xref: /openbmc/linux/kernel/fork.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	if (likely(page)) {
252 		tsk->stack = page_address(page);
253 		return tsk->stack;
254 	}
255 	return NULL;
256 #endif
257 }
258 
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 	struct vm_struct *vm = task_stack_vm_area(tsk);
263 
264 	if (vm) {
265 		int i;
266 
267 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 			mod_memcg_page_state(vm->pages[i],
269 					     MEMCG_KERNEL_STACK_KB,
270 					     -(int)(PAGE_SIZE / 1024));
271 
272 			memcg_kmem_uncharge(vm->pages[i], 0);
273 		}
274 
275 		for (i = 0; i < NR_CACHED_STACKS; i++) {
276 			if (this_cpu_cmpxchg(cached_stacks[i],
277 					NULL, tsk->stack_vm_area) != NULL)
278 				continue;
279 
280 			return;
281 		}
282 
283 		vfree_atomic(tsk->stack);
284 		return;
285 	}
286 #endif
287 
288 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292 
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 						  int node)
295 {
296 	unsigned long *stack;
297 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 	tsk->stack = stack;
299 	return stack;
300 }
301 
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 	kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306 
307 void thread_stack_cache_init(void)
308 {
309 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 					THREAD_SIZE, THREAD_SIZE, 0, 0,
311 					THREAD_SIZE, NULL);
312 	BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316 
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319 
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322 
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325 
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328 
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331 
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334 
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 	struct vm_area_struct *vma;
338 
339 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 	if (vma)
341 		vma_init(vma, mm);
342 	return vma;
343 }
344 
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 
349 	if (new) {
350 		*new = *orig;
351 		INIT_LIST_HEAD(&new->anon_vma_chain);
352 	}
353 	return new;
354 }
355 
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 	kmem_cache_free(vm_area_cachep, vma);
359 }
360 
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 	void *stack = task_stack_page(tsk);
364 	struct vm_struct *vm = task_stack_vm_area(tsk);
365 
366 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367 
368 	if (vm) {
369 		int i;
370 
371 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372 
373 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 			mod_zone_page_state(page_zone(vm->pages[i]),
375 					    NR_KERNEL_STACK_KB,
376 					    PAGE_SIZE / 1024 * account);
377 		}
378 	} else {
379 		/*
380 		 * All stack pages are in the same zone and belong to the
381 		 * same memcg.
382 		 */
383 		struct page *first_page = virt_to_page(stack);
384 
385 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 				    THREAD_SIZE / 1024 * account);
387 
388 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 				     account * (THREAD_SIZE / 1024));
390 	}
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	if (vm) {
400 		int i;
401 
402 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 			/*
404 			 * If memcg_kmem_charge() fails, page->mem_cgroup
405 			 * pointer is NULL, and both memcg_kmem_uncharge()
406 			 * and mod_memcg_page_state() in free_thread_stack()
407 			 * will ignore this page. So it's safe.
408 			 */
409 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 			if (ret)
411 				return ret;
412 
413 			mod_memcg_page_state(vm->pages[i],
414 					     MEMCG_KERNEL_STACK_KB,
415 					     PAGE_SIZE / 1024);
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	put_seccomp_filter(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (down_write_killable(&oldmm->mmap_sem)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/* VM_WIPEONFORK gets a clean slate in the child. */
544 			tmp->anon_vma = NULL;
545 			if (anon_vma_prepare(tmp))
546 				goto fail_nomem_anon_vma_fork;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		tmp->vm_next = tmp->vm_prev = NULL;
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	up_write(&mm->mmap_sem);
604 	flush_tlb_mm(oldmm);
605 	up_write(&oldmm->mmap_sem);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	down_write(&oldmm->mmap_sem);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	up_write(&oldmm->mmap_sem);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	for (i = 0; i < NR_MM_COUNTERS; i++) {
649 		long x = atomic_long_read(&mm->rss_stat.count[i]);
650 
651 		if (unlikely(x))
652 			printk(KERN_ALERT "BUG: Bad rss-counter state "
653 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
654 	}
655 
656 	if (mm_pgtables_bytes(mm))
657 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 				mm_pgtables_bytes(mm));
659 
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664 
665 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
667 
668 /*
669  * Called when the last reference to the mm
670  * is dropped: either by a lazy thread or by
671  * mmput. Free the page directory and the mm.
672  */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 	BUG_ON(mm == &init_mm);
676 	WARN_ON_ONCE(mm == current->mm);
677 	WARN_ON_ONCE(mm == current->active_mm);
678 	mm_free_pgd(mm);
679 	destroy_context(mm);
680 	hmm_mm_destroy(mm);
681 	mmu_notifier_mm_destroy(mm);
682 	check_mm(mm);
683 	put_user_ns(mm->user_ns);
684 	free_mm(mm);
685 }
686 EXPORT_SYMBOL_GPL(__mmdrop);
687 
688 static void mmdrop_async_fn(struct work_struct *work)
689 {
690 	struct mm_struct *mm;
691 
692 	mm = container_of(work, struct mm_struct, async_put_work);
693 	__mmdrop(mm);
694 }
695 
696 static void mmdrop_async(struct mm_struct *mm)
697 {
698 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
699 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
700 		schedule_work(&mm->async_put_work);
701 	}
702 }
703 
704 static inline void free_signal_struct(struct signal_struct *sig)
705 {
706 	taskstats_tgid_free(sig);
707 	sched_autogroup_exit(sig);
708 	/*
709 	 * __mmdrop is not safe to call from softirq context on x86 due to
710 	 * pgd_dtor so postpone it to the async context
711 	 */
712 	if (sig->oom_mm)
713 		mmdrop_async(sig->oom_mm);
714 	kmem_cache_free(signal_cachep, sig);
715 }
716 
717 static inline void put_signal_struct(struct signal_struct *sig)
718 {
719 	if (refcount_dec_and_test(&sig->sigcnt))
720 		free_signal_struct(sig);
721 }
722 
723 void __put_task_struct(struct task_struct *tsk)
724 {
725 	WARN_ON(!tsk->exit_state);
726 	WARN_ON(refcount_read(&tsk->usage));
727 	WARN_ON(tsk == current);
728 
729 	cgroup_free(tsk);
730 	task_numa_free(tsk);
731 	security_task_free(tsk);
732 	exit_creds(tsk);
733 	delayacct_tsk_free(tsk);
734 	put_signal_struct(tsk->signal);
735 
736 	if (!profile_handoff_task(tsk))
737 		free_task(tsk);
738 }
739 EXPORT_SYMBOL_GPL(__put_task_struct);
740 
741 void __init __weak arch_task_cache_init(void) { }
742 
743 /*
744  * set_max_threads
745  */
746 static void set_max_threads(unsigned int max_threads_suggested)
747 {
748 	u64 threads;
749 	unsigned long nr_pages = totalram_pages();
750 
751 	/*
752 	 * The number of threads shall be limited such that the thread
753 	 * structures may only consume a small part of the available memory.
754 	 */
755 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
756 		threads = MAX_THREADS;
757 	else
758 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
759 				    (u64) THREAD_SIZE * 8UL);
760 
761 	if (threads > max_threads_suggested)
762 		threads = max_threads_suggested;
763 
764 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
765 }
766 
767 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
768 /* Initialized by the architecture: */
769 int arch_task_struct_size __read_mostly;
770 #endif
771 
772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
773 {
774 	/* Fetch thread_struct whitelist for the architecture. */
775 	arch_thread_struct_whitelist(offset, size);
776 
777 	/*
778 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
779 	 * adjust offset to position of thread_struct in task_struct.
780 	 */
781 	if (unlikely(*size == 0))
782 		*offset = 0;
783 	else
784 		*offset += offsetof(struct task_struct, thread);
785 }
786 
787 void __init fork_init(void)
788 {
789 	int i;
790 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
791 #ifndef ARCH_MIN_TASKALIGN
792 #define ARCH_MIN_TASKALIGN	0
793 #endif
794 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
795 	unsigned long useroffset, usersize;
796 
797 	/* create a slab on which task_structs can be allocated */
798 	task_struct_whitelist(&useroffset, &usersize);
799 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
800 			arch_task_struct_size, align,
801 			SLAB_PANIC|SLAB_ACCOUNT,
802 			useroffset, usersize, NULL);
803 #endif
804 
805 	/* do the arch specific task caches init */
806 	arch_task_cache_init();
807 
808 	set_max_threads(MAX_THREADS);
809 
810 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
811 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
812 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
813 		init_task.signal->rlim[RLIMIT_NPROC];
814 
815 	for (i = 0; i < UCOUNT_COUNTS; i++) {
816 		init_user_ns.ucount_max[i] = max_threads/2;
817 	}
818 
819 #ifdef CONFIG_VMAP_STACK
820 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
821 			  NULL, free_vm_stack_cache);
822 #endif
823 
824 	lockdep_init_task(&init_task);
825 	uprobes_init();
826 }
827 
828 int __weak arch_dup_task_struct(struct task_struct *dst,
829 					       struct task_struct *src)
830 {
831 	*dst = *src;
832 	return 0;
833 }
834 
835 void set_task_stack_end_magic(struct task_struct *tsk)
836 {
837 	unsigned long *stackend;
838 
839 	stackend = end_of_stack(tsk);
840 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
841 }
842 
843 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
844 {
845 	struct task_struct *tsk;
846 	unsigned long *stack;
847 	struct vm_struct *stack_vm_area __maybe_unused;
848 	int err;
849 
850 	if (node == NUMA_NO_NODE)
851 		node = tsk_fork_get_node(orig);
852 	tsk = alloc_task_struct_node(node);
853 	if (!tsk)
854 		return NULL;
855 
856 	stack = alloc_thread_stack_node(tsk, node);
857 	if (!stack)
858 		goto free_tsk;
859 
860 	if (memcg_charge_kernel_stack(tsk))
861 		goto free_stack;
862 
863 	stack_vm_area = task_stack_vm_area(tsk);
864 
865 	err = arch_dup_task_struct(tsk, orig);
866 
867 	/*
868 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
869 	 * sure they're properly initialized before using any stack-related
870 	 * functions again.
871 	 */
872 	tsk->stack = stack;
873 #ifdef CONFIG_VMAP_STACK
874 	tsk->stack_vm_area = stack_vm_area;
875 #endif
876 #ifdef CONFIG_THREAD_INFO_IN_TASK
877 	refcount_set(&tsk->stack_refcount, 1);
878 #endif
879 
880 	if (err)
881 		goto free_stack;
882 
883 #ifdef CONFIG_SECCOMP
884 	/*
885 	 * We must handle setting up seccomp filters once we're under
886 	 * the sighand lock in case orig has changed between now and
887 	 * then. Until then, filter must be NULL to avoid messing up
888 	 * the usage counts on the error path calling free_task.
889 	 */
890 	tsk->seccomp.filter = NULL;
891 #endif
892 
893 	setup_thread_stack(tsk, orig);
894 	clear_user_return_notifier(tsk);
895 	clear_tsk_need_resched(tsk);
896 	set_task_stack_end_magic(tsk);
897 
898 #ifdef CONFIG_STACKPROTECTOR
899 	tsk->stack_canary = get_random_canary();
900 #endif
901 
902 	/*
903 	 * One for us, one for whoever does the "release_task()" (usually
904 	 * parent)
905 	 */
906 	refcount_set(&tsk->usage, 2);
907 #ifdef CONFIG_BLK_DEV_IO_TRACE
908 	tsk->btrace_seq = 0;
909 #endif
910 	tsk->splice_pipe = NULL;
911 	tsk->task_frag.page = NULL;
912 	tsk->wake_q.next = NULL;
913 
914 	account_kernel_stack(tsk, 1);
915 
916 	kcov_task_init(tsk);
917 
918 #ifdef CONFIG_FAULT_INJECTION
919 	tsk->fail_nth = 0;
920 #endif
921 
922 #ifdef CONFIG_BLK_CGROUP
923 	tsk->throttle_queue = NULL;
924 	tsk->use_memdelay = 0;
925 #endif
926 
927 #ifdef CONFIG_MEMCG
928 	tsk->active_memcg = NULL;
929 #endif
930 	return tsk;
931 
932 free_stack:
933 	free_thread_stack(tsk);
934 free_tsk:
935 	free_task_struct(tsk);
936 	return NULL;
937 }
938 
939 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
940 
941 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
942 
943 static int __init coredump_filter_setup(char *s)
944 {
945 	default_dump_filter =
946 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
947 		MMF_DUMP_FILTER_MASK;
948 	return 1;
949 }
950 
951 __setup("coredump_filter=", coredump_filter_setup);
952 
953 #include <linux/init_task.h>
954 
955 static void mm_init_aio(struct mm_struct *mm)
956 {
957 #ifdef CONFIG_AIO
958 	spin_lock_init(&mm->ioctx_lock);
959 	mm->ioctx_table = NULL;
960 #endif
961 }
962 
963 static __always_inline void mm_clear_owner(struct mm_struct *mm,
964 					   struct task_struct *p)
965 {
966 #ifdef CONFIG_MEMCG
967 	if (mm->owner == p)
968 		WRITE_ONCE(mm->owner, NULL);
969 #endif
970 }
971 
972 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
973 {
974 #ifdef CONFIG_MEMCG
975 	mm->owner = p;
976 #endif
977 }
978 
979 static void mm_init_uprobes_state(struct mm_struct *mm)
980 {
981 #ifdef CONFIG_UPROBES
982 	mm->uprobes_state.xol_area = NULL;
983 #endif
984 }
985 
986 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
987 	struct user_namespace *user_ns)
988 {
989 	mm->mmap = NULL;
990 	mm->mm_rb = RB_ROOT;
991 	mm->vmacache_seqnum = 0;
992 	atomic_set(&mm->mm_users, 1);
993 	atomic_set(&mm->mm_count, 1);
994 	init_rwsem(&mm->mmap_sem);
995 	INIT_LIST_HEAD(&mm->mmlist);
996 	mm->core_state = NULL;
997 	mm_pgtables_bytes_init(mm);
998 	mm->map_count = 0;
999 	mm->locked_vm = 0;
1000 	atomic64_set(&mm->pinned_vm, 0);
1001 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1002 	spin_lock_init(&mm->page_table_lock);
1003 	spin_lock_init(&mm->arg_lock);
1004 	mm_init_cpumask(mm);
1005 	mm_init_aio(mm);
1006 	mm_init_owner(mm, p);
1007 	RCU_INIT_POINTER(mm->exe_file, NULL);
1008 	mmu_notifier_mm_init(mm);
1009 	hmm_mm_init(mm);
1010 	init_tlb_flush_pending(mm);
1011 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1012 	mm->pmd_huge_pte = NULL;
1013 #endif
1014 	mm_init_uprobes_state(mm);
1015 
1016 	if (current->mm) {
1017 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1018 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1019 	} else {
1020 		mm->flags = default_dump_filter;
1021 		mm->def_flags = 0;
1022 	}
1023 
1024 	if (mm_alloc_pgd(mm))
1025 		goto fail_nopgd;
1026 
1027 	if (init_new_context(p, mm))
1028 		goto fail_nocontext;
1029 
1030 	mm->user_ns = get_user_ns(user_ns);
1031 	return mm;
1032 
1033 fail_nocontext:
1034 	mm_free_pgd(mm);
1035 fail_nopgd:
1036 	free_mm(mm);
1037 	return NULL;
1038 }
1039 
1040 /*
1041  * Allocate and initialize an mm_struct.
1042  */
1043 struct mm_struct *mm_alloc(void)
1044 {
1045 	struct mm_struct *mm;
1046 
1047 	mm = allocate_mm();
1048 	if (!mm)
1049 		return NULL;
1050 
1051 	memset(mm, 0, sizeof(*mm));
1052 	return mm_init(mm, current, current_user_ns());
1053 }
1054 
1055 static inline void __mmput(struct mm_struct *mm)
1056 {
1057 	VM_BUG_ON(atomic_read(&mm->mm_users));
1058 
1059 	uprobe_clear_state(mm);
1060 	exit_aio(mm);
1061 	ksm_exit(mm);
1062 	khugepaged_exit(mm); /* must run before exit_mmap */
1063 	exit_mmap(mm);
1064 	mm_put_huge_zero_page(mm);
1065 	set_mm_exe_file(mm, NULL);
1066 	if (!list_empty(&mm->mmlist)) {
1067 		spin_lock(&mmlist_lock);
1068 		list_del(&mm->mmlist);
1069 		spin_unlock(&mmlist_lock);
1070 	}
1071 	if (mm->binfmt)
1072 		module_put(mm->binfmt->module);
1073 	mmdrop(mm);
1074 }
1075 
1076 /*
1077  * Decrement the use count and release all resources for an mm.
1078  */
1079 void mmput(struct mm_struct *mm)
1080 {
1081 	might_sleep();
1082 
1083 	if (atomic_dec_and_test(&mm->mm_users))
1084 		__mmput(mm);
1085 }
1086 EXPORT_SYMBOL_GPL(mmput);
1087 
1088 #ifdef CONFIG_MMU
1089 static void mmput_async_fn(struct work_struct *work)
1090 {
1091 	struct mm_struct *mm = container_of(work, struct mm_struct,
1092 					    async_put_work);
1093 
1094 	__mmput(mm);
1095 }
1096 
1097 void mmput_async(struct mm_struct *mm)
1098 {
1099 	if (atomic_dec_and_test(&mm->mm_users)) {
1100 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1101 		schedule_work(&mm->async_put_work);
1102 	}
1103 }
1104 #endif
1105 
1106 /**
1107  * set_mm_exe_file - change a reference to the mm's executable file
1108  *
1109  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1110  *
1111  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1112  * invocations: in mmput() nobody alive left, in execve task is single
1113  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1114  * mm->exe_file, but does so without using set_mm_exe_file() in order
1115  * to do avoid the need for any locks.
1116  */
1117 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1118 {
1119 	struct file *old_exe_file;
1120 
1121 	/*
1122 	 * It is safe to dereference the exe_file without RCU as
1123 	 * this function is only called if nobody else can access
1124 	 * this mm -- see comment above for justification.
1125 	 */
1126 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1127 
1128 	if (new_exe_file)
1129 		get_file(new_exe_file);
1130 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1131 	if (old_exe_file)
1132 		fput(old_exe_file);
1133 }
1134 
1135 /**
1136  * get_mm_exe_file - acquire a reference to the mm's executable file
1137  *
1138  * Returns %NULL if mm has no associated executable file.
1139  * User must release file via fput().
1140  */
1141 struct file *get_mm_exe_file(struct mm_struct *mm)
1142 {
1143 	struct file *exe_file;
1144 
1145 	rcu_read_lock();
1146 	exe_file = rcu_dereference(mm->exe_file);
1147 	if (exe_file && !get_file_rcu(exe_file))
1148 		exe_file = NULL;
1149 	rcu_read_unlock();
1150 	return exe_file;
1151 }
1152 EXPORT_SYMBOL(get_mm_exe_file);
1153 
1154 /**
1155  * get_task_exe_file - acquire a reference to the task's executable file
1156  *
1157  * Returns %NULL if task's mm (if any) has no associated executable file or
1158  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1159  * User must release file via fput().
1160  */
1161 struct file *get_task_exe_file(struct task_struct *task)
1162 {
1163 	struct file *exe_file = NULL;
1164 	struct mm_struct *mm;
1165 
1166 	task_lock(task);
1167 	mm = task->mm;
1168 	if (mm) {
1169 		if (!(task->flags & PF_KTHREAD))
1170 			exe_file = get_mm_exe_file(mm);
1171 	}
1172 	task_unlock(task);
1173 	return exe_file;
1174 }
1175 EXPORT_SYMBOL(get_task_exe_file);
1176 
1177 /**
1178  * get_task_mm - acquire a reference to the task's mm
1179  *
1180  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1181  * this kernel workthread has transiently adopted a user mm with use_mm,
1182  * to do its AIO) is not set and if so returns a reference to it, after
1183  * bumping up the use count.  User must release the mm via mmput()
1184  * after use.  Typically used by /proc and ptrace.
1185  */
1186 struct mm_struct *get_task_mm(struct task_struct *task)
1187 {
1188 	struct mm_struct *mm;
1189 
1190 	task_lock(task);
1191 	mm = task->mm;
1192 	if (mm) {
1193 		if (task->flags & PF_KTHREAD)
1194 			mm = NULL;
1195 		else
1196 			mmget(mm);
1197 	}
1198 	task_unlock(task);
1199 	return mm;
1200 }
1201 EXPORT_SYMBOL_GPL(get_task_mm);
1202 
1203 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1204 {
1205 	struct mm_struct *mm;
1206 	int err;
1207 
1208 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1209 	if (err)
1210 		return ERR_PTR(err);
1211 
1212 	mm = get_task_mm(task);
1213 	if (mm && mm != current->mm &&
1214 			!ptrace_may_access(task, mode)) {
1215 		mmput(mm);
1216 		mm = ERR_PTR(-EACCES);
1217 	}
1218 	mutex_unlock(&task->signal->cred_guard_mutex);
1219 
1220 	return mm;
1221 }
1222 
1223 static void complete_vfork_done(struct task_struct *tsk)
1224 {
1225 	struct completion *vfork;
1226 
1227 	task_lock(tsk);
1228 	vfork = tsk->vfork_done;
1229 	if (likely(vfork)) {
1230 		tsk->vfork_done = NULL;
1231 		complete(vfork);
1232 	}
1233 	task_unlock(tsk);
1234 }
1235 
1236 static int wait_for_vfork_done(struct task_struct *child,
1237 				struct completion *vfork)
1238 {
1239 	int killed;
1240 
1241 	freezer_do_not_count();
1242 	cgroup_enter_frozen();
1243 	killed = wait_for_completion_killable(vfork);
1244 	cgroup_leave_frozen(false);
1245 	freezer_count();
1246 
1247 	if (killed) {
1248 		task_lock(child);
1249 		child->vfork_done = NULL;
1250 		task_unlock(child);
1251 	}
1252 
1253 	put_task_struct(child);
1254 	return killed;
1255 }
1256 
1257 /* Please note the differences between mmput and mm_release.
1258  * mmput is called whenever we stop holding onto a mm_struct,
1259  * error success whatever.
1260  *
1261  * mm_release is called after a mm_struct has been removed
1262  * from the current process.
1263  *
1264  * This difference is important for error handling, when we
1265  * only half set up a mm_struct for a new process and need to restore
1266  * the old one.  Because we mmput the new mm_struct before
1267  * restoring the old one. . .
1268  * Eric Biederman 10 January 1998
1269  */
1270 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1271 {
1272 	/* Get rid of any futexes when releasing the mm */
1273 #ifdef CONFIG_FUTEX
1274 	if (unlikely(tsk->robust_list)) {
1275 		exit_robust_list(tsk);
1276 		tsk->robust_list = NULL;
1277 	}
1278 #ifdef CONFIG_COMPAT
1279 	if (unlikely(tsk->compat_robust_list)) {
1280 		compat_exit_robust_list(tsk);
1281 		tsk->compat_robust_list = NULL;
1282 	}
1283 #endif
1284 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1285 		exit_pi_state_list(tsk);
1286 #endif
1287 
1288 	uprobe_free_utask(tsk);
1289 
1290 	/* Get rid of any cached register state */
1291 	deactivate_mm(tsk, mm);
1292 
1293 	/*
1294 	 * Signal userspace if we're not exiting with a core dump
1295 	 * because we want to leave the value intact for debugging
1296 	 * purposes.
1297 	 */
1298 	if (tsk->clear_child_tid) {
1299 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1300 		    atomic_read(&mm->mm_users) > 1) {
1301 			/*
1302 			 * We don't check the error code - if userspace has
1303 			 * not set up a proper pointer then tough luck.
1304 			 */
1305 			put_user(0, tsk->clear_child_tid);
1306 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 					1, NULL, NULL, 0, 0);
1308 		}
1309 		tsk->clear_child_tid = NULL;
1310 	}
1311 
1312 	/*
1313 	 * All done, finally we can wake up parent and return this mm to him.
1314 	 * Also kthread_stop() uses this completion for synchronization.
1315 	 */
1316 	if (tsk->vfork_done)
1317 		complete_vfork_done(tsk);
1318 }
1319 
1320 /**
1321  * dup_mm() - duplicates an existing mm structure
1322  * @tsk: the task_struct with which the new mm will be associated.
1323  * @oldmm: the mm to duplicate.
1324  *
1325  * Allocates a new mm structure and duplicates the provided @oldmm structure
1326  * content into it.
1327  *
1328  * Return: the duplicated mm or NULL on failure.
1329  */
1330 static struct mm_struct *dup_mm(struct task_struct *tsk,
1331 				struct mm_struct *oldmm)
1332 {
1333 	struct mm_struct *mm;
1334 	int err;
1335 
1336 	mm = allocate_mm();
1337 	if (!mm)
1338 		goto fail_nomem;
1339 
1340 	memcpy(mm, oldmm, sizeof(*mm));
1341 
1342 	if (!mm_init(mm, tsk, mm->user_ns))
1343 		goto fail_nomem;
1344 
1345 	err = dup_mmap(mm, oldmm);
1346 	if (err)
1347 		goto free_pt;
1348 
1349 	mm->hiwater_rss = get_mm_rss(mm);
1350 	mm->hiwater_vm = mm->total_vm;
1351 
1352 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1353 		goto free_pt;
1354 
1355 	return mm;
1356 
1357 free_pt:
1358 	/* don't put binfmt in mmput, we haven't got module yet */
1359 	mm->binfmt = NULL;
1360 	mm_init_owner(mm, NULL);
1361 	mmput(mm);
1362 
1363 fail_nomem:
1364 	return NULL;
1365 }
1366 
1367 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1368 {
1369 	struct mm_struct *mm, *oldmm;
1370 	int retval;
1371 
1372 	tsk->min_flt = tsk->maj_flt = 0;
1373 	tsk->nvcsw = tsk->nivcsw = 0;
1374 #ifdef CONFIG_DETECT_HUNG_TASK
1375 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1376 	tsk->last_switch_time = 0;
1377 #endif
1378 
1379 	tsk->mm = NULL;
1380 	tsk->active_mm = NULL;
1381 
1382 	/*
1383 	 * Are we cloning a kernel thread?
1384 	 *
1385 	 * We need to steal a active VM for that..
1386 	 */
1387 	oldmm = current->mm;
1388 	if (!oldmm)
1389 		return 0;
1390 
1391 	/* initialize the new vmacache entries */
1392 	vmacache_flush(tsk);
1393 
1394 	if (clone_flags & CLONE_VM) {
1395 		mmget(oldmm);
1396 		mm = oldmm;
1397 		goto good_mm;
1398 	}
1399 
1400 	retval = -ENOMEM;
1401 	mm = dup_mm(tsk, current->mm);
1402 	if (!mm)
1403 		goto fail_nomem;
1404 
1405 good_mm:
1406 	tsk->mm = mm;
1407 	tsk->active_mm = mm;
1408 	return 0;
1409 
1410 fail_nomem:
1411 	return retval;
1412 }
1413 
1414 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1415 {
1416 	struct fs_struct *fs = current->fs;
1417 	if (clone_flags & CLONE_FS) {
1418 		/* tsk->fs is already what we want */
1419 		spin_lock(&fs->lock);
1420 		if (fs->in_exec) {
1421 			spin_unlock(&fs->lock);
1422 			return -EAGAIN;
1423 		}
1424 		fs->users++;
1425 		spin_unlock(&fs->lock);
1426 		return 0;
1427 	}
1428 	tsk->fs = copy_fs_struct(fs);
1429 	if (!tsk->fs)
1430 		return -ENOMEM;
1431 	return 0;
1432 }
1433 
1434 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1435 {
1436 	struct files_struct *oldf, *newf;
1437 	int error = 0;
1438 
1439 	/*
1440 	 * A background process may not have any files ...
1441 	 */
1442 	oldf = current->files;
1443 	if (!oldf)
1444 		goto out;
1445 
1446 	if (clone_flags & CLONE_FILES) {
1447 		atomic_inc(&oldf->count);
1448 		goto out;
1449 	}
1450 
1451 	newf = dup_fd(oldf, &error);
1452 	if (!newf)
1453 		goto out;
1454 
1455 	tsk->files = newf;
1456 	error = 0;
1457 out:
1458 	return error;
1459 }
1460 
1461 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 #ifdef CONFIG_BLOCK
1464 	struct io_context *ioc = current->io_context;
1465 	struct io_context *new_ioc;
1466 
1467 	if (!ioc)
1468 		return 0;
1469 	/*
1470 	 * Share io context with parent, if CLONE_IO is set
1471 	 */
1472 	if (clone_flags & CLONE_IO) {
1473 		ioc_task_link(ioc);
1474 		tsk->io_context = ioc;
1475 	} else if (ioprio_valid(ioc->ioprio)) {
1476 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1477 		if (unlikely(!new_ioc))
1478 			return -ENOMEM;
1479 
1480 		new_ioc->ioprio = ioc->ioprio;
1481 		put_io_context(new_ioc);
1482 	}
1483 #endif
1484 	return 0;
1485 }
1486 
1487 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1488 {
1489 	struct sighand_struct *sig;
1490 
1491 	if (clone_flags & CLONE_SIGHAND) {
1492 		refcount_inc(&current->sighand->count);
1493 		return 0;
1494 	}
1495 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1496 	rcu_assign_pointer(tsk->sighand, sig);
1497 	if (!sig)
1498 		return -ENOMEM;
1499 
1500 	refcount_set(&sig->count, 1);
1501 	spin_lock_irq(&current->sighand->siglock);
1502 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1503 	spin_unlock_irq(&current->sighand->siglock);
1504 	return 0;
1505 }
1506 
1507 void __cleanup_sighand(struct sighand_struct *sighand)
1508 {
1509 	if (refcount_dec_and_test(&sighand->count)) {
1510 		signalfd_cleanup(sighand);
1511 		/*
1512 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1513 		 * without an RCU grace period, see __lock_task_sighand().
1514 		 */
1515 		kmem_cache_free(sighand_cachep, sighand);
1516 	}
1517 }
1518 
1519 #ifdef CONFIG_POSIX_TIMERS
1520 /*
1521  * Initialize POSIX timer handling for a thread group.
1522  */
1523 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1524 {
1525 	unsigned long cpu_limit;
1526 
1527 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1528 	if (cpu_limit != RLIM_INFINITY) {
1529 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1530 		sig->cputimer.running = true;
1531 	}
1532 
1533 	/* The timer lists. */
1534 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1535 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1536 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1537 }
1538 #else
1539 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1540 #endif
1541 
1542 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1543 {
1544 	struct signal_struct *sig;
1545 
1546 	if (clone_flags & CLONE_THREAD)
1547 		return 0;
1548 
1549 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1550 	tsk->signal = sig;
1551 	if (!sig)
1552 		return -ENOMEM;
1553 
1554 	sig->nr_threads = 1;
1555 	atomic_set(&sig->live, 1);
1556 	refcount_set(&sig->sigcnt, 1);
1557 
1558 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1559 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1560 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1561 
1562 	init_waitqueue_head(&sig->wait_chldexit);
1563 	sig->curr_target = tsk;
1564 	init_sigpending(&sig->shared_pending);
1565 	INIT_HLIST_HEAD(&sig->multiprocess);
1566 	seqlock_init(&sig->stats_lock);
1567 	prev_cputime_init(&sig->prev_cputime);
1568 
1569 #ifdef CONFIG_POSIX_TIMERS
1570 	INIT_LIST_HEAD(&sig->posix_timers);
1571 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1572 	sig->real_timer.function = it_real_fn;
1573 #endif
1574 
1575 	task_lock(current->group_leader);
1576 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1577 	task_unlock(current->group_leader);
1578 
1579 	posix_cpu_timers_init_group(sig);
1580 
1581 	tty_audit_fork(sig);
1582 	sched_autogroup_fork(sig);
1583 
1584 	sig->oom_score_adj = current->signal->oom_score_adj;
1585 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1586 
1587 	mutex_init(&sig->cred_guard_mutex);
1588 
1589 	return 0;
1590 }
1591 
1592 static void copy_seccomp(struct task_struct *p)
1593 {
1594 #ifdef CONFIG_SECCOMP
1595 	/*
1596 	 * Must be called with sighand->lock held, which is common to
1597 	 * all threads in the group. Holding cred_guard_mutex is not
1598 	 * needed because this new task is not yet running and cannot
1599 	 * be racing exec.
1600 	 */
1601 	assert_spin_locked(&current->sighand->siglock);
1602 
1603 	/* Ref-count the new filter user, and assign it. */
1604 	get_seccomp_filter(current);
1605 	p->seccomp = current->seccomp;
1606 
1607 	/*
1608 	 * Explicitly enable no_new_privs here in case it got set
1609 	 * between the task_struct being duplicated and holding the
1610 	 * sighand lock. The seccomp state and nnp must be in sync.
1611 	 */
1612 	if (task_no_new_privs(current))
1613 		task_set_no_new_privs(p);
1614 
1615 	/*
1616 	 * If the parent gained a seccomp mode after copying thread
1617 	 * flags and between before we held the sighand lock, we have
1618 	 * to manually enable the seccomp thread flag here.
1619 	 */
1620 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1621 		set_tsk_thread_flag(p, TIF_SECCOMP);
1622 #endif
1623 }
1624 
1625 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1626 {
1627 	current->clear_child_tid = tidptr;
1628 
1629 	return task_pid_vnr(current);
1630 }
1631 
1632 static void rt_mutex_init_task(struct task_struct *p)
1633 {
1634 	raw_spin_lock_init(&p->pi_lock);
1635 #ifdef CONFIG_RT_MUTEXES
1636 	p->pi_waiters = RB_ROOT_CACHED;
1637 	p->pi_top_task = NULL;
1638 	p->pi_blocked_on = NULL;
1639 #endif
1640 }
1641 
1642 #ifdef CONFIG_POSIX_TIMERS
1643 /*
1644  * Initialize POSIX timer handling for a single task.
1645  */
1646 static void posix_cpu_timers_init(struct task_struct *tsk)
1647 {
1648 	tsk->cputime_expires.prof_exp = 0;
1649 	tsk->cputime_expires.virt_exp = 0;
1650 	tsk->cputime_expires.sched_exp = 0;
1651 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1652 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1653 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1654 }
1655 #else
1656 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1657 #endif
1658 
1659 static inline void init_task_pid_links(struct task_struct *task)
1660 {
1661 	enum pid_type type;
1662 
1663 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1664 		INIT_HLIST_NODE(&task->pid_links[type]);
1665 	}
1666 }
1667 
1668 static inline void
1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1670 {
1671 	if (type == PIDTYPE_PID)
1672 		task->thread_pid = pid;
1673 	else
1674 		task->signal->pids[type] = pid;
1675 }
1676 
1677 static inline void rcu_copy_process(struct task_struct *p)
1678 {
1679 #ifdef CONFIG_PREEMPT_RCU
1680 	p->rcu_read_lock_nesting = 0;
1681 	p->rcu_read_unlock_special.s = 0;
1682 	p->rcu_blocked_node = NULL;
1683 	INIT_LIST_HEAD(&p->rcu_node_entry);
1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1685 #ifdef CONFIG_TASKS_RCU
1686 	p->rcu_tasks_holdout = false;
1687 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1688 	p->rcu_tasks_idle_cpu = -1;
1689 #endif /* #ifdef CONFIG_TASKS_RCU */
1690 }
1691 
1692 static int pidfd_release(struct inode *inode, struct file *file)
1693 {
1694 	struct pid *pid = file->private_data;
1695 
1696 	file->private_data = NULL;
1697 	put_pid(pid);
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_PROC_FS
1702 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1703 {
1704 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1705 	struct pid *pid = f->private_data;
1706 
1707 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1708 	seq_putc(m, '\n');
1709 }
1710 #endif
1711 
1712 const struct file_operations pidfd_fops = {
1713 	.release = pidfd_release,
1714 #ifdef CONFIG_PROC_FS
1715 	.show_fdinfo = pidfd_show_fdinfo,
1716 #endif
1717 };
1718 
1719 static void __delayed_free_task(struct rcu_head *rhp)
1720 {
1721 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1722 
1723 	free_task(tsk);
1724 }
1725 
1726 static __always_inline void delayed_free_task(struct task_struct *tsk)
1727 {
1728 	if (IS_ENABLED(CONFIG_MEMCG))
1729 		call_rcu(&tsk->rcu, __delayed_free_task);
1730 	else
1731 		free_task(tsk);
1732 }
1733 
1734 /*
1735  * This creates a new process as a copy of the old one,
1736  * but does not actually start it yet.
1737  *
1738  * It copies the registers, and all the appropriate
1739  * parts of the process environment (as per the clone
1740  * flags). The actual kick-off is left to the caller.
1741  */
1742 static __latent_entropy struct task_struct *copy_process(
1743 					unsigned long clone_flags,
1744 					unsigned long stack_start,
1745 					unsigned long stack_size,
1746 					int __user *parent_tidptr,
1747 					int __user *child_tidptr,
1748 					struct pid *pid,
1749 					int trace,
1750 					unsigned long tls,
1751 					int node)
1752 {
1753 	int pidfd = -1, retval;
1754 	struct task_struct *p;
1755 	struct multiprocess_signals delayed;
1756 	struct file *pidfile = NULL;
1757 
1758 	/*
1759 	 * Don't allow sharing the root directory with processes in a different
1760 	 * namespace
1761 	 */
1762 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1763 		return ERR_PTR(-EINVAL);
1764 
1765 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1766 		return ERR_PTR(-EINVAL);
1767 
1768 	/*
1769 	 * Thread groups must share signals as well, and detached threads
1770 	 * can only be started up within the thread group.
1771 	 */
1772 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1773 		return ERR_PTR(-EINVAL);
1774 
1775 	/*
1776 	 * Shared signal handlers imply shared VM. By way of the above,
1777 	 * thread groups also imply shared VM. Blocking this case allows
1778 	 * for various simplifications in other code.
1779 	 */
1780 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1781 		return ERR_PTR(-EINVAL);
1782 
1783 	/*
1784 	 * Siblings of global init remain as zombies on exit since they are
1785 	 * not reaped by their parent (swapper). To solve this and to avoid
1786 	 * multi-rooted process trees, prevent global and container-inits
1787 	 * from creating siblings.
1788 	 */
1789 	if ((clone_flags & CLONE_PARENT) &&
1790 				current->signal->flags & SIGNAL_UNKILLABLE)
1791 		return ERR_PTR(-EINVAL);
1792 
1793 	/*
1794 	 * If the new process will be in a different pid or user namespace
1795 	 * do not allow it to share a thread group with the forking task.
1796 	 */
1797 	if (clone_flags & CLONE_THREAD) {
1798 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1799 		    (task_active_pid_ns(current) !=
1800 				current->nsproxy->pid_ns_for_children))
1801 			return ERR_PTR(-EINVAL);
1802 	}
1803 
1804 	if (clone_flags & CLONE_PIDFD) {
1805 		/*
1806 		 * - CLONE_PARENT_SETTID is useless for pidfds and also
1807 		 *   parent_tidptr is used to return pidfds.
1808 		 * - CLONE_DETACHED is blocked so that we can potentially
1809 		 *   reuse it later for CLONE_PIDFD.
1810 		 * - CLONE_THREAD is blocked until someone really needs it.
1811 		 */
1812 		if (clone_flags &
1813 		    (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1814 			return ERR_PTR(-EINVAL);
1815 	}
1816 
1817 	/*
1818 	 * Force any signals received before this point to be delivered
1819 	 * before the fork happens.  Collect up signals sent to multiple
1820 	 * processes that happen during the fork and delay them so that
1821 	 * they appear to happen after the fork.
1822 	 */
1823 	sigemptyset(&delayed.signal);
1824 	INIT_HLIST_NODE(&delayed.node);
1825 
1826 	spin_lock_irq(&current->sighand->siglock);
1827 	if (!(clone_flags & CLONE_THREAD))
1828 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1829 	recalc_sigpending();
1830 	spin_unlock_irq(&current->sighand->siglock);
1831 	retval = -ERESTARTNOINTR;
1832 	if (signal_pending(current))
1833 		goto fork_out;
1834 
1835 	retval = -ENOMEM;
1836 	p = dup_task_struct(current, node);
1837 	if (!p)
1838 		goto fork_out;
1839 
1840 	/*
1841 	 * This _must_ happen before we call free_task(), i.e. before we jump
1842 	 * to any of the bad_fork_* labels. This is to avoid freeing
1843 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1844 	 * kernel threads (PF_KTHREAD).
1845 	 */
1846 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1847 	/*
1848 	 * Clear TID on mm_release()?
1849 	 */
1850 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1851 
1852 	ftrace_graph_init_task(p);
1853 
1854 	rt_mutex_init_task(p);
1855 
1856 #ifdef CONFIG_PROVE_LOCKING
1857 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1858 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1859 #endif
1860 	retval = -EAGAIN;
1861 	if (atomic_read(&p->real_cred->user->processes) >=
1862 			task_rlimit(p, RLIMIT_NPROC)) {
1863 		if (p->real_cred->user != INIT_USER &&
1864 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1865 			goto bad_fork_free;
1866 	}
1867 	current->flags &= ~PF_NPROC_EXCEEDED;
1868 
1869 	retval = copy_creds(p, clone_flags);
1870 	if (retval < 0)
1871 		goto bad_fork_free;
1872 
1873 	/*
1874 	 * If multiple threads are within copy_process(), then this check
1875 	 * triggers too late. This doesn't hurt, the check is only there
1876 	 * to stop root fork bombs.
1877 	 */
1878 	retval = -EAGAIN;
1879 	if (nr_threads >= max_threads)
1880 		goto bad_fork_cleanup_count;
1881 
1882 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1883 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1884 	p->flags |= PF_FORKNOEXEC;
1885 	INIT_LIST_HEAD(&p->children);
1886 	INIT_LIST_HEAD(&p->sibling);
1887 	rcu_copy_process(p);
1888 	p->vfork_done = NULL;
1889 	spin_lock_init(&p->alloc_lock);
1890 
1891 	init_sigpending(&p->pending);
1892 
1893 	p->utime = p->stime = p->gtime = 0;
1894 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1895 	p->utimescaled = p->stimescaled = 0;
1896 #endif
1897 	prev_cputime_init(&p->prev_cputime);
1898 
1899 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1900 	seqcount_init(&p->vtime.seqcount);
1901 	p->vtime.starttime = 0;
1902 	p->vtime.state = VTIME_INACTIVE;
1903 #endif
1904 
1905 #if defined(SPLIT_RSS_COUNTING)
1906 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1907 #endif
1908 
1909 	p->default_timer_slack_ns = current->timer_slack_ns;
1910 
1911 #ifdef CONFIG_PSI
1912 	p->psi_flags = 0;
1913 #endif
1914 
1915 	task_io_accounting_init(&p->ioac);
1916 	acct_clear_integrals(p);
1917 
1918 	posix_cpu_timers_init(p);
1919 
1920 	p->io_context = NULL;
1921 	audit_set_context(p, NULL);
1922 	cgroup_fork(p);
1923 #ifdef CONFIG_NUMA
1924 	p->mempolicy = mpol_dup(p->mempolicy);
1925 	if (IS_ERR(p->mempolicy)) {
1926 		retval = PTR_ERR(p->mempolicy);
1927 		p->mempolicy = NULL;
1928 		goto bad_fork_cleanup_threadgroup_lock;
1929 	}
1930 #endif
1931 #ifdef CONFIG_CPUSETS
1932 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1933 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1934 	seqcount_init(&p->mems_allowed_seq);
1935 #endif
1936 #ifdef CONFIG_TRACE_IRQFLAGS
1937 	p->irq_events = 0;
1938 	p->hardirqs_enabled = 0;
1939 	p->hardirq_enable_ip = 0;
1940 	p->hardirq_enable_event = 0;
1941 	p->hardirq_disable_ip = _THIS_IP_;
1942 	p->hardirq_disable_event = 0;
1943 	p->softirqs_enabled = 1;
1944 	p->softirq_enable_ip = _THIS_IP_;
1945 	p->softirq_enable_event = 0;
1946 	p->softirq_disable_ip = 0;
1947 	p->softirq_disable_event = 0;
1948 	p->hardirq_context = 0;
1949 	p->softirq_context = 0;
1950 #endif
1951 
1952 	p->pagefault_disabled = 0;
1953 
1954 #ifdef CONFIG_LOCKDEP
1955 	p->lockdep_depth = 0; /* no locks held yet */
1956 	p->curr_chain_key = 0;
1957 	p->lockdep_recursion = 0;
1958 	lockdep_init_task(p);
1959 #endif
1960 
1961 #ifdef CONFIG_DEBUG_MUTEXES
1962 	p->blocked_on = NULL; /* not blocked yet */
1963 #endif
1964 #ifdef CONFIG_BCACHE
1965 	p->sequential_io	= 0;
1966 	p->sequential_io_avg	= 0;
1967 #endif
1968 
1969 	/* Perform scheduler related setup. Assign this task to a CPU. */
1970 	retval = sched_fork(clone_flags, p);
1971 	if (retval)
1972 		goto bad_fork_cleanup_policy;
1973 
1974 	retval = perf_event_init_task(p);
1975 	if (retval)
1976 		goto bad_fork_cleanup_policy;
1977 	retval = audit_alloc(p);
1978 	if (retval)
1979 		goto bad_fork_cleanup_perf;
1980 	/* copy all the process information */
1981 	shm_init_task(p);
1982 	retval = security_task_alloc(p, clone_flags);
1983 	if (retval)
1984 		goto bad_fork_cleanup_audit;
1985 	retval = copy_semundo(clone_flags, p);
1986 	if (retval)
1987 		goto bad_fork_cleanup_security;
1988 	retval = copy_files(clone_flags, p);
1989 	if (retval)
1990 		goto bad_fork_cleanup_semundo;
1991 	retval = copy_fs(clone_flags, p);
1992 	if (retval)
1993 		goto bad_fork_cleanup_files;
1994 	retval = copy_sighand(clone_flags, p);
1995 	if (retval)
1996 		goto bad_fork_cleanup_fs;
1997 	retval = copy_signal(clone_flags, p);
1998 	if (retval)
1999 		goto bad_fork_cleanup_sighand;
2000 	retval = copy_mm(clone_flags, p);
2001 	if (retval)
2002 		goto bad_fork_cleanup_signal;
2003 	retval = copy_namespaces(clone_flags, p);
2004 	if (retval)
2005 		goto bad_fork_cleanup_mm;
2006 	retval = copy_io(clone_flags, p);
2007 	if (retval)
2008 		goto bad_fork_cleanup_namespaces;
2009 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2010 	if (retval)
2011 		goto bad_fork_cleanup_io;
2012 
2013 	stackleak_task_init(p);
2014 
2015 	if (pid != &init_struct_pid) {
2016 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2017 		if (IS_ERR(pid)) {
2018 			retval = PTR_ERR(pid);
2019 			goto bad_fork_cleanup_thread;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * This has to happen after we've potentially unshared the file
2025 	 * descriptor table (so that the pidfd doesn't leak into the child
2026 	 * if the fd table isn't shared).
2027 	 */
2028 	if (clone_flags & CLONE_PIDFD) {
2029 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2030 		if (retval < 0)
2031 			goto bad_fork_free_pid;
2032 
2033 		pidfd = retval;
2034 
2035 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2036 					      O_RDWR | O_CLOEXEC);
2037 		if (IS_ERR(pidfile)) {
2038 			put_unused_fd(pidfd);
2039 			goto bad_fork_free_pid;
2040 		}
2041 		get_pid(pid);	/* held by pidfile now */
2042 
2043 		retval = put_user(pidfd, parent_tidptr);
2044 		if (retval)
2045 			goto bad_fork_put_pidfd;
2046 	}
2047 
2048 #ifdef CONFIG_BLOCK
2049 	p->plug = NULL;
2050 #endif
2051 #ifdef CONFIG_FUTEX
2052 	p->robust_list = NULL;
2053 #ifdef CONFIG_COMPAT
2054 	p->compat_robust_list = NULL;
2055 #endif
2056 	INIT_LIST_HEAD(&p->pi_state_list);
2057 	p->pi_state_cache = NULL;
2058 #endif
2059 	/*
2060 	 * sigaltstack should be cleared when sharing the same VM
2061 	 */
2062 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2063 		sas_ss_reset(p);
2064 
2065 	/*
2066 	 * Syscall tracing and stepping should be turned off in the
2067 	 * child regardless of CLONE_PTRACE.
2068 	 */
2069 	user_disable_single_step(p);
2070 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2071 #ifdef TIF_SYSCALL_EMU
2072 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2073 #endif
2074 	clear_tsk_latency_tracing(p);
2075 
2076 	/* ok, now we should be set up.. */
2077 	p->pid = pid_nr(pid);
2078 	if (clone_flags & CLONE_THREAD) {
2079 		p->exit_signal = -1;
2080 		p->group_leader = current->group_leader;
2081 		p->tgid = current->tgid;
2082 	} else {
2083 		if (clone_flags & CLONE_PARENT)
2084 			p->exit_signal = current->group_leader->exit_signal;
2085 		else
2086 			p->exit_signal = (clone_flags & CSIGNAL);
2087 		p->group_leader = p;
2088 		p->tgid = p->pid;
2089 	}
2090 
2091 	p->nr_dirtied = 0;
2092 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2093 	p->dirty_paused_when = 0;
2094 
2095 	p->pdeath_signal = 0;
2096 	INIT_LIST_HEAD(&p->thread_group);
2097 	p->task_works = NULL;
2098 
2099 	cgroup_threadgroup_change_begin(current);
2100 	/*
2101 	 * Ensure that the cgroup subsystem policies allow the new process to be
2102 	 * forked. It should be noted the the new process's css_set can be changed
2103 	 * between here and cgroup_post_fork() if an organisation operation is in
2104 	 * progress.
2105 	 */
2106 	retval = cgroup_can_fork(p);
2107 	if (retval)
2108 		goto bad_fork_cgroup_threadgroup_change_end;
2109 
2110 	/*
2111 	 * From this point on we must avoid any synchronous user-space
2112 	 * communication until we take the tasklist-lock. In particular, we do
2113 	 * not want user-space to be able to predict the process start-time by
2114 	 * stalling fork(2) after we recorded the start_time but before it is
2115 	 * visible to the system.
2116 	 */
2117 
2118 	p->start_time = ktime_get_ns();
2119 	p->real_start_time = ktime_get_boot_ns();
2120 
2121 	/*
2122 	 * Make it visible to the rest of the system, but dont wake it up yet.
2123 	 * Need tasklist lock for parent etc handling!
2124 	 */
2125 	write_lock_irq(&tasklist_lock);
2126 
2127 	/* CLONE_PARENT re-uses the old parent */
2128 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2129 		p->real_parent = current->real_parent;
2130 		p->parent_exec_id = current->parent_exec_id;
2131 	} else {
2132 		p->real_parent = current;
2133 		p->parent_exec_id = current->self_exec_id;
2134 	}
2135 
2136 	klp_copy_process(p);
2137 
2138 	spin_lock(&current->sighand->siglock);
2139 
2140 	/*
2141 	 * Copy seccomp details explicitly here, in case they were changed
2142 	 * before holding sighand lock.
2143 	 */
2144 	copy_seccomp(p);
2145 
2146 	rseq_fork(p, clone_flags);
2147 
2148 	/* Don't start children in a dying pid namespace */
2149 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2150 		retval = -ENOMEM;
2151 		goto bad_fork_cancel_cgroup;
2152 	}
2153 
2154 	/* Let kill terminate clone/fork in the middle */
2155 	if (fatal_signal_pending(current)) {
2156 		retval = -EINTR;
2157 		goto bad_fork_cancel_cgroup;
2158 	}
2159 
2160 	/* past the last point of failure */
2161 	if (pidfile)
2162 		fd_install(pidfd, pidfile);
2163 
2164 	init_task_pid_links(p);
2165 	if (likely(p->pid)) {
2166 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2167 
2168 		init_task_pid(p, PIDTYPE_PID, pid);
2169 		if (thread_group_leader(p)) {
2170 			init_task_pid(p, PIDTYPE_TGID, pid);
2171 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2172 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2173 
2174 			if (is_child_reaper(pid)) {
2175 				ns_of_pid(pid)->child_reaper = p;
2176 				p->signal->flags |= SIGNAL_UNKILLABLE;
2177 			}
2178 			p->signal->shared_pending.signal = delayed.signal;
2179 			p->signal->tty = tty_kref_get(current->signal->tty);
2180 			/*
2181 			 * Inherit has_child_subreaper flag under the same
2182 			 * tasklist_lock with adding child to the process tree
2183 			 * for propagate_has_child_subreaper optimization.
2184 			 */
2185 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2186 							 p->real_parent->signal->is_child_subreaper;
2187 			list_add_tail(&p->sibling, &p->real_parent->children);
2188 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2189 			attach_pid(p, PIDTYPE_TGID);
2190 			attach_pid(p, PIDTYPE_PGID);
2191 			attach_pid(p, PIDTYPE_SID);
2192 			__this_cpu_inc(process_counts);
2193 		} else {
2194 			current->signal->nr_threads++;
2195 			atomic_inc(&current->signal->live);
2196 			refcount_inc(&current->signal->sigcnt);
2197 			task_join_group_stop(p);
2198 			list_add_tail_rcu(&p->thread_group,
2199 					  &p->group_leader->thread_group);
2200 			list_add_tail_rcu(&p->thread_node,
2201 					  &p->signal->thread_head);
2202 		}
2203 		attach_pid(p, PIDTYPE_PID);
2204 		nr_threads++;
2205 	}
2206 	total_forks++;
2207 	hlist_del_init(&delayed.node);
2208 	spin_unlock(&current->sighand->siglock);
2209 	syscall_tracepoint_update(p);
2210 	write_unlock_irq(&tasklist_lock);
2211 
2212 	proc_fork_connector(p);
2213 	cgroup_post_fork(p);
2214 	cgroup_threadgroup_change_end(current);
2215 	perf_event_fork(p);
2216 
2217 	trace_task_newtask(p, clone_flags);
2218 	uprobe_copy_process(p, clone_flags);
2219 
2220 	return p;
2221 
2222 bad_fork_cancel_cgroup:
2223 	spin_unlock(&current->sighand->siglock);
2224 	write_unlock_irq(&tasklist_lock);
2225 	cgroup_cancel_fork(p);
2226 bad_fork_cgroup_threadgroup_change_end:
2227 	cgroup_threadgroup_change_end(current);
2228 bad_fork_put_pidfd:
2229 	if (clone_flags & CLONE_PIDFD) {
2230 		fput(pidfile);
2231 		put_unused_fd(pidfd);
2232 	}
2233 bad_fork_free_pid:
2234 	if (pid != &init_struct_pid)
2235 		free_pid(pid);
2236 bad_fork_cleanup_thread:
2237 	exit_thread(p);
2238 bad_fork_cleanup_io:
2239 	if (p->io_context)
2240 		exit_io_context(p);
2241 bad_fork_cleanup_namespaces:
2242 	exit_task_namespaces(p);
2243 bad_fork_cleanup_mm:
2244 	if (p->mm) {
2245 		mm_clear_owner(p->mm, p);
2246 		mmput(p->mm);
2247 	}
2248 bad_fork_cleanup_signal:
2249 	if (!(clone_flags & CLONE_THREAD))
2250 		free_signal_struct(p->signal);
2251 bad_fork_cleanup_sighand:
2252 	__cleanup_sighand(p->sighand);
2253 bad_fork_cleanup_fs:
2254 	exit_fs(p); /* blocking */
2255 bad_fork_cleanup_files:
2256 	exit_files(p); /* blocking */
2257 bad_fork_cleanup_semundo:
2258 	exit_sem(p);
2259 bad_fork_cleanup_security:
2260 	security_task_free(p);
2261 bad_fork_cleanup_audit:
2262 	audit_free(p);
2263 bad_fork_cleanup_perf:
2264 	perf_event_free_task(p);
2265 bad_fork_cleanup_policy:
2266 	lockdep_free_task(p);
2267 #ifdef CONFIG_NUMA
2268 	mpol_put(p->mempolicy);
2269 bad_fork_cleanup_threadgroup_lock:
2270 #endif
2271 	delayacct_tsk_free(p);
2272 bad_fork_cleanup_count:
2273 	atomic_dec(&p->cred->user->processes);
2274 	exit_creds(p);
2275 bad_fork_free:
2276 	p->state = TASK_DEAD;
2277 	put_task_stack(p);
2278 	delayed_free_task(p);
2279 fork_out:
2280 	spin_lock_irq(&current->sighand->siglock);
2281 	hlist_del_init(&delayed.node);
2282 	spin_unlock_irq(&current->sighand->siglock);
2283 	return ERR_PTR(retval);
2284 }
2285 
2286 static inline void init_idle_pids(struct task_struct *idle)
2287 {
2288 	enum pid_type type;
2289 
2290 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2291 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2292 		init_task_pid(idle, type, &init_struct_pid);
2293 	}
2294 }
2295 
2296 struct task_struct *fork_idle(int cpu)
2297 {
2298 	struct task_struct *task;
2299 	task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2300 			    cpu_to_node(cpu));
2301 	if (!IS_ERR(task)) {
2302 		init_idle_pids(task);
2303 		init_idle(task, cpu);
2304 	}
2305 
2306 	return task;
2307 }
2308 
2309 struct mm_struct *copy_init_mm(void)
2310 {
2311 	return dup_mm(NULL, &init_mm);
2312 }
2313 
2314 /*
2315  *  Ok, this is the main fork-routine.
2316  *
2317  * It copies the process, and if successful kick-starts
2318  * it and waits for it to finish using the VM if required.
2319  */
2320 long _do_fork(unsigned long clone_flags,
2321 	      unsigned long stack_start,
2322 	      unsigned long stack_size,
2323 	      int __user *parent_tidptr,
2324 	      int __user *child_tidptr,
2325 	      unsigned long tls)
2326 {
2327 	struct completion vfork;
2328 	struct pid *pid;
2329 	struct task_struct *p;
2330 	int trace = 0;
2331 	long nr;
2332 
2333 	/*
2334 	 * Determine whether and which event to report to ptracer.  When
2335 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2336 	 * requested, no event is reported; otherwise, report if the event
2337 	 * for the type of forking is enabled.
2338 	 */
2339 	if (!(clone_flags & CLONE_UNTRACED)) {
2340 		if (clone_flags & CLONE_VFORK)
2341 			trace = PTRACE_EVENT_VFORK;
2342 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2343 			trace = PTRACE_EVENT_CLONE;
2344 		else
2345 			trace = PTRACE_EVENT_FORK;
2346 
2347 		if (likely(!ptrace_event_enabled(current, trace)))
2348 			trace = 0;
2349 	}
2350 
2351 	p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2352 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2353 	add_latent_entropy();
2354 
2355 	if (IS_ERR(p))
2356 		return PTR_ERR(p);
2357 
2358 	/*
2359 	 * Do this prior waking up the new thread - the thread pointer
2360 	 * might get invalid after that point, if the thread exits quickly.
2361 	 */
2362 	trace_sched_process_fork(current, p);
2363 
2364 	pid = get_task_pid(p, PIDTYPE_PID);
2365 	nr = pid_vnr(pid);
2366 
2367 	if (clone_flags & CLONE_PARENT_SETTID)
2368 		put_user(nr, parent_tidptr);
2369 
2370 	if (clone_flags & CLONE_VFORK) {
2371 		p->vfork_done = &vfork;
2372 		init_completion(&vfork);
2373 		get_task_struct(p);
2374 	}
2375 
2376 	wake_up_new_task(p);
2377 
2378 	/* forking complete and child started to run, tell ptracer */
2379 	if (unlikely(trace))
2380 		ptrace_event_pid(trace, pid);
2381 
2382 	if (clone_flags & CLONE_VFORK) {
2383 		if (!wait_for_vfork_done(p, &vfork))
2384 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2385 	}
2386 
2387 	put_pid(pid);
2388 	return nr;
2389 }
2390 
2391 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2392 /* For compatibility with architectures that call do_fork directly rather than
2393  * using the syscall entry points below. */
2394 long do_fork(unsigned long clone_flags,
2395 	      unsigned long stack_start,
2396 	      unsigned long stack_size,
2397 	      int __user *parent_tidptr,
2398 	      int __user *child_tidptr)
2399 {
2400 	return _do_fork(clone_flags, stack_start, stack_size,
2401 			parent_tidptr, child_tidptr, 0);
2402 }
2403 #endif
2404 
2405 /*
2406  * Create a kernel thread.
2407  */
2408 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2409 {
2410 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2411 		(unsigned long)arg, NULL, NULL, 0);
2412 }
2413 
2414 #ifdef __ARCH_WANT_SYS_FORK
2415 SYSCALL_DEFINE0(fork)
2416 {
2417 #ifdef CONFIG_MMU
2418 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2419 #else
2420 	/* can not support in nommu mode */
2421 	return -EINVAL;
2422 #endif
2423 }
2424 #endif
2425 
2426 #ifdef __ARCH_WANT_SYS_VFORK
2427 SYSCALL_DEFINE0(vfork)
2428 {
2429 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2430 			0, NULL, NULL, 0);
2431 }
2432 #endif
2433 
2434 #ifdef __ARCH_WANT_SYS_CLONE
2435 #ifdef CONFIG_CLONE_BACKWARDS
2436 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2437 		 int __user *, parent_tidptr,
2438 		 unsigned long, tls,
2439 		 int __user *, child_tidptr)
2440 #elif defined(CONFIG_CLONE_BACKWARDS2)
2441 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2442 		 int __user *, parent_tidptr,
2443 		 int __user *, child_tidptr,
2444 		 unsigned long, tls)
2445 #elif defined(CONFIG_CLONE_BACKWARDS3)
2446 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2447 		int, stack_size,
2448 		int __user *, parent_tidptr,
2449 		int __user *, child_tidptr,
2450 		unsigned long, tls)
2451 #else
2452 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2453 		 int __user *, parent_tidptr,
2454 		 int __user *, child_tidptr,
2455 		 unsigned long, tls)
2456 #endif
2457 {
2458 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2459 }
2460 #endif
2461 
2462 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2463 {
2464 	struct task_struct *leader, *parent, *child;
2465 	int res;
2466 
2467 	read_lock(&tasklist_lock);
2468 	leader = top = top->group_leader;
2469 down:
2470 	for_each_thread(leader, parent) {
2471 		list_for_each_entry(child, &parent->children, sibling) {
2472 			res = visitor(child, data);
2473 			if (res) {
2474 				if (res < 0)
2475 					goto out;
2476 				leader = child;
2477 				goto down;
2478 			}
2479 up:
2480 			;
2481 		}
2482 	}
2483 
2484 	if (leader != top) {
2485 		child = leader;
2486 		parent = child->real_parent;
2487 		leader = parent->group_leader;
2488 		goto up;
2489 	}
2490 out:
2491 	read_unlock(&tasklist_lock);
2492 }
2493 
2494 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2495 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2496 #endif
2497 
2498 static void sighand_ctor(void *data)
2499 {
2500 	struct sighand_struct *sighand = data;
2501 
2502 	spin_lock_init(&sighand->siglock);
2503 	init_waitqueue_head(&sighand->signalfd_wqh);
2504 }
2505 
2506 void __init proc_caches_init(void)
2507 {
2508 	unsigned int mm_size;
2509 
2510 	sighand_cachep = kmem_cache_create("sighand_cache",
2511 			sizeof(struct sighand_struct), 0,
2512 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2513 			SLAB_ACCOUNT, sighand_ctor);
2514 	signal_cachep = kmem_cache_create("signal_cache",
2515 			sizeof(struct signal_struct), 0,
2516 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2517 			NULL);
2518 	files_cachep = kmem_cache_create("files_cache",
2519 			sizeof(struct files_struct), 0,
2520 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2521 			NULL);
2522 	fs_cachep = kmem_cache_create("fs_cache",
2523 			sizeof(struct fs_struct), 0,
2524 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2525 			NULL);
2526 
2527 	/*
2528 	 * The mm_cpumask is located at the end of mm_struct, and is
2529 	 * dynamically sized based on the maximum CPU number this system
2530 	 * can have, taking hotplug into account (nr_cpu_ids).
2531 	 */
2532 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2533 
2534 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2535 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2536 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2537 			offsetof(struct mm_struct, saved_auxv),
2538 			sizeof_field(struct mm_struct, saved_auxv),
2539 			NULL);
2540 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2541 	mmap_init();
2542 	nsproxy_cache_init();
2543 }
2544 
2545 /*
2546  * Check constraints on flags passed to the unshare system call.
2547  */
2548 static int check_unshare_flags(unsigned long unshare_flags)
2549 {
2550 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2551 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2552 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2553 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2554 		return -EINVAL;
2555 	/*
2556 	 * Not implemented, but pretend it works if there is nothing
2557 	 * to unshare.  Note that unsharing the address space or the
2558 	 * signal handlers also need to unshare the signal queues (aka
2559 	 * CLONE_THREAD).
2560 	 */
2561 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2562 		if (!thread_group_empty(current))
2563 			return -EINVAL;
2564 	}
2565 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2566 		if (refcount_read(&current->sighand->count) > 1)
2567 			return -EINVAL;
2568 	}
2569 	if (unshare_flags & CLONE_VM) {
2570 		if (!current_is_single_threaded())
2571 			return -EINVAL;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 /*
2578  * Unshare the filesystem structure if it is being shared
2579  */
2580 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2581 {
2582 	struct fs_struct *fs = current->fs;
2583 
2584 	if (!(unshare_flags & CLONE_FS) || !fs)
2585 		return 0;
2586 
2587 	/* don't need lock here; in the worst case we'll do useless copy */
2588 	if (fs->users == 1)
2589 		return 0;
2590 
2591 	*new_fsp = copy_fs_struct(fs);
2592 	if (!*new_fsp)
2593 		return -ENOMEM;
2594 
2595 	return 0;
2596 }
2597 
2598 /*
2599  * Unshare file descriptor table if it is being shared
2600  */
2601 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2602 {
2603 	struct files_struct *fd = current->files;
2604 	int error = 0;
2605 
2606 	if ((unshare_flags & CLONE_FILES) &&
2607 	    (fd && atomic_read(&fd->count) > 1)) {
2608 		*new_fdp = dup_fd(fd, &error);
2609 		if (!*new_fdp)
2610 			return error;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 /*
2617  * unshare allows a process to 'unshare' part of the process
2618  * context which was originally shared using clone.  copy_*
2619  * functions used by do_fork() cannot be used here directly
2620  * because they modify an inactive task_struct that is being
2621  * constructed. Here we are modifying the current, active,
2622  * task_struct.
2623  */
2624 int ksys_unshare(unsigned long unshare_flags)
2625 {
2626 	struct fs_struct *fs, *new_fs = NULL;
2627 	struct files_struct *fd, *new_fd = NULL;
2628 	struct cred *new_cred = NULL;
2629 	struct nsproxy *new_nsproxy = NULL;
2630 	int do_sysvsem = 0;
2631 	int err;
2632 
2633 	/*
2634 	 * If unsharing a user namespace must also unshare the thread group
2635 	 * and unshare the filesystem root and working directories.
2636 	 */
2637 	if (unshare_flags & CLONE_NEWUSER)
2638 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2639 	/*
2640 	 * If unsharing vm, must also unshare signal handlers.
2641 	 */
2642 	if (unshare_flags & CLONE_VM)
2643 		unshare_flags |= CLONE_SIGHAND;
2644 	/*
2645 	 * If unsharing a signal handlers, must also unshare the signal queues.
2646 	 */
2647 	if (unshare_flags & CLONE_SIGHAND)
2648 		unshare_flags |= CLONE_THREAD;
2649 	/*
2650 	 * If unsharing namespace, must also unshare filesystem information.
2651 	 */
2652 	if (unshare_flags & CLONE_NEWNS)
2653 		unshare_flags |= CLONE_FS;
2654 
2655 	err = check_unshare_flags(unshare_flags);
2656 	if (err)
2657 		goto bad_unshare_out;
2658 	/*
2659 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2660 	 * to a new ipc namespace, the semaphore arrays from the old
2661 	 * namespace are unreachable.
2662 	 */
2663 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2664 		do_sysvsem = 1;
2665 	err = unshare_fs(unshare_flags, &new_fs);
2666 	if (err)
2667 		goto bad_unshare_out;
2668 	err = unshare_fd(unshare_flags, &new_fd);
2669 	if (err)
2670 		goto bad_unshare_cleanup_fs;
2671 	err = unshare_userns(unshare_flags, &new_cred);
2672 	if (err)
2673 		goto bad_unshare_cleanup_fd;
2674 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2675 					 new_cred, new_fs);
2676 	if (err)
2677 		goto bad_unshare_cleanup_cred;
2678 
2679 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2680 		if (do_sysvsem) {
2681 			/*
2682 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2683 			 */
2684 			exit_sem(current);
2685 		}
2686 		if (unshare_flags & CLONE_NEWIPC) {
2687 			/* Orphan segments in old ns (see sem above). */
2688 			exit_shm(current);
2689 			shm_init_task(current);
2690 		}
2691 
2692 		if (new_nsproxy)
2693 			switch_task_namespaces(current, new_nsproxy);
2694 
2695 		task_lock(current);
2696 
2697 		if (new_fs) {
2698 			fs = current->fs;
2699 			spin_lock(&fs->lock);
2700 			current->fs = new_fs;
2701 			if (--fs->users)
2702 				new_fs = NULL;
2703 			else
2704 				new_fs = fs;
2705 			spin_unlock(&fs->lock);
2706 		}
2707 
2708 		if (new_fd) {
2709 			fd = current->files;
2710 			current->files = new_fd;
2711 			new_fd = fd;
2712 		}
2713 
2714 		task_unlock(current);
2715 
2716 		if (new_cred) {
2717 			/* Install the new user namespace */
2718 			commit_creds(new_cred);
2719 			new_cred = NULL;
2720 		}
2721 	}
2722 
2723 	perf_event_namespaces(current);
2724 
2725 bad_unshare_cleanup_cred:
2726 	if (new_cred)
2727 		put_cred(new_cred);
2728 bad_unshare_cleanup_fd:
2729 	if (new_fd)
2730 		put_files_struct(new_fd);
2731 
2732 bad_unshare_cleanup_fs:
2733 	if (new_fs)
2734 		free_fs_struct(new_fs);
2735 
2736 bad_unshare_out:
2737 	return err;
2738 }
2739 
2740 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2741 {
2742 	return ksys_unshare(unshare_flags);
2743 }
2744 
2745 /*
2746  *	Helper to unshare the files of the current task.
2747  *	We don't want to expose copy_files internals to
2748  *	the exec layer of the kernel.
2749  */
2750 
2751 int unshare_files(struct files_struct **displaced)
2752 {
2753 	struct task_struct *task = current;
2754 	struct files_struct *copy = NULL;
2755 	int error;
2756 
2757 	error = unshare_fd(CLONE_FILES, &copy);
2758 	if (error || !copy) {
2759 		*displaced = NULL;
2760 		return error;
2761 	}
2762 	*displaced = task->files;
2763 	task_lock(task);
2764 	task->files = copy;
2765 	task_unlock(task);
2766 	return 0;
2767 }
2768 
2769 int sysctl_max_threads(struct ctl_table *table, int write,
2770 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2771 {
2772 	struct ctl_table t;
2773 	int ret;
2774 	int threads = max_threads;
2775 	int min = MIN_THREADS;
2776 	int max = MAX_THREADS;
2777 
2778 	t = *table;
2779 	t.data = &threads;
2780 	t.extra1 = &min;
2781 	t.extra2 = &max;
2782 
2783 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2784 	if (ret || !write)
2785 		return ret;
2786 
2787 	set_max_threads(threads);
2788 
2789 	return 0;
2790 }
2791