1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 256 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 } 264 return 0; 265 err: 266 /* 267 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 268 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 269 * ignore this page. 270 */ 271 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 272 memcg_kmem_uncharge_page(vm->pages[i], 0); 273 return ret; 274 } 275 276 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 277 { 278 struct vm_struct *vm; 279 void *stack; 280 int i; 281 282 for (i = 0; i < NR_CACHED_STACKS; i++) { 283 struct vm_struct *s; 284 285 s = this_cpu_xchg(cached_stacks[i], NULL); 286 287 if (!s) 288 continue; 289 290 /* Reset stack metadata. */ 291 kasan_unpoison_range(s->addr, THREAD_SIZE); 292 293 stack = kasan_reset_tag(s->addr); 294 295 /* Clear stale pointers from reused stack. */ 296 memset(stack, 0, THREAD_SIZE); 297 298 if (memcg_charge_kernel_stack(s)) { 299 vfree(s->addr); 300 return -ENOMEM; 301 } 302 303 tsk->stack_vm_area = s; 304 tsk->stack = stack; 305 return 0; 306 } 307 308 /* 309 * Allocated stacks are cached and later reused by new threads, 310 * so memcg accounting is performed manually on assigning/releasing 311 * stacks to tasks. Drop __GFP_ACCOUNT. 312 */ 313 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 314 VMALLOC_START, VMALLOC_END, 315 THREADINFO_GFP & ~__GFP_ACCOUNT, 316 PAGE_KERNEL, 317 0, node, __builtin_return_address(0)); 318 if (!stack) 319 return -ENOMEM; 320 321 vm = find_vm_area(stack); 322 if (memcg_charge_kernel_stack(vm)) { 323 vfree(stack); 324 return -ENOMEM; 325 } 326 /* 327 * We can't call find_vm_area() in interrupt context, and 328 * free_thread_stack() can be called in interrupt context, 329 * so cache the vm_struct. 330 */ 331 tsk->stack_vm_area = vm; 332 stack = kasan_reset_tag(stack); 333 tsk->stack = stack; 334 return 0; 335 } 336 337 static void free_thread_stack(struct task_struct *tsk) 338 { 339 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 340 thread_stack_delayed_free(tsk); 341 342 tsk->stack = NULL; 343 tsk->stack_vm_area = NULL; 344 } 345 346 # else /* !CONFIG_VMAP_STACK */ 347 348 static void thread_stack_free_rcu(struct rcu_head *rh) 349 { 350 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 351 } 352 353 static void thread_stack_delayed_free(struct task_struct *tsk) 354 { 355 struct rcu_head *rh = tsk->stack; 356 357 call_rcu(rh, thread_stack_free_rcu); 358 } 359 360 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 361 { 362 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 363 THREAD_SIZE_ORDER); 364 365 if (likely(page)) { 366 tsk->stack = kasan_reset_tag(page_address(page)); 367 return 0; 368 } 369 return -ENOMEM; 370 } 371 372 static void free_thread_stack(struct task_struct *tsk) 373 { 374 thread_stack_delayed_free(tsk); 375 tsk->stack = NULL; 376 } 377 378 # endif /* CONFIG_VMAP_STACK */ 379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 380 381 static struct kmem_cache *thread_stack_cache; 382 383 static void thread_stack_free_rcu(struct rcu_head *rh) 384 { 385 kmem_cache_free(thread_stack_cache, rh); 386 } 387 388 static void thread_stack_delayed_free(struct task_struct *tsk) 389 { 390 struct rcu_head *rh = tsk->stack; 391 392 call_rcu(rh, thread_stack_free_rcu); 393 } 394 395 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 396 { 397 unsigned long *stack; 398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 399 stack = kasan_reset_tag(stack); 400 tsk->stack = stack; 401 return stack ? 0 : -ENOMEM; 402 } 403 404 static void free_thread_stack(struct task_struct *tsk) 405 { 406 thread_stack_delayed_free(tsk); 407 tsk->stack = NULL; 408 } 409 410 void thread_stack_cache_init(void) 411 { 412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 413 THREAD_SIZE, THREAD_SIZE, 0, 0, 414 THREAD_SIZE, NULL); 415 BUG_ON(thread_stack_cache == NULL); 416 } 417 418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 419 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 420 421 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 422 { 423 unsigned long *stack; 424 425 stack = arch_alloc_thread_stack_node(tsk, node); 426 tsk->stack = stack; 427 return stack ? 0 : -ENOMEM; 428 } 429 430 static void free_thread_stack(struct task_struct *tsk) 431 { 432 arch_free_thread_stack(tsk); 433 tsk->stack = NULL; 434 } 435 436 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 437 438 /* SLAB cache for signal_struct structures (tsk->signal) */ 439 static struct kmem_cache *signal_cachep; 440 441 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 442 struct kmem_cache *sighand_cachep; 443 444 /* SLAB cache for files_struct structures (tsk->files) */ 445 struct kmem_cache *files_cachep; 446 447 /* SLAB cache for fs_struct structures (tsk->fs) */ 448 struct kmem_cache *fs_cachep; 449 450 /* SLAB cache for vm_area_struct structures */ 451 static struct kmem_cache *vm_area_cachep; 452 453 /* SLAB cache for mm_struct structures (tsk->mm) */ 454 static struct kmem_cache *mm_cachep; 455 456 #ifdef CONFIG_PER_VMA_LOCK 457 458 /* SLAB cache for vm_area_struct.lock */ 459 static struct kmem_cache *vma_lock_cachep; 460 461 static bool vma_lock_alloc(struct vm_area_struct *vma) 462 { 463 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 464 if (!vma->vm_lock) 465 return false; 466 467 init_rwsem(&vma->vm_lock->lock); 468 vma->vm_lock_seq = -1; 469 470 return true; 471 } 472 473 static inline void vma_lock_free(struct vm_area_struct *vma) 474 { 475 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 476 } 477 478 #else /* CONFIG_PER_VMA_LOCK */ 479 480 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 481 static inline void vma_lock_free(struct vm_area_struct *vma) {} 482 483 #endif /* CONFIG_PER_VMA_LOCK */ 484 485 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 486 { 487 struct vm_area_struct *vma; 488 489 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 490 if (!vma) 491 return NULL; 492 493 vma_init(vma, mm); 494 if (!vma_lock_alloc(vma)) { 495 kmem_cache_free(vm_area_cachep, vma); 496 return NULL; 497 } 498 499 return vma; 500 } 501 502 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 503 { 504 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 505 506 if (!new) 507 return NULL; 508 509 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 510 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 511 /* 512 * orig->shared.rb may be modified concurrently, but the clone 513 * will be reinitialized. 514 */ 515 data_race(memcpy(new, orig, sizeof(*new))); 516 if (!vma_lock_alloc(new)) { 517 kmem_cache_free(vm_area_cachep, new); 518 return NULL; 519 } 520 INIT_LIST_HEAD(&new->anon_vma_chain); 521 vma_numab_state_init(new); 522 dup_anon_vma_name(orig, new); 523 524 return new; 525 } 526 527 void __vm_area_free(struct vm_area_struct *vma) 528 { 529 vma_numab_state_free(vma); 530 free_anon_vma_name(vma); 531 vma_lock_free(vma); 532 kmem_cache_free(vm_area_cachep, vma); 533 } 534 535 #ifdef CONFIG_PER_VMA_LOCK 536 static void vm_area_free_rcu_cb(struct rcu_head *head) 537 { 538 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 539 vm_rcu); 540 541 /* The vma should not be locked while being destroyed. */ 542 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 543 __vm_area_free(vma); 544 } 545 #endif 546 547 void vm_area_free(struct vm_area_struct *vma) 548 { 549 #ifdef CONFIG_PER_VMA_LOCK 550 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 551 #else 552 __vm_area_free(vma); 553 #endif 554 } 555 556 static void account_kernel_stack(struct task_struct *tsk, int account) 557 { 558 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 559 struct vm_struct *vm = task_stack_vm_area(tsk); 560 int i; 561 562 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 563 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 564 account * (PAGE_SIZE / 1024)); 565 } else { 566 void *stack = task_stack_page(tsk); 567 568 /* All stack pages are in the same node. */ 569 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 570 account * (THREAD_SIZE / 1024)); 571 } 572 } 573 574 void exit_task_stack_account(struct task_struct *tsk) 575 { 576 account_kernel_stack(tsk, -1); 577 578 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 579 struct vm_struct *vm; 580 int i; 581 582 vm = task_stack_vm_area(tsk); 583 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 584 memcg_kmem_uncharge_page(vm->pages[i], 0); 585 } 586 } 587 588 static void release_task_stack(struct task_struct *tsk) 589 { 590 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 591 return; /* Better to leak the stack than to free prematurely */ 592 593 free_thread_stack(tsk); 594 } 595 596 #ifdef CONFIG_THREAD_INFO_IN_TASK 597 void put_task_stack(struct task_struct *tsk) 598 { 599 if (refcount_dec_and_test(&tsk->stack_refcount)) 600 release_task_stack(tsk); 601 } 602 #endif 603 604 void free_task(struct task_struct *tsk) 605 { 606 #ifdef CONFIG_SECCOMP 607 WARN_ON_ONCE(tsk->seccomp.filter); 608 #endif 609 release_user_cpus_ptr(tsk); 610 scs_release(tsk); 611 612 #ifndef CONFIG_THREAD_INFO_IN_TASK 613 /* 614 * The task is finally done with both the stack and thread_info, 615 * so free both. 616 */ 617 release_task_stack(tsk); 618 #else 619 /* 620 * If the task had a separate stack allocation, it should be gone 621 * by now. 622 */ 623 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 624 #endif 625 rt_mutex_debug_task_free(tsk); 626 ftrace_graph_exit_task(tsk); 627 arch_release_task_struct(tsk); 628 if (tsk->flags & PF_KTHREAD) 629 free_kthread_struct(tsk); 630 bpf_task_storage_free(tsk); 631 free_task_struct(tsk); 632 } 633 EXPORT_SYMBOL(free_task); 634 635 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 struct file *exe_file; 638 639 exe_file = get_mm_exe_file(oldmm); 640 RCU_INIT_POINTER(mm->exe_file, exe_file); 641 /* 642 * We depend on the oldmm having properly denied write access to the 643 * exe_file already. 644 */ 645 if (exe_file && deny_write_access(exe_file)) 646 pr_warn_once("deny_write_access() failed in %s\n", __func__); 647 } 648 649 #ifdef CONFIG_MMU 650 static __latent_entropy int dup_mmap(struct mm_struct *mm, 651 struct mm_struct *oldmm) 652 { 653 struct vm_area_struct *mpnt, *tmp; 654 int retval; 655 unsigned long charge = 0; 656 LIST_HEAD(uf); 657 VMA_ITERATOR(old_vmi, oldmm, 0); 658 VMA_ITERATOR(vmi, mm, 0); 659 660 uprobe_start_dup_mmap(); 661 if (mmap_write_lock_killable(oldmm)) { 662 retval = -EINTR; 663 goto fail_uprobe_end; 664 } 665 flush_cache_dup_mm(oldmm); 666 uprobe_dup_mmap(oldmm, mm); 667 /* 668 * Not linked in yet - no deadlock potential: 669 */ 670 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 671 672 /* No ordering required: file already has been exposed. */ 673 dup_mm_exe_file(mm, oldmm); 674 675 mm->total_vm = oldmm->total_vm; 676 mm->data_vm = oldmm->data_vm; 677 mm->exec_vm = oldmm->exec_vm; 678 mm->stack_vm = oldmm->stack_vm; 679 680 retval = ksm_fork(mm, oldmm); 681 if (retval) 682 goto out; 683 khugepaged_fork(mm, oldmm); 684 685 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 686 if (retval) 687 goto out; 688 689 mt_clear_in_rcu(vmi.mas.tree); 690 for_each_vma(old_vmi, mpnt) { 691 struct file *file; 692 693 if (mpnt->vm_flags & VM_DONTCOPY) { 694 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 695 continue; 696 } 697 charge = 0; 698 /* 699 * Don't duplicate many vmas if we've been oom-killed (for 700 * example) 701 */ 702 if (fatal_signal_pending(current)) { 703 retval = -EINTR; 704 goto loop_out; 705 } 706 if (mpnt->vm_flags & VM_ACCOUNT) { 707 unsigned long len = vma_pages(mpnt); 708 709 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 710 goto fail_nomem; 711 charge = len; 712 } 713 tmp = vm_area_dup(mpnt); 714 if (!tmp) 715 goto fail_nomem; 716 retval = vma_dup_policy(mpnt, tmp); 717 if (retval) 718 goto fail_nomem_policy; 719 tmp->vm_mm = mm; 720 retval = dup_userfaultfd(tmp, &uf); 721 if (retval) 722 goto fail_nomem_anon_vma_fork; 723 if (tmp->vm_flags & VM_WIPEONFORK) { 724 /* 725 * VM_WIPEONFORK gets a clean slate in the child. 726 * Don't prepare anon_vma until fault since we don't 727 * copy page for current vma. 728 */ 729 tmp->anon_vma = NULL; 730 } else if (anon_vma_fork(tmp, mpnt)) 731 goto fail_nomem_anon_vma_fork; 732 vm_flags_clear(tmp, VM_LOCKED_MASK); 733 file = tmp->vm_file; 734 if (file) { 735 struct address_space *mapping = file->f_mapping; 736 737 get_file(file); 738 i_mmap_lock_write(mapping); 739 if (tmp->vm_flags & VM_SHARED) 740 mapping_allow_writable(mapping); 741 flush_dcache_mmap_lock(mapping); 742 /* insert tmp into the share list, just after mpnt */ 743 vma_interval_tree_insert_after(tmp, mpnt, 744 &mapping->i_mmap); 745 flush_dcache_mmap_unlock(mapping); 746 i_mmap_unlock_write(mapping); 747 } 748 749 /* 750 * Copy/update hugetlb private vma information. 751 */ 752 if (is_vm_hugetlb_page(tmp)) 753 hugetlb_dup_vma_private(tmp); 754 755 /* Link the vma into the MT */ 756 if (vma_iter_bulk_store(&vmi, tmp)) 757 goto fail_nomem_vmi_store; 758 759 mm->map_count++; 760 if (!(tmp->vm_flags & VM_WIPEONFORK)) 761 retval = copy_page_range(tmp, mpnt); 762 763 if (tmp->vm_ops && tmp->vm_ops->open) 764 tmp->vm_ops->open(tmp); 765 766 if (retval) 767 goto loop_out; 768 } 769 /* a new mm has just been created */ 770 retval = arch_dup_mmap(oldmm, mm); 771 loop_out: 772 vma_iter_free(&vmi); 773 if (!retval) 774 mt_set_in_rcu(vmi.mas.tree); 775 out: 776 mmap_write_unlock(mm); 777 flush_tlb_mm(oldmm); 778 mmap_write_unlock(oldmm); 779 dup_userfaultfd_complete(&uf); 780 fail_uprobe_end: 781 uprobe_end_dup_mmap(); 782 return retval; 783 784 fail_nomem_vmi_store: 785 unlink_anon_vmas(tmp); 786 fail_nomem_anon_vma_fork: 787 mpol_put(vma_policy(tmp)); 788 fail_nomem_policy: 789 vm_area_free(tmp); 790 fail_nomem: 791 retval = -ENOMEM; 792 vm_unacct_memory(charge); 793 goto loop_out; 794 } 795 796 static inline int mm_alloc_pgd(struct mm_struct *mm) 797 { 798 mm->pgd = pgd_alloc(mm); 799 if (unlikely(!mm->pgd)) 800 return -ENOMEM; 801 return 0; 802 } 803 804 static inline void mm_free_pgd(struct mm_struct *mm) 805 { 806 pgd_free(mm, mm->pgd); 807 } 808 #else 809 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 810 { 811 mmap_write_lock(oldmm); 812 dup_mm_exe_file(mm, oldmm); 813 mmap_write_unlock(oldmm); 814 return 0; 815 } 816 #define mm_alloc_pgd(mm) (0) 817 #define mm_free_pgd(mm) 818 #endif /* CONFIG_MMU */ 819 820 static void check_mm(struct mm_struct *mm) 821 { 822 int i; 823 824 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 825 "Please make sure 'struct resident_page_types[]' is updated as well"); 826 827 for (i = 0; i < NR_MM_COUNTERS; i++) { 828 long x = percpu_counter_sum(&mm->rss_stat[i]); 829 830 if (unlikely(x)) 831 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 832 mm, resident_page_types[i], x); 833 } 834 835 if (mm_pgtables_bytes(mm)) 836 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 837 mm_pgtables_bytes(mm)); 838 839 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 840 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 841 #endif 842 } 843 844 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 845 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 846 847 static void do_check_lazy_tlb(void *arg) 848 { 849 struct mm_struct *mm = arg; 850 851 WARN_ON_ONCE(current->active_mm == mm); 852 } 853 854 static void do_shoot_lazy_tlb(void *arg) 855 { 856 struct mm_struct *mm = arg; 857 858 if (current->active_mm == mm) { 859 WARN_ON_ONCE(current->mm); 860 current->active_mm = &init_mm; 861 switch_mm(mm, &init_mm, current); 862 } 863 } 864 865 static void cleanup_lazy_tlbs(struct mm_struct *mm) 866 { 867 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 868 /* 869 * In this case, lazy tlb mms are refounted and would not reach 870 * __mmdrop until all CPUs have switched away and mmdrop()ed. 871 */ 872 return; 873 } 874 875 /* 876 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 877 * requires lazy mm users to switch to another mm when the refcount 878 * drops to zero, before the mm is freed. This requires IPIs here to 879 * switch kernel threads to init_mm. 880 * 881 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 882 * switch with the final userspace teardown TLB flush which leaves the 883 * mm lazy on this CPU but no others, reducing the need for additional 884 * IPIs here. There are cases where a final IPI is still required here, 885 * such as the final mmdrop being performed on a different CPU than the 886 * one exiting, or kernel threads using the mm when userspace exits. 887 * 888 * IPI overheads have not found to be expensive, but they could be 889 * reduced in a number of possible ways, for example (roughly 890 * increasing order of complexity): 891 * - The last lazy reference created by exit_mm() could instead switch 892 * to init_mm, however it's probable this will run on the same CPU 893 * immediately afterwards, so this may not reduce IPIs much. 894 * - A batch of mms requiring IPIs could be gathered and freed at once. 895 * - CPUs store active_mm where it can be remotely checked without a 896 * lock, to filter out false-positives in the cpumask. 897 * - After mm_users or mm_count reaches zero, switching away from the 898 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 899 * with some batching or delaying of the final IPIs. 900 * - A delayed freeing and RCU-like quiescing sequence based on mm 901 * switching to avoid IPIs completely. 902 */ 903 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 904 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 905 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 906 } 907 908 /* 909 * Called when the last reference to the mm 910 * is dropped: either by a lazy thread or by 911 * mmput. Free the page directory and the mm. 912 */ 913 void __mmdrop(struct mm_struct *mm) 914 { 915 int i; 916 917 BUG_ON(mm == &init_mm); 918 WARN_ON_ONCE(mm == current->mm); 919 920 /* Ensure no CPUs are using this as their lazy tlb mm */ 921 cleanup_lazy_tlbs(mm); 922 923 WARN_ON_ONCE(mm == current->active_mm); 924 mm_free_pgd(mm); 925 destroy_context(mm); 926 mmu_notifier_subscriptions_destroy(mm); 927 check_mm(mm); 928 put_user_ns(mm->user_ns); 929 mm_pasid_drop(mm); 930 mm_destroy_cid(mm); 931 932 for (i = 0; i < NR_MM_COUNTERS; i++) 933 percpu_counter_destroy(&mm->rss_stat[i]); 934 free_mm(mm); 935 } 936 EXPORT_SYMBOL_GPL(__mmdrop); 937 938 static void mmdrop_async_fn(struct work_struct *work) 939 { 940 struct mm_struct *mm; 941 942 mm = container_of(work, struct mm_struct, async_put_work); 943 __mmdrop(mm); 944 } 945 946 static void mmdrop_async(struct mm_struct *mm) 947 { 948 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 949 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 950 schedule_work(&mm->async_put_work); 951 } 952 } 953 954 static inline void free_signal_struct(struct signal_struct *sig) 955 { 956 taskstats_tgid_free(sig); 957 sched_autogroup_exit(sig); 958 /* 959 * __mmdrop is not safe to call from softirq context on x86 due to 960 * pgd_dtor so postpone it to the async context 961 */ 962 if (sig->oom_mm) 963 mmdrop_async(sig->oom_mm); 964 kmem_cache_free(signal_cachep, sig); 965 } 966 967 static inline void put_signal_struct(struct signal_struct *sig) 968 { 969 if (refcount_dec_and_test(&sig->sigcnt)) 970 free_signal_struct(sig); 971 } 972 973 void __put_task_struct(struct task_struct *tsk) 974 { 975 WARN_ON(!tsk->exit_state); 976 WARN_ON(refcount_read(&tsk->usage)); 977 WARN_ON(tsk == current); 978 979 io_uring_free(tsk); 980 cgroup_free(tsk); 981 task_numa_free(tsk, true); 982 security_task_free(tsk); 983 exit_creds(tsk); 984 delayacct_tsk_free(tsk); 985 put_signal_struct(tsk->signal); 986 sched_core_free(tsk); 987 free_task(tsk); 988 } 989 EXPORT_SYMBOL_GPL(__put_task_struct); 990 991 void __init __weak arch_task_cache_init(void) { } 992 993 /* 994 * set_max_threads 995 */ 996 static void set_max_threads(unsigned int max_threads_suggested) 997 { 998 u64 threads; 999 unsigned long nr_pages = totalram_pages(); 1000 1001 /* 1002 * The number of threads shall be limited such that the thread 1003 * structures may only consume a small part of the available memory. 1004 */ 1005 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1006 threads = MAX_THREADS; 1007 else 1008 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1009 (u64) THREAD_SIZE * 8UL); 1010 1011 if (threads > max_threads_suggested) 1012 threads = max_threads_suggested; 1013 1014 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1015 } 1016 1017 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1018 /* Initialized by the architecture: */ 1019 int arch_task_struct_size __read_mostly; 1020 #endif 1021 1022 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1023 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1024 { 1025 /* Fetch thread_struct whitelist for the architecture. */ 1026 arch_thread_struct_whitelist(offset, size); 1027 1028 /* 1029 * Handle zero-sized whitelist or empty thread_struct, otherwise 1030 * adjust offset to position of thread_struct in task_struct. 1031 */ 1032 if (unlikely(*size == 0)) 1033 *offset = 0; 1034 else 1035 *offset += offsetof(struct task_struct, thread); 1036 } 1037 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1038 1039 void __init fork_init(void) 1040 { 1041 int i; 1042 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1043 #ifndef ARCH_MIN_TASKALIGN 1044 #define ARCH_MIN_TASKALIGN 0 1045 #endif 1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1047 unsigned long useroffset, usersize; 1048 1049 /* create a slab on which task_structs can be allocated */ 1050 task_struct_whitelist(&useroffset, &usersize); 1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1052 arch_task_struct_size, align, 1053 SLAB_PANIC|SLAB_ACCOUNT, 1054 useroffset, usersize, NULL); 1055 #endif 1056 1057 /* do the arch specific task caches init */ 1058 arch_task_cache_init(); 1059 1060 set_max_threads(MAX_THREADS); 1061 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1065 init_task.signal->rlim[RLIMIT_NPROC]; 1066 1067 for (i = 0; i < UCOUNT_COUNTS; i++) 1068 init_user_ns.ucount_max[i] = max_threads/2; 1069 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1074 1075 #ifdef CONFIG_VMAP_STACK 1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1077 NULL, free_vm_stack_cache); 1078 #endif 1079 1080 scs_init(); 1081 1082 lockdep_init_task(&init_task); 1083 uprobes_init(); 1084 } 1085 1086 int __weak arch_dup_task_struct(struct task_struct *dst, 1087 struct task_struct *src) 1088 { 1089 *dst = *src; 1090 return 0; 1091 } 1092 1093 void set_task_stack_end_magic(struct task_struct *tsk) 1094 { 1095 unsigned long *stackend; 1096 1097 stackend = end_of_stack(tsk); 1098 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1099 } 1100 1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1102 { 1103 struct task_struct *tsk; 1104 int err; 1105 1106 if (node == NUMA_NO_NODE) 1107 node = tsk_fork_get_node(orig); 1108 tsk = alloc_task_struct_node(node); 1109 if (!tsk) 1110 return NULL; 1111 1112 err = arch_dup_task_struct(tsk, orig); 1113 if (err) 1114 goto free_tsk; 1115 1116 err = alloc_thread_stack_node(tsk, node); 1117 if (err) 1118 goto free_tsk; 1119 1120 #ifdef CONFIG_THREAD_INFO_IN_TASK 1121 refcount_set(&tsk->stack_refcount, 1); 1122 #endif 1123 account_kernel_stack(tsk, 1); 1124 1125 err = scs_prepare(tsk, node); 1126 if (err) 1127 goto free_stack; 1128 1129 #ifdef CONFIG_SECCOMP 1130 /* 1131 * We must handle setting up seccomp filters once we're under 1132 * the sighand lock in case orig has changed between now and 1133 * then. Until then, filter must be NULL to avoid messing up 1134 * the usage counts on the error path calling free_task. 1135 */ 1136 tsk->seccomp.filter = NULL; 1137 #endif 1138 1139 setup_thread_stack(tsk, orig); 1140 clear_user_return_notifier(tsk); 1141 clear_tsk_need_resched(tsk); 1142 set_task_stack_end_magic(tsk); 1143 clear_syscall_work_syscall_user_dispatch(tsk); 1144 1145 #ifdef CONFIG_STACKPROTECTOR 1146 tsk->stack_canary = get_random_canary(); 1147 #endif 1148 if (orig->cpus_ptr == &orig->cpus_mask) 1149 tsk->cpus_ptr = &tsk->cpus_mask; 1150 dup_user_cpus_ptr(tsk, orig, node); 1151 1152 /* 1153 * One for the user space visible state that goes away when reaped. 1154 * One for the scheduler. 1155 */ 1156 refcount_set(&tsk->rcu_users, 2); 1157 /* One for the rcu users */ 1158 refcount_set(&tsk->usage, 1); 1159 #ifdef CONFIG_BLK_DEV_IO_TRACE 1160 tsk->btrace_seq = 0; 1161 #endif 1162 tsk->splice_pipe = NULL; 1163 tsk->task_frag.page = NULL; 1164 tsk->wake_q.next = NULL; 1165 tsk->worker_private = NULL; 1166 1167 kcov_task_init(tsk); 1168 kmsan_task_create(tsk); 1169 kmap_local_fork(tsk); 1170 1171 #ifdef CONFIG_FAULT_INJECTION 1172 tsk->fail_nth = 0; 1173 #endif 1174 1175 #ifdef CONFIG_BLK_CGROUP 1176 tsk->throttle_disk = NULL; 1177 tsk->use_memdelay = 0; 1178 #endif 1179 1180 #ifdef CONFIG_IOMMU_SVA 1181 tsk->pasid_activated = 0; 1182 #endif 1183 1184 #ifdef CONFIG_MEMCG 1185 tsk->active_memcg = NULL; 1186 #endif 1187 1188 #ifdef CONFIG_CPU_SUP_INTEL 1189 tsk->reported_split_lock = 0; 1190 #endif 1191 1192 #ifdef CONFIG_SCHED_MM_CID 1193 tsk->mm_cid = -1; 1194 tsk->last_mm_cid = -1; 1195 tsk->mm_cid_active = 0; 1196 tsk->migrate_from_cpu = -1; 1197 #endif 1198 return tsk; 1199 1200 free_stack: 1201 exit_task_stack_account(tsk); 1202 free_thread_stack(tsk); 1203 free_tsk: 1204 free_task_struct(tsk); 1205 return NULL; 1206 } 1207 1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1209 1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1211 1212 static int __init coredump_filter_setup(char *s) 1213 { 1214 default_dump_filter = 1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1216 MMF_DUMP_FILTER_MASK; 1217 return 1; 1218 } 1219 1220 __setup("coredump_filter=", coredump_filter_setup); 1221 1222 #include <linux/init_task.h> 1223 1224 static void mm_init_aio(struct mm_struct *mm) 1225 { 1226 #ifdef CONFIG_AIO 1227 spin_lock_init(&mm->ioctx_lock); 1228 mm->ioctx_table = NULL; 1229 #endif 1230 } 1231 1232 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1233 struct task_struct *p) 1234 { 1235 #ifdef CONFIG_MEMCG 1236 if (mm->owner == p) 1237 WRITE_ONCE(mm->owner, NULL); 1238 #endif 1239 } 1240 1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1242 { 1243 #ifdef CONFIG_MEMCG 1244 mm->owner = p; 1245 #endif 1246 } 1247 1248 static void mm_init_uprobes_state(struct mm_struct *mm) 1249 { 1250 #ifdef CONFIG_UPROBES 1251 mm->uprobes_state.xol_area = NULL; 1252 #endif 1253 } 1254 1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1256 struct user_namespace *user_ns) 1257 { 1258 int i; 1259 1260 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1261 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1262 atomic_set(&mm->mm_users, 1); 1263 atomic_set(&mm->mm_count, 1); 1264 seqcount_init(&mm->write_protect_seq); 1265 mmap_init_lock(mm); 1266 INIT_LIST_HEAD(&mm->mmlist); 1267 #ifdef CONFIG_PER_VMA_LOCK 1268 mm->mm_lock_seq = 0; 1269 #endif 1270 mm_pgtables_bytes_init(mm); 1271 mm->map_count = 0; 1272 mm->locked_vm = 0; 1273 atomic64_set(&mm->pinned_vm, 0); 1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1275 spin_lock_init(&mm->page_table_lock); 1276 spin_lock_init(&mm->arg_lock); 1277 mm_init_cpumask(mm); 1278 mm_init_aio(mm); 1279 mm_init_owner(mm, p); 1280 mm_pasid_init(mm); 1281 RCU_INIT_POINTER(mm->exe_file, NULL); 1282 mmu_notifier_subscriptions_init(mm); 1283 init_tlb_flush_pending(mm); 1284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1285 mm->pmd_huge_pte = NULL; 1286 #endif 1287 mm_init_uprobes_state(mm); 1288 hugetlb_count_init(mm); 1289 1290 if (current->mm) { 1291 mm->flags = current->mm->flags & MMF_INIT_MASK; 1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1293 } else { 1294 mm->flags = default_dump_filter; 1295 mm->def_flags = 0; 1296 } 1297 1298 if (mm_alloc_pgd(mm)) 1299 goto fail_nopgd; 1300 1301 if (init_new_context(p, mm)) 1302 goto fail_nocontext; 1303 1304 if (mm_alloc_cid(mm)) 1305 goto fail_cid; 1306 1307 for (i = 0; i < NR_MM_COUNTERS; i++) 1308 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1309 goto fail_pcpu; 1310 1311 mm->user_ns = get_user_ns(user_ns); 1312 lru_gen_init_mm(mm); 1313 return mm; 1314 1315 fail_pcpu: 1316 while (i > 0) 1317 percpu_counter_destroy(&mm->rss_stat[--i]); 1318 mm_destroy_cid(mm); 1319 fail_cid: 1320 destroy_context(mm); 1321 fail_nocontext: 1322 mm_free_pgd(mm); 1323 fail_nopgd: 1324 free_mm(mm); 1325 return NULL; 1326 } 1327 1328 /* 1329 * Allocate and initialize an mm_struct. 1330 */ 1331 struct mm_struct *mm_alloc(void) 1332 { 1333 struct mm_struct *mm; 1334 1335 mm = allocate_mm(); 1336 if (!mm) 1337 return NULL; 1338 1339 memset(mm, 0, sizeof(*mm)); 1340 return mm_init(mm, current, current_user_ns()); 1341 } 1342 1343 static inline void __mmput(struct mm_struct *mm) 1344 { 1345 VM_BUG_ON(atomic_read(&mm->mm_users)); 1346 1347 uprobe_clear_state(mm); 1348 exit_aio(mm); 1349 ksm_exit(mm); 1350 khugepaged_exit(mm); /* must run before exit_mmap */ 1351 exit_mmap(mm); 1352 mm_put_huge_zero_page(mm); 1353 set_mm_exe_file(mm, NULL); 1354 if (!list_empty(&mm->mmlist)) { 1355 spin_lock(&mmlist_lock); 1356 list_del(&mm->mmlist); 1357 spin_unlock(&mmlist_lock); 1358 } 1359 if (mm->binfmt) 1360 module_put(mm->binfmt->module); 1361 lru_gen_del_mm(mm); 1362 mmdrop(mm); 1363 } 1364 1365 /* 1366 * Decrement the use count and release all resources for an mm. 1367 */ 1368 void mmput(struct mm_struct *mm) 1369 { 1370 might_sleep(); 1371 1372 if (atomic_dec_and_test(&mm->mm_users)) 1373 __mmput(mm); 1374 } 1375 EXPORT_SYMBOL_GPL(mmput); 1376 1377 #ifdef CONFIG_MMU 1378 static void mmput_async_fn(struct work_struct *work) 1379 { 1380 struct mm_struct *mm = container_of(work, struct mm_struct, 1381 async_put_work); 1382 1383 __mmput(mm); 1384 } 1385 1386 void mmput_async(struct mm_struct *mm) 1387 { 1388 if (atomic_dec_and_test(&mm->mm_users)) { 1389 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1390 schedule_work(&mm->async_put_work); 1391 } 1392 } 1393 EXPORT_SYMBOL_GPL(mmput_async); 1394 #endif 1395 1396 /** 1397 * set_mm_exe_file - change a reference to the mm's executable file 1398 * 1399 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1400 * 1401 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1402 * invocations: in mmput() nobody alive left, in execve task is single 1403 * threaded. 1404 * 1405 * Can only fail if new_exe_file != NULL. 1406 */ 1407 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1408 { 1409 struct file *old_exe_file; 1410 1411 /* 1412 * It is safe to dereference the exe_file without RCU as 1413 * this function is only called if nobody else can access 1414 * this mm -- see comment above for justification. 1415 */ 1416 old_exe_file = rcu_dereference_raw(mm->exe_file); 1417 1418 if (new_exe_file) { 1419 /* 1420 * We expect the caller (i.e., sys_execve) to already denied 1421 * write access, so this is unlikely to fail. 1422 */ 1423 if (unlikely(deny_write_access(new_exe_file))) 1424 return -EACCES; 1425 get_file(new_exe_file); 1426 } 1427 rcu_assign_pointer(mm->exe_file, new_exe_file); 1428 if (old_exe_file) { 1429 allow_write_access(old_exe_file); 1430 fput(old_exe_file); 1431 } 1432 return 0; 1433 } 1434 1435 /** 1436 * replace_mm_exe_file - replace a reference to the mm's executable file 1437 * 1438 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1439 * dealing with concurrent invocation and without grabbing the mmap lock in 1440 * write mode. 1441 * 1442 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1443 */ 1444 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1445 { 1446 struct vm_area_struct *vma; 1447 struct file *old_exe_file; 1448 int ret = 0; 1449 1450 /* Forbid mm->exe_file change if old file still mapped. */ 1451 old_exe_file = get_mm_exe_file(mm); 1452 if (old_exe_file) { 1453 VMA_ITERATOR(vmi, mm, 0); 1454 mmap_read_lock(mm); 1455 for_each_vma(vmi, vma) { 1456 if (!vma->vm_file) 1457 continue; 1458 if (path_equal(&vma->vm_file->f_path, 1459 &old_exe_file->f_path)) { 1460 ret = -EBUSY; 1461 break; 1462 } 1463 } 1464 mmap_read_unlock(mm); 1465 fput(old_exe_file); 1466 if (ret) 1467 return ret; 1468 } 1469 1470 /* set the new file, lockless */ 1471 ret = deny_write_access(new_exe_file); 1472 if (ret) 1473 return -EACCES; 1474 get_file(new_exe_file); 1475 1476 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1477 if (old_exe_file) { 1478 /* 1479 * Don't race with dup_mmap() getting the file and disallowing 1480 * write access while someone might open the file writable. 1481 */ 1482 mmap_read_lock(mm); 1483 allow_write_access(old_exe_file); 1484 fput(old_exe_file); 1485 mmap_read_unlock(mm); 1486 } 1487 return 0; 1488 } 1489 1490 /** 1491 * get_mm_exe_file - acquire a reference to the mm's executable file 1492 * 1493 * Returns %NULL if mm has no associated executable file. 1494 * User must release file via fput(). 1495 */ 1496 struct file *get_mm_exe_file(struct mm_struct *mm) 1497 { 1498 struct file *exe_file; 1499 1500 rcu_read_lock(); 1501 exe_file = rcu_dereference(mm->exe_file); 1502 if (exe_file && !get_file_rcu(exe_file)) 1503 exe_file = NULL; 1504 rcu_read_unlock(); 1505 return exe_file; 1506 } 1507 1508 /** 1509 * get_task_exe_file - acquire a reference to the task's executable file 1510 * 1511 * Returns %NULL if task's mm (if any) has no associated executable file or 1512 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1513 * User must release file via fput(). 1514 */ 1515 struct file *get_task_exe_file(struct task_struct *task) 1516 { 1517 struct file *exe_file = NULL; 1518 struct mm_struct *mm; 1519 1520 task_lock(task); 1521 mm = task->mm; 1522 if (mm) { 1523 if (!(task->flags & PF_KTHREAD)) 1524 exe_file = get_mm_exe_file(mm); 1525 } 1526 task_unlock(task); 1527 return exe_file; 1528 } 1529 1530 /** 1531 * get_task_mm - acquire a reference to the task's mm 1532 * 1533 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1534 * this kernel workthread has transiently adopted a user mm with use_mm, 1535 * to do its AIO) is not set and if so returns a reference to it, after 1536 * bumping up the use count. User must release the mm via mmput() 1537 * after use. Typically used by /proc and ptrace. 1538 */ 1539 struct mm_struct *get_task_mm(struct task_struct *task) 1540 { 1541 struct mm_struct *mm; 1542 1543 task_lock(task); 1544 mm = task->mm; 1545 if (mm) { 1546 if (task->flags & PF_KTHREAD) 1547 mm = NULL; 1548 else 1549 mmget(mm); 1550 } 1551 task_unlock(task); 1552 return mm; 1553 } 1554 EXPORT_SYMBOL_GPL(get_task_mm); 1555 1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1557 { 1558 struct mm_struct *mm; 1559 int err; 1560 1561 err = down_read_killable(&task->signal->exec_update_lock); 1562 if (err) 1563 return ERR_PTR(err); 1564 1565 mm = get_task_mm(task); 1566 if (mm && mm != current->mm && 1567 !ptrace_may_access(task, mode)) { 1568 mmput(mm); 1569 mm = ERR_PTR(-EACCES); 1570 } 1571 up_read(&task->signal->exec_update_lock); 1572 1573 return mm; 1574 } 1575 1576 static void complete_vfork_done(struct task_struct *tsk) 1577 { 1578 struct completion *vfork; 1579 1580 task_lock(tsk); 1581 vfork = tsk->vfork_done; 1582 if (likely(vfork)) { 1583 tsk->vfork_done = NULL; 1584 complete(vfork); 1585 } 1586 task_unlock(tsk); 1587 } 1588 1589 static int wait_for_vfork_done(struct task_struct *child, 1590 struct completion *vfork) 1591 { 1592 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1593 int killed; 1594 1595 cgroup_enter_frozen(); 1596 killed = wait_for_completion_state(vfork, state); 1597 cgroup_leave_frozen(false); 1598 1599 if (killed) { 1600 task_lock(child); 1601 child->vfork_done = NULL; 1602 task_unlock(child); 1603 } 1604 1605 put_task_struct(child); 1606 return killed; 1607 } 1608 1609 /* Please note the differences between mmput and mm_release. 1610 * mmput is called whenever we stop holding onto a mm_struct, 1611 * error success whatever. 1612 * 1613 * mm_release is called after a mm_struct has been removed 1614 * from the current process. 1615 * 1616 * This difference is important for error handling, when we 1617 * only half set up a mm_struct for a new process and need to restore 1618 * the old one. Because we mmput the new mm_struct before 1619 * restoring the old one. . . 1620 * Eric Biederman 10 January 1998 1621 */ 1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1623 { 1624 uprobe_free_utask(tsk); 1625 1626 /* Get rid of any cached register state */ 1627 deactivate_mm(tsk, mm); 1628 1629 /* 1630 * Signal userspace if we're not exiting with a core dump 1631 * because we want to leave the value intact for debugging 1632 * purposes. 1633 */ 1634 if (tsk->clear_child_tid) { 1635 if (atomic_read(&mm->mm_users) > 1) { 1636 /* 1637 * We don't check the error code - if userspace has 1638 * not set up a proper pointer then tough luck. 1639 */ 1640 put_user(0, tsk->clear_child_tid); 1641 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1642 1, NULL, NULL, 0, 0); 1643 } 1644 tsk->clear_child_tid = NULL; 1645 } 1646 1647 /* 1648 * All done, finally we can wake up parent and return this mm to him. 1649 * Also kthread_stop() uses this completion for synchronization. 1650 */ 1651 if (tsk->vfork_done) 1652 complete_vfork_done(tsk); 1653 } 1654 1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1656 { 1657 futex_exit_release(tsk); 1658 mm_release(tsk, mm); 1659 } 1660 1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1662 { 1663 futex_exec_release(tsk); 1664 mm_release(tsk, mm); 1665 } 1666 1667 /** 1668 * dup_mm() - duplicates an existing mm structure 1669 * @tsk: the task_struct with which the new mm will be associated. 1670 * @oldmm: the mm to duplicate. 1671 * 1672 * Allocates a new mm structure and duplicates the provided @oldmm structure 1673 * content into it. 1674 * 1675 * Return: the duplicated mm or NULL on failure. 1676 */ 1677 static struct mm_struct *dup_mm(struct task_struct *tsk, 1678 struct mm_struct *oldmm) 1679 { 1680 struct mm_struct *mm; 1681 int err; 1682 1683 mm = allocate_mm(); 1684 if (!mm) 1685 goto fail_nomem; 1686 1687 memcpy(mm, oldmm, sizeof(*mm)); 1688 1689 if (!mm_init(mm, tsk, mm->user_ns)) 1690 goto fail_nomem; 1691 1692 err = dup_mmap(mm, oldmm); 1693 if (err) 1694 goto free_pt; 1695 1696 mm->hiwater_rss = get_mm_rss(mm); 1697 mm->hiwater_vm = mm->total_vm; 1698 1699 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1700 goto free_pt; 1701 1702 return mm; 1703 1704 free_pt: 1705 /* don't put binfmt in mmput, we haven't got module yet */ 1706 mm->binfmt = NULL; 1707 mm_init_owner(mm, NULL); 1708 mmput(mm); 1709 1710 fail_nomem: 1711 return NULL; 1712 } 1713 1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1715 { 1716 struct mm_struct *mm, *oldmm; 1717 1718 tsk->min_flt = tsk->maj_flt = 0; 1719 tsk->nvcsw = tsk->nivcsw = 0; 1720 #ifdef CONFIG_DETECT_HUNG_TASK 1721 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1722 tsk->last_switch_time = 0; 1723 #endif 1724 1725 tsk->mm = NULL; 1726 tsk->active_mm = NULL; 1727 1728 /* 1729 * Are we cloning a kernel thread? 1730 * 1731 * We need to steal a active VM for that.. 1732 */ 1733 oldmm = current->mm; 1734 if (!oldmm) 1735 return 0; 1736 1737 if (clone_flags & CLONE_VM) { 1738 mmget(oldmm); 1739 mm = oldmm; 1740 } else { 1741 mm = dup_mm(tsk, current->mm); 1742 if (!mm) 1743 return -ENOMEM; 1744 } 1745 1746 tsk->mm = mm; 1747 tsk->active_mm = mm; 1748 sched_mm_cid_fork(tsk); 1749 return 0; 1750 } 1751 1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1753 { 1754 struct fs_struct *fs = current->fs; 1755 if (clone_flags & CLONE_FS) { 1756 /* tsk->fs is already what we want */ 1757 spin_lock(&fs->lock); 1758 if (fs->in_exec) { 1759 spin_unlock(&fs->lock); 1760 return -EAGAIN; 1761 } 1762 fs->users++; 1763 spin_unlock(&fs->lock); 1764 return 0; 1765 } 1766 tsk->fs = copy_fs_struct(fs); 1767 if (!tsk->fs) 1768 return -ENOMEM; 1769 return 0; 1770 } 1771 1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1773 int no_files) 1774 { 1775 struct files_struct *oldf, *newf; 1776 int error = 0; 1777 1778 /* 1779 * A background process may not have any files ... 1780 */ 1781 oldf = current->files; 1782 if (!oldf) 1783 goto out; 1784 1785 if (no_files) { 1786 tsk->files = NULL; 1787 goto out; 1788 } 1789 1790 if (clone_flags & CLONE_FILES) { 1791 atomic_inc(&oldf->count); 1792 goto out; 1793 } 1794 1795 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1796 if (!newf) 1797 goto out; 1798 1799 tsk->files = newf; 1800 error = 0; 1801 out: 1802 return error; 1803 } 1804 1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1806 { 1807 struct sighand_struct *sig; 1808 1809 if (clone_flags & CLONE_SIGHAND) { 1810 refcount_inc(¤t->sighand->count); 1811 return 0; 1812 } 1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1814 RCU_INIT_POINTER(tsk->sighand, sig); 1815 if (!sig) 1816 return -ENOMEM; 1817 1818 refcount_set(&sig->count, 1); 1819 spin_lock_irq(¤t->sighand->siglock); 1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1821 spin_unlock_irq(¤t->sighand->siglock); 1822 1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1824 if (clone_flags & CLONE_CLEAR_SIGHAND) 1825 flush_signal_handlers(tsk, 0); 1826 1827 return 0; 1828 } 1829 1830 void __cleanup_sighand(struct sighand_struct *sighand) 1831 { 1832 if (refcount_dec_and_test(&sighand->count)) { 1833 signalfd_cleanup(sighand); 1834 /* 1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1836 * without an RCU grace period, see __lock_task_sighand(). 1837 */ 1838 kmem_cache_free(sighand_cachep, sighand); 1839 } 1840 } 1841 1842 /* 1843 * Initialize POSIX timer handling for a thread group. 1844 */ 1845 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1846 { 1847 struct posix_cputimers *pct = &sig->posix_cputimers; 1848 unsigned long cpu_limit; 1849 1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1851 posix_cputimers_group_init(pct, cpu_limit); 1852 } 1853 1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1855 { 1856 struct signal_struct *sig; 1857 1858 if (clone_flags & CLONE_THREAD) 1859 return 0; 1860 1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1862 tsk->signal = sig; 1863 if (!sig) 1864 return -ENOMEM; 1865 1866 sig->nr_threads = 1; 1867 sig->quick_threads = 1; 1868 atomic_set(&sig->live, 1); 1869 refcount_set(&sig->sigcnt, 1); 1870 1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1874 1875 init_waitqueue_head(&sig->wait_chldexit); 1876 sig->curr_target = tsk; 1877 init_sigpending(&sig->shared_pending); 1878 INIT_HLIST_HEAD(&sig->multiprocess); 1879 seqlock_init(&sig->stats_lock); 1880 prev_cputime_init(&sig->prev_cputime); 1881 1882 #ifdef CONFIG_POSIX_TIMERS 1883 INIT_LIST_HEAD(&sig->posix_timers); 1884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1885 sig->real_timer.function = it_real_fn; 1886 #endif 1887 1888 task_lock(current->group_leader); 1889 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1890 task_unlock(current->group_leader); 1891 1892 posix_cpu_timers_init_group(sig); 1893 1894 tty_audit_fork(sig); 1895 sched_autogroup_fork(sig); 1896 1897 sig->oom_score_adj = current->signal->oom_score_adj; 1898 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1899 1900 mutex_init(&sig->cred_guard_mutex); 1901 init_rwsem(&sig->exec_update_lock); 1902 1903 return 0; 1904 } 1905 1906 static void copy_seccomp(struct task_struct *p) 1907 { 1908 #ifdef CONFIG_SECCOMP 1909 /* 1910 * Must be called with sighand->lock held, which is common to 1911 * all threads in the group. Holding cred_guard_mutex is not 1912 * needed because this new task is not yet running and cannot 1913 * be racing exec. 1914 */ 1915 assert_spin_locked(¤t->sighand->siglock); 1916 1917 /* Ref-count the new filter user, and assign it. */ 1918 get_seccomp_filter(current); 1919 p->seccomp = current->seccomp; 1920 1921 /* 1922 * Explicitly enable no_new_privs here in case it got set 1923 * between the task_struct being duplicated and holding the 1924 * sighand lock. The seccomp state and nnp must be in sync. 1925 */ 1926 if (task_no_new_privs(current)) 1927 task_set_no_new_privs(p); 1928 1929 /* 1930 * If the parent gained a seccomp mode after copying thread 1931 * flags and between before we held the sighand lock, we have 1932 * to manually enable the seccomp thread flag here. 1933 */ 1934 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1935 set_task_syscall_work(p, SECCOMP); 1936 #endif 1937 } 1938 1939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1940 { 1941 current->clear_child_tid = tidptr; 1942 1943 return task_pid_vnr(current); 1944 } 1945 1946 static void rt_mutex_init_task(struct task_struct *p) 1947 { 1948 raw_spin_lock_init(&p->pi_lock); 1949 #ifdef CONFIG_RT_MUTEXES 1950 p->pi_waiters = RB_ROOT_CACHED; 1951 p->pi_top_task = NULL; 1952 p->pi_blocked_on = NULL; 1953 #endif 1954 } 1955 1956 static inline void init_task_pid_links(struct task_struct *task) 1957 { 1958 enum pid_type type; 1959 1960 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1961 INIT_HLIST_NODE(&task->pid_links[type]); 1962 } 1963 1964 static inline void 1965 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1966 { 1967 if (type == PIDTYPE_PID) 1968 task->thread_pid = pid; 1969 else 1970 task->signal->pids[type] = pid; 1971 } 1972 1973 static inline void rcu_copy_process(struct task_struct *p) 1974 { 1975 #ifdef CONFIG_PREEMPT_RCU 1976 p->rcu_read_lock_nesting = 0; 1977 p->rcu_read_unlock_special.s = 0; 1978 p->rcu_blocked_node = NULL; 1979 INIT_LIST_HEAD(&p->rcu_node_entry); 1980 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1981 #ifdef CONFIG_TASKS_RCU 1982 p->rcu_tasks_holdout = false; 1983 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1984 p->rcu_tasks_idle_cpu = -1; 1985 #endif /* #ifdef CONFIG_TASKS_RCU */ 1986 #ifdef CONFIG_TASKS_TRACE_RCU 1987 p->trc_reader_nesting = 0; 1988 p->trc_reader_special.s = 0; 1989 INIT_LIST_HEAD(&p->trc_holdout_list); 1990 INIT_LIST_HEAD(&p->trc_blkd_node); 1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1992 } 1993 1994 struct pid *pidfd_pid(const struct file *file) 1995 { 1996 if (file->f_op == &pidfd_fops) 1997 return file->private_data; 1998 1999 return ERR_PTR(-EBADF); 2000 } 2001 2002 static int pidfd_release(struct inode *inode, struct file *file) 2003 { 2004 struct pid *pid = file->private_data; 2005 2006 file->private_data = NULL; 2007 put_pid(pid); 2008 return 0; 2009 } 2010 2011 #ifdef CONFIG_PROC_FS 2012 /** 2013 * pidfd_show_fdinfo - print information about a pidfd 2014 * @m: proc fdinfo file 2015 * @f: file referencing a pidfd 2016 * 2017 * Pid: 2018 * This function will print the pid that a given pidfd refers to in the 2019 * pid namespace of the procfs instance. 2020 * If the pid namespace of the process is not a descendant of the pid 2021 * namespace of the procfs instance 0 will be shown as its pid. This is 2022 * similar to calling getppid() on a process whose parent is outside of 2023 * its pid namespace. 2024 * 2025 * NSpid: 2026 * If pid namespaces are supported then this function will also print 2027 * the pid of a given pidfd refers to for all descendant pid namespaces 2028 * starting from the current pid namespace of the instance, i.e. the 2029 * Pid field and the first entry in the NSpid field will be identical. 2030 * If the pid namespace of the process is not a descendant of the pid 2031 * namespace of the procfs instance 0 will be shown as its first NSpid 2032 * entry and no others will be shown. 2033 * Note that this differs from the Pid and NSpid fields in 2034 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2035 * the pid namespace of the procfs instance. The difference becomes 2036 * obvious when sending around a pidfd between pid namespaces from a 2037 * different branch of the tree, i.e. where no ancestral relation is 2038 * present between the pid namespaces: 2039 * - create two new pid namespaces ns1 and ns2 in the initial pid 2040 * namespace (also take care to create new mount namespaces in the 2041 * new pid namespace and mount procfs) 2042 * - create a process with a pidfd in ns1 2043 * - send pidfd from ns1 to ns2 2044 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2045 * have exactly one entry, which is 0 2046 */ 2047 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2048 { 2049 struct pid *pid = f->private_data; 2050 struct pid_namespace *ns; 2051 pid_t nr = -1; 2052 2053 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2054 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2055 nr = pid_nr_ns(pid, ns); 2056 } 2057 2058 seq_put_decimal_ll(m, "Pid:\t", nr); 2059 2060 #ifdef CONFIG_PID_NS 2061 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2062 if (nr > 0) { 2063 int i; 2064 2065 /* If nr is non-zero it means that 'pid' is valid and that 2066 * ns, i.e. the pid namespace associated with the procfs 2067 * instance, is in the pid namespace hierarchy of pid. 2068 * Start at one below the already printed level. 2069 */ 2070 for (i = ns->level + 1; i <= pid->level; i++) 2071 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2072 } 2073 #endif 2074 seq_putc(m, '\n'); 2075 } 2076 #endif 2077 2078 /* 2079 * Poll support for process exit notification. 2080 */ 2081 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2082 { 2083 struct pid *pid = file->private_data; 2084 __poll_t poll_flags = 0; 2085 2086 poll_wait(file, &pid->wait_pidfd, pts); 2087 2088 /* 2089 * Inform pollers only when the whole thread group exits. 2090 * If the thread group leader exits before all other threads in the 2091 * group, then poll(2) should block, similar to the wait(2) family. 2092 */ 2093 if (thread_group_exited(pid)) 2094 poll_flags = EPOLLIN | EPOLLRDNORM; 2095 2096 return poll_flags; 2097 } 2098 2099 const struct file_operations pidfd_fops = { 2100 .release = pidfd_release, 2101 .poll = pidfd_poll, 2102 #ifdef CONFIG_PROC_FS 2103 .show_fdinfo = pidfd_show_fdinfo, 2104 #endif 2105 }; 2106 2107 /** 2108 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2109 * @pid: the struct pid for which to create a pidfd 2110 * @flags: flags of the new @pidfd 2111 * @pidfd: the pidfd to return 2112 * 2113 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2114 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2115 2116 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2117 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2118 * pidfd file are prepared. 2119 * 2120 * If this function returns successfully the caller is responsible to either 2121 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2122 * order to install the pidfd into its file descriptor table or they must use 2123 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2124 * respectively. 2125 * 2126 * This function is useful when a pidfd must already be reserved but there 2127 * might still be points of failure afterwards and the caller wants to ensure 2128 * that no pidfd is leaked into its file descriptor table. 2129 * 2130 * Return: On success, a reserved pidfd is returned from the function and a new 2131 * pidfd file is returned in the last argument to the function. On 2132 * error, a negative error code is returned from the function and the 2133 * last argument remains unchanged. 2134 */ 2135 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2136 { 2137 int pidfd; 2138 struct file *pidfd_file; 2139 2140 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2141 return -EINVAL; 2142 2143 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2144 if (pidfd < 0) 2145 return pidfd; 2146 2147 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2148 flags | O_RDWR | O_CLOEXEC); 2149 if (IS_ERR(pidfd_file)) { 2150 put_unused_fd(pidfd); 2151 return PTR_ERR(pidfd_file); 2152 } 2153 get_pid(pid); /* held by pidfd_file now */ 2154 *ret = pidfd_file; 2155 return pidfd; 2156 } 2157 2158 /** 2159 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2160 * @pid: the struct pid for which to create a pidfd 2161 * @flags: flags of the new @pidfd 2162 * @pidfd: the pidfd to return 2163 * 2164 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2165 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2166 * 2167 * The helper verifies that @pid is used as a thread group leader. 2168 * 2169 * If this function returns successfully the caller is responsible to either 2170 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2171 * order to install the pidfd into its file descriptor table or they must use 2172 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2173 * respectively. 2174 * 2175 * This function is useful when a pidfd must already be reserved but there 2176 * might still be points of failure afterwards and the caller wants to ensure 2177 * that no pidfd is leaked into its file descriptor table. 2178 * 2179 * Return: On success, a reserved pidfd is returned from the function and a new 2180 * pidfd file is returned in the last argument to the function. On 2181 * error, a negative error code is returned from the function and the 2182 * last argument remains unchanged. 2183 */ 2184 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2185 { 2186 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2187 return -EINVAL; 2188 2189 return __pidfd_prepare(pid, flags, ret); 2190 } 2191 2192 static void __delayed_free_task(struct rcu_head *rhp) 2193 { 2194 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2195 2196 free_task(tsk); 2197 } 2198 2199 static __always_inline void delayed_free_task(struct task_struct *tsk) 2200 { 2201 if (IS_ENABLED(CONFIG_MEMCG)) 2202 call_rcu(&tsk->rcu, __delayed_free_task); 2203 else 2204 free_task(tsk); 2205 } 2206 2207 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2208 { 2209 /* Skip if kernel thread */ 2210 if (!tsk->mm) 2211 return; 2212 2213 /* Skip if spawning a thread or using vfork */ 2214 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2215 return; 2216 2217 /* We need to synchronize with __set_oom_adj */ 2218 mutex_lock(&oom_adj_mutex); 2219 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2220 /* Update the values in case they were changed after copy_signal */ 2221 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2222 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2223 mutex_unlock(&oom_adj_mutex); 2224 } 2225 2226 #ifdef CONFIG_RV 2227 static void rv_task_fork(struct task_struct *p) 2228 { 2229 int i; 2230 2231 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2232 p->rv[i].da_mon.monitoring = false; 2233 } 2234 #else 2235 #define rv_task_fork(p) do {} while (0) 2236 #endif 2237 2238 /* 2239 * This creates a new process as a copy of the old one, 2240 * but does not actually start it yet. 2241 * 2242 * It copies the registers, and all the appropriate 2243 * parts of the process environment (as per the clone 2244 * flags). The actual kick-off is left to the caller. 2245 */ 2246 __latent_entropy struct task_struct *copy_process( 2247 struct pid *pid, 2248 int trace, 2249 int node, 2250 struct kernel_clone_args *args) 2251 { 2252 int pidfd = -1, retval; 2253 struct task_struct *p; 2254 struct multiprocess_signals delayed; 2255 struct file *pidfile = NULL; 2256 const u64 clone_flags = args->flags; 2257 struct nsproxy *nsp = current->nsproxy; 2258 2259 /* 2260 * Don't allow sharing the root directory with processes in a different 2261 * namespace 2262 */ 2263 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2264 return ERR_PTR(-EINVAL); 2265 2266 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2267 return ERR_PTR(-EINVAL); 2268 2269 /* 2270 * Thread groups must share signals as well, and detached threads 2271 * can only be started up within the thread group. 2272 */ 2273 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2274 return ERR_PTR(-EINVAL); 2275 2276 /* 2277 * Shared signal handlers imply shared VM. By way of the above, 2278 * thread groups also imply shared VM. Blocking this case allows 2279 * for various simplifications in other code. 2280 */ 2281 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2282 return ERR_PTR(-EINVAL); 2283 2284 /* 2285 * Siblings of global init remain as zombies on exit since they are 2286 * not reaped by their parent (swapper). To solve this and to avoid 2287 * multi-rooted process trees, prevent global and container-inits 2288 * from creating siblings. 2289 */ 2290 if ((clone_flags & CLONE_PARENT) && 2291 current->signal->flags & SIGNAL_UNKILLABLE) 2292 return ERR_PTR(-EINVAL); 2293 2294 /* 2295 * If the new process will be in a different pid or user namespace 2296 * do not allow it to share a thread group with the forking task. 2297 */ 2298 if (clone_flags & CLONE_THREAD) { 2299 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2300 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2301 return ERR_PTR(-EINVAL); 2302 } 2303 2304 if (clone_flags & CLONE_PIDFD) { 2305 /* 2306 * - CLONE_DETACHED is blocked so that we can potentially 2307 * reuse it later for CLONE_PIDFD. 2308 * - CLONE_THREAD is blocked until someone really needs it. 2309 */ 2310 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2311 return ERR_PTR(-EINVAL); 2312 } 2313 2314 /* 2315 * Force any signals received before this point to be delivered 2316 * before the fork happens. Collect up signals sent to multiple 2317 * processes that happen during the fork and delay them so that 2318 * they appear to happen after the fork. 2319 */ 2320 sigemptyset(&delayed.signal); 2321 INIT_HLIST_NODE(&delayed.node); 2322 2323 spin_lock_irq(¤t->sighand->siglock); 2324 if (!(clone_flags & CLONE_THREAD)) 2325 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2326 recalc_sigpending(); 2327 spin_unlock_irq(¤t->sighand->siglock); 2328 retval = -ERESTARTNOINTR; 2329 if (task_sigpending(current)) 2330 goto fork_out; 2331 2332 retval = -ENOMEM; 2333 p = dup_task_struct(current, node); 2334 if (!p) 2335 goto fork_out; 2336 p->flags &= ~PF_KTHREAD; 2337 if (args->kthread) 2338 p->flags |= PF_KTHREAD; 2339 if (args->user_worker) { 2340 /* 2341 * Mark us a user worker, and block any signal that isn't 2342 * fatal or STOP 2343 */ 2344 p->flags |= PF_USER_WORKER; 2345 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2346 } 2347 if (args->io_thread) 2348 p->flags |= PF_IO_WORKER; 2349 2350 if (args->name) 2351 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2352 2353 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2354 /* 2355 * Clear TID on mm_release()? 2356 */ 2357 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2358 2359 ftrace_graph_init_task(p); 2360 2361 rt_mutex_init_task(p); 2362 2363 lockdep_assert_irqs_enabled(); 2364 #ifdef CONFIG_PROVE_LOCKING 2365 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2366 #endif 2367 retval = copy_creds(p, clone_flags); 2368 if (retval < 0) 2369 goto bad_fork_free; 2370 2371 retval = -EAGAIN; 2372 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2373 if (p->real_cred->user != INIT_USER && 2374 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2375 goto bad_fork_cleanup_count; 2376 } 2377 current->flags &= ~PF_NPROC_EXCEEDED; 2378 2379 /* 2380 * If multiple threads are within copy_process(), then this check 2381 * triggers too late. This doesn't hurt, the check is only there 2382 * to stop root fork bombs. 2383 */ 2384 retval = -EAGAIN; 2385 if (data_race(nr_threads >= max_threads)) 2386 goto bad_fork_cleanup_count; 2387 2388 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2389 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2390 p->flags |= PF_FORKNOEXEC; 2391 INIT_LIST_HEAD(&p->children); 2392 INIT_LIST_HEAD(&p->sibling); 2393 rcu_copy_process(p); 2394 p->vfork_done = NULL; 2395 spin_lock_init(&p->alloc_lock); 2396 2397 init_sigpending(&p->pending); 2398 2399 p->utime = p->stime = p->gtime = 0; 2400 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2401 p->utimescaled = p->stimescaled = 0; 2402 #endif 2403 prev_cputime_init(&p->prev_cputime); 2404 2405 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2406 seqcount_init(&p->vtime.seqcount); 2407 p->vtime.starttime = 0; 2408 p->vtime.state = VTIME_INACTIVE; 2409 #endif 2410 2411 #ifdef CONFIG_IO_URING 2412 p->io_uring = NULL; 2413 #endif 2414 2415 #if defined(SPLIT_RSS_COUNTING) 2416 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2417 #endif 2418 2419 p->default_timer_slack_ns = current->timer_slack_ns; 2420 2421 #ifdef CONFIG_PSI 2422 p->psi_flags = 0; 2423 #endif 2424 2425 task_io_accounting_init(&p->ioac); 2426 acct_clear_integrals(p); 2427 2428 posix_cputimers_init(&p->posix_cputimers); 2429 2430 p->io_context = NULL; 2431 audit_set_context(p, NULL); 2432 cgroup_fork(p); 2433 if (args->kthread) { 2434 if (!set_kthread_struct(p)) 2435 goto bad_fork_cleanup_delayacct; 2436 } 2437 #ifdef CONFIG_NUMA 2438 p->mempolicy = mpol_dup(p->mempolicy); 2439 if (IS_ERR(p->mempolicy)) { 2440 retval = PTR_ERR(p->mempolicy); 2441 p->mempolicy = NULL; 2442 goto bad_fork_cleanup_delayacct; 2443 } 2444 #endif 2445 #ifdef CONFIG_CPUSETS 2446 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2447 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2448 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2449 #endif 2450 #ifdef CONFIG_TRACE_IRQFLAGS 2451 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2452 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2453 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2454 p->softirqs_enabled = 1; 2455 p->softirq_context = 0; 2456 #endif 2457 2458 p->pagefault_disabled = 0; 2459 2460 #ifdef CONFIG_LOCKDEP 2461 lockdep_init_task(p); 2462 #endif 2463 2464 #ifdef CONFIG_DEBUG_MUTEXES 2465 p->blocked_on = NULL; /* not blocked yet */ 2466 #endif 2467 #ifdef CONFIG_BCACHE 2468 p->sequential_io = 0; 2469 p->sequential_io_avg = 0; 2470 #endif 2471 #ifdef CONFIG_BPF_SYSCALL 2472 RCU_INIT_POINTER(p->bpf_storage, NULL); 2473 p->bpf_ctx = NULL; 2474 #endif 2475 2476 /* Perform scheduler related setup. Assign this task to a CPU. */ 2477 retval = sched_fork(clone_flags, p); 2478 if (retval) 2479 goto bad_fork_cleanup_policy; 2480 2481 retval = perf_event_init_task(p, clone_flags); 2482 if (retval) 2483 goto bad_fork_cleanup_policy; 2484 retval = audit_alloc(p); 2485 if (retval) 2486 goto bad_fork_cleanup_perf; 2487 /* copy all the process information */ 2488 shm_init_task(p); 2489 retval = security_task_alloc(p, clone_flags); 2490 if (retval) 2491 goto bad_fork_cleanup_audit; 2492 retval = copy_semundo(clone_flags, p); 2493 if (retval) 2494 goto bad_fork_cleanup_security; 2495 retval = copy_files(clone_flags, p, args->no_files); 2496 if (retval) 2497 goto bad_fork_cleanup_semundo; 2498 retval = copy_fs(clone_flags, p); 2499 if (retval) 2500 goto bad_fork_cleanup_files; 2501 retval = copy_sighand(clone_flags, p); 2502 if (retval) 2503 goto bad_fork_cleanup_fs; 2504 retval = copy_signal(clone_flags, p); 2505 if (retval) 2506 goto bad_fork_cleanup_sighand; 2507 retval = copy_mm(clone_flags, p); 2508 if (retval) 2509 goto bad_fork_cleanup_signal; 2510 retval = copy_namespaces(clone_flags, p); 2511 if (retval) 2512 goto bad_fork_cleanup_mm; 2513 retval = copy_io(clone_flags, p); 2514 if (retval) 2515 goto bad_fork_cleanup_namespaces; 2516 retval = copy_thread(p, args); 2517 if (retval) 2518 goto bad_fork_cleanup_io; 2519 2520 stackleak_task_init(p); 2521 2522 if (pid != &init_struct_pid) { 2523 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2524 args->set_tid_size); 2525 if (IS_ERR(pid)) { 2526 retval = PTR_ERR(pid); 2527 goto bad_fork_cleanup_thread; 2528 } 2529 } 2530 2531 /* 2532 * This has to happen after we've potentially unshared the file 2533 * descriptor table (so that the pidfd doesn't leak into the child 2534 * if the fd table isn't shared). 2535 */ 2536 if (clone_flags & CLONE_PIDFD) { 2537 /* Note that no task has been attached to @pid yet. */ 2538 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2539 if (retval < 0) 2540 goto bad_fork_free_pid; 2541 pidfd = retval; 2542 2543 retval = put_user(pidfd, args->pidfd); 2544 if (retval) 2545 goto bad_fork_put_pidfd; 2546 } 2547 2548 #ifdef CONFIG_BLOCK 2549 p->plug = NULL; 2550 #endif 2551 futex_init_task(p); 2552 2553 /* 2554 * sigaltstack should be cleared when sharing the same VM 2555 */ 2556 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2557 sas_ss_reset(p); 2558 2559 /* 2560 * Syscall tracing and stepping should be turned off in the 2561 * child regardless of CLONE_PTRACE. 2562 */ 2563 user_disable_single_step(p); 2564 clear_task_syscall_work(p, SYSCALL_TRACE); 2565 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2566 clear_task_syscall_work(p, SYSCALL_EMU); 2567 #endif 2568 clear_tsk_latency_tracing(p); 2569 2570 /* ok, now we should be set up.. */ 2571 p->pid = pid_nr(pid); 2572 if (clone_flags & CLONE_THREAD) { 2573 p->group_leader = current->group_leader; 2574 p->tgid = current->tgid; 2575 } else { 2576 p->group_leader = p; 2577 p->tgid = p->pid; 2578 } 2579 2580 p->nr_dirtied = 0; 2581 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2582 p->dirty_paused_when = 0; 2583 2584 p->pdeath_signal = 0; 2585 INIT_LIST_HEAD(&p->thread_group); 2586 p->task_works = NULL; 2587 clear_posix_cputimers_work(p); 2588 2589 #ifdef CONFIG_KRETPROBES 2590 p->kretprobe_instances.first = NULL; 2591 #endif 2592 #ifdef CONFIG_RETHOOK 2593 p->rethooks.first = NULL; 2594 #endif 2595 2596 /* 2597 * Ensure that the cgroup subsystem policies allow the new process to be 2598 * forked. It should be noted that the new process's css_set can be changed 2599 * between here and cgroup_post_fork() if an organisation operation is in 2600 * progress. 2601 */ 2602 retval = cgroup_can_fork(p, args); 2603 if (retval) 2604 goto bad_fork_put_pidfd; 2605 2606 /* 2607 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2608 * the new task on the correct runqueue. All this *before* the task 2609 * becomes visible. 2610 * 2611 * This isn't part of ->can_fork() because while the re-cloning is 2612 * cgroup specific, it unconditionally needs to place the task on a 2613 * runqueue. 2614 */ 2615 sched_cgroup_fork(p, args); 2616 2617 /* 2618 * From this point on we must avoid any synchronous user-space 2619 * communication until we take the tasklist-lock. In particular, we do 2620 * not want user-space to be able to predict the process start-time by 2621 * stalling fork(2) after we recorded the start_time but before it is 2622 * visible to the system. 2623 */ 2624 2625 p->start_time = ktime_get_ns(); 2626 p->start_boottime = ktime_get_boottime_ns(); 2627 2628 /* 2629 * Make it visible to the rest of the system, but dont wake it up yet. 2630 * Need tasklist lock for parent etc handling! 2631 */ 2632 write_lock_irq(&tasklist_lock); 2633 2634 /* CLONE_PARENT re-uses the old parent */ 2635 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2636 p->real_parent = current->real_parent; 2637 p->parent_exec_id = current->parent_exec_id; 2638 if (clone_flags & CLONE_THREAD) 2639 p->exit_signal = -1; 2640 else 2641 p->exit_signal = current->group_leader->exit_signal; 2642 } else { 2643 p->real_parent = current; 2644 p->parent_exec_id = current->self_exec_id; 2645 p->exit_signal = args->exit_signal; 2646 } 2647 2648 klp_copy_process(p); 2649 2650 sched_core_fork(p); 2651 2652 spin_lock(¤t->sighand->siglock); 2653 2654 rv_task_fork(p); 2655 2656 rseq_fork(p, clone_flags); 2657 2658 /* Don't start children in a dying pid namespace */ 2659 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2660 retval = -ENOMEM; 2661 goto bad_fork_cancel_cgroup; 2662 } 2663 2664 /* Let kill terminate clone/fork in the middle */ 2665 if (fatal_signal_pending(current)) { 2666 retval = -EINTR; 2667 goto bad_fork_cancel_cgroup; 2668 } 2669 2670 /* No more failure paths after this point. */ 2671 2672 /* 2673 * Copy seccomp details explicitly here, in case they were changed 2674 * before holding sighand lock. 2675 */ 2676 copy_seccomp(p); 2677 2678 init_task_pid_links(p); 2679 if (likely(p->pid)) { 2680 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2681 2682 init_task_pid(p, PIDTYPE_PID, pid); 2683 if (thread_group_leader(p)) { 2684 init_task_pid(p, PIDTYPE_TGID, pid); 2685 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2686 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2687 2688 if (is_child_reaper(pid)) { 2689 ns_of_pid(pid)->child_reaper = p; 2690 p->signal->flags |= SIGNAL_UNKILLABLE; 2691 } 2692 p->signal->shared_pending.signal = delayed.signal; 2693 p->signal->tty = tty_kref_get(current->signal->tty); 2694 /* 2695 * Inherit has_child_subreaper flag under the same 2696 * tasklist_lock with adding child to the process tree 2697 * for propagate_has_child_subreaper optimization. 2698 */ 2699 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2700 p->real_parent->signal->is_child_subreaper; 2701 list_add_tail(&p->sibling, &p->real_parent->children); 2702 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2703 attach_pid(p, PIDTYPE_TGID); 2704 attach_pid(p, PIDTYPE_PGID); 2705 attach_pid(p, PIDTYPE_SID); 2706 __this_cpu_inc(process_counts); 2707 } else { 2708 current->signal->nr_threads++; 2709 current->signal->quick_threads++; 2710 atomic_inc(¤t->signal->live); 2711 refcount_inc(¤t->signal->sigcnt); 2712 task_join_group_stop(p); 2713 list_add_tail_rcu(&p->thread_group, 2714 &p->group_leader->thread_group); 2715 list_add_tail_rcu(&p->thread_node, 2716 &p->signal->thread_head); 2717 } 2718 attach_pid(p, PIDTYPE_PID); 2719 nr_threads++; 2720 } 2721 total_forks++; 2722 hlist_del_init(&delayed.node); 2723 spin_unlock(¤t->sighand->siglock); 2724 syscall_tracepoint_update(p); 2725 write_unlock_irq(&tasklist_lock); 2726 2727 if (pidfile) 2728 fd_install(pidfd, pidfile); 2729 2730 proc_fork_connector(p); 2731 sched_post_fork(p); 2732 cgroup_post_fork(p, args); 2733 perf_event_fork(p); 2734 2735 trace_task_newtask(p, clone_flags); 2736 uprobe_copy_process(p, clone_flags); 2737 user_events_fork(p, clone_flags); 2738 2739 copy_oom_score_adj(clone_flags, p); 2740 2741 return p; 2742 2743 bad_fork_cancel_cgroup: 2744 sched_core_free(p); 2745 spin_unlock(¤t->sighand->siglock); 2746 write_unlock_irq(&tasklist_lock); 2747 cgroup_cancel_fork(p, args); 2748 bad_fork_put_pidfd: 2749 if (clone_flags & CLONE_PIDFD) { 2750 fput(pidfile); 2751 put_unused_fd(pidfd); 2752 } 2753 bad_fork_free_pid: 2754 if (pid != &init_struct_pid) 2755 free_pid(pid); 2756 bad_fork_cleanup_thread: 2757 exit_thread(p); 2758 bad_fork_cleanup_io: 2759 if (p->io_context) 2760 exit_io_context(p); 2761 bad_fork_cleanup_namespaces: 2762 exit_task_namespaces(p); 2763 bad_fork_cleanup_mm: 2764 if (p->mm) { 2765 mm_clear_owner(p->mm, p); 2766 mmput(p->mm); 2767 } 2768 bad_fork_cleanup_signal: 2769 if (!(clone_flags & CLONE_THREAD)) 2770 free_signal_struct(p->signal); 2771 bad_fork_cleanup_sighand: 2772 __cleanup_sighand(p->sighand); 2773 bad_fork_cleanup_fs: 2774 exit_fs(p); /* blocking */ 2775 bad_fork_cleanup_files: 2776 exit_files(p); /* blocking */ 2777 bad_fork_cleanup_semundo: 2778 exit_sem(p); 2779 bad_fork_cleanup_security: 2780 security_task_free(p); 2781 bad_fork_cleanup_audit: 2782 audit_free(p); 2783 bad_fork_cleanup_perf: 2784 perf_event_free_task(p); 2785 bad_fork_cleanup_policy: 2786 lockdep_free_task(p); 2787 #ifdef CONFIG_NUMA 2788 mpol_put(p->mempolicy); 2789 #endif 2790 bad_fork_cleanup_delayacct: 2791 delayacct_tsk_free(p); 2792 bad_fork_cleanup_count: 2793 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2794 exit_creds(p); 2795 bad_fork_free: 2796 WRITE_ONCE(p->__state, TASK_DEAD); 2797 exit_task_stack_account(p); 2798 put_task_stack(p); 2799 delayed_free_task(p); 2800 fork_out: 2801 spin_lock_irq(¤t->sighand->siglock); 2802 hlist_del_init(&delayed.node); 2803 spin_unlock_irq(¤t->sighand->siglock); 2804 return ERR_PTR(retval); 2805 } 2806 2807 static inline void init_idle_pids(struct task_struct *idle) 2808 { 2809 enum pid_type type; 2810 2811 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2812 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2813 init_task_pid(idle, type, &init_struct_pid); 2814 } 2815 } 2816 2817 static int idle_dummy(void *dummy) 2818 { 2819 /* This function is never called */ 2820 return 0; 2821 } 2822 2823 struct task_struct * __init fork_idle(int cpu) 2824 { 2825 struct task_struct *task; 2826 struct kernel_clone_args args = { 2827 .flags = CLONE_VM, 2828 .fn = &idle_dummy, 2829 .fn_arg = NULL, 2830 .kthread = 1, 2831 .idle = 1, 2832 }; 2833 2834 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2835 if (!IS_ERR(task)) { 2836 init_idle_pids(task); 2837 init_idle(task, cpu); 2838 } 2839 2840 return task; 2841 } 2842 2843 /* 2844 * This is like kernel_clone(), but shaved down and tailored to just 2845 * creating io_uring workers. It returns a created task, or an error pointer. 2846 * The returned task is inactive, and the caller must fire it up through 2847 * wake_up_new_task(p). All signals are blocked in the created task. 2848 */ 2849 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2850 { 2851 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2852 CLONE_IO; 2853 struct kernel_clone_args args = { 2854 .flags = ((lower_32_bits(flags) | CLONE_VM | 2855 CLONE_UNTRACED) & ~CSIGNAL), 2856 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2857 .fn = fn, 2858 .fn_arg = arg, 2859 .io_thread = 1, 2860 .user_worker = 1, 2861 }; 2862 2863 return copy_process(NULL, 0, node, &args); 2864 } 2865 2866 /* 2867 * Ok, this is the main fork-routine. 2868 * 2869 * It copies the process, and if successful kick-starts 2870 * it and waits for it to finish using the VM if required. 2871 * 2872 * args->exit_signal is expected to be checked for sanity by the caller. 2873 */ 2874 pid_t kernel_clone(struct kernel_clone_args *args) 2875 { 2876 u64 clone_flags = args->flags; 2877 struct completion vfork; 2878 struct pid *pid; 2879 struct task_struct *p; 2880 int trace = 0; 2881 pid_t nr; 2882 2883 /* 2884 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2885 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2886 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2887 * field in struct clone_args and it still doesn't make sense to have 2888 * them both point at the same memory location. Performing this check 2889 * here has the advantage that we don't need to have a separate helper 2890 * to check for legacy clone(). 2891 */ 2892 if ((args->flags & CLONE_PIDFD) && 2893 (args->flags & CLONE_PARENT_SETTID) && 2894 (args->pidfd == args->parent_tid)) 2895 return -EINVAL; 2896 2897 /* 2898 * Determine whether and which event to report to ptracer. When 2899 * called from kernel_thread or CLONE_UNTRACED is explicitly 2900 * requested, no event is reported; otherwise, report if the event 2901 * for the type of forking is enabled. 2902 */ 2903 if (!(clone_flags & CLONE_UNTRACED)) { 2904 if (clone_flags & CLONE_VFORK) 2905 trace = PTRACE_EVENT_VFORK; 2906 else if (args->exit_signal != SIGCHLD) 2907 trace = PTRACE_EVENT_CLONE; 2908 else 2909 trace = PTRACE_EVENT_FORK; 2910 2911 if (likely(!ptrace_event_enabled(current, trace))) 2912 trace = 0; 2913 } 2914 2915 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2916 add_latent_entropy(); 2917 2918 if (IS_ERR(p)) 2919 return PTR_ERR(p); 2920 2921 /* 2922 * Do this prior waking up the new thread - the thread pointer 2923 * might get invalid after that point, if the thread exits quickly. 2924 */ 2925 trace_sched_process_fork(current, p); 2926 2927 pid = get_task_pid(p, PIDTYPE_PID); 2928 nr = pid_vnr(pid); 2929 2930 if (clone_flags & CLONE_PARENT_SETTID) 2931 put_user(nr, args->parent_tid); 2932 2933 if (clone_flags & CLONE_VFORK) { 2934 p->vfork_done = &vfork; 2935 init_completion(&vfork); 2936 get_task_struct(p); 2937 } 2938 2939 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2940 /* lock the task to synchronize with memcg migration */ 2941 task_lock(p); 2942 lru_gen_add_mm(p->mm); 2943 task_unlock(p); 2944 } 2945 2946 wake_up_new_task(p); 2947 2948 /* forking complete and child started to run, tell ptracer */ 2949 if (unlikely(trace)) 2950 ptrace_event_pid(trace, pid); 2951 2952 if (clone_flags & CLONE_VFORK) { 2953 if (!wait_for_vfork_done(p, &vfork)) 2954 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2955 } 2956 2957 put_pid(pid); 2958 return nr; 2959 } 2960 2961 /* 2962 * Create a kernel thread. 2963 */ 2964 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2965 unsigned long flags) 2966 { 2967 struct kernel_clone_args args = { 2968 .flags = ((lower_32_bits(flags) | CLONE_VM | 2969 CLONE_UNTRACED) & ~CSIGNAL), 2970 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2971 .fn = fn, 2972 .fn_arg = arg, 2973 .name = name, 2974 .kthread = 1, 2975 }; 2976 2977 return kernel_clone(&args); 2978 } 2979 2980 /* 2981 * Create a user mode thread. 2982 */ 2983 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2984 { 2985 struct kernel_clone_args args = { 2986 .flags = ((lower_32_bits(flags) | CLONE_VM | 2987 CLONE_UNTRACED) & ~CSIGNAL), 2988 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2989 .fn = fn, 2990 .fn_arg = arg, 2991 }; 2992 2993 return kernel_clone(&args); 2994 } 2995 2996 #ifdef __ARCH_WANT_SYS_FORK 2997 SYSCALL_DEFINE0(fork) 2998 { 2999 #ifdef CONFIG_MMU 3000 struct kernel_clone_args args = { 3001 .exit_signal = SIGCHLD, 3002 }; 3003 3004 return kernel_clone(&args); 3005 #else 3006 /* can not support in nommu mode */ 3007 return -EINVAL; 3008 #endif 3009 } 3010 #endif 3011 3012 #ifdef __ARCH_WANT_SYS_VFORK 3013 SYSCALL_DEFINE0(vfork) 3014 { 3015 struct kernel_clone_args args = { 3016 .flags = CLONE_VFORK | CLONE_VM, 3017 .exit_signal = SIGCHLD, 3018 }; 3019 3020 return kernel_clone(&args); 3021 } 3022 #endif 3023 3024 #ifdef __ARCH_WANT_SYS_CLONE 3025 #ifdef CONFIG_CLONE_BACKWARDS 3026 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3027 int __user *, parent_tidptr, 3028 unsigned long, tls, 3029 int __user *, child_tidptr) 3030 #elif defined(CONFIG_CLONE_BACKWARDS2) 3031 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3032 int __user *, parent_tidptr, 3033 int __user *, child_tidptr, 3034 unsigned long, tls) 3035 #elif defined(CONFIG_CLONE_BACKWARDS3) 3036 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3037 int, stack_size, 3038 int __user *, parent_tidptr, 3039 int __user *, child_tidptr, 3040 unsigned long, tls) 3041 #else 3042 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3043 int __user *, parent_tidptr, 3044 int __user *, child_tidptr, 3045 unsigned long, tls) 3046 #endif 3047 { 3048 struct kernel_clone_args args = { 3049 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3050 .pidfd = parent_tidptr, 3051 .child_tid = child_tidptr, 3052 .parent_tid = parent_tidptr, 3053 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3054 .stack = newsp, 3055 .tls = tls, 3056 }; 3057 3058 return kernel_clone(&args); 3059 } 3060 #endif 3061 3062 #ifdef __ARCH_WANT_SYS_CLONE3 3063 3064 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3065 struct clone_args __user *uargs, 3066 size_t usize) 3067 { 3068 int err; 3069 struct clone_args args; 3070 pid_t *kset_tid = kargs->set_tid; 3071 3072 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3073 CLONE_ARGS_SIZE_VER0); 3074 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3075 CLONE_ARGS_SIZE_VER1); 3076 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3077 CLONE_ARGS_SIZE_VER2); 3078 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3079 3080 if (unlikely(usize > PAGE_SIZE)) 3081 return -E2BIG; 3082 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3083 return -EINVAL; 3084 3085 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3086 if (err) 3087 return err; 3088 3089 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3090 return -EINVAL; 3091 3092 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3093 return -EINVAL; 3094 3095 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3096 return -EINVAL; 3097 3098 /* 3099 * Verify that higher 32bits of exit_signal are unset and that 3100 * it is a valid signal 3101 */ 3102 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3103 !valid_signal(args.exit_signal))) 3104 return -EINVAL; 3105 3106 if ((args.flags & CLONE_INTO_CGROUP) && 3107 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3108 return -EINVAL; 3109 3110 *kargs = (struct kernel_clone_args){ 3111 .flags = args.flags, 3112 .pidfd = u64_to_user_ptr(args.pidfd), 3113 .child_tid = u64_to_user_ptr(args.child_tid), 3114 .parent_tid = u64_to_user_ptr(args.parent_tid), 3115 .exit_signal = args.exit_signal, 3116 .stack = args.stack, 3117 .stack_size = args.stack_size, 3118 .tls = args.tls, 3119 .set_tid_size = args.set_tid_size, 3120 .cgroup = args.cgroup, 3121 }; 3122 3123 if (args.set_tid && 3124 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3125 (kargs->set_tid_size * sizeof(pid_t)))) 3126 return -EFAULT; 3127 3128 kargs->set_tid = kset_tid; 3129 3130 return 0; 3131 } 3132 3133 /** 3134 * clone3_stack_valid - check and prepare stack 3135 * @kargs: kernel clone args 3136 * 3137 * Verify that the stack arguments userspace gave us are sane. 3138 * In addition, set the stack direction for userspace since it's easy for us to 3139 * determine. 3140 */ 3141 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3142 { 3143 if (kargs->stack == 0) { 3144 if (kargs->stack_size > 0) 3145 return false; 3146 } else { 3147 if (kargs->stack_size == 0) 3148 return false; 3149 3150 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3151 return false; 3152 3153 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3154 kargs->stack += kargs->stack_size; 3155 #endif 3156 } 3157 3158 return true; 3159 } 3160 3161 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3162 { 3163 /* Verify that no unknown flags are passed along. */ 3164 if (kargs->flags & 3165 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3166 return false; 3167 3168 /* 3169 * - make the CLONE_DETACHED bit reusable for clone3 3170 * - make the CSIGNAL bits reusable for clone3 3171 */ 3172 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3173 return false; 3174 3175 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3176 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3177 return false; 3178 3179 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3180 kargs->exit_signal) 3181 return false; 3182 3183 if (!clone3_stack_valid(kargs)) 3184 return false; 3185 3186 return true; 3187 } 3188 3189 /** 3190 * clone3 - create a new process with specific properties 3191 * @uargs: argument structure 3192 * @size: size of @uargs 3193 * 3194 * clone3() is the extensible successor to clone()/clone2(). 3195 * It takes a struct as argument that is versioned by its size. 3196 * 3197 * Return: On success, a positive PID for the child process. 3198 * On error, a negative errno number. 3199 */ 3200 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3201 { 3202 int err; 3203 3204 struct kernel_clone_args kargs; 3205 pid_t set_tid[MAX_PID_NS_LEVEL]; 3206 3207 kargs.set_tid = set_tid; 3208 3209 err = copy_clone_args_from_user(&kargs, uargs, size); 3210 if (err) 3211 return err; 3212 3213 if (!clone3_args_valid(&kargs)) 3214 return -EINVAL; 3215 3216 return kernel_clone(&kargs); 3217 } 3218 #endif 3219 3220 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3221 { 3222 struct task_struct *leader, *parent, *child; 3223 int res; 3224 3225 read_lock(&tasklist_lock); 3226 leader = top = top->group_leader; 3227 down: 3228 for_each_thread(leader, parent) { 3229 list_for_each_entry(child, &parent->children, sibling) { 3230 res = visitor(child, data); 3231 if (res) { 3232 if (res < 0) 3233 goto out; 3234 leader = child; 3235 goto down; 3236 } 3237 up: 3238 ; 3239 } 3240 } 3241 3242 if (leader != top) { 3243 child = leader; 3244 parent = child->real_parent; 3245 leader = parent->group_leader; 3246 goto up; 3247 } 3248 out: 3249 read_unlock(&tasklist_lock); 3250 } 3251 3252 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3253 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3254 #endif 3255 3256 static void sighand_ctor(void *data) 3257 { 3258 struct sighand_struct *sighand = data; 3259 3260 spin_lock_init(&sighand->siglock); 3261 init_waitqueue_head(&sighand->signalfd_wqh); 3262 } 3263 3264 void __init mm_cache_init(void) 3265 { 3266 unsigned int mm_size; 3267 3268 /* 3269 * The mm_cpumask is located at the end of mm_struct, and is 3270 * dynamically sized based on the maximum CPU number this system 3271 * can have, taking hotplug into account (nr_cpu_ids). 3272 */ 3273 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3274 3275 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3276 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3277 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3278 offsetof(struct mm_struct, saved_auxv), 3279 sizeof_field(struct mm_struct, saved_auxv), 3280 NULL); 3281 } 3282 3283 void __init proc_caches_init(void) 3284 { 3285 sighand_cachep = kmem_cache_create("sighand_cache", 3286 sizeof(struct sighand_struct), 0, 3287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3288 SLAB_ACCOUNT, sighand_ctor); 3289 signal_cachep = kmem_cache_create("signal_cache", 3290 sizeof(struct signal_struct), 0, 3291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3292 NULL); 3293 files_cachep = kmem_cache_create("files_cache", 3294 sizeof(struct files_struct), 0, 3295 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3296 NULL); 3297 fs_cachep = kmem_cache_create("fs_cache", 3298 sizeof(struct fs_struct), 0, 3299 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3300 NULL); 3301 3302 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3303 #ifdef CONFIG_PER_VMA_LOCK 3304 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3305 #endif 3306 mmap_init(); 3307 nsproxy_cache_init(); 3308 } 3309 3310 /* 3311 * Check constraints on flags passed to the unshare system call. 3312 */ 3313 static int check_unshare_flags(unsigned long unshare_flags) 3314 { 3315 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3316 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3317 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3318 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3319 CLONE_NEWTIME)) 3320 return -EINVAL; 3321 /* 3322 * Not implemented, but pretend it works if there is nothing 3323 * to unshare. Note that unsharing the address space or the 3324 * signal handlers also need to unshare the signal queues (aka 3325 * CLONE_THREAD). 3326 */ 3327 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3328 if (!thread_group_empty(current)) 3329 return -EINVAL; 3330 } 3331 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3332 if (refcount_read(¤t->sighand->count) > 1) 3333 return -EINVAL; 3334 } 3335 if (unshare_flags & CLONE_VM) { 3336 if (!current_is_single_threaded()) 3337 return -EINVAL; 3338 } 3339 3340 return 0; 3341 } 3342 3343 /* 3344 * Unshare the filesystem structure if it is being shared 3345 */ 3346 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3347 { 3348 struct fs_struct *fs = current->fs; 3349 3350 if (!(unshare_flags & CLONE_FS) || !fs) 3351 return 0; 3352 3353 /* don't need lock here; in the worst case we'll do useless copy */ 3354 if (fs->users == 1) 3355 return 0; 3356 3357 *new_fsp = copy_fs_struct(fs); 3358 if (!*new_fsp) 3359 return -ENOMEM; 3360 3361 return 0; 3362 } 3363 3364 /* 3365 * Unshare file descriptor table if it is being shared 3366 */ 3367 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3368 struct files_struct **new_fdp) 3369 { 3370 struct files_struct *fd = current->files; 3371 int error = 0; 3372 3373 if ((unshare_flags & CLONE_FILES) && 3374 (fd && atomic_read(&fd->count) > 1)) { 3375 *new_fdp = dup_fd(fd, max_fds, &error); 3376 if (!*new_fdp) 3377 return error; 3378 } 3379 3380 return 0; 3381 } 3382 3383 /* 3384 * unshare allows a process to 'unshare' part of the process 3385 * context which was originally shared using clone. copy_* 3386 * functions used by kernel_clone() cannot be used here directly 3387 * because they modify an inactive task_struct that is being 3388 * constructed. Here we are modifying the current, active, 3389 * task_struct. 3390 */ 3391 int ksys_unshare(unsigned long unshare_flags) 3392 { 3393 struct fs_struct *fs, *new_fs = NULL; 3394 struct files_struct *new_fd = NULL; 3395 struct cred *new_cred = NULL; 3396 struct nsproxy *new_nsproxy = NULL; 3397 int do_sysvsem = 0; 3398 int err; 3399 3400 /* 3401 * If unsharing a user namespace must also unshare the thread group 3402 * and unshare the filesystem root and working directories. 3403 */ 3404 if (unshare_flags & CLONE_NEWUSER) 3405 unshare_flags |= CLONE_THREAD | CLONE_FS; 3406 /* 3407 * If unsharing vm, must also unshare signal handlers. 3408 */ 3409 if (unshare_flags & CLONE_VM) 3410 unshare_flags |= CLONE_SIGHAND; 3411 /* 3412 * If unsharing a signal handlers, must also unshare the signal queues. 3413 */ 3414 if (unshare_flags & CLONE_SIGHAND) 3415 unshare_flags |= CLONE_THREAD; 3416 /* 3417 * If unsharing namespace, must also unshare filesystem information. 3418 */ 3419 if (unshare_flags & CLONE_NEWNS) 3420 unshare_flags |= CLONE_FS; 3421 3422 err = check_unshare_flags(unshare_flags); 3423 if (err) 3424 goto bad_unshare_out; 3425 /* 3426 * CLONE_NEWIPC must also detach from the undolist: after switching 3427 * to a new ipc namespace, the semaphore arrays from the old 3428 * namespace are unreachable. 3429 */ 3430 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3431 do_sysvsem = 1; 3432 err = unshare_fs(unshare_flags, &new_fs); 3433 if (err) 3434 goto bad_unshare_out; 3435 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3436 if (err) 3437 goto bad_unshare_cleanup_fs; 3438 err = unshare_userns(unshare_flags, &new_cred); 3439 if (err) 3440 goto bad_unshare_cleanup_fd; 3441 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3442 new_cred, new_fs); 3443 if (err) 3444 goto bad_unshare_cleanup_cred; 3445 3446 if (new_cred) { 3447 err = set_cred_ucounts(new_cred); 3448 if (err) 3449 goto bad_unshare_cleanup_cred; 3450 } 3451 3452 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3453 if (do_sysvsem) { 3454 /* 3455 * CLONE_SYSVSEM is equivalent to sys_exit(). 3456 */ 3457 exit_sem(current); 3458 } 3459 if (unshare_flags & CLONE_NEWIPC) { 3460 /* Orphan segments in old ns (see sem above). */ 3461 exit_shm(current); 3462 shm_init_task(current); 3463 } 3464 3465 if (new_nsproxy) 3466 switch_task_namespaces(current, new_nsproxy); 3467 3468 task_lock(current); 3469 3470 if (new_fs) { 3471 fs = current->fs; 3472 spin_lock(&fs->lock); 3473 current->fs = new_fs; 3474 if (--fs->users) 3475 new_fs = NULL; 3476 else 3477 new_fs = fs; 3478 spin_unlock(&fs->lock); 3479 } 3480 3481 if (new_fd) 3482 swap(current->files, new_fd); 3483 3484 task_unlock(current); 3485 3486 if (new_cred) { 3487 /* Install the new user namespace */ 3488 commit_creds(new_cred); 3489 new_cred = NULL; 3490 } 3491 } 3492 3493 perf_event_namespaces(current); 3494 3495 bad_unshare_cleanup_cred: 3496 if (new_cred) 3497 put_cred(new_cred); 3498 bad_unshare_cleanup_fd: 3499 if (new_fd) 3500 put_files_struct(new_fd); 3501 3502 bad_unshare_cleanup_fs: 3503 if (new_fs) 3504 free_fs_struct(new_fs); 3505 3506 bad_unshare_out: 3507 return err; 3508 } 3509 3510 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3511 { 3512 return ksys_unshare(unshare_flags); 3513 } 3514 3515 /* 3516 * Helper to unshare the files of the current task. 3517 * We don't want to expose copy_files internals to 3518 * the exec layer of the kernel. 3519 */ 3520 3521 int unshare_files(void) 3522 { 3523 struct task_struct *task = current; 3524 struct files_struct *old, *copy = NULL; 3525 int error; 3526 3527 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3528 if (error || !copy) 3529 return error; 3530 3531 old = task->files; 3532 task_lock(task); 3533 task->files = copy; 3534 task_unlock(task); 3535 put_files_struct(old); 3536 return 0; 3537 } 3538 3539 int sysctl_max_threads(struct ctl_table *table, int write, 3540 void *buffer, size_t *lenp, loff_t *ppos) 3541 { 3542 struct ctl_table t; 3543 int ret; 3544 int threads = max_threads; 3545 int min = 1; 3546 int max = MAX_THREADS; 3547 3548 t = *table; 3549 t.data = &threads; 3550 t.extra1 = &min; 3551 t.extra2 = &max; 3552 3553 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3554 if (ret || !write) 3555 return ret; 3556 3557 max_threads = threads; 3558 3559 return 0; 3560 } 3561