONFIG_SECCOMP 1204 /* 1205 * Must be called with sighand->lock held, which is common to 1206 * all threads in the group. Holding cred_guard_mutex is not 1207 * needed because this new task is not yet running and cannot 1208 * be racing exec. 1209 */ 1210 assert_spin_locked(¤t->sighand->siglock); 1211 1212 /* Ref-count the new filter user, and assign it. */ 1213 get_seccomp_filter(current); 1214 p->seccomp = current->seccomp; 1215 1216 /* 1217 * Explicitly enable no_new_privs here in case it got set 1218 * between the task_struct being duplicated and holding the 1219 * sighand lock. The seccomp state and nnp must be in sync. 1220 */ 1221 if (task_no_new_privs(current)) 1222 task_set_no_new_privs(p); 1223 1224 /* 1225 * If the parent gained a seccomp mode after copying thread 1226 * flags and between before we held the sighand lock, we have 1227 * to manually enable the seccomp thread flag here. 1228 */ 1229 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1230 set_tsk_thread_flag(p, TIF_SECCOMP); 1231 #endif 1232 } 1233 1234 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1235 { 1236 current->clear_child_tid = tidptr; 1237 1238 return task_pid_vnr(current); 1239 } 1240 1241 static void rt_mutex_init_task(struct task_struct *p) 1242 { 1243 raw_spin_lock_init(&p->pi_lock); 1244 #ifdef CONFIG_RT_MUTEXES 1245 p->pi_waiters = RB_ROOT; 1246 p->pi_waiters_leftmost = NULL; 1247 p->pi_blocked_on = NULL; 1248 #endif 1249 } 1250 1251 /* 1252 * Initialize POSIX timer handling for a single task. 1253 */ 1254 static void posix_cpu_timers_init(struct task_struct *tsk) 1255 { 1256 tsk->cputime_expires.prof_exp = 0; 1257 tsk->cputime_expires.virt_exp = 0; 1258 tsk->cputime_expires.sched_exp = 0; 1259 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1260 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1261 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1262 } 1263 1264 static inline void 1265 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1266 { 1267 task->pids[type].pid = pid; 1268 } 1269 1270 /* 1271 * This creates a new process as a copy of the old one, 1272 * but does not actually start it yet. 1273 * 1274 * It copies the registers, and all the appropriate 1275 * parts of the process environment (as per the clone 1276 * flags). The actual kick-off is left to the caller. 1277 */ 1278 static struct task_struct *copy_process(unsigned long clone_flags, 1279 unsigned long stack_start, 1280 unsigned long stack_size, 1281 int __user *child_tidptr, 1282 struct pid *pid, 1283 int trace, 1284 unsigned long tls, 1285 int node) 1286 { 1287 int retval; 1288 struct task_struct *p; 1289 1290 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1291 return ERR_PTR(-EINVAL); 1292 1293 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1294 return ERR_PTR(-EINVAL); 1295 1296 /* 1297 * Thread groups must share signals as well, and detached threads 1298 * can only be started up within the thread group. 1299 */ 1300 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1301 return ERR_PTR(-EINVAL); 1302 1303 /* 1304 * Shared signal handlers imply shared VM. By way of the above, 1305 * thread groups also imply shared VM. Blocking this case allows 1306 * for various simplifications in other code. 1307 */ 1308 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1309 return ERR_PTR(-EINVAL); 1310 1311 /* 1312 * Siblings of global init remain as zombies on exit since they are 1313 * not reaped by their parent (swapper). To solve this and to avoid 1314 * multi-rooted process trees, prevent global and container-inits 1315 * from creating siblings. 1316 */ 1317 if ((clone_flags & CLONE_PARENT) && 1318 current->signal->flags & SIGNAL_UNKILLABLE) 1319 return ERR_PTR(-EINVAL); 1320 1321 /* 1322 * If the new process will be in a different pid or user namespace 1323 * do not allow it to share a thread group with the forking task. 1324 */ 1325 if (clone_flags & CLONE_THREAD) { 1326 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1327 (task_active_pid_ns(current) != 1328 current->nsproxy->pid_ns_for_children)) 1329 return ERR_PTR(-EINVAL); 1330 } 1331 1332 retval = security_task_create(clone_flags); 1333 if (retval) 1334 goto fork_out; 1335 1336 retval = -ENOMEM; 1337 p = dup_task_struct(current, node); 1338 if (!p) 1339 goto fork_out; 1340 1341 ftrace_graph_init_task(p); 1342 1343 rt_mutex_init_task(p); 1344 1345 #ifdef CONFIG_PROVE_LOCKING 1346 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1347 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1348 #endif 1349 retval = -EAGAIN; 1350 if (atomic_read(&p->real_cred->user->processes) >= 1351 task_rlimit(p, RLIMIT_NPROC)) { 1352 if (p->real_cred->user != INIT_USER && 1353 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1354 goto bad_fork_free; 1355 } 1356 current->flags &= ~PF_NPROC_EXCEEDED; 1357 1358 retval = copy_creds(p, clone_flags); 1359 if (retval < 0) 1360 goto bad_fork_free; 1361 1362 /* 1363 * If multiple threads are within copy_process(), then this check 1364 * triggers too late. This doesn't hurt, the check is only there 1365 * to stop root fork bombs. 1366 */ 1367 retval = -EAGAIN; 1368 if (nr_threads >= max_threads) 1369 goto bad_fork_cleanup_count; 1370 1371 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1372 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1373 p->flags |= PF_FORKNOEXEC; 1374 INIT_LIST_HEAD(&p->children); 1375 INIT_LIST_HEAD(&p->sibling); 1376 rcu_copy_process(p); 1377 p->vfork_done = NULL; 1378 spin_lock_init(&p->alloc_lock); 1379 1380 init_sigpending(&p->pending); 1381 1382 p->utime = p->stime = p->gtime = 0; 1383 p->utimescaled = p->stimescaled = 0; 1384 prev_cputime_init(&p->prev_cputime); 1385 1386 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1387 seqcount_init(&p->vtime_seqcount); 1388 p->vtime_snap = 0; 1389 p->vtime_snap_whence = VTIME_INACTIVE; 1390 #endif 1391 1392 #if defined(SPLIT_RSS_COUNTING) 1393 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1394 #endif 1395 1396 p->default_timer_slack_ns = current->timer_slack_ns; 1397 1398 task_io_accounting_init(&p->ioac); 1399 acct_clear_integrals(p); 1400 1401 posix_cpu_timers_init(p); 1402 1403 p->start_time = ktime_get_ns(); 1404 p->real_start_time = ktime_get_boot_ns(); 1405 p->io_context = NULL; 1406 p->audit_context = NULL; 1407 threadgroup_change_begin(current); 1408 cgroup_fork(p); 1409 #ifdef CONFIG_NUMA 1410 p->mempolicy = mpol_dup(p->mempolicy); 1411 if (IS_ERR(p->mempolicy)) { 1412 retval = PTR_ERR(p->mempolicy); 1413 p->mempolicy = NULL; 1414 goto bad_fork_cleanup_threadgroup_lock; 1415 } 1416 #endif 1417 #ifdef CONFIG_CPUSETS 1418 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1419 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1420 seqcount_init(&p->mems_allowed_seq); 1421 #endif 1422 #ifdef CONFIG_TRACE_IRQFLAGS 1423 p->irq_events = 0; 1424 p->hardirqs_enabled = 0; 1425 p->hardirq_enable_ip = 0; 1426 p->hardirq_enable_event = 0; 1427 p->hardirq_disable_ip = _THIS_IP_; 1428 p->hardirq_disable_event = 0; 1429 p->softirqs_enabled = 1; 1430 p->softirq_enable_ip = _THIS_IP_; 1431 p->softirq_enable_event = 0; 1432 p->softirq_disable_ip = 0; 1433 p->softirq_disable_event = 0; 1434 p->hardirq_context = 0; 1435 p->softirq_context = 0; 1436 #endif 1437 1438 p->pagefault_disabled = 0; 1439 1440 #ifdef CONFIG_LOCKDEP 1441 p->lockdep_depth = 0; /* no locks held yet */ 1442 p->curr_chain_key = 0; 1443 p->lockdep_recursion = 0; 1444 #endif 1445 1446 #ifdef CONFIG_DEBUG_MUTEXES 1447 p->blocked_on = NULL; /* not blocked yet */ 1448 #endif 1449 #ifdef CONFIG_BCACHE 1450 p->sequential_io = 0; 1451 p->sequential_io_avg = 0; 1452 #endif 1453 1454 /* Perform scheduler related setup. Assign this task to a CPU. */ 1455 retval = sched_fork(clone_flags, p); 1456 if (retval) 1457 goto bad_fork_cleanup_policy; 1458 1459 retval = perf_event_init_task(p); 1460 if (retval) 1461 goto bad_fork_cleanup_policy; 1462 retval = audit_alloc(p); 1463 if (retval) 1464 goto bad_fork_cleanup_perf; 1465 /* copy all the process information */ 1466 shm_init_task(p); 1467 retval = copy_semundo(clone_flags, p); 1468 if (retval) 1469 goto bad_fork_cleanup_audit; 1470 retval = copy_files(clone_flags, p); 1471 if (retval) 1472 goto bad_fork_cleanup_semundo; 1473 retval = copy_fs(clone_flags, p); 1474 if (retval) 1475 goto bad_fork_cleanup_files; 1476 retval = copy_sighand(clone_flags, p); 1477 if (retval) 1478 goto bad_fork_cleanup_fs; 1479 retval = copy_signal(clone_flags, p); 1480 if (retval) 1481 goto bad_fork_cleanup_sighand; 1482 retval = copy_mm(clone_flags, p); 1483 if (retval) 1484 goto bad_fork_cleanup_signal; 1485 retval = copy_namespaces(clone_flags, p); 1486 if (retval) 1487 goto bad_fork_cleanup_mm; 1488 retval = copy_io(clone_flags, p); 1489 if (retval) 1490 goto bad_fork_cleanup_namespaces; 1491 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 1492 if (retval) 1493 goto bad_fork_cleanup_io; 1494 1495 if (pid != &init_struct_pid) { 1496 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1497 if (IS_ERR(pid)) { 1498 retval = PTR_ERR(pid); 1499 goto bad_fork_cleanup_thread; 1500 } 1501 } 1502 1503 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1504 /* 1505 * Clear TID on mm_release()? 1506 */ 1507 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1508 #ifdef CONFIG_BLOCK 1509 p->plug = NULL; 1510 #endif 1511 #ifdef CONFIG_FUTEX 1512 p->robust_list = NULL; 1513 #ifdef CONFIG_COMPAT 1514 p->compat_robust_list = NULL; 1515 #endif 1516 INIT_LIST_HEAD(&p->pi_state_list); 1517 p->pi_state_cache = NULL; 1518 #endif 1519 /* 1520 * sigaltstack should be cleared when sharing the same VM 1521 */ 1522 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1523 sas_ss_reset(p); 1524 1525 /* 1526 * Syscall tracing and stepping should be turned off in the 1527 * child regardless of CLONE_PTRACE. 1528 */ 1529 user_disable_single_step(p); 1530 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1531 #ifdef TIF_SYSCALL_EMU 1532 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1533 #endif 1534 clear_all_latency_tracing(p); 1535 1536 /* ok, now we should be set up.. */ 1537 p->pid = pid_nr(pid); 1538 if (clone_flags & CLONE_THREAD) { 1539 p->exit_signal = -1; 1540 p->group_leader = current->group_leader; 1541 p->tgid = current->tgid; 1542 } else { 1543 if (clone_flags & CLONE_PARENT) 1544 p->exit_signal = current->group_leader->exit_signal; 1545 else 1546 p->exit_signal = (clone_flags & CSIGNAL); 1547 p->group_leader = p; 1548 p->tgid = p->pid; 1549 } 1550 1551 p->nr_dirtied = 0; 1552 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1553 p->dirty_paused_when = 0; 1554 1555 p->pdeath_signal = 0; 1556 INIT_LIST_HEAD(&p->thread_group); 1557 p->task_works = NULL; 1558 1559 /* 1560 * Ensure that the cgroup subsystem policies allow the new process to be 1561 * forked. It should be noted the the new process's css_set can be changed 1562 * between here and cgroup_post_fork() if an organisation operation is in 1563 * progress. 1564 */ 1565 retval = cgroup_can_fork(p); 1566 if (retval) 1567 goto bad_fork_free_pid; 1568 1569 /* 1570 * Make it visible to the rest of the system, but dont wake it up yet. 1571 * Need tasklist lock for parent etc handling! 1572 */ 1573 write_lock_irq(&tasklist_lock); 1574 1575 /* CLONE_PARENT re-uses the old parent */ 1576 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1577 p->real_parent = current->real_parent; 1578 p->parent_exec_id = current->parent_exec_id; 1579 } else { 1580 p->real_parent = current; 1581 p->parent_exec_id = current->self_exec_id; 1582 } 1583 1584 spin_lock(¤t->sighand->siglock); 1585 1586 /* 1587 * Copy seccomp details explicitly here, in case they were changed 1588 * before holding sighand lock. 1589 */ 1590 copy_seccomp(p); 1591 1592 /* 1593 * Process group and session signals need to be delivered to just the 1594 * parent before the fork or both the parent and the child after the 1595 * fork. Restart if a signal comes in before we add the new process to 1596 * it's process group. 1597 * A fatal signal pending means that current will exit, so the new 1598 * thread can't slip out of an OOM kill (or normal SIGKILL). 1599 */ 1600 recalc_sigpending(); 1601 if (signal_pending(current)) { 1602 spin_unlock(¤t->sighand->siglock); 1603 write_unlock_irq(&tasklist_lock); 1604 retval = -ERESTARTNOINTR; 1605 goto bad_fork_cancel_cgroup; 1606 } 1607 1608 if (likely(p->pid)) { 1609 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1610 1611 init_task_pid(p, PIDTYPE_PID, pid); 1612 if (thread_group_leader(p)) { 1613 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1614 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1615 1616 if (is_child_reaper(pid)) { 1617 ns_of_pid(pid)->child_reaper = p; 1618 p->signal->flags |= SIGNAL_UNKILLABLE; 1619 } 1620 1621 p->signal->leader_pid = pid; 1622 p->signal->tty = tty_kref_get(current->signal->tty); 1623 list_add_tail(&p->sibling, &p->real_parent->children); 1624 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1625 attach_pid(p, PIDTYPE_PGID); 1626 attach_pid(p, PIDTYPE_SID); 1627 __this_cpu_inc(process_counts); 1628 } else { 1629 current->signal->nr_threads++; 1630 atomic_inc(¤t->signal->live); 1631 atomic_inc(¤t->signal->sigcnt); 1632 list_add_tail_rcu(&p->thread_group, 1633 &p->group_leader->thread_group); 1634 list_add_tail_rcu(&p->thread_node, 1635 &p->signal->thread_head); 1636 } 1637 attach_pid(p, PIDTYPE_PID); 1638 nr_threads++; 1639 } 1640 1641 total_forks++; 1642 spin_unlock(¤t->sighand->siglock); 1643 syscall_tracepoint_update(p); 1644 write_unlock_irq(&tasklist_lock); 1645 1646 proc_fork_connector(p); 1647 cgroup_post_fork(p); 1648 threadgroup_change_end(current); 1649 perf_event_fork(p); 1650 1651 trace_task_newtask(p, clone_flags); 1652 uprobe_copy_process(p, clone_flags); 1653 1654 return p; 1655 1656 bad_fork_cancel_cgroup: 1657 cgroup_cancel_fork(p); 1658 bad_fork_free_pid: 1659 if (pid != &init_struct_pid) 1660 free_pid(pid); 1661 bad_fork_cleanup_thread: 1662 exit_thread(p); 1663 bad_fork_cleanup_io: 1664 if (p->io_context) 1665 exit_io_context(p); 1666 bad_fork_cleanup_namespaces: 1667 exit_task_namespaces(p); 1668 bad_fork_cleanup_mm: 1669 if (p->mm) 1670 mmput(p->mm); 1671 bad_fork_cleanup_signal: 1672 if (!(clone_flags & CLONE_THREAD)) 1673 free_signal_struct(p->signal); 1674 bad_fork_cleanup_sighand: 1675 __cleanup_sighand(p->sighand); 1676 bad_fork_cleanup_fs: 1677 exit_fs(p); /* blocking */ 1678 bad_fork_cleanup_files: 1679 exit_files(p); /* blocking */ 1680 bad_fork_cleanup_semundo: 1681 exit_sem(p); 1682 bad_fork_cleanup_audit: 1683 audit_free(p); 1684 bad_fork_cleanup_perf: 1685 perf_event_free_task(p); 1686 bad_fork_cleanup_policy: 1687 #ifdef CONFIG_NUMA 1688 mpol_put(p->mempolicy); 1689 bad_fork_cleanup_threadgroup_lock: 1690 #endif 1691 threadgroup_change_end(current); 1692 delayacct_tsk_free(p); 1693 bad_fork_cleanup_count: 1694 atomic_dec(&p->cred->user->processes); 1695 exit_creds(p); 1696 bad_fork_free: 1697 free_task(p); 1698 fork_out: 1699 return ERR_PTR(retval); 1700 } 1701 1702 static inline void init_idle_pids(struct pid_link *links) 1703 { 1704 enum pid_type type; 1705 1706 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1707 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1708 links[type].pid = &init_struct_pid; 1709 } 1710 } 1711 1712 struct task_struct *fork_idle(int cpu) 1713 { 1714 struct task_struct *task; 1715 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0, 1716 cpu_to_node(cpu)); 1717 if (!IS_ERR(task)) { 1718 init_idle_pids(task->pids); 1719 init_idle(task, cpu); 1720 } 1721 1722 return task; 1723 } 1724 1725 /* 1726 * Ok, this is the main fork-routine. 1727 * 1728 * It copies the process, and if successful kick-starts 1729 * it and waits for it to finish using the VM if required. 1730 */ 1731 long _do_fork(unsigned long clone_flags, 1732 unsigned long stack_start, 1733 unsigned long stack_size, 1734 int __user *parent_tidptr, 1735 int __user *child_tidptr, 1736 unsigned long tls) 1737 { 1738 struct task_struct *p; 1739 int trace = 0; 1740 long nr; 1741 1742 /* 1743 * Determine whether and which event to report to ptracer. When 1744 * called from kernel_thread or CLONE_UNTRACED is explicitly 1745 * requested, no event is reported; otherwise, report if the event 1746 * for the type of forking is enabled. 1747 */ 1748 if (!(clone_flags & CLONE_UNTRACED)) { 1749 if (clone_flags & CLONE_VFORK) 1750 trace = PTRACE_EVENT_VFORK; 1751 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1752 trace = PTRACE_EVENT_CLONE; 1753 else 1754 trace = PTRACE_EVENT_FORK; 1755 1756 if (likely(!ptrace_event_enabled(current, trace))) 1757 trace = 0; 1758 } 1759 1760 p = copy_process(clone_flags, stack_start, stack_size, 1761 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 1762 /* 1763 * Do this prior waking up the new thread - the thread pointer 1764 * might get invalid after that point, if the thread exits quickly. 1765 */ 1766 if (!IS_ERR(p)) { 1767 struct completion vfork; 1768 struct pid *pid; 1769 1770 trace_sched_process_fork(current, p); 1771 1772 pid = get_task_pid(p, PIDTYPE_PID); 1773 nr = pid_vnr(pid); 1774 1775 if (clone_flags & CLONE_PARENT_SETTID) 1776 put_user(nr, parent_tidptr); 1777 1778 if (clone_flags & CLONE_VFORK) { 1779 p->vfork_done = &vfork; 1780 init_completion(&vfork); 1781 get_task_struct(p); 1782 } 1783 1784 wake_up_new_task(p); 1785 1786 /* forking complete and child started to run, tell ptracer */ 1787 if (unlikely(trace)) 1788 ptrace_event_pid(trace, pid); 1789 1790 if (clone_flags & CLONE_VFORK) { 1791 if (!wait_for_vfork_done(p, &vfork)) 1792 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 1793 } 1794 1795 put_pid(pid); 1796 } else { 1797 nr = PTR_ERR(p); 1798 } 1799 return nr; 1800 } 1801 1802 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 1803 /* For compatibility with architectures that call do_fork directly rather than 1804 * using the syscall entry points below. */ 1805 long do_fork(unsigned long clone_flags, 1806 unsigned long stack_start, 1807 unsigned long stack_size, 1808 int __user *parent_tidptr, 1809 int __user *child_tidptr) 1810 { 1811 return _do_fork(clone_flags, stack_start, stack_size, 1812 parent_tidptr, child_tidptr, 0); 1813 } 1814 #endif 1815 1816 /* 1817 * Create a kernel thread. 1818 */ 1819 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1820 { 1821 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1822 (unsigned long)arg, NULL, NULL, 0); 1823 } 1824 1825 #ifdef __ARCH_WANT_SYS_FORK 1826 SYSCALL_DEFINE0(fork) 1827 { 1828 #ifdef CONFIG_MMU 1829 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 1830 #else 1831 /* can not support in nommu mode */ 1832 return -EINVAL; 1833 #endif 1834 } 1835 #endif 1836 1837 #ifdef __ARCH_WANT_SYS_VFORK 1838 SYSCALL_DEFINE0(vfork) 1839 { 1840 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1841 0, NULL, NULL, 0); 1842 } 1843 #endif 1844 1845 #ifdef __ARCH_WANT_SYS_CLONE 1846 #ifdef CONFIG_CLONE_BACKWARDS 1847 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1848 int __user *, parent_tidptr, 1849 unsigned long, tls, 1850 int __user *, child_tidptr) 1851 #elif defined(CONFIG_CLONE_BACKWARDS2) 1852 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1853 int __user *, parent_tidptr, 1854 int __user *, child_tidptr, 1855 unsigned long, tls) 1856 #elif defined(CONFIG_CLONE_BACKWARDS3) 1857 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1858 int, stack_size, 1859 int __user *, parent_tidptr, 1860 int __user *, child_tidptr, 1861 unsigned long, tls) 1862 #else 1863 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1864 int __user *, parent_tidptr, 1865 int __user *, child_tidptr, 1866 unsigned long, tls) 1867 #endif 1868 { 1869 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 1870 } 1871 #endif 1872 1873 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1874 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1875 #endif 1876 1877 static void sighand_ctor(void *data) 1878 { 1879 struct sighand_struct *sighand = data; 1880 1881 spin_lock_init(&sighand->siglock); 1882 init_waitqueue_head(&sighand->signalfd_wqh); 1883 } 1884 1885 void __init proc_caches_init(void) 1886 { 1887 sighand_cachep = kmem_cache_create("sighand_cache", 1888 sizeof(struct sighand_struct), 0, 1889 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1890 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor); 1891 signal_cachep = kmem_cache_create("signal_cache", 1892 sizeof(struct signal_struct), 0, 1893 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, 1894 NULL); 1895 files_cachep = kmem_cache_create("files_cache", 1896 sizeof(struct files_struct), 0, 1897 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, 1898 NULL); 1899 fs_cachep = kmem_cache_create("fs_cache", 1900 sizeof(struct fs_struct), 0, 1901 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, 1902 NULL); 1903 /* 1904 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1905 * whole struct cpumask for the OFFSTACK case. We could change 1906 * this to *only* allocate as much of it as required by the 1907 * maximum number of CPU's we can ever have. The cpumask_allocation 1908 * is at the end of the structure, exactly for that reason. 1909 */ 1910 mm_cachep = kmem_cache_create("mm_struct", 1911 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1912 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, 1913 NULL); 1914 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 1915 mmap_init(); 1916 nsproxy_cache_init(); 1917 } 1918 1919 /* 1920 * Check constraints on flags passed to the unshare system call. 1921 */ 1922 static int check_unshare_flags(unsigned long unshare_flags) 1923 { 1924 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1925 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1926 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1927 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 1928 return -EINVAL; 1929 /* 1930 * Not implemented, but pretend it works if there is nothing 1931 * to unshare. Note that unsharing the address space or the 1932 * signal handlers also need to unshare the signal queues (aka 1933 * CLONE_THREAD). 1934 */ 1935 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1936 if (!thread_group_empty(current)) 1937 return -EINVAL; 1938 } 1939 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 1940 if (atomic_read(¤t->sighand->count) > 1) 1941 return -EINVAL; 1942 } 1943 if (unshare_flags & CLONE_VM) { 1944 if (!current_is_single_threaded()) 1945 return -EINVAL; 1946 } 1947 1948 return 0; 1949 } 1950 1951 /* 1952 * Unshare the filesystem structure if it is being shared 1953 */ 1954 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1955 { 1956 struct fs_struct *fs = current->fs; 1957 1958 if (!(unshare_flags & CLONE_FS) || !fs) 1959 return 0; 1960 1961 /* don't need lock here; in the worst case we'll do useless copy */ 1962 if (fs->users == 1) 1963 return 0; 1964 1965 *new_fsp = copy_fs_struct(fs); 1966 if (!*new_fsp) 1967 return -ENOMEM; 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Unshare file descriptor table if it is being shared 1974 */ 1975 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1976 { 1977 struct files_struct *fd = current->files; 1978 int error = 0; 1979 1980 if ((unshare_flags & CLONE_FILES) && 1981 (fd && atomic_read(&fd->count) > 1)) { 1982 *new_fdp = dup_fd(fd, &error); 1983 if (!*new_fdp) 1984 return error; 1985 } 1986 1987 return 0; 1988 } 1989 1990 /* 1991 * unshare allows a process to 'unshare' part of the process 1992 * context which was originally shared using clone. copy_* 1993 * functions used by do_fork() cannot be used here directly 1994 * because they modify an inactive task_struct that is being 1995 * constructed. Here we are modifying the current, active, 1996 * task_struct. 1997 */ 1998 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1999 { 2000 struct fs_struct *fs, *new_fs = NULL; 2001 struct files_struct *fd, *new_fd = NULL; 2002 struct cred *new_cred = NULL; 2003 struct nsproxy *new_nsproxy = NULL; 2004 int do_sysvsem = 0; 2005 int err; 2006 2007 /* 2008 * If unsharing a user namespace must also unshare the thread group 2009 * and unshare the filesystem root and working directories. 2010 */ 2011 if (unshare_flags & CLONE_NEWUSER) 2012 unshare_flags |= CLONE_THREAD | CLONE_FS; 2013 /* 2014 * If unsharing vm, must also unshare signal handlers. 2015 */ 2016 if (unshare_flags & CLONE_VM) 2017 unshare_flags |= CLONE_SIGHAND; 2018 /* 2019 * If unsharing a signal handlers, must also unshare the signal queues. 2020 */ 2021 if (unshare_flags & CLONE_SIGHAND) 2022 unshare_flags |= CLONE_THREAD; 2023 /* 2024 * If unsharing namespace, must also unshare filesystem information. 2025 */ 2026 if (unshare_flags & CLONE_NEWNS) 2027 unshare_flags |= CLONE_FS; 2028 2029 err = check_unshare_flags(unshare_flags); 2030 if (err) 2031 goto bad_unshare_out; 2032 /* 2033 * CLONE_NEWIPC must also detach from the undolist: after switching 2034 * to a new ipc namespace, the semaphore arrays from the old 2035 * namespace are unreachable. 2036 */ 2037 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2038 do_sysvsem = 1; 2039 err = unshare_fs(unshare_flags, &new_fs); 2040 if (err) 2041 goto bad_unshare_out; 2042 err = unshare_fd(unshare_flags, &new_fd); 2043 if (err) 2044 goto bad_unshare_cleanup_fs; 2045 err = unshare_userns(unshare_flags, &new_cred); 2046 if (err) 2047 goto bad_unshare_cleanup_fd; 2048 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2049 new_cred, new_fs); 2050 if (err) 2051 goto bad_unshare_cleanup_cred; 2052 2053 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2054 if (do_sysvsem) { 2055 /* 2056 * CLONE_SYSVSEM is equivalent to sys_exit(). 2057 */ 2058 exit_sem(current); 2059 } 2060 if (unshare_flags & CLONE_NEWIPC) { 2061 /* Orphan segments in old ns (see sem above). */ 2062 exit_shm(current); 2063 shm_init_task(current); 2064 } 2065 2066 if (new_nsproxy) 2067 switch_task_namespaces(current, new_nsproxy); 2068 2069 task_lock(current); 2070 2071 if (new_fs) { 2072 fs = current->fs; 2073 spin_lock(&fs->lock); 2074 current->fs = new_fs; 2075 if (--fs->users) 2076 new_fs = NULL; 2077 else 2078 new_fs = fs; 2079 spin_unlock(&fs->lock); 2080 } 2081 2082 if (new_fd) { 2083 fd = current->files; 2084 current->files = new_fd; 2085 new_fd = fd; 2086 } 2087 2088 task_unlock(current); 2089 2090 if (new_cred) { 2091 /* Install the new user namespace */ 2092 commit_creds(new_cred); 2093 new_cred = NULL; 2094 } 2095 } 2096 2097 bad_unshare_cleanup_cred: 2098 if (new_cred) 2099 put_cred(new_cred); 2100 bad_unshare_cleanup_fd: 2101 if (new_fd) 2102 put_files_struct(new_fd); 2103 2104 bad_unshare_cleanup_fs: 2105 if (new_fs) 2106 free_fs_struct(new_fs); 2107 2108 bad_unshare_out: 2109 return err; 2110 } 2111 2112 /* 2113 * Helper to unshare the files of the current task. 2114 * We don't want to expose copy_files internals to 2115 * the exec layer of the kernel. 2116 */ 2117 2118 int unshare_files(struct files_struct **displaced) 2119 { 2120 struct task_struct *task = current; 2121 struct files_struct *copy = NULL; 2122 int error; 2123 2124 error = unshare_fd(CLONE_FILES, ©); 2125 if (error || !copy) { 2126 *displaced = NULL; 2127 return error; 2128 } 2129 *displaced = task->files; 2130 task_lock(task); 2131 task->files = copy; 2132 task_unlock(task); 2133 return 0; 2134 } 2135 2136 int sysctl_max_threads(struct ctl_table *table, int write, 2137 void __user *buffer, size_t *lenp, loff_t *ppos) 2138 { 2139 struct ctl_table t; 2140 int ret; 2141 int threads = max_threads; 2142 int min = MIN_THREADS; 2143 int max = MAX_THREADS; 2144 2145 t = *table; 2146 t.data = &threads; 2147 t.extra1 = &min; 2148 t.extra2 = &max; 2149 2150 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2151 if (ret || !write) 2152 return ret; 2153 2154 set_max_threads(threads); 2155 2156 return 0; 2157 } 2158