1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 data_race(memcpy(new, orig, sizeof(*new))); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 VMA_ITERATOR(old_vmi, oldmm, 0); 589 VMA_ITERATOR(vmi, mm, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 mt_clear_in_rcu(vmi.mas.tree); 621 for_each_vma(old_vmi, mpnt) { 622 struct file *file; 623 624 if (mpnt->vm_flags & VM_DONTCOPY) { 625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 626 continue; 627 } 628 charge = 0; 629 /* 630 * Don't duplicate many vmas if we've been oom-killed (for 631 * example) 632 */ 633 if (fatal_signal_pending(current)) { 634 retval = -EINTR; 635 goto loop_out; 636 } 637 if (mpnt->vm_flags & VM_ACCOUNT) { 638 unsigned long len = vma_pages(mpnt); 639 640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 641 goto fail_nomem; 642 charge = len; 643 } 644 tmp = vm_area_dup(mpnt); 645 if (!tmp) 646 goto fail_nomem; 647 retval = vma_dup_policy(mpnt, tmp); 648 if (retval) 649 goto fail_nomem_policy; 650 tmp->vm_mm = mm; 651 retval = dup_userfaultfd(tmp, &uf); 652 if (retval) 653 goto fail_nomem_anon_vma_fork; 654 if (tmp->vm_flags & VM_WIPEONFORK) { 655 /* 656 * VM_WIPEONFORK gets a clean slate in the child. 657 * Don't prepare anon_vma until fault since we don't 658 * copy page for current vma. 659 */ 660 tmp->anon_vma = NULL; 661 } else if (anon_vma_fork(tmp, mpnt)) 662 goto fail_nomem_anon_vma_fork; 663 vm_flags_clear(tmp, VM_LOCKED_MASK); 664 file = tmp->vm_file; 665 if (file) { 666 struct address_space *mapping = file->f_mapping; 667 668 get_file(file); 669 i_mmap_lock_write(mapping); 670 if (tmp->vm_flags & VM_SHARED) 671 mapping_allow_writable(mapping); 672 flush_dcache_mmap_lock(mapping); 673 /* insert tmp into the share list, just after mpnt */ 674 vma_interval_tree_insert_after(tmp, mpnt, 675 &mapping->i_mmap); 676 flush_dcache_mmap_unlock(mapping); 677 i_mmap_unlock_write(mapping); 678 } 679 680 /* 681 * Copy/update hugetlb private vma information. 682 */ 683 if (is_vm_hugetlb_page(tmp)) 684 hugetlb_dup_vma_private(tmp); 685 686 /* Link the vma into the MT */ 687 if (vma_iter_bulk_store(&vmi, tmp)) 688 goto fail_nomem_vmi_store; 689 690 mm->map_count++; 691 if (!(tmp->vm_flags & VM_WIPEONFORK)) 692 retval = copy_page_range(tmp, mpnt); 693 694 if (tmp->vm_ops && tmp->vm_ops->open) 695 tmp->vm_ops->open(tmp); 696 697 if (retval) 698 goto loop_out; 699 } 700 /* a new mm has just been created */ 701 retval = arch_dup_mmap(oldmm, mm); 702 loop_out: 703 vma_iter_free(&vmi); 704 if (!retval) 705 mt_set_in_rcu(vmi.mas.tree); 706 out: 707 mmap_write_unlock(mm); 708 flush_tlb_mm(oldmm); 709 mmap_write_unlock(oldmm); 710 dup_userfaultfd_complete(&uf); 711 fail_uprobe_end: 712 uprobe_end_dup_mmap(); 713 return retval; 714 715 fail_nomem_vmi_store: 716 unlink_anon_vmas(tmp); 717 fail_nomem_anon_vma_fork: 718 mpol_put(vma_policy(tmp)); 719 fail_nomem_policy: 720 vm_area_free(tmp); 721 fail_nomem: 722 retval = -ENOMEM; 723 vm_unacct_memory(charge); 724 goto loop_out; 725 } 726 727 static inline int mm_alloc_pgd(struct mm_struct *mm) 728 { 729 mm->pgd = pgd_alloc(mm); 730 if (unlikely(!mm->pgd)) 731 return -ENOMEM; 732 return 0; 733 } 734 735 static inline void mm_free_pgd(struct mm_struct *mm) 736 { 737 pgd_free(mm, mm->pgd); 738 } 739 #else 740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 741 { 742 mmap_write_lock(oldmm); 743 dup_mm_exe_file(mm, oldmm); 744 mmap_write_unlock(oldmm); 745 return 0; 746 } 747 #define mm_alloc_pgd(mm) (0) 748 #define mm_free_pgd(mm) 749 #endif /* CONFIG_MMU */ 750 751 static void check_mm(struct mm_struct *mm) 752 { 753 int i; 754 755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 756 "Please make sure 'struct resident_page_types[]' is updated as well"); 757 758 for (i = 0; i < NR_MM_COUNTERS; i++) { 759 long x = percpu_counter_sum(&mm->rss_stat[i]); 760 761 if (unlikely(x)) 762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 763 mm, resident_page_types[i], x); 764 } 765 766 if (mm_pgtables_bytes(mm)) 767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 768 mm_pgtables_bytes(mm)); 769 770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 772 #endif 773 } 774 775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 777 778 /* 779 * Called when the last reference to the mm 780 * is dropped: either by a lazy thread or by 781 * mmput. Free the page directory and the mm. 782 */ 783 void __mmdrop(struct mm_struct *mm) 784 { 785 int i; 786 787 BUG_ON(mm == &init_mm); 788 WARN_ON_ONCE(mm == current->mm); 789 WARN_ON_ONCE(mm == current->active_mm); 790 mm_free_pgd(mm); 791 destroy_context(mm); 792 mmu_notifier_subscriptions_destroy(mm); 793 check_mm(mm); 794 put_user_ns(mm->user_ns); 795 mm_pasid_drop(mm); 796 797 for (i = 0; i < NR_MM_COUNTERS; i++) 798 percpu_counter_destroy(&mm->rss_stat[i]); 799 free_mm(mm); 800 } 801 EXPORT_SYMBOL_GPL(__mmdrop); 802 803 static void mmdrop_async_fn(struct work_struct *work) 804 { 805 struct mm_struct *mm; 806 807 mm = container_of(work, struct mm_struct, async_put_work); 808 __mmdrop(mm); 809 } 810 811 static void mmdrop_async(struct mm_struct *mm) 812 { 813 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 814 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 815 schedule_work(&mm->async_put_work); 816 } 817 } 818 819 static inline void free_signal_struct(struct signal_struct *sig) 820 { 821 taskstats_tgid_free(sig); 822 sched_autogroup_exit(sig); 823 /* 824 * __mmdrop is not safe to call from softirq context on x86 due to 825 * pgd_dtor so postpone it to the async context 826 */ 827 if (sig->oom_mm) 828 mmdrop_async(sig->oom_mm); 829 kmem_cache_free(signal_cachep, sig); 830 } 831 832 static inline void put_signal_struct(struct signal_struct *sig) 833 { 834 if (refcount_dec_and_test(&sig->sigcnt)) 835 free_signal_struct(sig); 836 } 837 838 void __put_task_struct(struct task_struct *tsk) 839 { 840 WARN_ON(!tsk->exit_state); 841 WARN_ON(refcount_read(&tsk->usage)); 842 WARN_ON(tsk == current); 843 844 io_uring_free(tsk); 845 cgroup_free(tsk); 846 task_numa_free(tsk, true); 847 security_task_free(tsk); 848 bpf_task_storage_free(tsk); 849 exit_creds(tsk); 850 delayacct_tsk_free(tsk); 851 put_signal_struct(tsk->signal); 852 sched_core_free(tsk); 853 free_task(tsk); 854 } 855 EXPORT_SYMBOL_GPL(__put_task_struct); 856 857 void __init __weak arch_task_cache_init(void) { } 858 859 /* 860 * set_max_threads 861 */ 862 static void set_max_threads(unsigned int max_threads_suggested) 863 { 864 u64 threads; 865 unsigned long nr_pages = totalram_pages(); 866 867 /* 868 * The number of threads shall be limited such that the thread 869 * structures may only consume a small part of the available memory. 870 */ 871 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 872 threads = MAX_THREADS; 873 else 874 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 875 (u64) THREAD_SIZE * 8UL); 876 877 if (threads > max_threads_suggested) 878 threads = max_threads_suggested; 879 880 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 881 } 882 883 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 884 /* Initialized by the architecture: */ 885 int arch_task_struct_size __read_mostly; 886 #endif 887 888 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 889 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 890 { 891 /* Fetch thread_struct whitelist for the architecture. */ 892 arch_thread_struct_whitelist(offset, size); 893 894 /* 895 * Handle zero-sized whitelist or empty thread_struct, otherwise 896 * adjust offset to position of thread_struct in task_struct. 897 */ 898 if (unlikely(*size == 0)) 899 *offset = 0; 900 else 901 *offset += offsetof(struct task_struct, thread); 902 } 903 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 904 905 void __init fork_init(void) 906 { 907 int i; 908 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 909 #ifndef ARCH_MIN_TASKALIGN 910 #define ARCH_MIN_TASKALIGN 0 911 #endif 912 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 913 unsigned long useroffset, usersize; 914 915 /* create a slab on which task_structs can be allocated */ 916 task_struct_whitelist(&useroffset, &usersize); 917 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 918 arch_task_struct_size, align, 919 SLAB_PANIC|SLAB_ACCOUNT, 920 useroffset, usersize, NULL); 921 #endif 922 923 /* do the arch specific task caches init */ 924 arch_task_cache_init(); 925 926 set_max_threads(MAX_THREADS); 927 928 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 929 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 930 init_task.signal->rlim[RLIMIT_SIGPENDING] = 931 init_task.signal->rlim[RLIMIT_NPROC]; 932 933 for (i = 0; i < UCOUNT_COUNTS; i++) 934 init_user_ns.ucount_max[i] = max_threads/2; 935 936 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 937 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 940 941 #ifdef CONFIG_VMAP_STACK 942 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 943 NULL, free_vm_stack_cache); 944 #endif 945 946 scs_init(); 947 948 lockdep_init_task(&init_task); 949 uprobes_init(); 950 } 951 952 int __weak arch_dup_task_struct(struct task_struct *dst, 953 struct task_struct *src) 954 { 955 *dst = *src; 956 return 0; 957 } 958 959 void set_task_stack_end_magic(struct task_struct *tsk) 960 { 961 unsigned long *stackend; 962 963 stackend = end_of_stack(tsk); 964 *stackend = STACK_END_MAGIC; /* for overflow detection */ 965 } 966 967 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 968 { 969 struct task_struct *tsk; 970 int err; 971 972 if (node == NUMA_NO_NODE) 973 node = tsk_fork_get_node(orig); 974 tsk = alloc_task_struct_node(node); 975 if (!tsk) 976 return NULL; 977 978 err = arch_dup_task_struct(tsk, orig); 979 if (err) 980 goto free_tsk; 981 982 err = alloc_thread_stack_node(tsk, node); 983 if (err) 984 goto free_tsk; 985 986 #ifdef CONFIG_THREAD_INFO_IN_TASK 987 refcount_set(&tsk->stack_refcount, 1); 988 #endif 989 account_kernel_stack(tsk, 1); 990 991 err = scs_prepare(tsk, node); 992 if (err) 993 goto free_stack; 994 995 #ifdef CONFIG_SECCOMP 996 /* 997 * We must handle setting up seccomp filters once we're under 998 * the sighand lock in case orig has changed between now and 999 * then. Until then, filter must be NULL to avoid messing up 1000 * the usage counts on the error path calling free_task. 1001 */ 1002 tsk->seccomp.filter = NULL; 1003 #endif 1004 1005 setup_thread_stack(tsk, orig); 1006 clear_user_return_notifier(tsk); 1007 clear_tsk_need_resched(tsk); 1008 set_task_stack_end_magic(tsk); 1009 clear_syscall_work_syscall_user_dispatch(tsk); 1010 1011 #ifdef CONFIG_STACKPROTECTOR 1012 tsk->stack_canary = get_random_canary(); 1013 #endif 1014 if (orig->cpus_ptr == &orig->cpus_mask) 1015 tsk->cpus_ptr = &tsk->cpus_mask; 1016 dup_user_cpus_ptr(tsk, orig, node); 1017 1018 /* 1019 * One for the user space visible state that goes away when reaped. 1020 * One for the scheduler. 1021 */ 1022 refcount_set(&tsk->rcu_users, 2); 1023 /* One for the rcu users */ 1024 refcount_set(&tsk->usage, 1); 1025 #ifdef CONFIG_BLK_DEV_IO_TRACE 1026 tsk->btrace_seq = 0; 1027 #endif 1028 tsk->splice_pipe = NULL; 1029 tsk->task_frag.page = NULL; 1030 tsk->wake_q.next = NULL; 1031 tsk->worker_private = NULL; 1032 1033 kcov_task_init(tsk); 1034 kmsan_task_create(tsk); 1035 kmap_local_fork(tsk); 1036 1037 #ifdef CONFIG_FAULT_INJECTION 1038 tsk->fail_nth = 0; 1039 #endif 1040 1041 #ifdef CONFIG_BLK_CGROUP 1042 tsk->throttle_disk = NULL; 1043 tsk->use_memdelay = 0; 1044 #endif 1045 1046 #ifdef CONFIG_IOMMU_SVA 1047 tsk->pasid_activated = 0; 1048 #endif 1049 1050 #ifdef CONFIG_MEMCG 1051 tsk->active_memcg = NULL; 1052 #endif 1053 1054 #ifdef CONFIG_CPU_SUP_INTEL 1055 tsk->reported_split_lock = 0; 1056 #endif 1057 1058 #ifdef CONFIG_SCHED_MM_CID 1059 tsk->mm_cid = -1; 1060 tsk->mm_cid_active = 0; 1061 #endif 1062 return tsk; 1063 1064 free_stack: 1065 exit_task_stack_account(tsk); 1066 free_thread_stack(tsk); 1067 free_tsk: 1068 free_task_struct(tsk); 1069 return NULL; 1070 } 1071 1072 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1073 1074 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1075 1076 static int __init coredump_filter_setup(char *s) 1077 { 1078 default_dump_filter = 1079 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1080 MMF_DUMP_FILTER_MASK; 1081 return 1; 1082 } 1083 1084 __setup("coredump_filter=", coredump_filter_setup); 1085 1086 #include <linux/init_task.h> 1087 1088 static void mm_init_aio(struct mm_struct *mm) 1089 { 1090 #ifdef CONFIG_AIO 1091 spin_lock_init(&mm->ioctx_lock); 1092 mm->ioctx_table = NULL; 1093 #endif 1094 } 1095 1096 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1097 struct task_struct *p) 1098 { 1099 #ifdef CONFIG_MEMCG 1100 if (mm->owner == p) 1101 WRITE_ONCE(mm->owner, NULL); 1102 #endif 1103 } 1104 1105 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1106 { 1107 #ifdef CONFIG_MEMCG 1108 mm->owner = p; 1109 #endif 1110 } 1111 1112 static void mm_init_uprobes_state(struct mm_struct *mm) 1113 { 1114 #ifdef CONFIG_UPROBES 1115 mm->uprobes_state.xol_area = NULL; 1116 #endif 1117 } 1118 1119 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1120 struct user_namespace *user_ns) 1121 { 1122 int i; 1123 1124 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1125 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1126 atomic_set(&mm->mm_users, 1); 1127 atomic_set(&mm->mm_count, 1); 1128 seqcount_init(&mm->write_protect_seq); 1129 mmap_init_lock(mm); 1130 INIT_LIST_HEAD(&mm->mmlist); 1131 mm_pgtables_bytes_init(mm); 1132 mm->map_count = 0; 1133 mm->locked_vm = 0; 1134 atomic64_set(&mm->pinned_vm, 0); 1135 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1136 spin_lock_init(&mm->page_table_lock); 1137 spin_lock_init(&mm->arg_lock); 1138 mm_init_cpumask(mm); 1139 mm_init_aio(mm); 1140 mm_init_owner(mm, p); 1141 mm_pasid_init(mm); 1142 RCU_INIT_POINTER(mm->exe_file, NULL); 1143 mmu_notifier_subscriptions_init(mm); 1144 init_tlb_flush_pending(mm); 1145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1146 mm->pmd_huge_pte = NULL; 1147 #endif 1148 mm_init_uprobes_state(mm); 1149 hugetlb_count_init(mm); 1150 1151 if (current->mm) { 1152 mm->flags = current->mm->flags & MMF_INIT_MASK; 1153 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1154 } else { 1155 mm->flags = default_dump_filter; 1156 mm->def_flags = 0; 1157 } 1158 1159 if (mm_alloc_pgd(mm)) 1160 goto fail_nopgd; 1161 1162 if (init_new_context(p, mm)) 1163 goto fail_nocontext; 1164 1165 for (i = 0; i < NR_MM_COUNTERS; i++) 1166 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1167 goto fail_pcpu; 1168 1169 mm->user_ns = get_user_ns(user_ns); 1170 lru_gen_init_mm(mm); 1171 mm_init_cid(mm); 1172 return mm; 1173 1174 fail_pcpu: 1175 while (i > 0) 1176 percpu_counter_destroy(&mm->rss_stat[--i]); 1177 fail_nocontext: 1178 mm_free_pgd(mm); 1179 fail_nopgd: 1180 free_mm(mm); 1181 return NULL; 1182 } 1183 1184 /* 1185 * Allocate and initialize an mm_struct. 1186 */ 1187 struct mm_struct *mm_alloc(void) 1188 { 1189 struct mm_struct *mm; 1190 1191 mm = allocate_mm(); 1192 if (!mm) 1193 return NULL; 1194 1195 memset(mm, 0, sizeof(*mm)); 1196 return mm_init(mm, current, current_user_ns()); 1197 } 1198 1199 static inline void __mmput(struct mm_struct *mm) 1200 { 1201 VM_BUG_ON(atomic_read(&mm->mm_users)); 1202 1203 uprobe_clear_state(mm); 1204 exit_aio(mm); 1205 ksm_exit(mm); 1206 khugepaged_exit(mm); /* must run before exit_mmap */ 1207 exit_mmap(mm); 1208 mm_put_huge_zero_page(mm); 1209 set_mm_exe_file(mm, NULL); 1210 if (!list_empty(&mm->mmlist)) { 1211 spin_lock(&mmlist_lock); 1212 list_del(&mm->mmlist); 1213 spin_unlock(&mmlist_lock); 1214 } 1215 if (mm->binfmt) 1216 module_put(mm->binfmt->module); 1217 lru_gen_del_mm(mm); 1218 mmdrop(mm); 1219 } 1220 1221 /* 1222 * Decrement the use count and release all resources for an mm. 1223 */ 1224 void mmput(struct mm_struct *mm) 1225 { 1226 might_sleep(); 1227 1228 if (atomic_dec_and_test(&mm->mm_users)) 1229 __mmput(mm); 1230 } 1231 EXPORT_SYMBOL_GPL(mmput); 1232 1233 #ifdef CONFIG_MMU 1234 static void mmput_async_fn(struct work_struct *work) 1235 { 1236 struct mm_struct *mm = container_of(work, struct mm_struct, 1237 async_put_work); 1238 1239 __mmput(mm); 1240 } 1241 1242 void mmput_async(struct mm_struct *mm) 1243 { 1244 if (atomic_dec_and_test(&mm->mm_users)) { 1245 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1246 schedule_work(&mm->async_put_work); 1247 } 1248 } 1249 EXPORT_SYMBOL_GPL(mmput_async); 1250 #endif 1251 1252 /** 1253 * set_mm_exe_file - change a reference to the mm's executable file 1254 * 1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1256 * 1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1258 * invocations: in mmput() nobody alive left, in execve task is single 1259 * threaded. 1260 * 1261 * Can only fail if new_exe_file != NULL. 1262 */ 1263 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1264 { 1265 struct file *old_exe_file; 1266 1267 /* 1268 * It is safe to dereference the exe_file without RCU as 1269 * this function is only called if nobody else can access 1270 * this mm -- see comment above for justification. 1271 */ 1272 old_exe_file = rcu_dereference_raw(mm->exe_file); 1273 1274 if (new_exe_file) { 1275 /* 1276 * We expect the caller (i.e., sys_execve) to already denied 1277 * write access, so this is unlikely to fail. 1278 */ 1279 if (unlikely(deny_write_access(new_exe_file))) 1280 return -EACCES; 1281 get_file(new_exe_file); 1282 } 1283 rcu_assign_pointer(mm->exe_file, new_exe_file); 1284 if (old_exe_file) { 1285 allow_write_access(old_exe_file); 1286 fput(old_exe_file); 1287 } 1288 return 0; 1289 } 1290 1291 /** 1292 * replace_mm_exe_file - replace a reference to the mm's executable file 1293 * 1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1295 * dealing with concurrent invocation and without grabbing the mmap lock in 1296 * write mode. 1297 * 1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1299 */ 1300 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1301 { 1302 struct vm_area_struct *vma; 1303 struct file *old_exe_file; 1304 int ret = 0; 1305 1306 /* Forbid mm->exe_file change if old file still mapped. */ 1307 old_exe_file = get_mm_exe_file(mm); 1308 if (old_exe_file) { 1309 VMA_ITERATOR(vmi, mm, 0); 1310 mmap_read_lock(mm); 1311 for_each_vma(vmi, vma) { 1312 if (!vma->vm_file) 1313 continue; 1314 if (path_equal(&vma->vm_file->f_path, 1315 &old_exe_file->f_path)) { 1316 ret = -EBUSY; 1317 break; 1318 } 1319 } 1320 mmap_read_unlock(mm); 1321 fput(old_exe_file); 1322 if (ret) 1323 return ret; 1324 } 1325 1326 /* set the new file, lockless */ 1327 ret = deny_write_access(new_exe_file); 1328 if (ret) 1329 return -EACCES; 1330 get_file(new_exe_file); 1331 1332 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1333 if (old_exe_file) { 1334 /* 1335 * Don't race with dup_mmap() getting the file and disallowing 1336 * write access while someone might open the file writable. 1337 */ 1338 mmap_read_lock(mm); 1339 allow_write_access(old_exe_file); 1340 fput(old_exe_file); 1341 mmap_read_unlock(mm); 1342 } 1343 return 0; 1344 } 1345 1346 /** 1347 * get_mm_exe_file - acquire a reference to the mm's executable file 1348 * 1349 * Returns %NULL if mm has no associated executable file. 1350 * User must release file via fput(). 1351 */ 1352 struct file *get_mm_exe_file(struct mm_struct *mm) 1353 { 1354 struct file *exe_file; 1355 1356 rcu_read_lock(); 1357 exe_file = rcu_dereference(mm->exe_file); 1358 if (exe_file && !get_file_rcu(exe_file)) 1359 exe_file = NULL; 1360 rcu_read_unlock(); 1361 return exe_file; 1362 } 1363 1364 /** 1365 * get_task_exe_file - acquire a reference to the task's executable file 1366 * 1367 * Returns %NULL if task's mm (if any) has no associated executable file or 1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1369 * User must release file via fput(). 1370 */ 1371 struct file *get_task_exe_file(struct task_struct *task) 1372 { 1373 struct file *exe_file = NULL; 1374 struct mm_struct *mm; 1375 1376 task_lock(task); 1377 mm = task->mm; 1378 if (mm) { 1379 if (!(task->flags & PF_KTHREAD)) 1380 exe_file = get_mm_exe_file(mm); 1381 } 1382 task_unlock(task); 1383 return exe_file; 1384 } 1385 1386 /** 1387 * get_task_mm - acquire a reference to the task's mm 1388 * 1389 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1390 * this kernel workthread has transiently adopted a user mm with use_mm, 1391 * to do its AIO) is not set and if so returns a reference to it, after 1392 * bumping up the use count. User must release the mm via mmput() 1393 * after use. Typically used by /proc and ptrace. 1394 */ 1395 struct mm_struct *get_task_mm(struct task_struct *task) 1396 { 1397 struct mm_struct *mm; 1398 1399 task_lock(task); 1400 mm = task->mm; 1401 if (mm) { 1402 if (task->flags & PF_KTHREAD) 1403 mm = NULL; 1404 else 1405 mmget(mm); 1406 } 1407 task_unlock(task); 1408 return mm; 1409 } 1410 EXPORT_SYMBOL_GPL(get_task_mm); 1411 1412 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1413 { 1414 struct mm_struct *mm; 1415 int err; 1416 1417 err = down_read_killable(&task->signal->exec_update_lock); 1418 if (err) 1419 return ERR_PTR(err); 1420 1421 mm = get_task_mm(task); 1422 if (mm && mm != current->mm && 1423 !ptrace_may_access(task, mode)) { 1424 mmput(mm); 1425 mm = ERR_PTR(-EACCES); 1426 } 1427 up_read(&task->signal->exec_update_lock); 1428 1429 return mm; 1430 } 1431 1432 static void complete_vfork_done(struct task_struct *tsk) 1433 { 1434 struct completion *vfork; 1435 1436 task_lock(tsk); 1437 vfork = tsk->vfork_done; 1438 if (likely(vfork)) { 1439 tsk->vfork_done = NULL; 1440 complete(vfork); 1441 } 1442 task_unlock(tsk); 1443 } 1444 1445 static int wait_for_vfork_done(struct task_struct *child, 1446 struct completion *vfork) 1447 { 1448 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1449 int killed; 1450 1451 cgroup_enter_frozen(); 1452 killed = wait_for_completion_state(vfork, state); 1453 cgroup_leave_frozen(false); 1454 1455 if (killed) { 1456 task_lock(child); 1457 child->vfork_done = NULL; 1458 task_unlock(child); 1459 } 1460 1461 put_task_struct(child); 1462 return killed; 1463 } 1464 1465 /* Please note the differences between mmput and mm_release. 1466 * mmput is called whenever we stop holding onto a mm_struct, 1467 * error success whatever. 1468 * 1469 * mm_release is called after a mm_struct has been removed 1470 * from the current process. 1471 * 1472 * This difference is important for error handling, when we 1473 * only half set up a mm_struct for a new process and need to restore 1474 * the old one. Because we mmput the new mm_struct before 1475 * restoring the old one. . . 1476 * Eric Biederman 10 January 1998 1477 */ 1478 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1479 { 1480 uprobe_free_utask(tsk); 1481 1482 /* Get rid of any cached register state */ 1483 deactivate_mm(tsk, mm); 1484 1485 /* 1486 * Signal userspace if we're not exiting with a core dump 1487 * because we want to leave the value intact for debugging 1488 * purposes. 1489 */ 1490 if (tsk->clear_child_tid) { 1491 if (atomic_read(&mm->mm_users) > 1) { 1492 /* 1493 * We don't check the error code - if userspace has 1494 * not set up a proper pointer then tough luck. 1495 */ 1496 put_user(0, tsk->clear_child_tid); 1497 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1498 1, NULL, NULL, 0, 0); 1499 } 1500 tsk->clear_child_tid = NULL; 1501 } 1502 1503 /* 1504 * All done, finally we can wake up parent and return this mm to him. 1505 * Also kthread_stop() uses this completion for synchronization. 1506 */ 1507 if (tsk->vfork_done) 1508 complete_vfork_done(tsk); 1509 } 1510 1511 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1512 { 1513 futex_exit_release(tsk); 1514 mm_release(tsk, mm); 1515 } 1516 1517 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1518 { 1519 futex_exec_release(tsk); 1520 mm_release(tsk, mm); 1521 } 1522 1523 /** 1524 * dup_mm() - duplicates an existing mm structure 1525 * @tsk: the task_struct with which the new mm will be associated. 1526 * @oldmm: the mm to duplicate. 1527 * 1528 * Allocates a new mm structure and duplicates the provided @oldmm structure 1529 * content into it. 1530 * 1531 * Return: the duplicated mm or NULL on failure. 1532 */ 1533 static struct mm_struct *dup_mm(struct task_struct *tsk, 1534 struct mm_struct *oldmm) 1535 { 1536 struct mm_struct *mm; 1537 int err; 1538 1539 mm = allocate_mm(); 1540 if (!mm) 1541 goto fail_nomem; 1542 1543 memcpy(mm, oldmm, sizeof(*mm)); 1544 1545 if (!mm_init(mm, tsk, mm->user_ns)) 1546 goto fail_nomem; 1547 1548 err = dup_mmap(mm, oldmm); 1549 if (err) 1550 goto free_pt; 1551 1552 mm->hiwater_rss = get_mm_rss(mm); 1553 mm->hiwater_vm = mm->total_vm; 1554 1555 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1556 goto free_pt; 1557 1558 return mm; 1559 1560 free_pt: 1561 /* don't put binfmt in mmput, we haven't got module yet */ 1562 mm->binfmt = NULL; 1563 mm_init_owner(mm, NULL); 1564 mmput(mm); 1565 1566 fail_nomem: 1567 return NULL; 1568 } 1569 1570 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1571 { 1572 struct mm_struct *mm, *oldmm; 1573 1574 tsk->min_flt = tsk->maj_flt = 0; 1575 tsk->nvcsw = tsk->nivcsw = 0; 1576 #ifdef CONFIG_DETECT_HUNG_TASK 1577 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1578 tsk->last_switch_time = 0; 1579 #endif 1580 1581 tsk->mm = NULL; 1582 tsk->active_mm = NULL; 1583 1584 /* 1585 * Are we cloning a kernel thread? 1586 * 1587 * We need to steal a active VM for that.. 1588 */ 1589 oldmm = current->mm; 1590 if (!oldmm) 1591 return 0; 1592 1593 if (clone_flags & CLONE_VM) { 1594 mmget(oldmm); 1595 mm = oldmm; 1596 } else { 1597 mm = dup_mm(tsk, current->mm); 1598 if (!mm) 1599 return -ENOMEM; 1600 } 1601 1602 tsk->mm = mm; 1603 tsk->active_mm = mm; 1604 sched_mm_cid_fork(tsk); 1605 return 0; 1606 } 1607 1608 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1609 { 1610 struct fs_struct *fs = current->fs; 1611 if (clone_flags & CLONE_FS) { 1612 /* tsk->fs is already what we want */ 1613 spin_lock(&fs->lock); 1614 if (fs->in_exec) { 1615 spin_unlock(&fs->lock); 1616 return -EAGAIN; 1617 } 1618 fs->users++; 1619 spin_unlock(&fs->lock); 1620 return 0; 1621 } 1622 tsk->fs = copy_fs_struct(fs); 1623 if (!tsk->fs) 1624 return -ENOMEM; 1625 return 0; 1626 } 1627 1628 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1629 { 1630 struct files_struct *oldf, *newf; 1631 int error = 0; 1632 1633 /* 1634 * A background process may not have any files ... 1635 */ 1636 oldf = current->files; 1637 if (!oldf) 1638 goto out; 1639 1640 if (clone_flags & CLONE_FILES) { 1641 atomic_inc(&oldf->count); 1642 goto out; 1643 } 1644 1645 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1646 if (!newf) 1647 goto out; 1648 1649 tsk->files = newf; 1650 error = 0; 1651 out: 1652 return error; 1653 } 1654 1655 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1656 { 1657 struct sighand_struct *sig; 1658 1659 if (clone_flags & CLONE_SIGHAND) { 1660 refcount_inc(¤t->sighand->count); 1661 return 0; 1662 } 1663 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1664 RCU_INIT_POINTER(tsk->sighand, sig); 1665 if (!sig) 1666 return -ENOMEM; 1667 1668 refcount_set(&sig->count, 1); 1669 spin_lock_irq(¤t->sighand->siglock); 1670 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1671 spin_unlock_irq(¤t->sighand->siglock); 1672 1673 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1674 if (clone_flags & CLONE_CLEAR_SIGHAND) 1675 flush_signal_handlers(tsk, 0); 1676 1677 return 0; 1678 } 1679 1680 void __cleanup_sighand(struct sighand_struct *sighand) 1681 { 1682 if (refcount_dec_and_test(&sighand->count)) { 1683 signalfd_cleanup(sighand); 1684 /* 1685 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1686 * without an RCU grace period, see __lock_task_sighand(). 1687 */ 1688 kmem_cache_free(sighand_cachep, sighand); 1689 } 1690 } 1691 1692 /* 1693 * Initialize POSIX timer handling for a thread group. 1694 */ 1695 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1696 { 1697 struct posix_cputimers *pct = &sig->posix_cputimers; 1698 unsigned long cpu_limit; 1699 1700 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1701 posix_cputimers_group_init(pct, cpu_limit); 1702 } 1703 1704 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1705 { 1706 struct signal_struct *sig; 1707 1708 if (clone_flags & CLONE_THREAD) 1709 return 0; 1710 1711 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1712 tsk->signal = sig; 1713 if (!sig) 1714 return -ENOMEM; 1715 1716 sig->nr_threads = 1; 1717 sig->quick_threads = 1; 1718 atomic_set(&sig->live, 1); 1719 refcount_set(&sig->sigcnt, 1); 1720 1721 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1722 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1723 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1724 1725 init_waitqueue_head(&sig->wait_chldexit); 1726 sig->curr_target = tsk; 1727 init_sigpending(&sig->shared_pending); 1728 INIT_HLIST_HEAD(&sig->multiprocess); 1729 seqlock_init(&sig->stats_lock); 1730 prev_cputime_init(&sig->prev_cputime); 1731 1732 #ifdef CONFIG_POSIX_TIMERS 1733 INIT_LIST_HEAD(&sig->posix_timers); 1734 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1735 sig->real_timer.function = it_real_fn; 1736 #endif 1737 1738 task_lock(current->group_leader); 1739 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1740 task_unlock(current->group_leader); 1741 1742 posix_cpu_timers_init_group(sig); 1743 1744 tty_audit_fork(sig); 1745 sched_autogroup_fork(sig); 1746 1747 sig->oom_score_adj = current->signal->oom_score_adj; 1748 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1749 1750 mutex_init(&sig->cred_guard_mutex); 1751 init_rwsem(&sig->exec_update_lock); 1752 1753 return 0; 1754 } 1755 1756 static void copy_seccomp(struct task_struct *p) 1757 { 1758 #ifdef CONFIG_SECCOMP 1759 /* 1760 * Must be called with sighand->lock held, which is common to 1761 * all threads in the group. Holding cred_guard_mutex is not 1762 * needed because this new task is not yet running and cannot 1763 * be racing exec. 1764 */ 1765 assert_spin_locked(¤t->sighand->siglock); 1766 1767 /* Ref-count the new filter user, and assign it. */ 1768 get_seccomp_filter(current); 1769 p->seccomp = current->seccomp; 1770 1771 /* 1772 * Explicitly enable no_new_privs here in case it got set 1773 * between the task_struct being duplicated and holding the 1774 * sighand lock. The seccomp state and nnp must be in sync. 1775 */ 1776 if (task_no_new_privs(current)) 1777 task_set_no_new_privs(p); 1778 1779 /* 1780 * If the parent gained a seccomp mode after copying thread 1781 * flags and between before we held the sighand lock, we have 1782 * to manually enable the seccomp thread flag here. 1783 */ 1784 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1785 set_task_syscall_work(p, SECCOMP); 1786 #endif 1787 } 1788 1789 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1790 { 1791 current->clear_child_tid = tidptr; 1792 1793 return task_pid_vnr(current); 1794 } 1795 1796 static void rt_mutex_init_task(struct task_struct *p) 1797 { 1798 raw_spin_lock_init(&p->pi_lock); 1799 #ifdef CONFIG_RT_MUTEXES 1800 p->pi_waiters = RB_ROOT_CACHED; 1801 p->pi_top_task = NULL; 1802 p->pi_blocked_on = NULL; 1803 #endif 1804 } 1805 1806 static inline void init_task_pid_links(struct task_struct *task) 1807 { 1808 enum pid_type type; 1809 1810 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1811 INIT_HLIST_NODE(&task->pid_links[type]); 1812 } 1813 1814 static inline void 1815 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1816 { 1817 if (type == PIDTYPE_PID) 1818 task->thread_pid = pid; 1819 else 1820 task->signal->pids[type] = pid; 1821 } 1822 1823 static inline void rcu_copy_process(struct task_struct *p) 1824 { 1825 #ifdef CONFIG_PREEMPT_RCU 1826 p->rcu_read_lock_nesting = 0; 1827 p->rcu_read_unlock_special.s = 0; 1828 p->rcu_blocked_node = NULL; 1829 INIT_LIST_HEAD(&p->rcu_node_entry); 1830 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1831 #ifdef CONFIG_TASKS_RCU 1832 p->rcu_tasks_holdout = false; 1833 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1834 p->rcu_tasks_idle_cpu = -1; 1835 #endif /* #ifdef CONFIG_TASKS_RCU */ 1836 #ifdef CONFIG_TASKS_TRACE_RCU 1837 p->trc_reader_nesting = 0; 1838 p->trc_reader_special.s = 0; 1839 INIT_LIST_HEAD(&p->trc_holdout_list); 1840 INIT_LIST_HEAD(&p->trc_blkd_node); 1841 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1842 } 1843 1844 struct pid *pidfd_pid(const struct file *file) 1845 { 1846 if (file->f_op == &pidfd_fops) 1847 return file->private_data; 1848 1849 return ERR_PTR(-EBADF); 1850 } 1851 1852 static int pidfd_release(struct inode *inode, struct file *file) 1853 { 1854 struct pid *pid = file->private_data; 1855 1856 file->private_data = NULL; 1857 put_pid(pid); 1858 return 0; 1859 } 1860 1861 #ifdef CONFIG_PROC_FS 1862 /** 1863 * pidfd_show_fdinfo - print information about a pidfd 1864 * @m: proc fdinfo file 1865 * @f: file referencing a pidfd 1866 * 1867 * Pid: 1868 * This function will print the pid that a given pidfd refers to in the 1869 * pid namespace of the procfs instance. 1870 * If the pid namespace of the process is not a descendant of the pid 1871 * namespace of the procfs instance 0 will be shown as its pid. This is 1872 * similar to calling getppid() on a process whose parent is outside of 1873 * its pid namespace. 1874 * 1875 * NSpid: 1876 * If pid namespaces are supported then this function will also print 1877 * the pid of a given pidfd refers to for all descendant pid namespaces 1878 * starting from the current pid namespace of the instance, i.e. the 1879 * Pid field and the first entry in the NSpid field will be identical. 1880 * If the pid namespace of the process is not a descendant of the pid 1881 * namespace of the procfs instance 0 will be shown as its first NSpid 1882 * entry and no others will be shown. 1883 * Note that this differs from the Pid and NSpid fields in 1884 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1885 * the pid namespace of the procfs instance. The difference becomes 1886 * obvious when sending around a pidfd between pid namespaces from a 1887 * different branch of the tree, i.e. where no ancestral relation is 1888 * present between the pid namespaces: 1889 * - create two new pid namespaces ns1 and ns2 in the initial pid 1890 * namespace (also take care to create new mount namespaces in the 1891 * new pid namespace and mount procfs) 1892 * - create a process with a pidfd in ns1 1893 * - send pidfd from ns1 to ns2 1894 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1895 * have exactly one entry, which is 0 1896 */ 1897 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1898 { 1899 struct pid *pid = f->private_data; 1900 struct pid_namespace *ns; 1901 pid_t nr = -1; 1902 1903 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1904 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1905 nr = pid_nr_ns(pid, ns); 1906 } 1907 1908 seq_put_decimal_ll(m, "Pid:\t", nr); 1909 1910 #ifdef CONFIG_PID_NS 1911 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1912 if (nr > 0) { 1913 int i; 1914 1915 /* If nr is non-zero it means that 'pid' is valid and that 1916 * ns, i.e. the pid namespace associated with the procfs 1917 * instance, is in the pid namespace hierarchy of pid. 1918 * Start at one below the already printed level. 1919 */ 1920 for (i = ns->level + 1; i <= pid->level; i++) 1921 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1922 } 1923 #endif 1924 seq_putc(m, '\n'); 1925 } 1926 #endif 1927 1928 /* 1929 * Poll support for process exit notification. 1930 */ 1931 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1932 { 1933 struct pid *pid = file->private_data; 1934 __poll_t poll_flags = 0; 1935 1936 poll_wait(file, &pid->wait_pidfd, pts); 1937 1938 /* 1939 * Inform pollers only when the whole thread group exits. 1940 * If the thread group leader exits before all other threads in the 1941 * group, then poll(2) should block, similar to the wait(2) family. 1942 */ 1943 if (thread_group_exited(pid)) 1944 poll_flags = EPOLLIN | EPOLLRDNORM; 1945 1946 return poll_flags; 1947 } 1948 1949 const struct file_operations pidfd_fops = { 1950 .release = pidfd_release, 1951 .poll = pidfd_poll, 1952 #ifdef CONFIG_PROC_FS 1953 .show_fdinfo = pidfd_show_fdinfo, 1954 #endif 1955 }; 1956 1957 static void __delayed_free_task(struct rcu_head *rhp) 1958 { 1959 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1960 1961 free_task(tsk); 1962 } 1963 1964 static __always_inline void delayed_free_task(struct task_struct *tsk) 1965 { 1966 if (IS_ENABLED(CONFIG_MEMCG)) 1967 call_rcu(&tsk->rcu, __delayed_free_task); 1968 else 1969 free_task(tsk); 1970 } 1971 1972 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1973 { 1974 /* Skip if kernel thread */ 1975 if (!tsk->mm) 1976 return; 1977 1978 /* Skip if spawning a thread or using vfork */ 1979 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1980 return; 1981 1982 /* We need to synchronize with __set_oom_adj */ 1983 mutex_lock(&oom_adj_mutex); 1984 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1985 /* Update the values in case they were changed after copy_signal */ 1986 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1987 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1988 mutex_unlock(&oom_adj_mutex); 1989 } 1990 1991 #ifdef CONFIG_RV 1992 static void rv_task_fork(struct task_struct *p) 1993 { 1994 int i; 1995 1996 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1997 p->rv[i].da_mon.monitoring = false; 1998 } 1999 #else 2000 #define rv_task_fork(p) do {} while (0) 2001 #endif 2002 2003 /* 2004 * This creates a new process as a copy of the old one, 2005 * but does not actually start it yet. 2006 * 2007 * It copies the registers, and all the appropriate 2008 * parts of the process environment (as per the clone 2009 * flags). The actual kick-off is left to the caller. 2010 */ 2011 static __latent_entropy struct task_struct *copy_process( 2012 struct pid *pid, 2013 int trace, 2014 int node, 2015 struct kernel_clone_args *args) 2016 { 2017 int pidfd = -1, retval; 2018 struct task_struct *p; 2019 struct multiprocess_signals delayed; 2020 struct file *pidfile = NULL; 2021 const u64 clone_flags = args->flags; 2022 struct nsproxy *nsp = current->nsproxy; 2023 2024 /* 2025 * Don't allow sharing the root directory with processes in a different 2026 * namespace 2027 */ 2028 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2029 return ERR_PTR(-EINVAL); 2030 2031 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2032 return ERR_PTR(-EINVAL); 2033 2034 /* 2035 * Thread groups must share signals as well, and detached threads 2036 * can only be started up within the thread group. 2037 */ 2038 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2039 return ERR_PTR(-EINVAL); 2040 2041 /* 2042 * Shared signal handlers imply shared VM. By way of the above, 2043 * thread groups also imply shared VM. Blocking this case allows 2044 * for various simplifications in other code. 2045 */ 2046 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2047 return ERR_PTR(-EINVAL); 2048 2049 /* 2050 * Siblings of global init remain as zombies on exit since they are 2051 * not reaped by their parent (swapper). To solve this and to avoid 2052 * multi-rooted process trees, prevent global and container-inits 2053 * from creating siblings. 2054 */ 2055 if ((clone_flags & CLONE_PARENT) && 2056 current->signal->flags & SIGNAL_UNKILLABLE) 2057 return ERR_PTR(-EINVAL); 2058 2059 /* 2060 * If the new process will be in a different pid or user namespace 2061 * do not allow it to share a thread group with the forking task. 2062 */ 2063 if (clone_flags & CLONE_THREAD) { 2064 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2065 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2066 return ERR_PTR(-EINVAL); 2067 } 2068 2069 if (clone_flags & CLONE_PIDFD) { 2070 /* 2071 * - CLONE_DETACHED is blocked so that we can potentially 2072 * reuse it later for CLONE_PIDFD. 2073 * - CLONE_THREAD is blocked until someone really needs it. 2074 */ 2075 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2076 return ERR_PTR(-EINVAL); 2077 } 2078 2079 /* 2080 * Force any signals received before this point to be delivered 2081 * before the fork happens. Collect up signals sent to multiple 2082 * processes that happen during the fork and delay them so that 2083 * they appear to happen after the fork. 2084 */ 2085 sigemptyset(&delayed.signal); 2086 INIT_HLIST_NODE(&delayed.node); 2087 2088 spin_lock_irq(¤t->sighand->siglock); 2089 if (!(clone_flags & CLONE_THREAD)) 2090 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2091 recalc_sigpending(); 2092 spin_unlock_irq(¤t->sighand->siglock); 2093 retval = -ERESTARTNOINTR; 2094 if (task_sigpending(current)) 2095 goto fork_out; 2096 2097 retval = -ENOMEM; 2098 p = dup_task_struct(current, node); 2099 if (!p) 2100 goto fork_out; 2101 p->flags &= ~PF_KTHREAD; 2102 if (args->kthread) 2103 p->flags |= PF_KTHREAD; 2104 if (args->io_thread) { 2105 /* 2106 * Mark us an IO worker, and block any signal that isn't 2107 * fatal or STOP 2108 */ 2109 p->flags |= PF_IO_WORKER; 2110 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2111 } 2112 2113 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2114 /* 2115 * Clear TID on mm_release()? 2116 */ 2117 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2118 2119 ftrace_graph_init_task(p); 2120 2121 rt_mutex_init_task(p); 2122 2123 lockdep_assert_irqs_enabled(); 2124 #ifdef CONFIG_PROVE_LOCKING 2125 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2126 #endif 2127 retval = copy_creds(p, clone_flags); 2128 if (retval < 0) 2129 goto bad_fork_free; 2130 2131 retval = -EAGAIN; 2132 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2133 if (p->real_cred->user != INIT_USER && 2134 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2135 goto bad_fork_cleanup_count; 2136 } 2137 current->flags &= ~PF_NPROC_EXCEEDED; 2138 2139 /* 2140 * If multiple threads are within copy_process(), then this check 2141 * triggers too late. This doesn't hurt, the check is only there 2142 * to stop root fork bombs. 2143 */ 2144 retval = -EAGAIN; 2145 if (data_race(nr_threads >= max_threads)) 2146 goto bad_fork_cleanup_count; 2147 2148 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2149 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2150 p->flags |= PF_FORKNOEXEC; 2151 INIT_LIST_HEAD(&p->children); 2152 INIT_LIST_HEAD(&p->sibling); 2153 rcu_copy_process(p); 2154 p->vfork_done = NULL; 2155 spin_lock_init(&p->alloc_lock); 2156 2157 init_sigpending(&p->pending); 2158 2159 p->utime = p->stime = p->gtime = 0; 2160 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2161 p->utimescaled = p->stimescaled = 0; 2162 #endif 2163 prev_cputime_init(&p->prev_cputime); 2164 2165 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2166 seqcount_init(&p->vtime.seqcount); 2167 p->vtime.starttime = 0; 2168 p->vtime.state = VTIME_INACTIVE; 2169 #endif 2170 2171 #ifdef CONFIG_IO_URING 2172 p->io_uring = NULL; 2173 #endif 2174 2175 #if defined(SPLIT_RSS_COUNTING) 2176 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2177 #endif 2178 2179 p->default_timer_slack_ns = current->timer_slack_ns; 2180 2181 #ifdef CONFIG_PSI 2182 p->psi_flags = 0; 2183 #endif 2184 2185 task_io_accounting_init(&p->ioac); 2186 acct_clear_integrals(p); 2187 2188 posix_cputimers_init(&p->posix_cputimers); 2189 2190 p->io_context = NULL; 2191 audit_set_context(p, NULL); 2192 cgroup_fork(p); 2193 if (args->kthread) { 2194 if (!set_kthread_struct(p)) 2195 goto bad_fork_cleanup_delayacct; 2196 } 2197 #ifdef CONFIG_NUMA 2198 p->mempolicy = mpol_dup(p->mempolicy); 2199 if (IS_ERR(p->mempolicy)) { 2200 retval = PTR_ERR(p->mempolicy); 2201 p->mempolicy = NULL; 2202 goto bad_fork_cleanup_delayacct; 2203 } 2204 #endif 2205 #ifdef CONFIG_CPUSETS 2206 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2207 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2208 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2209 #endif 2210 #ifdef CONFIG_TRACE_IRQFLAGS 2211 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2212 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2213 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2214 p->softirqs_enabled = 1; 2215 p->softirq_context = 0; 2216 #endif 2217 2218 p->pagefault_disabled = 0; 2219 2220 #ifdef CONFIG_LOCKDEP 2221 lockdep_init_task(p); 2222 #endif 2223 2224 #ifdef CONFIG_DEBUG_MUTEXES 2225 p->blocked_on = NULL; /* not blocked yet */ 2226 #endif 2227 #ifdef CONFIG_BCACHE 2228 p->sequential_io = 0; 2229 p->sequential_io_avg = 0; 2230 #endif 2231 #ifdef CONFIG_BPF_SYSCALL 2232 RCU_INIT_POINTER(p->bpf_storage, NULL); 2233 p->bpf_ctx = NULL; 2234 #endif 2235 2236 /* Perform scheduler related setup. Assign this task to a CPU. */ 2237 retval = sched_fork(clone_flags, p); 2238 if (retval) 2239 goto bad_fork_cleanup_policy; 2240 2241 retval = perf_event_init_task(p, clone_flags); 2242 if (retval) 2243 goto bad_fork_cleanup_policy; 2244 retval = audit_alloc(p); 2245 if (retval) 2246 goto bad_fork_cleanup_perf; 2247 /* copy all the process information */ 2248 shm_init_task(p); 2249 retval = security_task_alloc(p, clone_flags); 2250 if (retval) 2251 goto bad_fork_cleanup_audit; 2252 retval = copy_semundo(clone_flags, p); 2253 if (retval) 2254 goto bad_fork_cleanup_security; 2255 retval = copy_files(clone_flags, p); 2256 if (retval) 2257 goto bad_fork_cleanup_semundo; 2258 retval = copy_fs(clone_flags, p); 2259 if (retval) 2260 goto bad_fork_cleanup_files; 2261 retval = copy_sighand(clone_flags, p); 2262 if (retval) 2263 goto bad_fork_cleanup_fs; 2264 retval = copy_signal(clone_flags, p); 2265 if (retval) 2266 goto bad_fork_cleanup_sighand; 2267 retval = copy_mm(clone_flags, p); 2268 if (retval) 2269 goto bad_fork_cleanup_signal; 2270 retval = copy_namespaces(clone_flags, p); 2271 if (retval) 2272 goto bad_fork_cleanup_mm; 2273 retval = copy_io(clone_flags, p); 2274 if (retval) 2275 goto bad_fork_cleanup_namespaces; 2276 retval = copy_thread(p, args); 2277 if (retval) 2278 goto bad_fork_cleanup_io; 2279 2280 stackleak_task_init(p); 2281 2282 if (pid != &init_struct_pid) { 2283 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2284 args->set_tid_size); 2285 if (IS_ERR(pid)) { 2286 retval = PTR_ERR(pid); 2287 goto bad_fork_cleanup_thread; 2288 } 2289 } 2290 2291 /* 2292 * This has to happen after we've potentially unshared the file 2293 * descriptor table (so that the pidfd doesn't leak into the child 2294 * if the fd table isn't shared). 2295 */ 2296 if (clone_flags & CLONE_PIDFD) { 2297 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2298 if (retval < 0) 2299 goto bad_fork_free_pid; 2300 2301 pidfd = retval; 2302 2303 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2304 O_RDWR | O_CLOEXEC); 2305 if (IS_ERR(pidfile)) { 2306 put_unused_fd(pidfd); 2307 retval = PTR_ERR(pidfile); 2308 goto bad_fork_free_pid; 2309 } 2310 get_pid(pid); /* held by pidfile now */ 2311 2312 retval = put_user(pidfd, args->pidfd); 2313 if (retval) 2314 goto bad_fork_put_pidfd; 2315 } 2316 2317 #ifdef CONFIG_BLOCK 2318 p->plug = NULL; 2319 #endif 2320 futex_init_task(p); 2321 2322 /* 2323 * sigaltstack should be cleared when sharing the same VM 2324 */ 2325 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2326 sas_ss_reset(p); 2327 2328 /* 2329 * Syscall tracing and stepping should be turned off in the 2330 * child regardless of CLONE_PTRACE. 2331 */ 2332 user_disable_single_step(p); 2333 clear_task_syscall_work(p, SYSCALL_TRACE); 2334 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2335 clear_task_syscall_work(p, SYSCALL_EMU); 2336 #endif 2337 clear_tsk_latency_tracing(p); 2338 2339 /* ok, now we should be set up.. */ 2340 p->pid = pid_nr(pid); 2341 if (clone_flags & CLONE_THREAD) { 2342 p->group_leader = current->group_leader; 2343 p->tgid = current->tgid; 2344 } else { 2345 p->group_leader = p; 2346 p->tgid = p->pid; 2347 } 2348 2349 p->nr_dirtied = 0; 2350 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2351 p->dirty_paused_when = 0; 2352 2353 p->pdeath_signal = 0; 2354 INIT_LIST_HEAD(&p->thread_group); 2355 p->task_works = NULL; 2356 clear_posix_cputimers_work(p); 2357 2358 #ifdef CONFIG_KRETPROBES 2359 p->kretprobe_instances.first = NULL; 2360 #endif 2361 #ifdef CONFIG_RETHOOK 2362 p->rethooks.first = NULL; 2363 #endif 2364 2365 /* 2366 * Ensure that the cgroup subsystem policies allow the new process to be 2367 * forked. It should be noted that the new process's css_set can be changed 2368 * between here and cgroup_post_fork() if an organisation operation is in 2369 * progress. 2370 */ 2371 retval = cgroup_can_fork(p, args); 2372 if (retval) 2373 goto bad_fork_put_pidfd; 2374 2375 /* 2376 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2377 * the new task on the correct runqueue. All this *before* the task 2378 * becomes visible. 2379 * 2380 * This isn't part of ->can_fork() because while the re-cloning is 2381 * cgroup specific, it unconditionally needs to place the task on a 2382 * runqueue. 2383 */ 2384 sched_cgroup_fork(p, args); 2385 2386 /* 2387 * From this point on we must avoid any synchronous user-space 2388 * communication until we take the tasklist-lock. In particular, we do 2389 * not want user-space to be able to predict the process start-time by 2390 * stalling fork(2) after we recorded the start_time but before it is 2391 * visible to the system. 2392 */ 2393 2394 p->start_time = ktime_get_ns(); 2395 p->start_boottime = ktime_get_boottime_ns(); 2396 2397 /* 2398 * Make it visible to the rest of the system, but dont wake it up yet. 2399 * Need tasklist lock for parent etc handling! 2400 */ 2401 write_lock_irq(&tasklist_lock); 2402 2403 /* CLONE_PARENT re-uses the old parent */ 2404 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2405 p->real_parent = current->real_parent; 2406 p->parent_exec_id = current->parent_exec_id; 2407 if (clone_flags & CLONE_THREAD) 2408 p->exit_signal = -1; 2409 else 2410 p->exit_signal = current->group_leader->exit_signal; 2411 } else { 2412 p->real_parent = current; 2413 p->parent_exec_id = current->self_exec_id; 2414 p->exit_signal = args->exit_signal; 2415 } 2416 2417 klp_copy_process(p); 2418 2419 sched_core_fork(p); 2420 2421 spin_lock(¤t->sighand->siglock); 2422 2423 rv_task_fork(p); 2424 2425 rseq_fork(p, clone_flags); 2426 2427 /* Don't start children in a dying pid namespace */ 2428 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2429 retval = -ENOMEM; 2430 goto bad_fork_cancel_cgroup; 2431 } 2432 2433 /* Let kill terminate clone/fork in the middle */ 2434 if (fatal_signal_pending(current)) { 2435 retval = -EINTR; 2436 goto bad_fork_cancel_cgroup; 2437 } 2438 2439 /* No more failure paths after this point. */ 2440 2441 /* 2442 * Copy seccomp details explicitly here, in case they were changed 2443 * before holding sighand lock. 2444 */ 2445 copy_seccomp(p); 2446 2447 init_task_pid_links(p); 2448 if (likely(p->pid)) { 2449 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2450 2451 init_task_pid(p, PIDTYPE_PID, pid); 2452 if (thread_group_leader(p)) { 2453 init_task_pid(p, PIDTYPE_TGID, pid); 2454 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2455 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2456 2457 if (is_child_reaper(pid)) { 2458 ns_of_pid(pid)->child_reaper = p; 2459 p->signal->flags |= SIGNAL_UNKILLABLE; 2460 } 2461 p->signal->shared_pending.signal = delayed.signal; 2462 p->signal->tty = tty_kref_get(current->signal->tty); 2463 /* 2464 * Inherit has_child_subreaper flag under the same 2465 * tasklist_lock with adding child to the process tree 2466 * for propagate_has_child_subreaper optimization. 2467 */ 2468 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2469 p->real_parent->signal->is_child_subreaper; 2470 list_add_tail(&p->sibling, &p->real_parent->children); 2471 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2472 attach_pid(p, PIDTYPE_TGID); 2473 attach_pid(p, PIDTYPE_PGID); 2474 attach_pid(p, PIDTYPE_SID); 2475 __this_cpu_inc(process_counts); 2476 } else { 2477 current->signal->nr_threads++; 2478 current->signal->quick_threads++; 2479 atomic_inc(¤t->signal->live); 2480 refcount_inc(¤t->signal->sigcnt); 2481 task_join_group_stop(p); 2482 list_add_tail_rcu(&p->thread_group, 2483 &p->group_leader->thread_group); 2484 list_add_tail_rcu(&p->thread_node, 2485 &p->signal->thread_head); 2486 } 2487 attach_pid(p, PIDTYPE_PID); 2488 nr_threads++; 2489 } 2490 total_forks++; 2491 hlist_del_init(&delayed.node); 2492 spin_unlock(¤t->sighand->siglock); 2493 syscall_tracepoint_update(p); 2494 write_unlock_irq(&tasklist_lock); 2495 2496 if (pidfile) 2497 fd_install(pidfd, pidfile); 2498 2499 proc_fork_connector(p); 2500 sched_post_fork(p); 2501 cgroup_post_fork(p, args); 2502 perf_event_fork(p); 2503 2504 trace_task_newtask(p, clone_flags); 2505 uprobe_copy_process(p, clone_flags); 2506 2507 copy_oom_score_adj(clone_flags, p); 2508 2509 return p; 2510 2511 bad_fork_cancel_cgroup: 2512 sched_core_free(p); 2513 spin_unlock(¤t->sighand->siglock); 2514 write_unlock_irq(&tasklist_lock); 2515 cgroup_cancel_fork(p, args); 2516 bad_fork_put_pidfd: 2517 if (clone_flags & CLONE_PIDFD) { 2518 fput(pidfile); 2519 put_unused_fd(pidfd); 2520 } 2521 bad_fork_free_pid: 2522 if (pid != &init_struct_pid) 2523 free_pid(pid); 2524 bad_fork_cleanup_thread: 2525 exit_thread(p); 2526 bad_fork_cleanup_io: 2527 if (p->io_context) 2528 exit_io_context(p); 2529 bad_fork_cleanup_namespaces: 2530 exit_task_namespaces(p); 2531 bad_fork_cleanup_mm: 2532 if (p->mm) { 2533 mm_clear_owner(p->mm, p); 2534 mmput(p->mm); 2535 } 2536 bad_fork_cleanup_signal: 2537 if (!(clone_flags & CLONE_THREAD)) 2538 free_signal_struct(p->signal); 2539 bad_fork_cleanup_sighand: 2540 __cleanup_sighand(p->sighand); 2541 bad_fork_cleanup_fs: 2542 exit_fs(p); /* blocking */ 2543 bad_fork_cleanup_files: 2544 exit_files(p); /* blocking */ 2545 bad_fork_cleanup_semundo: 2546 exit_sem(p); 2547 bad_fork_cleanup_security: 2548 security_task_free(p); 2549 bad_fork_cleanup_audit: 2550 audit_free(p); 2551 bad_fork_cleanup_perf: 2552 perf_event_free_task(p); 2553 bad_fork_cleanup_policy: 2554 lockdep_free_task(p); 2555 #ifdef CONFIG_NUMA 2556 mpol_put(p->mempolicy); 2557 #endif 2558 bad_fork_cleanup_delayacct: 2559 delayacct_tsk_free(p); 2560 bad_fork_cleanup_count: 2561 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2562 exit_creds(p); 2563 bad_fork_free: 2564 WRITE_ONCE(p->__state, TASK_DEAD); 2565 exit_task_stack_account(p); 2566 put_task_stack(p); 2567 delayed_free_task(p); 2568 fork_out: 2569 spin_lock_irq(¤t->sighand->siglock); 2570 hlist_del_init(&delayed.node); 2571 spin_unlock_irq(¤t->sighand->siglock); 2572 return ERR_PTR(retval); 2573 } 2574 2575 static inline void init_idle_pids(struct task_struct *idle) 2576 { 2577 enum pid_type type; 2578 2579 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2580 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2581 init_task_pid(idle, type, &init_struct_pid); 2582 } 2583 } 2584 2585 static int idle_dummy(void *dummy) 2586 { 2587 /* This function is never called */ 2588 return 0; 2589 } 2590 2591 struct task_struct * __init fork_idle(int cpu) 2592 { 2593 struct task_struct *task; 2594 struct kernel_clone_args args = { 2595 .flags = CLONE_VM, 2596 .fn = &idle_dummy, 2597 .fn_arg = NULL, 2598 .kthread = 1, 2599 .idle = 1, 2600 }; 2601 2602 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2603 if (!IS_ERR(task)) { 2604 init_idle_pids(task); 2605 init_idle(task, cpu); 2606 } 2607 2608 return task; 2609 } 2610 2611 /* 2612 * This is like kernel_clone(), but shaved down and tailored to just 2613 * creating io_uring workers. It returns a created task, or an error pointer. 2614 * The returned task is inactive, and the caller must fire it up through 2615 * wake_up_new_task(p). All signals are blocked in the created task. 2616 */ 2617 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2618 { 2619 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2620 CLONE_IO; 2621 struct kernel_clone_args args = { 2622 .flags = ((lower_32_bits(flags) | CLONE_VM | 2623 CLONE_UNTRACED) & ~CSIGNAL), 2624 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2625 .fn = fn, 2626 .fn_arg = arg, 2627 .io_thread = 1, 2628 }; 2629 2630 return copy_process(NULL, 0, node, &args); 2631 } 2632 2633 /* 2634 * Ok, this is the main fork-routine. 2635 * 2636 * It copies the process, and if successful kick-starts 2637 * it and waits for it to finish using the VM if required. 2638 * 2639 * args->exit_signal is expected to be checked for sanity by the caller. 2640 */ 2641 pid_t kernel_clone(struct kernel_clone_args *args) 2642 { 2643 u64 clone_flags = args->flags; 2644 struct completion vfork; 2645 struct pid *pid; 2646 struct task_struct *p; 2647 int trace = 0; 2648 pid_t nr; 2649 2650 /* 2651 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2652 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2653 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2654 * field in struct clone_args and it still doesn't make sense to have 2655 * them both point at the same memory location. Performing this check 2656 * here has the advantage that we don't need to have a separate helper 2657 * to check for legacy clone(). 2658 */ 2659 if ((args->flags & CLONE_PIDFD) && 2660 (args->flags & CLONE_PARENT_SETTID) && 2661 (args->pidfd == args->parent_tid)) 2662 return -EINVAL; 2663 2664 /* 2665 * Determine whether and which event to report to ptracer. When 2666 * called from kernel_thread or CLONE_UNTRACED is explicitly 2667 * requested, no event is reported; otherwise, report if the event 2668 * for the type of forking is enabled. 2669 */ 2670 if (!(clone_flags & CLONE_UNTRACED)) { 2671 if (clone_flags & CLONE_VFORK) 2672 trace = PTRACE_EVENT_VFORK; 2673 else if (args->exit_signal != SIGCHLD) 2674 trace = PTRACE_EVENT_CLONE; 2675 else 2676 trace = PTRACE_EVENT_FORK; 2677 2678 if (likely(!ptrace_event_enabled(current, trace))) 2679 trace = 0; 2680 } 2681 2682 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2683 add_latent_entropy(); 2684 2685 if (IS_ERR(p)) 2686 return PTR_ERR(p); 2687 2688 /* 2689 * Do this prior waking up the new thread - the thread pointer 2690 * might get invalid after that point, if the thread exits quickly. 2691 */ 2692 trace_sched_process_fork(current, p); 2693 2694 pid = get_task_pid(p, PIDTYPE_PID); 2695 nr = pid_vnr(pid); 2696 2697 if (clone_flags & CLONE_PARENT_SETTID) 2698 put_user(nr, args->parent_tid); 2699 2700 if (clone_flags & CLONE_VFORK) { 2701 p->vfork_done = &vfork; 2702 init_completion(&vfork); 2703 get_task_struct(p); 2704 } 2705 2706 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2707 /* lock the task to synchronize with memcg migration */ 2708 task_lock(p); 2709 lru_gen_add_mm(p->mm); 2710 task_unlock(p); 2711 } 2712 2713 wake_up_new_task(p); 2714 2715 /* forking complete and child started to run, tell ptracer */ 2716 if (unlikely(trace)) 2717 ptrace_event_pid(trace, pid); 2718 2719 if (clone_flags & CLONE_VFORK) { 2720 if (!wait_for_vfork_done(p, &vfork)) 2721 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2722 } 2723 2724 put_pid(pid); 2725 return nr; 2726 } 2727 2728 /* 2729 * Create a kernel thread. 2730 */ 2731 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2732 { 2733 struct kernel_clone_args args = { 2734 .flags = ((lower_32_bits(flags) | CLONE_VM | 2735 CLONE_UNTRACED) & ~CSIGNAL), 2736 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2737 .fn = fn, 2738 .fn_arg = arg, 2739 .kthread = 1, 2740 }; 2741 2742 return kernel_clone(&args); 2743 } 2744 2745 /* 2746 * Create a user mode thread. 2747 */ 2748 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2749 { 2750 struct kernel_clone_args args = { 2751 .flags = ((lower_32_bits(flags) | CLONE_VM | 2752 CLONE_UNTRACED) & ~CSIGNAL), 2753 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2754 .fn = fn, 2755 .fn_arg = arg, 2756 }; 2757 2758 return kernel_clone(&args); 2759 } 2760 2761 #ifdef __ARCH_WANT_SYS_FORK 2762 SYSCALL_DEFINE0(fork) 2763 { 2764 #ifdef CONFIG_MMU 2765 struct kernel_clone_args args = { 2766 .exit_signal = SIGCHLD, 2767 }; 2768 2769 return kernel_clone(&args); 2770 #else 2771 /* can not support in nommu mode */ 2772 return -EINVAL; 2773 #endif 2774 } 2775 #endif 2776 2777 #ifdef __ARCH_WANT_SYS_VFORK 2778 SYSCALL_DEFINE0(vfork) 2779 { 2780 struct kernel_clone_args args = { 2781 .flags = CLONE_VFORK | CLONE_VM, 2782 .exit_signal = SIGCHLD, 2783 }; 2784 2785 return kernel_clone(&args); 2786 } 2787 #endif 2788 2789 #ifdef __ARCH_WANT_SYS_CLONE 2790 #ifdef CONFIG_CLONE_BACKWARDS 2791 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2792 int __user *, parent_tidptr, 2793 unsigned long, tls, 2794 int __user *, child_tidptr) 2795 #elif defined(CONFIG_CLONE_BACKWARDS2) 2796 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2797 int __user *, parent_tidptr, 2798 int __user *, child_tidptr, 2799 unsigned long, tls) 2800 #elif defined(CONFIG_CLONE_BACKWARDS3) 2801 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2802 int, stack_size, 2803 int __user *, parent_tidptr, 2804 int __user *, child_tidptr, 2805 unsigned long, tls) 2806 #else 2807 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2808 int __user *, parent_tidptr, 2809 int __user *, child_tidptr, 2810 unsigned long, tls) 2811 #endif 2812 { 2813 struct kernel_clone_args args = { 2814 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2815 .pidfd = parent_tidptr, 2816 .child_tid = child_tidptr, 2817 .parent_tid = parent_tidptr, 2818 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2819 .stack = newsp, 2820 .tls = tls, 2821 }; 2822 2823 return kernel_clone(&args); 2824 } 2825 #endif 2826 2827 #ifdef __ARCH_WANT_SYS_CLONE3 2828 2829 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2830 struct clone_args __user *uargs, 2831 size_t usize) 2832 { 2833 int err; 2834 struct clone_args args; 2835 pid_t *kset_tid = kargs->set_tid; 2836 2837 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2838 CLONE_ARGS_SIZE_VER0); 2839 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2840 CLONE_ARGS_SIZE_VER1); 2841 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2842 CLONE_ARGS_SIZE_VER2); 2843 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2844 2845 if (unlikely(usize > PAGE_SIZE)) 2846 return -E2BIG; 2847 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2848 return -EINVAL; 2849 2850 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2851 if (err) 2852 return err; 2853 2854 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2855 return -EINVAL; 2856 2857 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2858 return -EINVAL; 2859 2860 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2861 return -EINVAL; 2862 2863 /* 2864 * Verify that higher 32bits of exit_signal are unset and that 2865 * it is a valid signal 2866 */ 2867 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2868 !valid_signal(args.exit_signal))) 2869 return -EINVAL; 2870 2871 if ((args.flags & CLONE_INTO_CGROUP) && 2872 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2873 return -EINVAL; 2874 2875 *kargs = (struct kernel_clone_args){ 2876 .flags = args.flags, 2877 .pidfd = u64_to_user_ptr(args.pidfd), 2878 .child_tid = u64_to_user_ptr(args.child_tid), 2879 .parent_tid = u64_to_user_ptr(args.parent_tid), 2880 .exit_signal = args.exit_signal, 2881 .stack = args.stack, 2882 .stack_size = args.stack_size, 2883 .tls = args.tls, 2884 .set_tid_size = args.set_tid_size, 2885 .cgroup = args.cgroup, 2886 }; 2887 2888 if (args.set_tid && 2889 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2890 (kargs->set_tid_size * sizeof(pid_t)))) 2891 return -EFAULT; 2892 2893 kargs->set_tid = kset_tid; 2894 2895 return 0; 2896 } 2897 2898 /** 2899 * clone3_stack_valid - check and prepare stack 2900 * @kargs: kernel clone args 2901 * 2902 * Verify that the stack arguments userspace gave us are sane. 2903 * In addition, set the stack direction for userspace since it's easy for us to 2904 * determine. 2905 */ 2906 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2907 { 2908 if (kargs->stack == 0) { 2909 if (kargs->stack_size > 0) 2910 return false; 2911 } else { 2912 if (kargs->stack_size == 0) 2913 return false; 2914 2915 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2916 return false; 2917 2918 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2919 kargs->stack += kargs->stack_size; 2920 #endif 2921 } 2922 2923 return true; 2924 } 2925 2926 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2927 { 2928 /* Verify that no unknown flags are passed along. */ 2929 if (kargs->flags & 2930 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2931 return false; 2932 2933 /* 2934 * - make the CLONE_DETACHED bit reusable for clone3 2935 * - make the CSIGNAL bits reusable for clone3 2936 */ 2937 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2938 return false; 2939 2940 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2941 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2942 return false; 2943 2944 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2945 kargs->exit_signal) 2946 return false; 2947 2948 if (!clone3_stack_valid(kargs)) 2949 return false; 2950 2951 return true; 2952 } 2953 2954 /** 2955 * clone3 - create a new process with specific properties 2956 * @uargs: argument structure 2957 * @size: size of @uargs 2958 * 2959 * clone3() is the extensible successor to clone()/clone2(). 2960 * It takes a struct as argument that is versioned by its size. 2961 * 2962 * Return: On success, a positive PID for the child process. 2963 * On error, a negative errno number. 2964 */ 2965 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2966 { 2967 int err; 2968 2969 struct kernel_clone_args kargs; 2970 pid_t set_tid[MAX_PID_NS_LEVEL]; 2971 2972 kargs.set_tid = set_tid; 2973 2974 err = copy_clone_args_from_user(&kargs, uargs, size); 2975 if (err) 2976 return err; 2977 2978 if (!clone3_args_valid(&kargs)) 2979 return -EINVAL; 2980 2981 return kernel_clone(&kargs); 2982 } 2983 #endif 2984 2985 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2986 { 2987 struct task_struct *leader, *parent, *child; 2988 int res; 2989 2990 read_lock(&tasklist_lock); 2991 leader = top = top->group_leader; 2992 down: 2993 for_each_thread(leader, parent) { 2994 list_for_each_entry(child, &parent->children, sibling) { 2995 res = visitor(child, data); 2996 if (res) { 2997 if (res < 0) 2998 goto out; 2999 leader = child; 3000 goto down; 3001 } 3002 up: 3003 ; 3004 } 3005 } 3006 3007 if (leader != top) { 3008 child = leader; 3009 parent = child->real_parent; 3010 leader = parent->group_leader; 3011 goto up; 3012 } 3013 out: 3014 read_unlock(&tasklist_lock); 3015 } 3016 3017 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3018 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3019 #endif 3020 3021 static void sighand_ctor(void *data) 3022 { 3023 struct sighand_struct *sighand = data; 3024 3025 spin_lock_init(&sighand->siglock); 3026 init_waitqueue_head(&sighand->signalfd_wqh); 3027 } 3028 3029 void __init mm_cache_init(void) 3030 { 3031 unsigned int mm_size; 3032 3033 /* 3034 * The mm_cpumask is located at the end of mm_struct, and is 3035 * dynamically sized based on the maximum CPU number this system 3036 * can have, taking hotplug into account (nr_cpu_ids). 3037 */ 3038 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3039 3040 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3041 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3042 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3043 offsetof(struct mm_struct, saved_auxv), 3044 sizeof_field(struct mm_struct, saved_auxv), 3045 NULL); 3046 } 3047 3048 void __init proc_caches_init(void) 3049 { 3050 sighand_cachep = kmem_cache_create("sighand_cache", 3051 sizeof(struct sighand_struct), 0, 3052 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3053 SLAB_ACCOUNT, sighand_ctor); 3054 signal_cachep = kmem_cache_create("signal_cache", 3055 sizeof(struct signal_struct), 0, 3056 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3057 NULL); 3058 files_cachep = kmem_cache_create("files_cache", 3059 sizeof(struct files_struct), 0, 3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3061 NULL); 3062 fs_cachep = kmem_cache_create("fs_cache", 3063 sizeof(struct fs_struct), 0, 3064 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3065 NULL); 3066 3067 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3068 mmap_init(); 3069 nsproxy_cache_init(); 3070 } 3071 3072 /* 3073 * Check constraints on flags passed to the unshare system call. 3074 */ 3075 static int check_unshare_flags(unsigned long unshare_flags) 3076 { 3077 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3078 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3079 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3080 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3081 CLONE_NEWTIME)) 3082 return -EINVAL; 3083 /* 3084 * Not implemented, but pretend it works if there is nothing 3085 * to unshare. Note that unsharing the address space or the 3086 * signal handlers also need to unshare the signal queues (aka 3087 * CLONE_THREAD). 3088 */ 3089 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3090 if (!thread_group_empty(current)) 3091 return -EINVAL; 3092 } 3093 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3094 if (refcount_read(¤t->sighand->count) > 1) 3095 return -EINVAL; 3096 } 3097 if (unshare_flags & CLONE_VM) { 3098 if (!current_is_single_threaded()) 3099 return -EINVAL; 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* 3106 * Unshare the filesystem structure if it is being shared 3107 */ 3108 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3109 { 3110 struct fs_struct *fs = current->fs; 3111 3112 if (!(unshare_flags & CLONE_FS) || !fs) 3113 return 0; 3114 3115 /* don't need lock here; in the worst case we'll do useless copy */ 3116 if (fs->users == 1) 3117 return 0; 3118 3119 *new_fsp = copy_fs_struct(fs); 3120 if (!*new_fsp) 3121 return -ENOMEM; 3122 3123 return 0; 3124 } 3125 3126 /* 3127 * Unshare file descriptor table if it is being shared 3128 */ 3129 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3130 struct files_struct **new_fdp) 3131 { 3132 struct files_struct *fd = current->files; 3133 int error = 0; 3134 3135 if ((unshare_flags & CLONE_FILES) && 3136 (fd && atomic_read(&fd->count) > 1)) { 3137 *new_fdp = dup_fd(fd, max_fds, &error); 3138 if (!*new_fdp) 3139 return error; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /* 3146 * unshare allows a process to 'unshare' part of the process 3147 * context which was originally shared using clone. copy_* 3148 * functions used by kernel_clone() cannot be used here directly 3149 * because they modify an inactive task_struct that is being 3150 * constructed. Here we are modifying the current, active, 3151 * task_struct. 3152 */ 3153 int ksys_unshare(unsigned long unshare_flags) 3154 { 3155 struct fs_struct *fs, *new_fs = NULL; 3156 struct files_struct *new_fd = NULL; 3157 struct cred *new_cred = NULL; 3158 struct nsproxy *new_nsproxy = NULL; 3159 int do_sysvsem = 0; 3160 int err; 3161 3162 /* 3163 * If unsharing a user namespace must also unshare the thread group 3164 * and unshare the filesystem root and working directories. 3165 */ 3166 if (unshare_flags & CLONE_NEWUSER) 3167 unshare_flags |= CLONE_THREAD | CLONE_FS; 3168 /* 3169 * If unsharing vm, must also unshare signal handlers. 3170 */ 3171 if (unshare_flags & CLONE_VM) 3172 unshare_flags |= CLONE_SIGHAND; 3173 /* 3174 * If unsharing a signal handlers, must also unshare the signal queues. 3175 */ 3176 if (unshare_flags & CLONE_SIGHAND) 3177 unshare_flags |= CLONE_THREAD; 3178 /* 3179 * If unsharing namespace, must also unshare filesystem information. 3180 */ 3181 if (unshare_flags & CLONE_NEWNS) 3182 unshare_flags |= CLONE_FS; 3183 3184 err = check_unshare_flags(unshare_flags); 3185 if (err) 3186 goto bad_unshare_out; 3187 /* 3188 * CLONE_NEWIPC must also detach from the undolist: after switching 3189 * to a new ipc namespace, the semaphore arrays from the old 3190 * namespace are unreachable. 3191 */ 3192 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3193 do_sysvsem = 1; 3194 err = unshare_fs(unshare_flags, &new_fs); 3195 if (err) 3196 goto bad_unshare_out; 3197 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3198 if (err) 3199 goto bad_unshare_cleanup_fs; 3200 err = unshare_userns(unshare_flags, &new_cred); 3201 if (err) 3202 goto bad_unshare_cleanup_fd; 3203 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3204 new_cred, new_fs); 3205 if (err) 3206 goto bad_unshare_cleanup_cred; 3207 3208 if (new_cred) { 3209 err = set_cred_ucounts(new_cred); 3210 if (err) 3211 goto bad_unshare_cleanup_cred; 3212 } 3213 3214 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3215 if (do_sysvsem) { 3216 /* 3217 * CLONE_SYSVSEM is equivalent to sys_exit(). 3218 */ 3219 exit_sem(current); 3220 } 3221 if (unshare_flags & CLONE_NEWIPC) { 3222 /* Orphan segments in old ns (see sem above). */ 3223 exit_shm(current); 3224 shm_init_task(current); 3225 } 3226 3227 if (new_nsproxy) 3228 switch_task_namespaces(current, new_nsproxy); 3229 3230 task_lock(current); 3231 3232 if (new_fs) { 3233 fs = current->fs; 3234 spin_lock(&fs->lock); 3235 current->fs = new_fs; 3236 if (--fs->users) 3237 new_fs = NULL; 3238 else 3239 new_fs = fs; 3240 spin_unlock(&fs->lock); 3241 } 3242 3243 if (new_fd) 3244 swap(current->files, new_fd); 3245 3246 task_unlock(current); 3247 3248 if (new_cred) { 3249 /* Install the new user namespace */ 3250 commit_creds(new_cred); 3251 new_cred = NULL; 3252 } 3253 } 3254 3255 perf_event_namespaces(current); 3256 3257 bad_unshare_cleanup_cred: 3258 if (new_cred) 3259 put_cred(new_cred); 3260 bad_unshare_cleanup_fd: 3261 if (new_fd) 3262 put_files_struct(new_fd); 3263 3264 bad_unshare_cleanup_fs: 3265 if (new_fs) 3266 free_fs_struct(new_fs); 3267 3268 bad_unshare_out: 3269 return err; 3270 } 3271 3272 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3273 { 3274 return ksys_unshare(unshare_flags); 3275 } 3276 3277 /* 3278 * Helper to unshare the files of the current task. 3279 * We don't want to expose copy_files internals to 3280 * the exec layer of the kernel. 3281 */ 3282 3283 int unshare_files(void) 3284 { 3285 struct task_struct *task = current; 3286 struct files_struct *old, *copy = NULL; 3287 int error; 3288 3289 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3290 if (error || !copy) 3291 return error; 3292 3293 old = task->files; 3294 task_lock(task); 3295 task->files = copy; 3296 task_unlock(task); 3297 put_files_struct(old); 3298 return 0; 3299 } 3300 3301 int sysctl_max_threads(struct ctl_table *table, int write, 3302 void *buffer, size_t *lenp, loff_t *ppos) 3303 { 3304 struct ctl_table t; 3305 int ret; 3306 int threads = max_threads; 3307 int min = 1; 3308 int max = MAX_THREADS; 3309 3310 t = *table; 3311 t.data = &threads; 3312 t.extra1 = &min; 3313 t.extra2 = &max; 3314 3315 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3316 if (ret || !write) 3317 return ret; 3318 3319 max_threads = threads; 3320 3321 return 0; 3322 } 3323