1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 if (vm) { 383 int i; 384 385 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 386 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 387 account * (PAGE_SIZE / 1024)); 388 } else { 389 /* All stack pages are in the same node. */ 390 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 391 account * (THREAD_SIZE / 1024)); 392 } 393 } 394 395 static int memcg_charge_kernel_stack(struct task_struct *tsk) 396 { 397 #ifdef CONFIG_VMAP_STACK 398 struct vm_struct *vm = task_stack_vm_area(tsk); 399 int ret; 400 401 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 402 403 if (vm) { 404 int i; 405 406 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 407 408 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 409 /* 410 * If memcg_kmem_charge_page() fails, page's 411 * memory cgroup pointer is NULL, and 412 * memcg_kmem_uncharge_page() in free_thread_stack() 413 * will ignore this page. 414 */ 415 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 416 0); 417 if (ret) 418 return ret; 419 } 420 } 421 #endif 422 return 0; 423 } 424 425 static void release_task_stack(struct task_struct *tsk) 426 { 427 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 428 return; /* Better to leak the stack than to free prematurely */ 429 430 account_kernel_stack(tsk, -1); 431 free_thread_stack(tsk); 432 tsk->stack = NULL; 433 #ifdef CONFIG_VMAP_STACK 434 tsk->stack_vm_area = NULL; 435 #endif 436 } 437 438 #ifdef CONFIG_THREAD_INFO_IN_TASK 439 void put_task_stack(struct task_struct *tsk) 440 { 441 if (refcount_dec_and_test(&tsk->stack_refcount)) 442 release_task_stack(tsk); 443 } 444 #endif 445 446 void free_task(struct task_struct *tsk) 447 { 448 release_user_cpus_ptr(tsk); 449 scs_release(tsk); 450 451 #ifndef CONFIG_THREAD_INFO_IN_TASK 452 /* 453 * The task is finally done with both the stack and thread_info, 454 * so free both. 455 */ 456 release_task_stack(tsk); 457 #else 458 /* 459 * If the task had a separate stack allocation, it should be gone 460 * by now. 461 */ 462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 463 #endif 464 rt_mutex_debug_task_free(tsk); 465 ftrace_graph_exit_task(tsk); 466 arch_release_task_struct(tsk); 467 if (tsk->flags & PF_KTHREAD) 468 free_kthread_struct(tsk); 469 free_task_struct(tsk); 470 } 471 EXPORT_SYMBOL(free_task); 472 473 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 474 { 475 struct file *exe_file; 476 477 exe_file = get_mm_exe_file(oldmm); 478 RCU_INIT_POINTER(mm->exe_file, exe_file); 479 /* 480 * We depend on the oldmm having properly denied write access to the 481 * exe_file already. 482 */ 483 if (exe_file && deny_write_access(exe_file)) 484 pr_warn_once("deny_write_access() failed in %s\n", __func__); 485 } 486 487 #ifdef CONFIG_MMU 488 static __latent_entropy int dup_mmap(struct mm_struct *mm, 489 struct mm_struct *oldmm) 490 { 491 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 492 struct rb_node **rb_link, *rb_parent; 493 int retval; 494 unsigned long charge; 495 LIST_HEAD(uf); 496 497 uprobe_start_dup_mmap(); 498 if (mmap_write_lock_killable(oldmm)) { 499 retval = -EINTR; 500 goto fail_uprobe_end; 501 } 502 flush_cache_dup_mm(oldmm); 503 uprobe_dup_mmap(oldmm, mm); 504 /* 505 * Not linked in yet - no deadlock potential: 506 */ 507 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 508 509 /* No ordering required: file already has been exposed. */ 510 dup_mm_exe_file(mm, oldmm); 511 512 mm->total_vm = oldmm->total_vm; 513 mm->data_vm = oldmm->data_vm; 514 mm->exec_vm = oldmm->exec_vm; 515 mm->stack_vm = oldmm->stack_vm; 516 517 rb_link = &mm->mm_rb.rb_node; 518 rb_parent = NULL; 519 pprev = &mm->mmap; 520 retval = ksm_fork(mm, oldmm); 521 if (retval) 522 goto out; 523 retval = khugepaged_fork(mm, oldmm); 524 if (retval) 525 goto out; 526 527 prev = NULL; 528 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 529 struct file *file; 530 531 if (mpnt->vm_flags & VM_DONTCOPY) { 532 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 533 continue; 534 } 535 charge = 0; 536 /* 537 * Don't duplicate many vmas if we've been oom-killed (for 538 * example) 539 */ 540 if (fatal_signal_pending(current)) { 541 retval = -EINTR; 542 goto out; 543 } 544 if (mpnt->vm_flags & VM_ACCOUNT) { 545 unsigned long len = vma_pages(mpnt); 546 547 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 548 goto fail_nomem; 549 charge = len; 550 } 551 tmp = vm_area_dup(mpnt); 552 if (!tmp) 553 goto fail_nomem; 554 retval = vma_dup_policy(mpnt, tmp); 555 if (retval) 556 goto fail_nomem_policy; 557 tmp->vm_mm = mm; 558 retval = dup_userfaultfd(tmp, &uf); 559 if (retval) 560 goto fail_nomem_anon_vma_fork; 561 if (tmp->vm_flags & VM_WIPEONFORK) { 562 /* 563 * VM_WIPEONFORK gets a clean slate in the child. 564 * Don't prepare anon_vma until fault since we don't 565 * copy page for current vma. 566 */ 567 tmp->anon_vma = NULL; 568 } else if (anon_vma_fork(tmp, mpnt)) 569 goto fail_nomem_anon_vma_fork; 570 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 571 file = tmp->vm_file; 572 if (file) { 573 struct address_space *mapping = file->f_mapping; 574 575 get_file(file); 576 i_mmap_lock_write(mapping); 577 if (tmp->vm_flags & VM_SHARED) 578 mapping_allow_writable(mapping); 579 flush_dcache_mmap_lock(mapping); 580 /* insert tmp into the share list, just after mpnt */ 581 vma_interval_tree_insert_after(tmp, mpnt, 582 &mapping->i_mmap); 583 flush_dcache_mmap_unlock(mapping); 584 i_mmap_unlock_write(mapping); 585 } 586 587 /* 588 * Clear hugetlb-related page reserves for children. This only 589 * affects MAP_PRIVATE mappings. Faults generated by the child 590 * are not guaranteed to succeed, even if read-only 591 */ 592 if (is_vm_hugetlb_page(tmp)) 593 reset_vma_resv_huge_pages(tmp); 594 595 /* 596 * Link in the new vma and copy the page table entries. 597 */ 598 *pprev = tmp; 599 pprev = &tmp->vm_next; 600 tmp->vm_prev = prev; 601 prev = tmp; 602 603 __vma_link_rb(mm, tmp, rb_link, rb_parent); 604 rb_link = &tmp->vm_rb.rb_right; 605 rb_parent = &tmp->vm_rb; 606 607 mm->map_count++; 608 if (!(tmp->vm_flags & VM_WIPEONFORK)) 609 retval = copy_page_range(tmp, mpnt); 610 611 if (tmp->vm_ops && tmp->vm_ops->open) 612 tmp->vm_ops->open(tmp); 613 614 if (retval) 615 goto out; 616 } 617 /* a new mm has just been created */ 618 retval = arch_dup_mmap(oldmm, mm); 619 out: 620 mmap_write_unlock(mm); 621 flush_tlb_mm(oldmm); 622 mmap_write_unlock(oldmm); 623 dup_userfaultfd_complete(&uf); 624 fail_uprobe_end: 625 uprobe_end_dup_mmap(); 626 return retval; 627 fail_nomem_anon_vma_fork: 628 mpol_put(vma_policy(tmp)); 629 fail_nomem_policy: 630 vm_area_free(tmp); 631 fail_nomem: 632 retval = -ENOMEM; 633 vm_unacct_memory(charge); 634 goto out; 635 } 636 637 static inline int mm_alloc_pgd(struct mm_struct *mm) 638 { 639 mm->pgd = pgd_alloc(mm); 640 if (unlikely(!mm->pgd)) 641 return -ENOMEM; 642 return 0; 643 } 644 645 static inline void mm_free_pgd(struct mm_struct *mm) 646 { 647 pgd_free(mm, mm->pgd); 648 } 649 #else 650 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 651 { 652 mmap_write_lock(oldmm); 653 dup_mm_exe_file(mm, oldmm); 654 mmap_write_unlock(oldmm); 655 return 0; 656 } 657 #define mm_alloc_pgd(mm) (0) 658 #define mm_free_pgd(mm) 659 #endif /* CONFIG_MMU */ 660 661 static void check_mm(struct mm_struct *mm) 662 { 663 int i; 664 665 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 666 "Please make sure 'struct resident_page_types[]' is updated as well"); 667 668 for (i = 0; i < NR_MM_COUNTERS; i++) { 669 long x = atomic_long_read(&mm->rss_stat.count[i]); 670 671 if (unlikely(x)) 672 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 673 mm, resident_page_types[i], x); 674 } 675 676 if (mm_pgtables_bytes(mm)) 677 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 678 mm_pgtables_bytes(mm)); 679 680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 681 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 682 #endif 683 } 684 685 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 686 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 687 688 /* 689 * Called when the last reference to the mm 690 * is dropped: either by a lazy thread or by 691 * mmput. Free the page directory and the mm. 692 */ 693 void __mmdrop(struct mm_struct *mm) 694 { 695 BUG_ON(mm == &init_mm); 696 WARN_ON_ONCE(mm == current->mm); 697 WARN_ON_ONCE(mm == current->active_mm); 698 mm_free_pgd(mm); 699 destroy_context(mm); 700 mmu_notifier_subscriptions_destroy(mm); 701 check_mm(mm); 702 put_user_ns(mm->user_ns); 703 free_mm(mm); 704 } 705 EXPORT_SYMBOL_GPL(__mmdrop); 706 707 static void mmdrop_async_fn(struct work_struct *work) 708 { 709 struct mm_struct *mm; 710 711 mm = container_of(work, struct mm_struct, async_put_work); 712 __mmdrop(mm); 713 } 714 715 static void mmdrop_async(struct mm_struct *mm) 716 { 717 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 718 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 719 schedule_work(&mm->async_put_work); 720 } 721 } 722 723 static inline void free_signal_struct(struct signal_struct *sig) 724 { 725 taskstats_tgid_free(sig); 726 sched_autogroup_exit(sig); 727 /* 728 * __mmdrop is not safe to call from softirq context on x86 due to 729 * pgd_dtor so postpone it to the async context 730 */ 731 if (sig->oom_mm) 732 mmdrop_async(sig->oom_mm); 733 kmem_cache_free(signal_cachep, sig); 734 } 735 736 static inline void put_signal_struct(struct signal_struct *sig) 737 { 738 if (refcount_dec_and_test(&sig->sigcnt)) 739 free_signal_struct(sig); 740 } 741 742 void __put_task_struct(struct task_struct *tsk) 743 { 744 WARN_ON(!tsk->exit_state); 745 WARN_ON(refcount_read(&tsk->usage)); 746 WARN_ON(tsk == current); 747 748 io_uring_free(tsk); 749 cgroup_free(tsk); 750 task_numa_free(tsk, true); 751 security_task_free(tsk); 752 bpf_task_storage_free(tsk); 753 exit_creds(tsk); 754 delayacct_tsk_free(tsk); 755 put_signal_struct(tsk->signal); 756 sched_core_free(tsk); 757 758 if (!profile_handoff_task(tsk)) 759 free_task(tsk); 760 } 761 EXPORT_SYMBOL_GPL(__put_task_struct); 762 763 void __init __weak arch_task_cache_init(void) { } 764 765 /* 766 * set_max_threads 767 */ 768 static void set_max_threads(unsigned int max_threads_suggested) 769 { 770 u64 threads; 771 unsigned long nr_pages = totalram_pages(); 772 773 /* 774 * The number of threads shall be limited such that the thread 775 * structures may only consume a small part of the available memory. 776 */ 777 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 778 threads = MAX_THREADS; 779 else 780 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 781 (u64) THREAD_SIZE * 8UL); 782 783 if (threads > max_threads_suggested) 784 threads = max_threads_suggested; 785 786 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 787 } 788 789 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 790 /* Initialized by the architecture: */ 791 int arch_task_struct_size __read_mostly; 792 #endif 793 794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 795 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 796 { 797 /* Fetch thread_struct whitelist for the architecture. */ 798 arch_thread_struct_whitelist(offset, size); 799 800 /* 801 * Handle zero-sized whitelist or empty thread_struct, otherwise 802 * adjust offset to position of thread_struct in task_struct. 803 */ 804 if (unlikely(*size == 0)) 805 *offset = 0; 806 else 807 *offset += offsetof(struct task_struct, thread); 808 } 809 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 810 811 void __init fork_init(void) 812 { 813 int i; 814 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 815 #ifndef ARCH_MIN_TASKALIGN 816 #define ARCH_MIN_TASKALIGN 0 817 #endif 818 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 819 unsigned long useroffset, usersize; 820 821 /* create a slab on which task_structs can be allocated */ 822 task_struct_whitelist(&useroffset, &usersize); 823 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 824 arch_task_struct_size, align, 825 SLAB_PANIC|SLAB_ACCOUNT, 826 useroffset, usersize, NULL); 827 #endif 828 829 /* do the arch specific task caches init */ 830 arch_task_cache_init(); 831 832 set_max_threads(MAX_THREADS); 833 834 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 835 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 836 init_task.signal->rlim[RLIMIT_SIGPENDING] = 837 init_task.signal->rlim[RLIMIT_NPROC]; 838 839 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 840 init_user_ns.ucount_max[i] = max_threads/2; 841 842 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 843 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 844 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 846 847 #ifdef CONFIG_VMAP_STACK 848 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 849 NULL, free_vm_stack_cache); 850 #endif 851 852 scs_init(); 853 854 lockdep_init_task(&init_task); 855 uprobes_init(); 856 } 857 858 int __weak arch_dup_task_struct(struct task_struct *dst, 859 struct task_struct *src) 860 { 861 *dst = *src; 862 return 0; 863 } 864 865 void set_task_stack_end_magic(struct task_struct *tsk) 866 { 867 unsigned long *stackend; 868 869 stackend = end_of_stack(tsk); 870 *stackend = STACK_END_MAGIC; /* for overflow detection */ 871 } 872 873 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 874 { 875 struct task_struct *tsk; 876 unsigned long *stack; 877 struct vm_struct *stack_vm_area __maybe_unused; 878 int err; 879 880 if (node == NUMA_NO_NODE) 881 node = tsk_fork_get_node(orig); 882 tsk = alloc_task_struct_node(node); 883 if (!tsk) 884 return NULL; 885 886 stack = alloc_thread_stack_node(tsk, node); 887 if (!stack) 888 goto free_tsk; 889 890 if (memcg_charge_kernel_stack(tsk)) 891 goto free_stack; 892 893 stack_vm_area = task_stack_vm_area(tsk); 894 895 err = arch_dup_task_struct(tsk, orig); 896 897 /* 898 * arch_dup_task_struct() clobbers the stack-related fields. Make 899 * sure they're properly initialized before using any stack-related 900 * functions again. 901 */ 902 tsk->stack = stack; 903 #ifdef CONFIG_VMAP_STACK 904 tsk->stack_vm_area = stack_vm_area; 905 #endif 906 #ifdef CONFIG_THREAD_INFO_IN_TASK 907 refcount_set(&tsk->stack_refcount, 1); 908 #endif 909 910 if (err) 911 goto free_stack; 912 913 err = scs_prepare(tsk, node); 914 if (err) 915 goto free_stack; 916 917 #ifdef CONFIG_SECCOMP 918 /* 919 * We must handle setting up seccomp filters once we're under 920 * the sighand lock in case orig has changed between now and 921 * then. Until then, filter must be NULL to avoid messing up 922 * the usage counts on the error path calling free_task. 923 */ 924 tsk->seccomp.filter = NULL; 925 #endif 926 927 setup_thread_stack(tsk, orig); 928 clear_user_return_notifier(tsk); 929 clear_tsk_need_resched(tsk); 930 set_task_stack_end_magic(tsk); 931 clear_syscall_work_syscall_user_dispatch(tsk); 932 933 #ifdef CONFIG_STACKPROTECTOR 934 tsk->stack_canary = get_random_canary(); 935 #endif 936 if (orig->cpus_ptr == &orig->cpus_mask) 937 tsk->cpus_ptr = &tsk->cpus_mask; 938 dup_user_cpus_ptr(tsk, orig, node); 939 940 /* 941 * One for the user space visible state that goes away when reaped. 942 * One for the scheduler. 943 */ 944 refcount_set(&tsk->rcu_users, 2); 945 /* One for the rcu users */ 946 refcount_set(&tsk->usage, 1); 947 #ifdef CONFIG_BLK_DEV_IO_TRACE 948 tsk->btrace_seq = 0; 949 #endif 950 tsk->splice_pipe = NULL; 951 tsk->task_frag.page = NULL; 952 tsk->wake_q.next = NULL; 953 tsk->pf_io_worker = NULL; 954 955 account_kernel_stack(tsk, 1); 956 957 kcov_task_init(tsk); 958 kmap_local_fork(tsk); 959 960 #ifdef CONFIG_FAULT_INJECTION 961 tsk->fail_nth = 0; 962 #endif 963 964 #ifdef CONFIG_BLK_CGROUP 965 tsk->throttle_queue = NULL; 966 tsk->use_memdelay = 0; 967 #endif 968 969 #ifdef CONFIG_MEMCG 970 tsk->active_memcg = NULL; 971 #endif 972 return tsk; 973 974 free_stack: 975 free_thread_stack(tsk); 976 free_tsk: 977 free_task_struct(tsk); 978 return NULL; 979 } 980 981 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 982 983 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 984 985 static int __init coredump_filter_setup(char *s) 986 { 987 default_dump_filter = 988 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 989 MMF_DUMP_FILTER_MASK; 990 return 1; 991 } 992 993 __setup("coredump_filter=", coredump_filter_setup); 994 995 #include <linux/init_task.h> 996 997 static void mm_init_aio(struct mm_struct *mm) 998 { 999 #ifdef CONFIG_AIO 1000 spin_lock_init(&mm->ioctx_lock); 1001 mm->ioctx_table = NULL; 1002 #endif 1003 } 1004 1005 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1006 struct task_struct *p) 1007 { 1008 #ifdef CONFIG_MEMCG 1009 if (mm->owner == p) 1010 WRITE_ONCE(mm->owner, NULL); 1011 #endif 1012 } 1013 1014 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1015 { 1016 #ifdef CONFIG_MEMCG 1017 mm->owner = p; 1018 #endif 1019 } 1020 1021 static void mm_init_pasid(struct mm_struct *mm) 1022 { 1023 #ifdef CONFIG_IOMMU_SUPPORT 1024 mm->pasid = INIT_PASID; 1025 #endif 1026 } 1027 1028 static void mm_init_uprobes_state(struct mm_struct *mm) 1029 { 1030 #ifdef CONFIG_UPROBES 1031 mm->uprobes_state.xol_area = NULL; 1032 #endif 1033 } 1034 1035 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1036 struct user_namespace *user_ns) 1037 { 1038 mm->mmap = NULL; 1039 mm->mm_rb = RB_ROOT; 1040 mm->vmacache_seqnum = 0; 1041 atomic_set(&mm->mm_users, 1); 1042 atomic_set(&mm->mm_count, 1); 1043 seqcount_init(&mm->write_protect_seq); 1044 mmap_init_lock(mm); 1045 INIT_LIST_HEAD(&mm->mmlist); 1046 mm_pgtables_bytes_init(mm); 1047 mm->map_count = 0; 1048 mm->locked_vm = 0; 1049 atomic64_set(&mm->pinned_vm, 0); 1050 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1051 spin_lock_init(&mm->page_table_lock); 1052 spin_lock_init(&mm->arg_lock); 1053 mm_init_cpumask(mm); 1054 mm_init_aio(mm); 1055 mm_init_owner(mm, p); 1056 mm_init_pasid(mm); 1057 RCU_INIT_POINTER(mm->exe_file, NULL); 1058 mmu_notifier_subscriptions_init(mm); 1059 init_tlb_flush_pending(mm); 1060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1061 mm->pmd_huge_pte = NULL; 1062 #endif 1063 mm_init_uprobes_state(mm); 1064 hugetlb_count_init(mm); 1065 1066 if (current->mm) { 1067 mm->flags = current->mm->flags & MMF_INIT_MASK; 1068 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1069 } else { 1070 mm->flags = default_dump_filter; 1071 mm->def_flags = 0; 1072 } 1073 1074 if (mm_alloc_pgd(mm)) 1075 goto fail_nopgd; 1076 1077 if (init_new_context(p, mm)) 1078 goto fail_nocontext; 1079 1080 mm->user_ns = get_user_ns(user_ns); 1081 return mm; 1082 1083 fail_nocontext: 1084 mm_free_pgd(mm); 1085 fail_nopgd: 1086 free_mm(mm); 1087 return NULL; 1088 } 1089 1090 /* 1091 * Allocate and initialize an mm_struct. 1092 */ 1093 struct mm_struct *mm_alloc(void) 1094 { 1095 struct mm_struct *mm; 1096 1097 mm = allocate_mm(); 1098 if (!mm) 1099 return NULL; 1100 1101 memset(mm, 0, sizeof(*mm)); 1102 return mm_init(mm, current, current_user_ns()); 1103 } 1104 1105 static inline void __mmput(struct mm_struct *mm) 1106 { 1107 VM_BUG_ON(atomic_read(&mm->mm_users)); 1108 1109 uprobe_clear_state(mm); 1110 exit_aio(mm); 1111 ksm_exit(mm); 1112 khugepaged_exit(mm); /* must run before exit_mmap */ 1113 exit_mmap(mm); 1114 mm_put_huge_zero_page(mm); 1115 set_mm_exe_file(mm, NULL); 1116 if (!list_empty(&mm->mmlist)) { 1117 spin_lock(&mmlist_lock); 1118 list_del(&mm->mmlist); 1119 spin_unlock(&mmlist_lock); 1120 } 1121 if (mm->binfmt) 1122 module_put(mm->binfmt->module); 1123 mmdrop(mm); 1124 } 1125 1126 /* 1127 * Decrement the use count and release all resources for an mm. 1128 */ 1129 void mmput(struct mm_struct *mm) 1130 { 1131 might_sleep(); 1132 1133 if (atomic_dec_and_test(&mm->mm_users)) 1134 __mmput(mm); 1135 } 1136 EXPORT_SYMBOL_GPL(mmput); 1137 1138 #ifdef CONFIG_MMU 1139 static void mmput_async_fn(struct work_struct *work) 1140 { 1141 struct mm_struct *mm = container_of(work, struct mm_struct, 1142 async_put_work); 1143 1144 __mmput(mm); 1145 } 1146 1147 void mmput_async(struct mm_struct *mm) 1148 { 1149 if (atomic_dec_and_test(&mm->mm_users)) { 1150 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1151 schedule_work(&mm->async_put_work); 1152 } 1153 } 1154 #endif 1155 1156 /** 1157 * set_mm_exe_file - change a reference to the mm's executable file 1158 * 1159 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1160 * 1161 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1162 * invocations: in mmput() nobody alive left, in execve task is single 1163 * threaded. 1164 * 1165 * Can only fail if new_exe_file != NULL. 1166 */ 1167 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1168 { 1169 struct file *old_exe_file; 1170 1171 /* 1172 * It is safe to dereference the exe_file without RCU as 1173 * this function is only called if nobody else can access 1174 * this mm -- see comment above for justification. 1175 */ 1176 old_exe_file = rcu_dereference_raw(mm->exe_file); 1177 1178 if (new_exe_file) { 1179 /* 1180 * We expect the caller (i.e., sys_execve) to already denied 1181 * write access, so this is unlikely to fail. 1182 */ 1183 if (unlikely(deny_write_access(new_exe_file))) 1184 return -EACCES; 1185 get_file(new_exe_file); 1186 } 1187 rcu_assign_pointer(mm->exe_file, new_exe_file); 1188 if (old_exe_file) { 1189 allow_write_access(old_exe_file); 1190 fput(old_exe_file); 1191 } 1192 return 0; 1193 } 1194 1195 /** 1196 * replace_mm_exe_file - replace a reference to the mm's executable file 1197 * 1198 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1199 * dealing with concurrent invocation and without grabbing the mmap lock in 1200 * write mode. 1201 * 1202 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1203 */ 1204 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1205 { 1206 struct vm_area_struct *vma; 1207 struct file *old_exe_file; 1208 int ret = 0; 1209 1210 /* Forbid mm->exe_file change if old file still mapped. */ 1211 old_exe_file = get_mm_exe_file(mm); 1212 if (old_exe_file) { 1213 mmap_read_lock(mm); 1214 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1215 if (!vma->vm_file) 1216 continue; 1217 if (path_equal(&vma->vm_file->f_path, 1218 &old_exe_file->f_path)) 1219 ret = -EBUSY; 1220 } 1221 mmap_read_unlock(mm); 1222 fput(old_exe_file); 1223 if (ret) 1224 return ret; 1225 } 1226 1227 /* set the new file, lockless */ 1228 ret = deny_write_access(new_exe_file); 1229 if (ret) 1230 return -EACCES; 1231 get_file(new_exe_file); 1232 1233 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1234 if (old_exe_file) { 1235 /* 1236 * Don't race with dup_mmap() getting the file and disallowing 1237 * write access while someone might open the file writable. 1238 */ 1239 mmap_read_lock(mm); 1240 allow_write_access(old_exe_file); 1241 fput(old_exe_file); 1242 mmap_read_unlock(mm); 1243 } 1244 return 0; 1245 } 1246 1247 /** 1248 * get_mm_exe_file - acquire a reference to the mm's executable file 1249 * 1250 * Returns %NULL if mm has no associated executable file. 1251 * User must release file via fput(). 1252 */ 1253 struct file *get_mm_exe_file(struct mm_struct *mm) 1254 { 1255 struct file *exe_file; 1256 1257 rcu_read_lock(); 1258 exe_file = rcu_dereference(mm->exe_file); 1259 if (exe_file && !get_file_rcu(exe_file)) 1260 exe_file = NULL; 1261 rcu_read_unlock(); 1262 return exe_file; 1263 } 1264 1265 /** 1266 * get_task_exe_file - acquire a reference to the task's executable file 1267 * 1268 * Returns %NULL if task's mm (if any) has no associated executable file or 1269 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1270 * User must release file via fput(). 1271 */ 1272 struct file *get_task_exe_file(struct task_struct *task) 1273 { 1274 struct file *exe_file = NULL; 1275 struct mm_struct *mm; 1276 1277 task_lock(task); 1278 mm = task->mm; 1279 if (mm) { 1280 if (!(task->flags & PF_KTHREAD)) 1281 exe_file = get_mm_exe_file(mm); 1282 } 1283 task_unlock(task); 1284 return exe_file; 1285 } 1286 1287 /** 1288 * get_task_mm - acquire a reference to the task's mm 1289 * 1290 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1291 * this kernel workthread has transiently adopted a user mm with use_mm, 1292 * to do its AIO) is not set and if so returns a reference to it, after 1293 * bumping up the use count. User must release the mm via mmput() 1294 * after use. Typically used by /proc and ptrace. 1295 */ 1296 struct mm_struct *get_task_mm(struct task_struct *task) 1297 { 1298 struct mm_struct *mm; 1299 1300 task_lock(task); 1301 mm = task->mm; 1302 if (mm) { 1303 if (task->flags & PF_KTHREAD) 1304 mm = NULL; 1305 else 1306 mmget(mm); 1307 } 1308 task_unlock(task); 1309 return mm; 1310 } 1311 EXPORT_SYMBOL_GPL(get_task_mm); 1312 1313 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1314 { 1315 struct mm_struct *mm; 1316 int err; 1317 1318 err = down_read_killable(&task->signal->exec_update_lock); 1319 if (err) 1320 return ERR_PTR(err); 1321 1322 mm = get_task_mm(task); 1323 if (mm && mm != current->mm && 1324 !ptrace_may_access(task, mode)) { 1325 mmput(mm); 1326 mm = ERR_PTR(-EACCES); 1327 } 1328 up_read(&task->signal->exec_update_lock); 1329 1330 return mm; 1331 } 1332 1333 static void complete_vfork_done(struct task_struct *tsk) 1334 { 1335 struct completion *vfork; 1336 1337 task_lock(tsk); 1338 vfork = tsk->vfork_done; 1339 if (likely(vfork)) { 1340 tsk->vfork_done = NULL; 1341 complete(vfork); 1342 } 1343 task_unlock(tsk); 1344 } 1345 1346 static int wait_for_vfork_done(struct task_struct *child, 1347 struct completion *vfork) 1348 { 1349 int killed; 1350 1351 freezer_do_not_count(); 1352 cgroup_enter_frozen(); 1353 killed = wait_for_completion_killable(vfork); 1354 cgroup_leave_frozen(false); 1355 freezer_count(); 1356 1357 if (killed) { 1358 task_lock(child); 1359 child->vfork_done = NULL; 1360 task_unlock(child); 1361 } 1362 1363 put_task_struct(child); 1364 return killed; 1365 } 1366 1367 /* Please note the differences between mmput and mm_release. 1368 * mmput is called whenever we stop holding onto a mm_struct, 1369 * error success whatever. 1370 * 1371 * mm_release is called after a mm_struct has been removed 1372 * from the current process. 1373 * 1374 * This difference is important for error handling, when we 1375 * only half set up a mm_struct for a new process and need to restore 1376 * the old one. Because we mmput the new mm_struct before 1377 * restoring the old one. . . 1378 * Eric Biederman 10 January 1998 1379 */ 1380 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1381 { 1382 uprobe_free_utask(tsk); 1383 1384 /* Get rid of any cached register state */ 1385 deactivate_mm(tsk, mm); 1386 1387 /* 1388 * Signal userspace if we're not exiting with a core dump 1389 * because we want to leave the value intact for debugging 1390 * purposes. 1391 */ 1392 if (tsk->clear_child_tid) { 1393 if (atomic_read(&mm->mm_users) > 1) { 1394 /* 1395 * We don't check the error code - if userspace has 1396 * not set up a proper pointer then tough luck. 1397 */ 1398 put_user(0, tsk->clear_child_tid); 1399 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1400 1, NULL, NULL, 0, 0); 1401 } 1402 tsk->clear_child_tid = NULL; 1403 } 1404 1405 /* 1406 * All done, finally we can wake up parent and return this mm to him. 1407 * Also kthread_stop() uses this completion for synchronization. 1408 */ 1409 if (tsk->vfork_done) 1410 complete_vfork_done(tsk); 1411 } 1412 1413 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1414 { 1415 futex_exit_release(tsk); 1416 mm_release(tsk, mm); 1417 } 1418 1419 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1420 { 1421 futex_exec_release(tsk); 1422 mm_release(tsk, mm); 1423 } 1424 1425 /** 1426 * dup_mm() - duplicates an existing mm structure 1427 * @tsk: the task_struct with which the new mm will be associated. 1428 * @oldmm: the mm to duplicate. 1429 * 1430 * Allocates a new mm structure and duplicates the provided @oldmm structure 1431 * content into it. 1432 * 1433 * Return: the duplicated mm or NULL on failure. 1434 */ 1435 static struct mm_struct *dup_mm(struct task_struct *tsk, 1436 struct mm_struct *oldmm) 1437 { 1438 struct mm_struct *mm; 1439 int err; 1440 1441 mm = allocate_mm(); 1442 if (!mm) 1443 goto fail_nomem; 1444 1445 memcpy(mm, oldmm, sizeof(*mm)); 1446 1447 if (!mm_init(mm, tsk, mm->user_ns)) 1448 goto fail_nomem; 1449 1450 err = dup_mmap(mm, oldmm); 1451 if (err) 1452 goto free_pt; 1453 1454 mm->hiwater_rss = get_mm_rss(mm); 1455 mm->hiwater_vm = mm->total_vm; 1456 1457 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1458 goto free_pt; 1459 1460 return mm; 1461 1462 free_pt: 1463 /* don't put binfmt in mmput, we haven't got module yet */ 1464 mm->binfmt = NULL; 1465 mm_init_owner(mm, NULL); 1466 mmput(mm); 1467 1468 fail_nomem: 1469 return NULL; 1470 } 1471 1472 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1473 { 1474 struct mm_struct *mm, *oldmm; 1475 1476 tsk->min_flt = tsk->maj_flt = 0; 1477 tsk->nvcsw = tsk->nivcsw = 0; 1478 #ifdef CONFIG_DETECT_HUNG_TASK 1479 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1480 tsk->last_switch_time = 0; 1481 #endif 1482 1483 tsk->mm = NULL; 1484 tsk->active_mm = NULL; 1485 1486 /* 1487 * Are we cloning a kernel thread? 1488 * 1489 * We need to steal a active VM for that.. 1490 */ 1491 oldmm = current->mm; 1492 if (!oldmm) 1493 return 0; 1494 1495 /* initialize the new vmacache entries */ 1496 vmacache_flush(tsk); 1497 1498 if (clone_flags & CLONE_VM) { 1499 mmget(oldmm); 1500 mm = oldmm; 1501 } else { 1502 mm = dup_mm(tsk, current->mm); 1503 if (!mm) 1504 return -ENOMEM; 1505 } 1506 1507 tsk->mm = mm; 1508 tsk->active_mm = mm; 1509 return 0; 1510 } 1511 1512 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1513 { 1514 struct fs_struct *fs = current->fs; 1515 if (clone_flags & CLONE_FS) { 1516 /* tsk->fs is already what we want */ 1517 spin_lock(&fs->lock); 1518 if (fs->in_exec) { 1519 spin_unlock(&fs->lock); 1520 return -EAGAIN; 1521 } 1522 fs->users++; 1523 spin_unlock(&fs->lock); 1524 return 0; 1525 } 1526 tsk->fs = copy_fs_struct(fs); 1527 if (!tsk->fs) 1528 return -ENOMEM; 1529 return 0; 1530 } 1531 1532 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1533 { 1534 struct files_struct *oldf, *newf; 1535 int error = 0; 1536 1537 /* 1538 * A background process may not have any files ... 1539 */ 1540 oldf = current->files; 1541 if (!oldf) 1542 goto out; 1543 1544 if (clone_flags & CLONE_FILES) { 1545 atomic_inc(&oldf->count); 1546 goto out; 1547 } 1548 1549 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1550 if (!newf) 1551 goto out; 1552 1553 tsk->files = newf; 1554 error = 0; 1555 out: 1556 return error; 1557 } 1558 1559 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1560 { 1561 #ifdef CONFIG_BLOCK 1562 struct io_context *ioc = current->io_context; 1563 struct io_context *new_ioc; 1564 1565 if (!ioc) 1566 return 0; 1567 /* 1568 * Share io context with parent, if CLONE_IO is set 1569 */ 1570 if (clone_flags & CLONE_IO) { 1571 ioc_task_link(ioc); 1572 tsk->io_context = ioc; 1573 } else if (ioprio_valid(ioc->ioprio)) { 1574 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1575 if (unlikely(!new_ioc)) 1576 return -ENOMEM; 1577 1578 new_ioc->ioprio = ioc->ioprio; 1579 put_io_context(new_ioc); 1580 } 1581 #endif 1582 return 0; 1583 } 1584 1585 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1586 { 1587 struct sighand_struct *sig; 1588 1589 if (clone_flags & CLONE_SIGHAND) { 1590 refcount_inc(¤t->sighand->count); 1591 return 0; 1592 } 1593 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1594 RCU_INIT_POINTER(tsk->sighand, sig); 1595 if (!sig) 1596 return -ENOMEM; 1597 1598 refcount_set(&sig->count, 1); 1599 spin_lock_irq(¤t->sighand->siglock); 1600 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1601 spin_unlock_irq(¤t->sighand->siglock); 1602 1603 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1604 if (clone_flags & CLONE_CLEAR_SIGHAND) 1605 flush_signal_handlers(tsk, 0); 1606 1607 return 0; 1608 } 1609 1610 void __cleanup_sighand(struct sighand_struct *sighand) 1611 { 1612 if (refcount_dec_and_test(&sighand->count)) { 1613 signalfd_cleanup(sighand); 1614 /* 1615 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1616 * without an RCU grace period, see __lock_task_sighand(). 1617 */ 1618 kmem_cache_free(sighand_cachep, sighand); 1619 } 1620 } 1621 1622 /* 1623 * Initialize POSIX timer handling for a thread group. 1624 */ 1625 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1626 { 1627 struct posix_cputimers *pct = &sig->posix_cputimers; 1628 unsigned long cpu_limit; 1629 1630 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1631 posix_cputimers_group_init(pct, cpu_limit); 1632 } 1633 1634 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1635 { 1636 struct signal_struct *sig; 1637 1638 if (clone_flags & CLONE_THREAD) 1639 return 0; 1640 1641 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1642 tsk->signal = sig; 1643 if (!sig) 1644 return -ENOMEM; 1645 1646 sig->nr_threads = 1; 1647 atomic_set(&sig->live, 1); 1648 refcount_set(&sig->sigcnt, 1); 1649 1650 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1651 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1652 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1653 1654 init_waitqueue_head(&sig->wait_chldexit); 1655 sig->curr_target = tsk; 1656 init_sigpending(&sig->shared_pending); 1657 INIT_HLIST_HEAD(&sig->multiprocess); 1658 seqlock_init(&sig->stats_lock); 1659 prev_cputime_init(&sig->prev_cputime); 1660 1661 #ifdef CONFIG_POSIX_TIMERS 1662 INIT_LIST_HEAD(&sig->posix_timers); 1663 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1664 sig->real_timer.function = it_real_fn; 1665 #endif 1666 1667 task_lock(current->group_leader); 1668 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1669 task_unlock(current->group_leader); 1670 1671 posix_cpu_timers_init_group(sig); 1672 1673 tty_audit_fork(sig); 1674 sched_autogroup_fork(sig); 1675 1676 sig->oom_score_adj = current->signal->oom_score_adj; 1677 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1678 1679 mutex_init(&sig->cred_guard_mutex); 1680 init_rwsem(&sig->exec_update_lock); 1681 1682 return 0; 1683 } 1684 1685 static void copy_seccomp(struct task_struct *p) 1686 { 1687 #ifdef CONFIG_SECCOMP 1688 /* 1689 * Must be called with sighand->lock held, which is common to 1690 * all threads in the group. Holding cred_guard_mutex is not 1691 * needed because this new task is not yet running and cannot 1692 * be racing exec. 1693 */ 1694 assert_spin_locked(¤t->sighand->siglock); 1695 1696 /* Ref-count the new filter user, and assign it. */ 1697 get_seccomp_filter(current); 1698 p->seccomp = current->seccomp; 1699 1700 /* 1701 * Explicitly enable no_new_privs here in case it got set 1702 * between the task_struct being duplicated and holding the 1703 * sighand lock. The seccomp state and nnp must be in sync. 1704 */ 1705 if (task_no_new_privs(current)) 1706 task_set_no_new_privs(p); 1707 1708 /* 1709 * If the parent gained a seccomp mode after copying thread 1710 * flags and between before we held the sighand lock, we have 1711 * to manually enable the seccomp thread flag here. 1712 */ 1713 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1714 set_task_syscall_work(p, SECCOMP); 1715 #endif 1716 } 1717 1718 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1719 { 1720 current->clear_child_tid = tidptr; 1721 1722 return task_pid_vnr(current); 1723 } 1724 1725 static void rt_mutex_init_task(struct task_struct *p) 1726 { 1727 raw_spin_lock_init(&p->pi_lock); 1728 #ifdef CONFIG_RT_MUTEXES 1729 p->pi_waiters = RB_ROOT_CACHED; 1730 p->pi_top_task = NULL; 1731 p->pi_blocked_on = NULL; 1732 #endif 1733 } 1734 1735 static inline void init_task_pid_links(struct task_struct *task) 1736 { 1737 enum pid_type type; 1738 1739 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1740 INIT_HLIST_NODE(&task->pid_links[type]); 1741 } 1742 1743 static inline void 1744 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1745 { 1746 if (type == PIDTYPE_PID) 1747 task->thread_pid = pid; 1748 else 1749 task->signal->pids[type] = pid; 1750 } 1751 1752 static inline void rcu_copy_process(struct task_struct *p) 1753 { 1754 #ifdef CONFIG_PREEMPT_RCU 1755 p->rcu_read_lock_nesting = 0; 1756 p->rcu_read_unlock_special.s = 0; 1757 p->rcu_blocked_node = NULL; 1758 INIT_LIST_HEAD(&p->rcu_node_entry); 1759 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1760 #ifdef CONFIG_TASKS_RCU 1761 p->rcu_tasks_holdout = false; 1762 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1763 p->rcu_tasks_idle_cpu = -1; 1764 #endif /* #ifdef CONFIG_TASKS_RCU */ 1765 #ifdef CONFIG_TASKS_TRACE_RCU 1766 p->trc_reader_nesting = 0; 1767 p->trc_reader_special.s = 0; 1768 INIT_LIST_HEAD(&p->trc_holdout_list); 1769 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1770 } 1771 1772 struct pid *pidfd_pid(const struct file *file) 1773 { 1774 if (file->f_op == &pidfd_fops) 1775 return file->private_data; 1776 1777 return ERR_PTR(-EBADF); 1778 } 1779 1780 static int pidfd_release(struct inode *inode, struct file *file) 1781 { 1782 struct pid *pid = file->private_data; 1783 1784 file->private_data = NULL; 1785 put_pid(pid); 1786 return 0; 1787 } 1788 1789 #ifdef CONFIG_PROC_FS 1790 /** 1791 * pidfd_show_fdinfo - print information about a pidfd 1792 * @m: proc fdinfo file 1793 * @f: file referencing a pidfd 1794 * 1795 * Pid: 1796 * This function will print the pid that a given pidfd refers to in the 1797 * pid namespace of the procfs instance. 1798 * If the pid namespace of the process is not a descendant of the pid 1799 * namespace of the procfs instance 0 will be shown as its pid. This is 1800 * similar to calling getppid() on a process whose parent is outside of 1801 * its pid namespace. 1802 * 1803 * NSpid: 1804 * If pid namespaces are supported then this function will also print 1805 * the pid of a given pidfd refers to for all descendant pid namespaces 1806 * starting from the current pid namespace of the instance, i.e. the 1807 * Pid field and the first entry in the NSpid field will be identical. 1808 * If the pid namespace of the process is not a descendant of the pid 1809 * namespace of the procfs instance 0 will be shown as its first NSpid 1810 * entry and no others will be shown. 1811 * Note that this differs from the Pid and NSpid fields in 1812 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1813 * the pid namespace of the procfs instance. The difference becomes 1814 * obvious when sending around a pidfd between pid namespaces from a 1815 * different branch of the tree, i.e. where no ancestral relation is 1816 * present between the pid namespaces: 1817 * - create two new pid namespaces ns1 and ns2 in the initial pid 1818 * namespace (also take care to create new mount namespaces in the 1819 * new pid namespace and mount procfs) 1820 * - create a process with a pidfd in ns1 1821 * - send pidfd from ns1 to ns2 1822 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1823 * have exactly one entry, which is 0 1824 */ 1825 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1826 { 1827 struct pid *pid = f->private_data; 1828 struct pid_namespace *ns; 1829 pid_t nr = -1; 1830 1831 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1832 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1833 nr = pid_nr_ns(pid, ns); 1834 } 1835 1836 seq_put_decimal_ll(m, "Pid:\t", nr); 1837 1838 #ifdef CONFIG_PID_NS 1839 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1840 if (nr > 0) { 1841 int i; 1842 1843 /* If nr is non-zero it means that 'pid' is valid and that 1844 * ns, i.e. the pid namespace associated with the procfs 1845 * instance, is in the pid namespace hierarchy of pid. 1846 * Start at one below the already printed level. 1847 */ 1848 for (i = ns->level + 1; i <= pid->level; i++) 1849 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1850 } 1851 #endif 1852 seq_putc(m, '\n'); 1853 } 1854 #endif 1855 1856 /* 1857 * Poll support for process exit notification. 1858 */ 1859 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1860 { 1861 struct pid *pid = file->private_data; 1862 __poll_t poll_flags = 0; 1863 1864 poll_wait(file, &pid->wait_pidfd, pts); 1865 1866 /* 1867 * Inform pollers only when the whole thread group exits. 1868 * If the thread group leader exits before all other threads in the 1869 * group, then poll(2) should block, similar to the wait(2) family. 1870 */ 1871 if (thread_group_exited(pid)) 1872 poll_flags = EPOLLIN | EPOLLRDNORM; 1873 1874 return poll_flags; 1875 } 1876 1877 const struct file_operations pidfd_fops = { 1878 .release = pidfd_release, 1879 .poll = pidfd_poll, 1880 #ifdef CONFIG_PROC_FS 1881 .show_fdinfo = pidfd_show_fdinfo, 1882 #endif 1883 }; 1884 1885 static void __delayed_free_task(struct rcu_head *rhp) 1886 { 1887 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1888 1889 free_task(tsk); 1890 } 1891 1892 static __always_inline void delayed_free_task(struct task_struct *tsk) 1893 { 1894 if (IS_ENABLED(CONFIG_MEMCG)) 1895 call_rcu(&tsk->rcu, __delayed_free_task); 1896 else 1897 free_task(tsk); 1898 } 1899 1900 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1901 { 1902 /* Skip if kernel thread */ 1903 if (!tsk->mm) 1904 return; 1905 1906 /* Skip if spawning a thread or using vfork */ 1907 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1908 return; 1909 1910 /* We need to synchronize with __set_oom_adj */ 1911 mutex_lock(&oom_adj_mutex); 1912 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1913 /* Update the values in case they were changed after copy_signal */ 1914 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1915 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1916 mutex_unlock(&oom_adj_mutex); 1917 } 1918 1919 /* 1920 * This creates a new process as a copy of the old one, 1921 * but does not actually start it yet. 1922 * 1923 * It copies the registers, and all the appropriate 1924 * parts of the process environment (as per the clone 1925 * flags). The actual kick-off is left to the caller. 1926 */ 1927 static __latent_entropy struct task_struct *copy_process( 1928 struct pid *pid, 1929 int trace, 1930 int node, 1931 struct kernel_clone_args *args) 1932 { 1933 int pidfd = -1, retval; 1934 struct task_struct *p; 1935 struct multiprocess_signals delayed; 1936 struct file *pidfile = NULL; 1937 u64 clone_flags = args->flags; 1938 struct nsproxy *nsp = current->nsproxy; 1939 1940 /* 1941 * Don't allow sharing the root directory with processes in a different 1942 * namespace 1943 */ 1944 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1945 return ERR_PTR(-EINVAL); 1946 1947 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1948 return ERR_PTR(-EINVAL); 1949 1950 /* 1951 * Thread groups must share signals as well, and detached threads 1952 * can only be started up within the thread group. 1953 */ 1954 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1955 return ERR_PTR(-EINVAL); 1956 1957 /* 1958 * Shared signal handlers imply shared VM. By way of the above, 1959 * thread groups also imply shared VM. Blocking this case allows 1960 * for various simplifications in other code. 1961 */ 1962 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1963 return ERR_PTR(-EINVAL); 1964 1965 /* 1966 * Siblings of global init remain as zombies on exit since they are 1967 * not reaped by their parent (swapper). To solve this and to avoid 1968 * multi-rooted process trees, prevent global and container-inits 1969 * from creating siblings. 1970 */ 1971 if ((clone_flags & CLONE_PARENT) && 1972 current->signal->flags & SIGNAL_UNKILLABLE) 1973 return ERR_PTR(-EINVAL); 1974 1975 /* 1976 * If the new process will be in a different pid or user namespace 1977 * do not allow it to share a thread group with the forking task. 1978 */ 1979 if (clone_flags & CLONE_THREAD) { 1980 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1981 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1982 return ERR_PTR(-EINVAL); 1983 } 1984 1985 /* 1986 * If the new process will be in a different time namespace 1987 * do not allow it to share VM or a thread group with the forking task. 1988 */ 1989 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1990 if (nsp->time_ns != nsp->time_ns_for_children) 1991 return ERR_PTR(-EINVAL); 1992 } 1993 1994 if (clone_flags & CLONE_PIDFD) { 1995 /* 1996 * - CLONE_DETACHED is blocked so that we can potentially 1997 * reuse it later for CLONE_PIDFD. 1998 * - CLONE_THREAD is blocked until someone really needs it. 1999 */ 2000 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2001 return ERR_PTR(-EINVAL); 2002 } 2003 2004 /* 2005 * Force any signals received before this point to be delivered 2006 * before the fork happens. Collect up signals sent to multiple 2007 * processes that happen during the fork and delay them so that 2008 * they appear to happen after the fork. 2009 */ 2010 sigemptyset(&delayed.signal); 2011 INIT_HLIST_NODE(&delayed.node); 2012 2013 spin_lock_irq(¤t->sighand->siglock); 2014 if (!(clone_flags & CLONE_THREAD)) 2015 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2016 recalc_sigpending(); 2017 spin_unlock_irq(¤t->sighand->siglock); 2018 retval = -ERESTARTNOINTR; 2019 if (task_sigpending(current)) 2020 goto fork_out; 2021 2022 retval = -ENOMEM; 2023 p = dup_task_struct(current, node); 2024 if (!p) 2025 goto fork_out; 2026 if (args->io_thread) { 2027 /* 2028 * Mark us an IO worker, and block any signal that isn't 2029 * fatal or STOP 2030 */ 2031 p->flags |= PF_IO_WORKER; 2032 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2033 } 2034 2035 /* 2036 * This _must_ happen before we call free_task(), i.e. before we jump 2037 * to any of the bad_fork_* labels. This is to avoid freeing 2038 * p->set_child_tid which is (ab)used as a kthread's data pointer for 2039 * kernel threads (PF_KTHREAD). 2040 */ 2041 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2042 /* 2043 * Clear TID on mm_release()? 2044 */ 2045 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2046 2047 ftrace_graph_init_task(p); 2048 2049 rt_mutex_init_task(p); 2050 2051 lockdep_assert_irqs_enabled(); 2052 #ifdef CONFIG_PROVE_LOCKING 2053 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2054 #endif 2055 retval = -EAGAIN; 2056 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2057 if (p->real_cred->user != INIT_USER && 2058 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2059 goto bad_fork_free; 2060 } 2061 current->flags &= ~PF_NPROC_EXCEEDED; 2062 2063 retval = copy_creds(p, clone_flags); 2064 if (retval < 0) 2065 goto bad_fork_free; 2066 2067 /* 2068 * If multiple threads are within copy_process(), then this check 2069 * triggers too late. This doesn't hurt, the check is only there 2070 * to stop root fork bombs. 2071 */ 2072 retval = -EAGAIN; 2073 if (data_race(nr_threads >= max_threads)) 2074 goto bad_fork_cleanup_count; 2075 2076 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2077 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2078 p->flags |= PF_FORKNOEXEC; 2079 INIT_LIST_HEAD(&p->children); 2080 INIT_LIST_HEAD(&p->sibling); 2081 rcu_copy_process(p); 2082 p->vfork_done = NULL; 2083 spin_lock_init(&p->alloc_lock); 2084 2085 init_sigpending(&p->pending); 2086 2087 p->utime = p->stime = p->gtime = 0; 2088 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2089 p->utimescaled = p->stimescaled = 0; 2090 #endif 2091 prev_cputime_init(&p->prev_cputime); 2092 2093 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2094 seqcount_init(&p->vtime.seqcount); 2095 p->vtime.starttime = 0; 2096 p->vtime.state = VTIME_INACTIVE; 2097 #endif 2098 2099 #ifdef CONFIG_IO_URING 2100 p->io_uring = NULL; 2101 #endif 2102 2103 #if defined(SPLIT_RSS_COUNTING) 2104 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2105 #endif 2106 2107 p->default_timer_slack_ns = current->timer_slack_ns; 2108 2109 #ifdef CONFIG_PSI 2110 p->psi_flags = 0; 2111 #endif 2112 2113 task_io_accounting_init(&p->ioac); 2114 acct_clear_integrals(p); 2115 2116 posix_cputimers_init(&p->posix_cputimers); 2117 2118 p->io_context = NULL; 2119 audit_set_context(p, NULL); 2120 cgroup_fork(p); 2121 #ifdef CONFIG_NUMA 2122 p->mempolicy = mpol_dup(p->mempolicy); 2123 if (IS_ERR(p->mempolicy)) { 2124 retval = PTR_ERR(p->mempolicy); 2125 p->mempolicy = NULL; 2126 goto bad_fork_cleanup_threadgroup_lock; 2127 } 2128 #endif 2129 #ifdef CONFIG_CPUSETS 2130 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2131 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2132 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2133 #endif 2134 #ifdef CONFIG_TRACE_IRQFLAGS 2135 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2136 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2137 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2138 p->softirqs_enabled = 1; 2139 p->softirq_context = 0; 2140 #endif 2141 2142 p->pagefault_disabled = 0; 2143 2144 #ifdef CONFIG_LOCKDEP 2145 lockdep_init_task(p); 2146 #endif 2147 2148 #ifdef CONFIG_DEBUG_MUTEXES 2149 p->blocked_on = NULL; /* not blocked yet */ 2150 #endif 2151 #ifdef CONFIG_BCACHE 2152 p->sequential_io = 0; 2153 p->sequential_io_avg = 0; 2154 #endif 2155 #ifdef CONFIG_BPF_SYSCALL 2156 RCU_INIT_POINTER(p->bpf_storage, NULL); 2157 p->bpf_ctx = NULL; 2158 #endif 2159 2160 /* Perform scheduler related setup. Assign this task to a CPU. */ 2161 retval = sched_fork(clone_flags, p); 2162 if (retval) 2163 goto bad_fork_cleanup_policy; 2164 2165 retval = perf_event_init_task(p, clone_flags); 2166 if (retval) 2167 goto bad_fork_cleanup_policy; 2168 retval = audit_alloc(p); 2169 if (retval) 2170 goto bad_fork_cleanup_perf; 2171 /* copy all the process information */ 2172 shm_init_task(p); 2173 retval = security_task_alloc(p, clone_flags); 2174 if (retval) 2175 goto bad_fork_cleanup_audit; 2176 retval = copy_semundo(clone_flags, p); 2177 if (retval) 2178 goto bad_fork_cleanup_security; 2179 retval = copy_files(clone_flags, p); 2180 if (retval) 2181 goto bad_fork_cleanup_semundo; 2182 retval = copy_fs(clone_flags, p); 2183 if (retval) 2184 goto bad_fork_cleanup_files; 2185 retval = copy_sighand(clone_flags, p); 2186 if (retval) 2187 goto bad_fork_cleanup_fs; 2188 retval = copy_signal(clone_flags, p); 2189 if (retval) 2190 goto bad_fork_cleanup_sighand; 2191 retval = copy_mm(clone_flags, p); 2192 if (retval) 2193 goto bad_fork_cleanup_signal; 2194 retval = copy_namespaces(clone_flags, p); 2195 if (retval) 2196 goto bad_fork_cleanup_mm; 2197 retval = copy_io(clone_flags, p); 2198 if (retval) 2199 goto bad_fork_cleanup_namespaces; 2200 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2201 if (retval) 2202 goto bad_fork_cleanup_io; 2203 2204 stackleak_task_init(p); 2205 2206 if (pid != &init_struct_pid) { 2207 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2208 args->set_tid_size); 2209 if (IS_ERR(pid)) { 2210 retval = PTR_ERR(pid); 2211 goto bad_fork_cleanup_thread; 2212 } 2213 } 2214 2215 /* 2216 * This has to happen after we've potentially unshared the file 2217 * descriptor table (so that the pidfd doesn't leak into the child 2218 * if the fd table isn't shared). 2219 */ 2220 if (clone_flags & CLONE_PIDFD) { 2221 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2222 if (retval < 0) 2223 goto bad_fork_free_pid; 2224 2225 pidfd = retval; 2226 2227 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2228 O_RDWR | O_CLOEXEC); 2229 if (IS_ERR(pidfile)) { 2230 put_unused_fd(pidfd); 2231 retval = PTR_ERR(pidfile); 2232 goto bad_fork_free_pid; 2233 } 2234 get_pid(pid); /* held by pidfile now */ 2235 2236 retval = put_user(pidfd, args->pidfd); 2237 if (retval) 2238 goto bad_fork_put_pidfd; 2239 } 2240 2241 #ifdef CONFIG_BLOCK 2242 p->plug = NULL; 2243 #endif 2244 futex_init_task(p); 2245 2246 /* 2247 * sigaltstack should be cleared when sharing the same VM 2248 */ 2249 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2250 sas_ss_reset(p); 2251 2252 /* 2253 * Syscall tracing and stepping should be turned off in the 2254 * child regardless of CLONE_PTRACE. 2255 */ 2256 user_disable_single_step(p); 2257 clear_task_syscall_work(p, SYSCALL_TRACE); 2258 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2259 clear_task_syscall_work(p, SYSCALL_EMU); 2260 #endif 2261 clear_tsk_latency_tracing(p); 2262 2263 /* ok, now we should be set up.. */ 2264 p->pid = pid_nr(pid); 2265 if (clone_flags & CLONE_THREAD) { 2266 p->group_leader = current->group_leader; 2267 p->tgid = current->tgid; 2268 } else { 2269 p->group_leader = p; 2270 p->tgid = p->pid; 2271 } 2272 2273 p->nr_dirtied = 0; 2274 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2275 p->dirty_paused_when = 0; 2276 2277 p->pdeath_signal = 0; 2278 INIT_LIST_HEAD(&p->thread_group); 2279 p->task_works = NULL; 2280 clear_posix_cputimers_work(p); 2281 2282 #ifdef CONFIG_KRETPROBES 2283 p->kretprobe_instances.first = NULL; 2284 #endif 2285 2286 /* 2287 * Ensure that the cgroup subsystem policies allow the new process to be 2288 * forked. It should be noted that the new process's css_set can be changed 2289 * between here and cgroup_post_fork() if an organisation operation is in 2290 * progress. 2291 */ 2292 retval = cgroup_can_fork(p, args); 2293 if (retval) 2294 goto bad_fork_put_pidfd; 2295 2296 /* 2297 * From this point on we must avoid any synchronous user-space 2298 * communication until we take the tasklist-lock. In particular, we do 2299 * not want user-space to be able to predict the process start-time by 2300 * stalling fork(2) after we recorded the start_time but before it is 2301 * visible to the system. 2302 */ 2303 2304 p->start_time = ktime_get_ns(); 2305 p->start_boottime = ktime_get_boottime_ns(); 2306 2307 /* 2308 * Make it visible to the rest of the system, but dont wake it up yet. 2309 * Need tasklist lock for parent etc handling! 2310 */ 2311 write_lock_irq(&tasklist_lock); 2312 2313 /* CLONE_PARENT re-uses the old parent */ 2314 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2315 p->real_parent = current->real_parent; 2316 p->parent_exec_id = current->parent_exec_id; 2317 if (clone_flags & CLONE_THREAD) 2318 p->exit_signal = -1; 2319 else 2320 p->exit_signal = current->group_leader->exit_signal; 2321 } else { 2322 p->real_parent = current; 2323 p->parent_exec_id = current->self_exec_id; 2324 p->exit_signal = args->exit_signal; 2325 } 2326 2327 klp_copy_process(p); 2328 2329 sched_core_fork(p); 2330 2331 spin_lock(¤t->sighand->siglock); 2332 2333 /* 2334 * Copy seccomp details explicitly here, in case they were changed 2335 * before holding sighand lock. 2336 */ 2337 copy_seccomp(p); 2338 2339 rseq_fork(p, clone_flags); 2340 2341 /* Don't start children in a dying pid namespace */ 2342 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2343 retval = -ENOMEM; 2344 goto bad_fork_cancel_cgroup; 2345 } 2346 2347 /* Let kill terminate clone/fork in the middle */ 2348 if (fatal_signal_pending(current)) { 2349 retval = -EINTR; 2350 goto bad_fork_cancel_cgroup; 2351 } 2352 2353 /* past the last point of failure */ 2354 if (pidfile) 2355 fd_install(pidfd, pidfile); 2356 2357 init_task_pid_links(p); 2358 if (likely(p->pid)) { 2359 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2360 2361 init_task_pid(p, PIDTYPE_PID, pid); 2362 if (thread_group_leader(p)) { 2363 init_task_pid(p, PIDTYPE_TGID, pid); 2364 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2365 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2366 2367 if (is_child_reaper(pid)) { 2368 ns_of_pid(pid)->child_reaper = p; 2369 p->signal->flags |= SIGNAL_UNKILLABLE; 2370 } 2371 p->signal->shared_pending.signal = delayed.signal; 2372 p->signal->tty = tty_kref_get(current->signal->tty); 2373 /* 2374 * Inherit has_child_subreaper flag under the same 2375 * tasklist_lock with adding child to the process tree 2376 * for propagate_has_child_subreaper optimization. 2377 */ 2378 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2379 p->real_parent->signal->is_child_subreaper; 2380 list_add_tail(&p->sibling, &p->real_parent->children); 2381 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2382 attach_pid(p, PIDTYPE_TGID); 2383 attach_pid(p, PIDTYPE_PGID); 2384 attach_pid(p, PIDTYPE_SID); 2385 __this_cpu_inc(process_counts); 2386 } else { 2387 current->signal->nr_threads++; 2388 atomic_inc(¤t->signal->live); 2389 refcount_inc(¤t->signal->sigcnt); 2390 task_join_group_stop(p); 2391 list_add_tail_rcu(&p->thread_group, 2392 &p->group_leader->thread_group); 2393 list_add_tail_rcu(&p->thread_node, 2394 &p->signal->thread_head); 2395 } 2396 attach_pid(p, PIDTYPE_PID); 2397 nr_threads++; 2398 } 2399 total_forks++; 2400 hlist_del_init(&delayed.node); 2401 spin_unlock(¤t->sighand->siglock); 2402 syscall_tracepoint_update(p); 2403 write_unlock_irq(&tasklist_lock); 2404 2405 proc_fork_connector(p); 2406 sched_post_fork(p, args); 2407 cgroup_post_fork(p, args); 2408 perf_event_fork(p); 2409 2410 trace_task_newtask(p, clone_flags); 2411 uprobe_copy_process(p, clone_flags); 2412 2413 copy_oom_score_adj(clone_flags, p); 2414 2415 return p; 2416 2417 bad_fork_cancel_cgroup: 2418 sched_core_free(p); 2419 spin_unlock(¤t->sighand->siglock); 2420 write_unlock_irq(&tasklist_lock); 2421 cgroup_cancel_fork(p, args); 2422 bad_fork_put_pidfd: 2423 if (clone_flags & CLONE_PIDFD) { 2424 fput(pidfile); 2425 put_unused_fd(pidfd); 2426 } 2427 bad_fork_free_pid: 2428 if (pid != &init_struct_pid) 2429 free_pid(pid); 2430 bad_fork_cleanup_thread: 2431 exit_thread(p); 2432 bad_fork_cleanup_io: 2433 if (p->io_context) 2434 exit_io_context(p); 2435 bad_fork_cleanup_namespaces: 2436 exit_task_namespaces(p); 2437 bad_fork_cleanup_mm: 2438 if (p->mm) { 2439 mm_clear_owner(p->mm, p); 2440 mmput(p->mm); 2441 } 2442 bad_fork_cleanup_signal: 2443 if (!(clone_flags & CLONE_THREAD)) 2444 free_signal_struct(p->signal); 2445 bad_fork_cleanup_sighand: 2446 __cleanup_sighand(p->sighand); 2447 bad_fork_cleanup_fs: 2448 exit_fs(p); /* blocking */ 2449 bad_fork_cleanup_files: 2450 exit_files(p); /* blocking */ 2451 bad_fork_cleanup_semundo: 2452 exit_sem(p); 2453 bad_fork_cleanup_security: 2454 security_task_free(p); 2455 bad_fork_cleanup_audit: 2456 audit_free(p); 2457 bad_fork_cleanup_perf: 2458 perf_event_free_task(p); 2459 bad_fork_cleanup_policy: 2460 lockdep_free_task(p); 2461 #ifdef CONFIG_NUMA 2462 mpol_put(p->mempolicy); 2463 bad_fork_cleanup_threadgroup_lock: 2464 #endif 2465 delayacct_tsk_free(p); 2466 bad_fork_cleanup_count: 2467 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2468 exit_creds(p); 2469 bad_fork_free: 2470 WRITE_ONCE(p->__state, TASK_DEAD); 2471 put_task_stack(p); 2472 delayed_free_task(p); 2473 fork_out: 2474 spin_lock_irq(¤t->sighand->siglock); 2475 hlist_del_init(&delayed.node); 2476 spin_unlock_irq(¤t->sighand->siglock); 2477 return ERR_PTR(retval); 2478 } 2479 2480 static inline void init_idle_pids(struct task_struct *idle) 2481 { 2482 enum pid_type type; 2483 2484 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2485 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2486 init_task_pid(idle, type, &init_struct_pid); 2487 } 2488 } 2489 2490 struct task_struct * __init fork_idle(int cpu) 2491 { 2492 struct task_struct *task; 2493 struct kernel_clone_args args = { 2494 .flags = CLONE_VM, 2495 }; 2496 2497 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2498 if (!IS_ERR(task)) { 2499 init_idle_pids(task); 2500 init_idle(task, cpu); 2501 } 2502 2503 return task; 2504 } 2505 2506 struct mm_struct *copy_init_mm(void) 2507 { 2508 return dup_mm(NULL, &init_mm); 2509 } 2510 2511 /* 2512 * This is like kernel_clone(), but shaved down and tailored to just 2513 * creating io_uring workers. It returns a created task, or an error pointer. 2514 * The returned task is inactive, and the caller must fire it up through 2515 * wake_up_new_task(p). All signals are blocked in the created task. 2516 */ 2517 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2518 { 2519 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2520 CLONE_IO; 2521 struct kernel_clone_args args = { 2522 .flags = ((lower_32_bits(flags) | CLONE_VM | 2523 CLONE_UNTRACED) & ~CSIGNAL), 2524 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2525 .stack = (unsigned long)fn, 2526 .stack_size = (unsigned long)arg, 2527 .io_thread = 1, 2528 }; 2529 2530 return copy_process(NULL, 0, node, &args); 2531 } 2532 2533 /* 2534 * Ok, this is the main fork-routine. 2535 * 2536 * It copies the process, and if successful kick-starts 2537 * it and waits for it to finish using the VM if required. 2538 * 2539 * args->exit_signal is expected to be checked for sanity by the caller. 2540 */ 2541 pid_t kernel_clone(struct kernel_clone_args *args) 2542 { 2543 u64 clone_flags = args->flags; 2544 struct completion vfork; 2545 struct pid *pid; 2546 struct task_struct *p; 2547 int trace = 0; 2548 pid_t nr; 2549 2550 /* 2551 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2552 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2553 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2554 * field in struct clone_args and it still doesn't make sense to have 2555 * them both point at the same memory location. Performing this check 2556 * here has the advantage that we don't need to have a separate helper 2557 * to check for legacy clone(). 2558 */ 2559 if ((args->flags & CLONE_PIDFD) && 2560 (args->flags & CLONE_PARENT_SETTID) && 2561 (args->pidfd == args->parent_tid)) 2562 return -EINVAL; 2563 2564 /* 2565 * Determine whether and which event to report to ptracer. When 2566 * called from kernel_thread or CLONE_UNTRACED is explicitly 2567 * requested, no event is reported; otherwise, report if the event 2568 * for the type of forking is enabled. 2569 */ 2570 if (!(clone_flags & CLONE_UNTRACED)) { 2571 if (clone_flags & CLONE_VFORK) 2572 trace = PTRACE_EVENT_VFORK; 2573 else if (args->exit_signal != SIGCHLD) 2574 trace = PTRACE_EVENT_CLONE; 2575 else 2576 trace = PTRACE_EVENT_FORK; 2577 2578 if (likely(!ptrace_event_enabled(current, trace))) 2579 trace = 0; 2580 } 2581 2582 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2583 add_latent_entropy(); 2584 2585 if (IS_ERR(p)) 2586 return PTR_ERR(p); 2587 2588 /* 2589 * Do this prior waking up the new thread - the thread pointer 2590 * might get invalid after that point, if the thread exits quickly. 2591 */ 2592 trace_sched_process_fork(current, p); 2593 2594 pid = get_task_pid(p, PIDTYPE_PID); 2595 nr = pid_vnr(pid); 2596 2597 if (clone_flags & CLONE_PARENT_SETTID) 2598 put_user(nr, args->parent_tid); 2599 2600 if (clone_flags & CLONE_VFORK) { 2601 p->vfork_done = &vfork; 2602 init_completion(&vfork); 2603 get_task_struct(p); 2604 } 2605 2606 wake_up_new_task(p); 2607 2608 /* forking complete and child started to run, tell ptracer */ 2609 if (unlikely(trace)) 2610 ptrace_event_pid(trace, pid); 2611 2612 if (clone_flags & CLONE_VFORK) { 2613 if (!wait_for_vfork_done(p, &vfork)) 2614 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2615 } 2616 2617 put_pid(pid); 2618 return nr; 2619 } 2620 2621 /* 2622 * Create a kernel thread. 2623 */ 2624 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2625 { 2626 struct kernel_clone_args args = { 2627 .flags = ((lower_32_bits(flags) | CLONE_VM | 2628 CLONE_UNTRACED) & ~CSIGNAL), 2629 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2630 .stack = (unsigned long)fn, 2631 .stack_size = (unsigned long)arg, 2632 }; 2633 2634 return kernel_clone(&args); 2635 } 2636 2637 #ifdef __ARCH_WANT_SYS_FORK 2638 SYSCALL_DEFINE0(fork) 2639 { 2640 #ifdef CONFIG_MMU 2641 struct kernel_clone_args args = { 2642 .exit_signal = SIGCHLD, 2643 }; 2644 2645 return kernel_clone(&args); 2646 #else 2647 /* can not support in nommu mode */ 2648 return -EINVAL; 2649 #endif 2650 } 2651 #endif 2652 2653 #ifdef __ARCH_WANT_SYS_VFORK 2654 SYSCALL_DEFINE0(vfork) 2655 { 2656 struct kernel_clone_args args = { 2657 .flags = CLONE_VFORK | CLONE_VM, 2658 .exit_signal = SIGCHLD, 2659 }; 2660 2661 return kernel_clone(&args); 2662 } 2663 #endif 2664 2665 #ifdef __ARCH_WANT_SYS_CLONE 2666 #ifdef CONFIG_CLONE_BACKWARDS 2667 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2668 int __user *, parent_tidptr, 2669 unsigned long, tls, 2670 int __user *, child_tidptr) 2671 #elif defined(CONFIG_CLONE_BACKWARDS2) 2672 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2673 int __user *, parent_tidptr, 2674 int __user *, child_tidptr, 2675 unsigned long, tls) 2676 #elif defined(CONFIG_CLONE_BACKWARDS3) 2677 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2678 int, stack_size, 2679 int __user *, parent_tidptr, 2680 int __user *, child_tidptr, 2681 unsigned long, tls) 2682 #else 2683 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2684 int __user *, parent_tidptr, 2685 int __user *, child_tidptr, 2686 unsigned long, tls) 2687 #endif 2688 { 2689 struct kernel_clone_args args = { 2690 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2691 .pidfd = parent_tidptr, 2692 .child_tid = child_tidptr, 2693 .parent_tid = parent_tidptr, 2694 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2695 .stack = newsp, 2696 .tls = tls, 2697 }; 2698 2699 return kernel_clone(&args); 2700 } 2701 #endif 2702 2703 #ifdef __ARCH_WANT_SYS_CLONE3 2704 2705 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2706 struct clone_args __user *uargs, 2707 size_t usize) 2708 { 2709 int err; 2710 struct clone_args args; 2711 pid_t *kset_tid = kargs->set_tid; 2712 2713 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2714 CLONE_ARGS_SIZE_VER0); 2715 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2716 CLONE_ARGS_SIZE_VER1); 2717 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2718 CLONE_ARGS_SIZE_VER2); 2719 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2720 2721 if (unlikely(usize > PAGE_SIZE)) 2722 return -E2BIG; 2723 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2724 return -EINVAL; 2725 2726 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2727 if (err) 2728 return err; 2729 2730 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2731 return -EINVAL; 2732 2733 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2734 return -EINVAL; 2735 2736 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2737 return -EINVAL; 2738 2739 /* 2740 * Verify that higher 32bits of exit_signal are unset and that 2741 * it is a valid signal 2742 */ 2743 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2744 !valid_signal(args.exit_signal))) 2745 return -EINVAL; 2746 2747 if ((args.flags & CLONE_INTO_CGROUP) && 2748 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2749 return -EINVAL; 2750 2751 *kargs = (struct kernel_clone_args){ 2752 .flags = args.flags, 2753 .pidfd = u64_to_user_ptr(args.pidfd), 2754 .child_tid = u64_to_user_ptr(args.child_tid), 2755 .parent_tid = u64_to_user_ptr(args.parent_tid), 2756 .exit_signal = args.exit_signal, 2757 .stack = args.stack, 2758 .stack_size = args.stack_size, 2759 .tls = args.tls, 2760 .set_tid_size = args.set_tid_size, 2761 .cgroup = args.cgroup, 2762 }; 2763 2764 if (args.set_tid && 2765 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2766 (kargs->set_tid_size * sizeof(pid_t)))) 2767 return -EFAULT; 2768 2769 kargs->set_tid = kset_tid; 2770 2771 return 0; 2772 } 2773 2774 /** 2775 * clone3_stack_valid - check and prepare stack 2776 * @kargs: kernel clone args 2777 * 2778 * Verify that the stack arguments userspace gave us are sane. 2779 * In addition, set the stack direction for userspace since it's easy for us to 2780 * determine. 2781 */ 2782 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2783 { 2784 if (kargs->stack == 0) { 2785 if (kargs->stack_size > 0) 2786 return false; 2787 } else { 2788 if (kargs->stack_size == 0) 2789 return false; 2790 2791 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2792 return false; 2793 2794 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2795 kargs->stack += kargs->stack_size; 2796 #endif 2797 } 2798 2799 return true; 2800 } 2801 2802 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2803 { 2804 /* Verify that no unknown flags are passed along. */ 2805 if (kargs->flags & 2806 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2807 return false; 2808 2809 /* 2810 * - make the CLONE_DETACHED bit reusable for clone3 2811 * - make the CSIGNAL bits reusable for clone3 2812 */ 2813 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2814 return false; 2815 2816 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2817 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2818 return false; 2819 2820 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2821 kargs->exit_signal) 2822 return false; 2823 2824 if (!clone3_stack_valid(kargs)) 2825 return false; 2826 2827 return true; 2828 } 2829 2830 /** 2831 * clone3 - create a new process with specific properties 2832 * @uargs: argument structure 2833 * @size: size of @uargs 2834 * 2835 * clone3() is the extensible successor to clone()/clone2(). 2836 * It takes a struct as argument that is versioned by its size. 2837 * 2838 * Return: On success, a positive PID for the child process. 2839 * On error, a negative errno number. 2840 */ 2841 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2842 { 2843 int err; 2844 2845 struct kernel_clone_args kargs; 2846 pid_t set_tid[MAX_PID_NS_LEVEL]; 2847 2848 kargs.set_tid = set_tid; 2849 2850 err = copy_clone_args_from_user(&kargs, uargs, size); 2851 if (err) 2852 return err; 2853 2854 if (!clone3_args_valid(&kargs)) 2855 return -EINVAL; 2856 2857 return kernel_clone(&kargs); 2858 } 2859 #endif 2860 2861 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2862 { 2863 struct task_struct *leader, *parent, *child; 2864 int res; 2865 2866 read_lock(&tasklist_lock); 2867 leader = top = top->group_leader; 2868 down: 2869 for_each_thread(leader, parent) { 2870 list_for_each_entry(child, &parent->children, sibling) { 2871 res = visitor(child, data); 2872 if (res) { 2873 if (res < 0) 2874 goto out; 2875 leader = child; 2876 goto down; 2877 } 2878 up: 2879 ; 2880 } 2881 } 2882 2883 if (leader != top) { 2884 child = leader; 2885 parent = child->real_parent; 2886 leader = parent->group_leader; 2887 goto up; 2888 } 2889 out: 2890 read_unlock(&tasklist_lock); 2891 } 2892 2893 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2894 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2895 #endif 2896 2897 static void sighand_ctor(void *data) 2898 { 2899 struct sighand_struct *sighand = data; 2900 2901 spin_lock_init(&sighand->siglock); 2902 init_waitqueue_head(&sighand->signalfd_wqh); 2903 } 2904 2905 void __init proc_caches_init(void) 2906 { 2907 unsigned int mm_size; 2908 2909 sighand_cachep = kmem_cache_create("sighand_cache", 2910 sizeof(struct sighand_struct), 0, 2911 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2912 SLAB_ACCOUNT, sighand_ctor); 2913 signal_cachep = kmem_cache_create("signal_cache", 2914 sizeof(struct signal_struct), 0, 2915 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2916 NULL); 2917 files_cachep = kmem_cache_create("files_cache", 2918 sizeof(struct files_struct), 0, 2919 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2920 NULL); 2921 fs_cachep = kmem_cache_create("fs_cache", 2922 sizeof(struct fs_struct), 0, 2923 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2924 NULL); 2925 2926 /* 2927 * The mm_cpumask is located at the end of mm_struct, and is 2928 * dynamically sized based on the maximum CPU number this system 2929 * can have, taking hotplug into account (nr_cpu_ids). 2930 */ 2931 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2932 2933 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2934 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2935 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2936 offsetof(struct mm_struct, saved_auxv), 2937 sizeof_field(struct mm_struct, saved_auxv), 2938 NULL); 2939 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2940 mmap_init(); 2941 nsproxy_cache_init(); 2942 } 2943 2944 /* 2945 * Check constraints on flags passed to the unshare system call. 2946 */ 2947 static int check_unshare_flags(unsigned long unshare_flags) 2948 { 2949 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2950 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2951 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2952 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2953 CLONE_NEWTIME)) 2954 return -EINVAL; 2955 /* 2956 * Not implemented, but pretend it works if there is nothing 2957 * to unshare. Note that unsharing the address space or the 2958 * signal handlers also need to unshare the signal queues (aka 2959 * CLONE_THREAD). 2960 */ 2961 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2962 if (!thread_group_empty(current)) 2963 return -EINVAL; 2964 } 2965 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2966 if (refcount_read(¤t->sighand->count) > 1) 2967 return -EINVAL; 2968 } 2969 if (unshare_flags & CLONE_VM) { 2970 if (!current_is_single_threaded()) 2971 return -EINVAL; 2972 } 2973 2974 return 0; 2975 } 2976 2977 /* 2978 * Unshare the filesystem structure if it is being shared 2979 */ 2980 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2981 { 2982 struct fs_struct *fs = current->fs; 2983 2984 if (!(unshare_flags & CLONE_FS) || !fs) 2985 return 0; 2986 2987 /* don't need lock here; in the worst case we'll do useless copy */ 2988 if (fs->users == 1) 2989 return 0; 2990 2991 *new_fsp = copy_fs_struct(fs); 2992 if (!*new_fsp) 2993 return -ENOMEM; 2994 2995 return 0; 2996 } 2997 2998 /* 2999 * Unshare file descriptor table if it is being shared 3000 */ 3001 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3002 struct files_struct **new_fdp) 3003 { 3004 struct files_struct *fd = current->files; 3005 int error = 0; 3006 3007 if ((unshare_flags & CLONE_FILES) && 3008 (fd && atomic_read(&fd->count) > 1)) { 3009 *new_fdp = dup_fd(fd, max_fds, &error); 3010 if (!*new_fdp) 3011 return error; 3012 } 3013 3014 return 0; 3015 } 3016 3017 /* 3018 * unshare allows a process to 'unshare' part of the process 3019 * context which was originally shared using clone. copy_* 3020 * functions used by kernel_clone() cannot be used here directly 3021 * because they modify an inactive task_struct that is being 3022 * constructed. Here we are modifying the current, active, 3023 * task_struct. 3024 */ 3025 int ksys_unshare(unsigned long unshare_flags) 3026 { 3027 struct fs_struct *fs, *new_fs = NULL; 3028 struct files_struct *new_fd = NULL; 3029 struct cred *new_cred = NULL; 3030 struct nsproxy *new_nsproxy = NULL; 3031 int do_sysvsem = 0; 3032 int err; 3033 3034 /* 3035 * If unsharing a user namespace must also unshare the thread group 3036 * and unshare the filesystem root and working directories. 3037 */ 3038 if (unshare_flags & CLONE_NEWUSER) 3039 unshare_flags |= CLONE_THREAD | CLONE_FS; 3040 /* 3041 * If unsharing vm, must also unshare signal handlers. 3042 */ 3043 if (unshare_flags & CLONE_VM) 3044 unshare_flags |= CLONE_SIGHAND; 3045 /* 3046 * If unsharing a signal handlers, must also unshare the signal queues. 3047 */ 3048 if (unshare_flags & CLONE_SIGHAND) 3049 unshare_flags |= CLONE_THREAD; 3050 /* 3051 * If unsharing namespace, must also unshare filesystem information. 3052 */ 3053 if (unshare_flags & CLONE_NEWNS) 3054 unshare_flags |= CLONE_FS; 3055 3056 err = check_unshare_flags(unshare_flags); 3057 if (err) 3058 goto bad_unshare_out; 3059 /* 3060 * CLONE_NEWIPC must also detach from the undolist: after switching 3061 * to a new ipc namespace, the semaphore arrays from the old 3062 * namespace are unreachable. 3063 */ 3064 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3065 do_sysvsem = 1; 3066 err = unshare_fs(unshare_flags, &new_fs); 3067 if (err) 3068 goto bad_unshare_out; 3069 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3070 if (err) 3071 goto bad_unshare_cleanup_fs; 3072 err = unshare_userns(unshare_flags, &new_cred); 3073 if (err) 3074 goto bad_unshare_cleanup_fd; 3075 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3076 new_cred, new_fs); 3077 if (err) 3078 goto bad_unshare_cleanup_cred; 3079 3080 if (new_cred) { 3081 err = set_cred_ucounts(new_cred); 3082 if (err) 3083 goto bad_unshare_cleanup_cred; 3084 } 3085 3086 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3087 if (do_sysvsem) { 3088 /* 3089 * CLONE_SYSVSEM is equivalent to sys_exit(). 3090 */ 3091 exit_sem(current); 3092 } 3093 if (unshare_flags & CLONE_NEWIPC) { 3094 /* Orphan segments in old ns (see sem above). */ 3095 exit_shm(current); 3096 shm_init_task(current); 3097 } 3098 3099 if (new_nsproxy) 3100 switch_task_namespaces(current, new_nsproxy); 3101 3102 task_lock(current); 3103 3104 if (new_fs) { 3105 fs = current->fs; 3106 spin_lock(&fs->lock); 3107 current->fs = new_fs; 3108 if (--fs->users) 3109 new_fs = NULL; 3110 else 3111 new_fs = fs; 3112 spin_unlock(&fs->lock); 3113 } 3114 3115 if (new_fd) 3116 swap(current->files, new_fd); 3117 3118 task_unlock(current); 3119 3120 if (new_cred) { 3121 /* Install the new user namespace */ 3122 commit_creds(new_cred); 3123 new_cred = NULL; 3124 } 3125 } 3126 3127 perf_event_namespaces(current); 3128 3129 bad_unshare_cleanup_cred: 3130 if (new_cred) 3131 put_cred(new_cred); 3132 bad_unshare_cleanup_fd: 3133 if (new_fd) 3134 put_files_struct(new_fd); 3135 3136 bad_unshare_cleanup_fs: 3137 if (new_fs) 3138 free_fs_struct(new_fs); 3139 3140 bad_unshare_out: 3141 return err; 3142 } 3143 3144 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3145 { 3146 return ksys_unshare(unshare_flags); 3147 } 3148 3149 /* 3150 * Helper to unshare the files of the current task. 3151 * We don't want to expose copy_files internals to 3152 * the exec layer of the kernel. 3153 */ 3154 3155 int unshare_files(void) 3156 { 3157 struct task_struct *task = current; 3158 struct files_struct *old, *copy = NULL; 3159 int error; 3160 3161 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3162 if (error || !copy) 3163 return error; 3164 3165 old = task->files; 3166 task_lock(task); 3167 task->files = copy; 3168 task_unlock(task); 3169 put_files_struct(old); 3170 return 0; 3171 } 3172 3173 int sysctl_max_threads(struct ctl_table *table, int write, 3174 void *buffer, size_t *lenp, loff_t *ppos) 3175 { 3176 struct ctl_table t; 3177 int ret; 3178 int threads = max_threads; 3179 int min = 1; 3180 int max = MAX_THREADS; 3181 3182 t = *table; 3183 t.data = &threads; 3184 t.extra1 = &min; 3185 t.extra2 = &max; 3186 3187 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3188 if (ret || !write) 3189 return ret; 3190 3191 max_threads = threads; 3192 3193 return 0; 3194 } 3195