xref: /openbmc/linux/kernel/fork.c (revision 1c137323)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		*new = data_race(*orig);
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 	release_user_cpus_ptr(tsk);
539 	scs_release(tsk);
540 
541 #ifndef CONFIG_THREAD_INFO_IN_TASK
542 	/*
543 	 * The task is finally done with both the stack and thread_info,
544 	 * so free both.
545 	 */
546 	release_task_stack(tsk);
547 #else
548 	/*
549 	 * If the task had a separate stack allocation, it should be gone
550 	 * by now.
551 	 */
552 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
553 #endif
554 	rt_mutex_debug_task_free(tsk);
555 	ftrace_graph_exit_task(tsk);
556 	arch_release_task_struct(tsk);
557 	if (tsk->flags & PF_KTHREAD)
558 		free_kthread_struct(tsk);
559 	free_task_struct(tsk);
560 }
561 EXPORT_SYMBOL(free_task);
562 
563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
564 {
565 	struct file *exe_file;
566 
567 	exe_file = get_mm_exe_file(oldmm);
568 	RCU_INIT_POINTER(mm->exe_file, exe_file);
569 	/*
570 	 * We depend on the oldmm having properly denied write access to the
571 	 * exe_file already.
572 	 */
573 	if (exe_file && deny_write_access(exe_file))
574 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
575 }
576 
577 #ifdef CONFIG_MMU
578 static __latent_entropy int dup_mmap(struct mm_struct *mm,
579 					struct mm_struct *oldmm)
580 {
581 	struct vm_area_struct *mpnt, *tmp;
582 	int retval;
583 	unsigned long charge = 0;
584 	LIST_HEAD(uf);
585 	MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
586 	MA_STATE(mas, &mm->mm_mt, 0, 0);
587 
588 	uprobe_start_dup_mmap();
589 	if (mmap_write_lock_killable(oldmm)) {
590 		retval = -EINTR;
591 		goto fail_uprobe_end;
592 	}
593 	flush_cache_dup_mm(oldmm);
594 	uprobe_dup_mmap(oldmm, mm);
595 	/*
596 	 * Not linked in yet - no deadlock potential:
597 	 */
598 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
599 
600 	/* No ordering required: file already has been exposed. */
601 	dup_mm_exe_file(mm, oldmm);
602 
603 	mm->total_vm = oldmm->total_vm;
604 	mm->data_vm = oldmm->data_vm;
605 	mm->exec_vm = oldmm->exec_vm;
606 	mm->stack_vm = oldmm->stack_vm;
607 
608 	retval = ksm_fork(mm, oldmm);
609 	if (retval)
610 		goto out;
611 	khugepaged_fork(mm, oldmm);
612 
613 	retval = mas_expected_entries(&mas, oldmm->map_count);
614 	if (retval)
615 		goto out;
616 
617 	mas_for_each(&old_mas, mpnt, ULONG_MAX) {
618 		struct file *file;
619 
620 		if (mpnt->vm_flags & VM_DONTCOPY) {
621 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
622 			continue;
623 		}
624 		charge = 0;
625 		/*
626 		 * Don't duplicate many vmas if we've been oom-killed (for
627 		 * example)
628 		 */
629 		if (fatal_signal_pending(current)) {
630 			retval = -EINTR;
631 			goto loop_out;
632 		}
633 		if (mpnt->vm_flags & VM_ACCOUNT) {
634 			unsigned long len = vma_pages(mpnt);
635 
636 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
637 				goto fail_nomem;
638 			charge = len;
639 		}
640 		tmp = vm_area_dup(mpnt);
641 		if (!tmp)
642 			goto fail_nomem;
643 		retval = vma_dup_policy(mpnt, tmp);
644 		if (retval)
645 			goto fail_nomem_policy;
646 		tmp->vm_mm = mm;
647 		retval = dup_userfaultfd(tmp, &uf);
648 		if (retval)
649 			goto fail_nomem_anon_vma_fork;
650 		if (tmp->vm_flags & VM_WIPEONFORK) {
651 			/*
652 			 * VM_WIPEONFORK gets a clean slate in the child.
653 			 * Don't prepare anon_vma until fault since we don't
654 			 * copy page for current vma.
655 			 */
656 			tmp->anon_vma = NULL;
657 		} else if (anon_vma_fork(tmp, mpnt))
658 			goto fail_nomem_anon_vma_fork;
659 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660 		file = tmp->vm_file;
661 		if (file) {
662 			struct address_space *mapping = file->f_mapping;
663 
664 			get_file(file);
665 			i_mmap_lock_write(mapping);
666 			if (tmp->vm_flags & VM_SHARED)
667 				mapping_allow_writable(mapping);
668 			flush_dcache_mmap_lock(mapping);
669 			/* insert tmp into the share list, just after mpnt */
670 			vma_interval_tree_insert_after(tmp, mpnt,
671 					&mapping->i_mmap);
672 			flush_dcache_mmap_unlock(mapping);
673 			i_mmap_unlock_write(mapping);
674 		}
675 
676 		/*
677 		 * Copy/update hugetlb private vma information.
678 		 */
679 		if (is_vm_hugetlb_page(tmp))
680 			hugetlb_dup_vma_private(tmp);
681 
682 		/* Link the vma into the MT */
683 		mas.index = tmp->vm_start;
684 		mas.last = tmp->vm_end - 1;
685 		mas_store(&mas, tmp);
686 		if (mas_is_err(&mas))
687 			goto fail_nomem_mas_store;
688 
689 		mm->map_count++;
690 		if (!(tmp->vm_flags & VM_WIPEONFORK))
691 			retval = copy_page_range(tmp, mpnt);
692 
693 		if (tmp->vm_ops && tmp->vm_ops->open)
694 			tmp->vm_ops->open(tmp);
695 
696 		if (retval)
697 			goto loop_out;
698 	}
699 	/* a new mm has just been created */
700 	retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702 	mas_destroy(&mas);
703 out:
704 	mmap_write_unlock(mm);
705 	flush_tlb_mm(oldmm);
706 	mmap_write_unlock(oldmm);
707 	dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709 	uprobe_end_dup_mmap();
710 	return retval;
711 
712 fail_nomem_mas_store:
713 	unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715 	mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717 	vm_area_free(tmp);
718 fail_nomem:
719 	retval = -ENOMEM;
720 	vm_unacct_memory(charge);
721 	goto loop_out;
722 }
723 
724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726 	mm->pgd = pgd_alloc(mm);
727 	if (unlikely(!mm->pgd))
728 		return -ENOMEM;
729 	return 0;
730 }
731 
732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734 	pgd_free(mm, mm->pgd);
735 }
736 #else
737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739 	mmap_write_lock(oldmm);
740 	dup_mm_exe_file(mm, oldmm);
741 	mmap_write_unlock(oldmm);
742 	return 0;
743 }
744 #define mm_alloc_pgd(mm)	(0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747 
748 static void check_mm(struct mm_struct *mm)
749 {
750 	int i;
751 
752 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 			 "Please make sure 'struct resident_page_types[]' is updated as well");
754 
755 	for (i = 0; i < NR_MM_COUNTERS; i++) {
756 		long x = atomic_long_read(&mm->rss_stat.count[i]);
757 
758 		if (unlikely(x))
759 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
760 				 mm, resident_page_types[i], x);
761 	}
762 
763 	if (mm_pgtables_bytes(mm))
764 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
765 				mm_pgtables_bytes(mm));
766 
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
769 #endif
770 }
771 
772 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
773 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
774 
775 /*
776  * Called when the last reference to the mm
777  * is dropped: either by a lazy thread or by
778  * mmput. Free the page directory and the mm.
779  */
780 void __mmdrop(struct mm_struct *mm)
781 {
782 	BUG_ON(mm == &init_mm);
783 	WARN_ON_ONCE(mm == current->mm);
784 	WARN_ON_ONCE(mm == current->active_mm);
785 	mm_free_pgd(mm);
786 	destroy_context(mm);
787 	mmu_notifier_subscriptions_destroy(mm);
788 	check_mm(mm);
789 	put_user_ns(mm->user_ns);
790 	mm_pasid_drop(mm);
791 	free_mm(mm);
792 }
793 EXPORT_SYMBOL_GPL(__mmdrop);
794 
795 static void mmdrop_async_fn(struct work_struct *work)
796 {
797 	struct mm_struct *mm;
798 
799 	mm = container_of(work, struct mm_struct, async_put_work);
800 	__mmdrop(mm);
801 }
802 
803 static void mmdrop_async(struct mm_struct *mm)
804 {
805 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
806 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
807 		schedule_work(&mm->async_put_work);
808 	}
809 }
810 
811 static inline void free_signal_struct(struct signal_struct *sig)
812 {
813 	taskstats_tgid_free(sig);
814 	sched_autogroup_exit(sig);
815 	/*
816 	 * __mmdrop is not safe to call from softirq context on x86 due to
817 	 * pgd_dtor so postpone it to the async context
818 	 */
819 	if (sig->oom_mm)
820 		mmdrop_async(sig->oom_mm);
821 	kmem_cache_free(signal_cachep, sig);
822 }
823 
824 static inline void put_signal_struct(struct signal_struct *sig)
825 {
826 	if (refcount_dec_and_test(&sig->sigcnt))
827 		free_signal_struct(sig);
828 }
829 
830 void __put_task_struct(struct task_struct *tsk)
831 {
832 	WARN_ON(!tsk->exit_state);
833 	WARN_ON(refcount_read(&tsk->usage));
834 	WARN_ON(tsk == current);
835 
836 	io_uring_free(tsk);
837 	cgroup_free(tsk);
838 	task_numa_free(tsk, true);
839 	security_task_free(tsk);
840 	bpf_task_storage_free(tsk);
841 	exit_creds(tsk);
842 	delayacct_tsk_free(tsk);
843 	put_signal_struct(tsk->signal);
844 	sched_core_free(tsk);
845 	free_task(tsk);
846 }
847 EXPORT_SYMBOL_GPL(__put_task_struct);
848 
849 void __init __weak arch_task_cache_init(void) { }
850 
851 /*
852  * set_max_threads
853  */
854 static void set_max_threads(unsigned int max_threads_suggested)
855 {
856 	u64 threads;
857 	unsigned long nr_pages = totalram_pages();
858 
859 	/*
860 	 * The number of threads shall be limited such that the thread
861 	 * structures may only consume a small part of the available memory.
862 	 */
863 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
864 		threads = MAX_THREADS;
865 	else
866 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
867 				    (u64) THREAD_SIZE * 8UL);
868 
869 	if (threads > max_threads_suggested)
870 		threads = max_threads_suggested;
871 
872 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
873 }
874 
875 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
876 /* Initialized by the architecture: */
877 int arch_task_struct_size __read_mostly;
878 #endif
879 
880 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
881 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
882 {
883 	/* Fetch thread_struct whitelist for the architecture. */
884 	arch_thread_struct_whitelist(offset, size);
885 
886 	/*
887 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
888 	 * adjust offset to position of thread_struct in task_struct.
889 	 */
890 	if (unlikely(*size == 0))
891 		*offset = 0;
892 	else
893 		*offset += offsetof(struct task_struct, thread);
894 }
895 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
896 
897 void __init fork_init(void)
898 {
899 	int i;
900 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
901 #ifndef ARCH_MIN_TASKALIGN
902 #define ARCH_MIN_TASKALIGN	0
903 #endif
904 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
905 	unsigned long useroffset, usersize;
906 
907 	/* create a slab on which task_structs can be allocated */
908 	task_struct_whitelist(&useroffset, &usersize);
909 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
910 			arch_task_struct_size, align,
911 			SLAB_PANIC|SLAB_ACCOUNT,
912 			useroffset, usersize, NULL);
913 #endif
914 
915 	/* do the arch specific task caches init */
916 	arch_task_cache_init();
917 
918 	set_max_threads(MAX_THREADS);
919 
920 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
921 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
922 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
923 		init_task.signal->rlim[RLIMIT_NPROC];
924 
925 	for (i = 0; i < UCOUNT_COUNTS; i++)
926 		init_user_ns.ucount_max[i] = max_threads/2;
927 
928 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
929 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
930 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
931 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
932 
933 #ifdef CONFIG_VMAP_STACK
934 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
935 			  NULL, free_vm_stack_cache);
936 #endif
937 
938 	scs_init();
939 
940 	lockdep_init_task(&init_task);
941 	uprobes_init();
942 }
943 
944 int __weak arch_dup_task_struct(struct task_struct *dst,
945 					       struct task_struct *src)
946 {
947 	*dst = *src;
948 	return 0;
949 }
950 
951 void set_task_stack_end_magic(struct task_struct *tsk)
952 {
953 	unsigned long *stackend;
954 
955 	stackend = end_of_stack(tsk);
956 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
957 }
958 
959 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
960 {
961 	struct task_struct *tsk;
962 	int err;
963 
964 	if (node == NUMA_NO_NODE)
965 		node = tsk_fork_get_node(orig);
966 	tsk = alloc_task_struct_node(node);
967 	if (!tsk)
968 		return NULL;
969 
970 	err = arch_dup_task_struct(tsk, orig);
971 	if (err)
972 		goto free_tsk;
973 
974 	err = alloc_thread_stack_node(tsk, node);
975 	if (err)
976 		goto free_tsk;
977 
978 #ifdef CONFIG_THREAD_INFO_IN_TASK
979 	refcount_set(&tsk->stack_refcount, 1);
980 #endif
981 	account_kernel_stack(tsk, 1);
982 
983 	err = scs_prepare(tsk, node);
984 	if (err)
985 		goto free_stack;
986 
987 #ifdef CONFIG_SECCOMP
988 	/*
989 	 * We must handle setting up seccomp filters once we're under
990 	 * the sighand lock in case orig has changed between now and
991 	 * then. Until then, filter must be NULL to avoid messing up
992 	 * the usage counts on the error path calling free_task.
993 	 */
994 	tsk->seccomp.filter = NULL;
995 #endif
996 
997 	setup_thread_stack(tsk, orig);
998 	clear_user_return_notifier(tsk);
999 	clear_tsk_need_resched(tsk);
1000 	set_task_stack_end_magic(tsk);
1001 	clear_syscall_work_syscall_user_dispatch(tsk);
1002 
1003 #ifdef CONFIG_STACKPROTECTOR
1004 	tsk->stack_canary = get_random_canary();
1005 #endif
1006 	if (orig->cpus_ptr == &orig->cpus_mask)
1007 		tsk->cpus_ptr = &tsk->cpus_mask;
1008 	dup_user_cpus_ptr(tsk, orig, node);
1009 
1010 	/*
1011 	 * One for the user space visible state that goes away when reaped.
1012 	 * One for the scheduler.
1013 	 */
1014 	refcount_set(&tsk->rcu_users, 2);
1015 	/* One for the rcu users */
1016 	refcount_set(&tsk->usage, 1);
1017 #ifdef CONFIG_BLK_DEV_IO_TRACE
1018 	tsk->btrace_seq = 0;
1019 #endif
1020 	tsk->splice_pipe = NULL;
1021 	tsk->task_frag.page = NULL;
1022 	tsk->wake_q.next = NULL;
1023 	tsk->worker_private = NULL;
1024 
1025 	kcov_task_init(tsk);
1026 	kmsan_task_create(tsk);
1027 	kmap_local_fork(tsk);
1028 
1029 #ifdef CONFIG_FAULT_INJECTION
1030 	tsk->fail_nth = 0;
1031 #endif
1032 
1033 #ifdef CONFIG_BLK_CGROUP
1034 	tsk->throttle_queue = NULL;
1035 	tsk->use_memdelay = 0;
1036 #endif
1037 
1038 #ifdef CONFIG_IOMMU_SVA
1039 	tsk->pasid_activated = 0;
1040 #endif
1041 
1042 #ifdef CONFIG_MEMCG
1043 	tsk->active_memcg = NULL;
1044 #endif
1045 
1046 #ifdef CONFIG_CPU_SUP_INTEL
1047 	tsk->reported_split_lock = 0;
1048 #endif
1049 
1050 	return tsk;
1051 
1052 free_stack:
1053 	exit_task_stack_account(tsk);
1054 	free_thread_stack(tsk);
1055 free_tsk:
1056 	free_task_struct(tsk);
1057 	return NULL;
1058 }
1059 
1060 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1061 
1062 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1063 
1064 static int __init coredump_filter_setup(char *s)
1065 {
1066 	default_dump_filter =
1067 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1068 		MMF_DUMP_FILTER_MASK;
1069 	return 1;
1070 }
1071 
1072 __setup("coredump_filter=", coredump_filter_setup);
1073 
1074 #include <linux/init_task.h>
1075 
1076 static void mm_init_aio(struct mm_struct *mm)
1077 {
1078 #ifdef CONFIG_AIO
1079 	spin_lock_init(&mm->ioctx_lock);
1080 	mm->ioctx_table = NULL;
1081 #endif
1082 }
1083 
1084 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1085 					   struct task_struct *p)
1086 {
1087 #ifdef CONFIG_MEMCG
1088 	if (mm->owner == p)
1089 		WRITE_ONCE(mm->owner, NULL);
1090 #endif
1091 }
1092 
1093 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1094 {
1095 #ifdef CONFIG_MEMCG
1096 	mm->owner = p;
1097 #endif
1098 }
1099 
1100 static void mm_init_uprobes_state(struct mm_struct *mm)
1101 {
1102 #ifdef CONFIG_UPROBES
1103 	mm->uprobes_state.xol_area = NULL;
1104 #endif
1105 }
1106 
1107 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1108 	struct user_namespace *user_ns)
1109 {
1110 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1111 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1112 	atomic_set(&mm->mm_users, 1);
1113 	atomic_set(&mm->mm_count, 1);
1114 	seqcount_init(&mm->write_protect_seq);
1115 	mmap_init_lock(mm);
1116 	INIT_LIST_HEAD(&mm->mmlist);
1117 	mm_pgtables_bytes_init(mm);
1118 	mm->map_count = 0;
1119 	mm->locked_vm = 0;
1120 	atomic64_set(&mm->pinned_vm, 0);
1121 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1122 	spin_lock_init(&mm->page_table_lock);
1123 	spin_lock_init(&mm->arg_lock);
1124 	mm_init_cpumask(mm);
1125 	mm_init_aio(mm);
1126 	mm_init_owner(mm, p);
1127 	mm_pasid_init(mm);
1128 	RCU_INIT_POINTER(mm->exe_file, NULL);
1129 	mmu_notifier_subscriptions_init(mm);
1130 	init_tlb_flush_pending(mm);
1131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1132 	mm->pmd_huge_pte = NULL;
1133 #endif
1134 	mm_init_uprobes_state(mm);
1135 	hugetlb_count_init(mm);
1136 
1137 	if (current->mm) {
1138 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1139 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1140 	} else {
1141 		mm->flags = default_dump_filter;
1142 		mm->def_flags = 0;
1143 	}
1144 
1145 	if (mm_alloc_pgd(mm))
1146 		goto fail_nopgd;
1147 
1148 	if (init_new_context(p, mm))
1149 		goto fail_nocontext;
1150 
1151 	mm->user_ns = get_user_ns(user_ns);
1152 	lru_gen_init_mm(mm);
1153 	return mm;
1154 
1155 fail_nocontext:
1156 	mm_free_pgd(mm);
1157 fail_nopgd:
1158 	free_mm(mm);
1159 	return NULL;
1160 }
1161 
1162 /*
1163  * Allocate and initialize an mm_struct.
1164  */
1165 struct mm_struct *mm_alloc(void)
1166 {
1167 	struct mm_struct *mm;
1168 
1169 	mm = allocate_mm();
1170 	if (!mm)
1171 		return NULL;
1172 
1173 	memset(mm, 0, sizeof(*mm));
1174 	return mm_init(mm, current, current_user_ns());
1175 }
1176 
1177 static inline void __mmput(struct mm_struct *mm)
1178 {
1179 	VM_BUG_ON(atomic_read(&mm->mm_users));
1180 
1181 	uprobe_clear_state(mm);
1182 	exit_aio(mm);
1183 	ksm_exit(mm);
1184 	khugepaged_exit(mm); /* must run before exit_mmap */
1185 	exit_mmap(mm);
1186 	mm_put_huge_zero_page(mm);
1187 	set_mm_exe_file(mm, NULL);
1188 	if (!list_empty(&mm->mmlist)) {
1189 		spin_lock(&mmlist_lock);
1190 		list_del(&mm->mmlist);
1191 		spin_unlock(&mmlist_lock);
1192 	}
1193 	if (mm->binfmt)
1194 		module_put(mm->binfmt->module);
1195 	lru_gen_del_mm(mm);
1196 	mmdrop(mm);
1197 }
1198 
1199 /*
1200  * Decrement the use count and release all resources for an mm.
1201  */
1202 void mmput(struct mm_struct *mm)
1203 {
1204 	might_sleep();
1205 
1206 	if (atomic_dec_and_test(&mm->mm_users))
1207 		__mmput(mm);
1208 }
1209 EXPORT_SYMBOL_GPL(mmput);
1210 
1211 #ifdef CONFIG_MMU
1212 static void mmput_async_fn(struct work_struct *work)
1213 {
1214 	struct mm_struct *mm = container_of(work, struct mm_struct,
1215 					    async_put_work);
1216 
1217 	__mmput(mm);
1218 }
1219 
1220 void mmput_async(struct mm_struct *mm)
1221 {
1222 	if (atomic_dec_and_test(&mm->mm_users)) {
1223 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1224 		schedule_work(&mm->async_put_work);
1225 	}
1226 }
1227 EXPORT_SYMBOL_GPL(mmput_async);
1228 #endif
1229 
1230 /**
1231  * set_mm_exe_file - change a reference to the mm's executable file
1232  *
1233  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1234  *
1235  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1236  * invocations: in mmput() nobody alive left, in execve task is single
1237  * threaded.
1238  *
1239  * Can only fail if new_exe_file != NULL.
1240  */
1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1242 {
1243 	struct file *old_exe_file;
1244 
1245 	/*
1246 	 * It is safe to dereference the exe_file without RCU as
1247 	 * this function is only called if nobody else can access
1248 	 * this mm -- see comment above for justification.
1249 	 */
1250 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1251 
1252 	if (new_exe_file) {
1253 		/*
1254 		 * We expect the caller (i.e., sys_execve) to already denied
1255 		 * write access, so this is unlikely to fail.
1256 		 */
1257 		if (unlikely(deny_write_access(new_exe_file)))
1258 			return -EACCES;
1259 		get_file(new_exe_file);
1260 	}
1261 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1262 	if (old_exe_file) {
1263 		allow_write_access(old_exe_file);
1264 		fput(old_exe_file);
1265 	}
1266 	return 0;
1267 }
1268 
1269 /**
1270  * replace_mm_exe_file - replace a reference to the mm's executable file
1271  *
1272  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1273  * dealing with concurrent invocation and without grabbing the mmap lock in
1274  * write mode.
1275  *
1276  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1277  */
1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1279 {
1280 	struct vm_area_struct *vma;
1281 	struct file *old_exe_file;
1282 	int ret = 0;
1283 
1284 	/* Forbid mm->exe_file change if old file still mapped. */
1285 	old_exe_file = get_mm_exe_file(mm);
1286 	if (old_exe_file) {
1287 		VMA_ITERATOR(vmi, mm, 0);
1288 		mmap_read_lock(mm);
1289 		for_each_vma(vmi, vma) {
1290 			if (!vma->vm_file)
1291 				continue;
1292 			if (path_equal(&vma->vm_file->f_path,
1293 				       &old_exe_file->f_path)) {
1294 				ret = -EBUSY;
1295 				break;
1296 			}
1297 		}
1298 		mmap_read_unlock(mm);
1299 		fput(old_exe_file);
1300 		if (ret)
1301 			return ret;
1302 	}
1303 
1304 	/* set the new file, lockless */
1305 	ret = deny_write_access(new_exe_file);
1306 	if (ret)
1307 		return -EACCES;
1308 	get_file(new_exe_file);
1309 
1310 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1311 	if (old_exe_file) {
1312 		/*
1313 		 * Don't race with dup_mmap() getting the file and disallowing
1314 		 * write access while someone might open the file writable.
1315 		 */
1316 		mmap_read_lock(mm);
1317 		allow_write_access(old_exe_file);
1318 		fput(old_exe_file);
1319 		mmap_read_unlock(mm);
1320 	}
1321 	return 0;
1322 }
1323 
1324 /**
1325  * get_mm_exe_file - acquire a reference to the mm's executable file
1326  *
1327  * Returns %NULL if mm has no associated executable file.
1328  * User must release file via fput().
1329  */
1330 struct file *get_mm_exe_file(struct mm_struct *mm)
1331 {
1332 	struct file *exe_file;
1333 
1334 	rcu_read_lock();
1335 	exe_file = rcu_dereference(mm->exe_file);
1336 	if (exe_file && !get_file_rcu(exe_file))
1337 		exe_file = NULL;
1338 	rcu_read_unlock();
1339 	return exe_file;
1340 }
1341 
1342 /**
1343  * get_task_exe_file - acquire a reference to the task's executable file
1344  *
1345  * Returns %NULL if task's mm (if any) has no associated executable file or
1346  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1347  * User must release file via fput().
1348  */
1349 struct file *get_task_exe_file(struct task_struct *task)
1350 {
1351 	struct file *exe_file = NULL;
1352 	struct mm_struct *mm;
1353 
1354 	task_lock(task);
1355 	mm = task->mm;
1356 	if (mm) {
1357 		if (!(task->flags & PF_KTHREAD))
1358 			exe_file = get_mm_exe_file(mm);
1359 	}
1360 	task_unlock(task);
1361 	return exe_file;
1362 }
1363 
1364 /**
1365  * get_task_mm - acquire a reference to the task's mm
1366  *
1367  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1368  * this kernel workthread has transiently adopted a user mm with use_mm,
1369  * to do its AIO) is not set and if so returns a reference to it, after
1370  * bumping up the use count.  User must release the mm via mmput()
1371  * after use.  Typically used by /proc and ptrace.
1372  */
1373 struct mm_struct *get_task_mm(struct task_struct *task)
1374 {
1375 	struct mm_struct *mm;
1376 
1377 	task_lock(task);
1378 	mm = task->mm;
1379 	if (mm) {
1380 		if (task->flags & PF_KTHREAD)
1381 			mm = NULL;
1382 		else
1383 			mmget(mm);
1384 	}
1385 	task_unlock(task);
1386 	return mm;
1387 }
1388 EXPORT_SYMBOL_GPL(get_task_mm);
1389 
1390 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1391 {
1392 	struct mm_struct *mm;
1393 	int err;
1394 
1395 	err =  down_read_killable(&task->signal->exec_update_lock);
1396 	if (err)
1397 		return ERR_PTR(err);
1398 
1399 	mm = get_task_mm(task);
1400 	if (mm && mm != current->mm &&
1401 			!ptrace_may_access(task, mode)) {
1402 		mmput(mm);
1403 		mm = ERR_PTR(-EACCES);
1404 	}
1405 	up_read(&task->signal->exec_update_lock);
1406 
1407 	return mm;
1408 }
1409 
1410 static void complete_vfork_done(struct task_struct *tsk)
1411 {
1412 	struct completion *vfork;
1413 
1414 	task_lock(tsk);
1415 	vfork = tsk->vfork_done;
1416 	if (likely(vfork)) {
1417 		tsk->vfork_done = NULL;
1418 		complete(vfork);
1419 	}
1420 	task_unlock(tsk);
1421 }
1422 
1423 static int wait_for_vfork_done(struct task_struct *child,
1424 				struct completion *vfork)
1425 {
1426 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1427 	int killed;
1428 
1429 	cgroup_enter_frozen();
1430 	killed = wait_for_completion_state(vfork, state);
1431 	cgroup_leave_frozen(false);
1432 
1433 	if (killed) {
1434 		task_lock(child);
1435 		child->vfork_done = NULL;
1436 		task_unlock(child);
1437 	}
1438 
1439 	put_task_struct(child);
1440 	return killed;
1441 }
1442 
1443 /* Please note the differences between mmput and mm_release.
1444  * mmput is called whenever we stop holding onto a mm_struct,
1445  * error success whatever.
1446  *
1447  * mm_release is called after a mm_struct has been removed
1448  * from the current process.
1449  *
1450  * This difference is important for error handling, when we
1451  * only half set up a mm_struct for a new process and need to restore
1452  * the old one.  Because we mmput the new mm_struct before
1453  * restoring the old one. . .
1454  * Eric Biederman 10 January 1998
1455  */
1456 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1457 {
1458 	uprobe_free_utask(tsk);
1459 
1460 	/* Get rid of any cached register state */
1461 	deactivate_mm(tsk, mm);
1462 
1463 	/*
1464 	 * Signal userspace if we're not exiting with a core dump
1465 	 * because we want to leave the value intact for debugging
1466 	 * purposes.
1467 	 */
1468 	if (tsk->clear_child_tid) {
1469 		if (atomic_read(&mm->mm_users) > 1) {
1470 			/*
1471 			 * We don't check the error code - if userspace has
1472 			 * not set up a proper pointer then tough luck.
1473 			 */
1474 			put_user(0, tsk->clear_child_tid);
1475 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1476 					1, NULL, NULL, 0, 0);
1477 		}
1478 		tsk->clear_child_tid = NULL;
1479 	}
1480 
1481 	/*
1482 	 * All done, finally we can wake up parent and return this mm to him.
1483 	 * Also kthread_stop() uses this completion for synchronization.
1484 	 */
1485 	if (tsk->vfork_done)
1486 		complete_vfork_done(tsk);
1487 }
1488 
1489 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1490 {
1491 	futex_exit_release(tsk);
1492 	mm_release(tsk, mm);
1493 }
1494 
1495 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1496 {
1497 	futex_exec_release(tsk);
1498 	mm_release(tsk, mm);
1499 }
1500 
1501 /**
1502  * dup_mm() - duplicates an existing mm structure
1503  * @tsk: the task_struct with which the new mm will be associated.
1504  * @oldmm: the mm to duplicate.
1505  *
1506  * Allocates a new mm structure and duplicates the provided @oldmm structure
1507  * content into it.
1508  *
1509  * Return: the duplicated mm or NULL on failure.
1510  */
1511 static struct mm_struct *dup_mm(struct task_struct *tsk,
1512 				struct mm_struct *oldmm)
1513 {
1514 	struct mm_struct *mm;
1515 	int err;
1516 
1517 	mm = allocate_mm();
1518 	if (!mm)
1519 		goto fail_nomem;
1520 
1521 	memcpy(mm, oldmm, sizeof(*mm));
1522 
1523 	if (!mm_init(mm, tsk, mm->user_ns))
1524 		goto fail_nomem;
1525 
1526 	err = dup_mmap(mm, oldmm);
1527 	if (err)
1528 		goto free_pt;
1529 
1530 	mm->hiwater_rss = get_mm_rss(mm);
1531 	mm->hiwater_vm = mm->total_vm;
1532 
1533 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1534 		goto free_pt;
1535 
1536 	return mm;
1537 
1538 free_pt:
1539 	/* don't put binfmt in mmput, we haven't got module yet */
1540 	mm->binfmt = NULL;
1541 	mm_init_owner(mm, NULL);
1542 	mmput(mm);
1543 
1544 fail_nomem:
1545 	return NULL;
1546 }
1547 
1548 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 	struct mm_struct *mm, *oldmm;
1551 
1552 	tsk->min_flt = tsk->maj_flt = 0;
1553 	tsk->nvcsw = tsk->nivcsw = 0;
1554 #ifdef CONFIG_DETECT_HUNG_TASK
1555 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1556 	tsk->last_switch_time = 0;
1557 #endif
1558 
1559 	tsk->mm = NULL;
1560 	tsk->active_mm = NULL;
1561 
1562 	/*
1563 	 * Are we cloning a kernel thread?
1564 	 *
1565 	 * We need to steal a active VM for that..
1566 	 */
1567 	oldmm = current->mm;
1568 	if (!oldmm)
1569 		return 0;
1570 
1571 	if (clone_flags & CLONE_VM) {
1572 		mmget(oldmm);
1573 		mm = oldmm;
1574 	} else {
1575 		mm = dup_mm(tsk, current->mm);
1576 		if (!mm)
1577 			return -ENOMEM;
1578 	}
1579 
1580 	tsk->mm = mm;
1581 	tsk->active_mm = mm;
1582 	return 0;
1583 }
1584 
1585 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1586 {
1587 	struct fs_struct *fs = current->fs;
1588 	if (clone_flags & CLONE_FS) {
1589 		/* tsk->fs is already what we want */
1590 		spin_lock(&fs->lock);
1591 		if (fs->in_exec) {
1592 			spin_unlock(&fs->lock);
1593 			return -EAGAIN;
1594 		}
1595 		fs->users++;
1596 		spin_unlock(&fs->lock);
1597 		return 0;
1598 	}
1599 	tsk->fs = copy_fs_struct(fs);
1600 	if (!tsk->fs)
1601 		return -ENOMEM;
1602 	return 0;
1603 }
1604 
1605 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1606 {
1607 	struct files_struct *oldf, *newf;
1608 	int error = 0;
1609 
1610 	/*
1611 	 * A background process may not have any files ...
1612 	 */
1613 	oldf = current->files;
1614 	if (!oldf)
1615 		goto out;
1616 
1617 	if (clone_flags & CLONE_FILES) {
1618 		atomic_inc(&oldf->count);
1619 		goto out;
1620 	}
1621 
1622 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1623 	if (!newf)
1624 		goto out;
1625 
1626 	tsk->files = newf;
1627 	error = 0;
1628 out:
1629 	return error;
1630 }
1631 
1632 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1633 {
1634 	struct sighand_struct *sig;
1635 
1636 	if (clone_flags & CLONE_SIGHAND) {
1637 		refcount_inc(&current->sighand->count);
1638 		return 0;
1639 	}
1640 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1641 	RCU_INIT_POINTER(tsk->sighand, sig);
1642 	if (!sig)
1643 		return -ENOMEM;
1644 
1645 	refcount_set(&sig->count, 1);
1646 	spin_lock_irq(&current->sighand->siglock);
1647 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1648 	spin_unlock_irq(&current->sighand->siglock);
1649 
1650 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1651 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1652 		flush_signal_handlers(tsk, 0);
1653 
1654 	return 0;
1655 }
1656 
1657 void __cleanup_sighand(struct sighand_struct *sighand)
1658 {
1659 	if (refcount_dec_and_test(&sighand->count)) {
1660 		signalfd_cleanup(sighand);
1661 		/*
1662 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1663 		 * without an RCU grace period, see __lock_task_sighand().
1664 		 */
1665 		kmem_cache_free(sighand_cachep, sighand);
1666 	}
1667 }
1668 
1669 /*
1670  * Initialize POSIX timer handling for a thread group.
1671  */
1672 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1673 {
1674 	struct posix_cputimers *pct = &sig->posix_cputimers;
1675 	unsigned long cpu_limit;
1676 
1677 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1678 	posix_cputimers_group_init(pct, cpu_limit);
1679 }
1680 
1681 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1682 {
1683 	struct signal_struct *sig;
1684 
1685 	if (clone_flags & CLONE_THREAD)
1686 		return 0;
1687 
1688 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1689 	tsk->signal = sig;
1690 	if (!sig)
1691 		return -ENOMEM;
1692 
1693 	sig->nr_threads = 1;
1694 	sig->quick_threads = 1;
1695 	atomic_set(&sig->live, 1);
1696 	refcount_set(&sig->sigcnt, 1);
1697 
1698 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1699 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1700 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1701 
1702 	init_waitqueue_head(&sig->wait_chldexit);
1703 	sig->curr_target = tsk;
1704 	init_sigpending(&sig->shared_pending);
1705 	INIT_HLIST_HEAD(&sig->multiprocess);
1706 	seqlock_init(&sig->stats_lock);
1707 	prev_cputime_init(&sig->prev_cputime);
1708 
1709 #ifdef CONFIG_POSIX_TIMERS
1710 	INIT_LIST_HEAD(&sig->posix_timers);
1711 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1712 	sig->real_timer.function = it_real_fn;
1713 #endif
1714 
1715 	task_lock(current->group_leader);
1716 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1717 	task_unlock(current->group_leader);
1718 
1719 	posix_cpu_timers_init_group(sig);
1720 
1721 	tty_audit_fork(sig);
1722 	sched_autogroup_fork(sig);
1723 
1724 	sig->oom_score_adj = current->signal->oom_score_adj;
1725 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1726 
1727 	mutex_init(&sig->cred_guard_mutex);
1728 	init_rwsem(&sig->exec_update_lock);
1729 
1730 	return 0;
1731 }
1732 
1733 static void copy_seccomp(struct task_struct *p)
1734 {
1735 #ifdef CONFIG_SECCOMP
1736 	/*
1737 	 * Must be called with sighand->lock held, which is common to
1738 	 * all threads in the group. Holding cred_guard_mutex is not
1739 	 * needed because this new task is not yet running and cannot
1740 	 * be racing exec.
1741 	 */
1742 	assert_spin_locked(&current->sighand->siglock);
1743 
1744 	/* Ref-count the new filter user, and assign it. */
1745 	get_seccomp_filter(current);
1746 	p->seccomp = current->seccomp;
1747 
1748 	/*
1749 	 * Explicitly enable no_new_privs here in case it got set
1750 	 * between the task_struct being duplicated and holding the
1751 	 * sighand lock. The seccomp state and nnp must be in sync.
1752 	 */
1753 	if (task_no_new_privs(current))
1754 		task_set_no_new_privs(p);
1755 
1756 	/*
1757 	 * If the parent gained a seccomp mode after copying thread
1758 	 * flags and between before we held the sighand lock, we have
1759 	 * to manually enable the seccomp thread flag here.
1760 	 */
1761 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1762 		set_task_syscall_work(p, SECCOMP);
1763 #endif
1764 }
1765 
1766 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1767 {
1768 	current->clear_child_tid = tidptr;
1769 
1770 	return task_pid_vnr(current);
1771 }
1772 
1773 static void rt_mutex_init_task(struct task_struct *p)
1774 {
1775 	raw_spin_lock_init(&p->pi_lock);
1776 #ifdef CONFIG_RT_MUTEXES
1777 	p->pi_waiters = RB_ROOT_CACHED;
1778 	p->pi_top_task = NULL;
1779 	p->pi_blocked_on = NULL;
1780 #endif
1781 }
1782 
1783 static inline void init_task_pid_links(struct task_struct *task)
1784 {
1785 	enum pid_type type;
1786 
1787 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1788 		INIT_HLIST_NODE(&task->pid_links[type]);
1789 }
1790 
1791 static inline void
1792 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1793 {
1794 	if (type == PIDTYPE_PID)
1795 		task->thread_pid = pid;
1796 	else
1797 		task->signal->pids[type] = pid;
1798 }
1799 
1800 static inline void rcu_copy_process(struct task_struct *p)
1801 {
1802 #ifdef CONFIG_PREEMPT_RCU
1803 	p->rcu_read_lock_nesting = 0;
1804 	p->rcu_read_unlock_special.s = 0;
1805 	p->rcu_blocked_node = NULL;
1806 	INIT_LIST_HEAD(&p->rcu_node_entry);
1807 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1808 #ifdef CONFIG_TASKS_RCU
1809 	p->rcu_tasks_holdout = false;
1810 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1811 	p->rcu_tasks_idle_cpu = -1;
1812 #endif /* #ifdef CONFIG_TASKS_RCU */
1813 #ifdef CONFIG_TASKS_TRACE_RCU
1814 	p->trc_reader_nesting = 0;
1815 	p->trc_reader_special.s = 0;
1816 	INIT_LIST_HEAD(&p->trc_holdout_list);
1817 	INIT_LIST_HEAD(&p->trc_blkd_node);
1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1819 }
1820 
1821 struct pid *pidfd_pid(const struct file *file)
1822 {
1823 	if (file->f_op == &pidfd_fops)
1824 		return file->private_data;
1825 
1826 	return ERR_PTR(-EBADF);
1827 }
1828 
1829 static int pidfd_release(struct inode *inode, struct file *file)
1830 {
1831 	struct pid *pid = file->private_data;
1832 
1833 	file->private_data = NULL;
1834 	put_pid(pid);
1835 	return 0;
1836 }
1837 
1838 #ifdef CONFIG_PROC_FS
1839 /**
1840  * pidfd_show_fdinfo - print information about a pidfd
1841  * @m: proc fdinfo file
1842  * @f: file referencing a pidfd
1843  *
1844  * Pid:
1845  * This function will print the pid that a given pidfd refers to in the
1846  * pid namespace of the procfs instance.
1847  * If the pid namespace of the process is not a descendant of the pid
1848  * namespace of the procfs instance 0 will be shown as its pid. This is
1849  * similar to calling getppid() on a process whose parent is outside of
1850  * its pid namespace.
1851  *
1852  * NSpid:
1853  * If pid namespaces are supported then this function will also print
1854  * the pid of a given pidfd refers to for all descendant pid namespaces
1855  * starting from the current pid namespace of the instance, i.e. the
1856  * Pid field and the first entry in the NSpid field will be identical.
1857  * If the pid namespace of the process is not a descendant of the pid
1858  * namespace of the procfs instance 0 will be shown as its first NSpid
1859  * entry and no others will be shown.
1860  * Note that this differs from the Pid and NSpid fields in
1861  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1862  * the  pid namespace of the procfs instance. The difference becomes
1863  * obvious when sending around a pidfd between pid namespaces from a
1864  * different branch of the tree, i.e. where no ancestral relation is
1865  * present between the pid namespaces:
1866  * - create two new pid namespaces ns1 and ns2 in the initial pid
1867  *   namespace (also take care to create new mount namespaces in the
1868  *   new pid namespace and mount procfs)
1869  * - create a process with a pidfd in ns1
1870  * - send pidfd from ns1 to ns2
1871  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1872  *   have exactly one entry, which is 0
1873  */
1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1875 {
1876 	struct pid *pid = f->private_data;
1877 	struct pid_namespace *ns;
1878 	pid_t nr = -1;
1879 
1880 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1881 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1882 		nr = pid_nr_ns(pid, ns);
1883 	}
1884 
1885 	seq_put_decimal_ll(m, "Pid:\t", nr);
1886 
1887 #ifdef CONFIG_PID_NS
1888 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1889 	if (nr > 0) {
1890 		int i;
1891 
1892 		/* If nr is non-zero it means that 'pid' is valid and that
1893 		 * ns, i.e. the pid namespace associated with the procfs
1894 		 * instance, is in the pid namespace hierarchy of pid.
1895 		 * Start at one below the already printed level.
1896 		 */
1897 		for (i = ns->level + 1; i <= pid->level; i++)
1898 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1899 	}
1900 #endif
1901 	seq_putc(m, '\n');
1902 }
1903 #endif
1904 
1905 /*
1906  * Poll support for process exit notification.
1907  */
1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1909 {
1910 	struct pid *pid = file->private_data;
1911 	__poll_t poll_flags = 0;
1912 
1913 	poll_wait(file, &pid->wait_pidfd, pts);
1914 
1915 	/*
1916 	 * Inform pollers only when the whole thread group exits.
1917 	 * If the thread group leader exits before all other threads in the
1918 	 * group, then poll(2) should block, similar to the wait(2) family.
1919 	 */
1920 	if (thread_group_exited(pid))
1921 		poll_flags = EPOLLIN | EPOLLRDNORM;
1922 
1923 	return poll_flags;
1924 }
1925 
1926 const struct file_operations pidfd_fops = {
1927 	.release = pidfd_release,
1928 	.poll = pidfd_poll,
1929 #ifdef CONFIG_PROC_FS
1930 	.show_fdinfo = pidfd_show_fdinfo,
1931 #endif
1932 };
1933 
1934 static void __delayed_free_task(struct rcu_head *rhp)
1935 {
1936 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1937 
1938 	free_task(tsk);
1939 }
1940 
1941 static __always_inline void delayed_free_task(struct task_struct *tsk)
1942 {
1943 	if (IS_ENABLED(CONFIG_MEMCG))
1944 		call_rcu(&tsk->rcu, __delayed_free_task);
1945 	else
1946 		free_task(tsk);
1947 }
1948 
1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1950 {
1951 	/* Skip if kernel thread */
1952 	if (!tsk->mm)
1953 		return;
1954 
1955 	/* Skip if spawning a thread or using vfork */
1956 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1957 		return;
1958 
1959 	/* We need to synchronize with __set_oom_adj */
1960 	mutex_lock(&oom_adj_mutex);
1961 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1962 	/* Update the values in case they were changed after copy_signal */
1963 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1964 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1965 	mutex_unlock(&oom_adj_mutex);
1966 }
1967 
1968 #ifdef CONFIG_RV
1969 static void rv_task_fork(struct task_struct *p)
1970 {
1971 	int i;
1972 
1973 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1974 		p->rv[i].da_mon.monitoring = false;
1975 }
1976 #else
1977 #define rv_task_fork(p) do {} while (0)
1978 #endif
1979 
1980 /*
1981  * This creates a new process as a copy of the old one,
1982  * but does not actually start it yet.
1983  *
1984  * It copies the registers, and all the appropriate
1985  * parts of the process environment (as per the clone
1986  * flags). The actual kick-off is left to the caller.
1987  */
1988 static __latent_entropy struct task_struct *copy_process(
1989 					struct pid *pid,
1990 					int trace,
1991 					int node,
1992 					struct kernel_clone_args *args)
1993 {
1994 	int pidfd = -1, retval;
1995 	struct task_struct *p;
1996 	struct multiprocess_signals delayed;
1997 	struct file *pidfile = NULL;
1998 	const u64 clone_flags = args->flags;
1999 	struct nsproxy *nsp = current->nsproxy;
2000 
2001 	/*
2002 	 * Don't allow sharing the root directory with processes in a different
2003 	 * namespace
2004 	 */
2005 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2006 		return ERR_PTR(-EINVAL);
2007 
2008 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2009 		return ERR_PTR(-EINVAL);
2010 
2011 	/*
2012 	 * Thread groups must share signals as well, and detached threads
2013 	 * can only be started up within the thread group.
2014 	 */
2015 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2016 		return ERR_PTR(-EINVAL);
2017 
2018 	/*
2019 	 * Shared signal handlers imply shared VM. By way of the above,
2020 	 * thread groups also imply shared VM. Blocking this case allows
2021 	 * for various simplifications in other code.
2022 	 */
2023 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2024 		return ERR_PTR(-EINVAL);
2025 
2026 	/*
2027 	 * Siblings of global init remain as zombies on exit since they are
2028 	 * not reaped by their parent (swapper). To solve this and to avoid
2029 	 * multi-rooted process trees, prevent global and container-inits
2030 	 * from creating siblings.
2031 	 */
2032 	if ((clone_flags & CLONE_PARENT) &&
2033 				current->signal->flags & SIGNAL_UNKILLABLE)
2034 		return ERR_PTR(-EINVAL);
2035 
2036 	/*
2037 	 * If the new process will be in a different pid or user namespace
2038 	 * do not allow it to share a thread group with the forking task.
2039 	 */
2040 	if (clone_flags & CLONE_THREAD) {
2041 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2042 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2043 			return ERR_PTR(-EINVAL);
2044 	}
2045 
2046 	/*
2047 	 * If the new process will be in a different time namespace
2048 	 * do not allow it to share VM or a thread group with the forking task.
2049 	 */
2050 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2051 		if (nsp->time_ns != nsp->time_ns_for_children)
2052 			return ERR_PTR(-EINVAL);
2053 	}
2054 
2055 	if (clone_flags & CLONE_PIDFD) {
2056 		/*
2057 		 * - CLONE_DETACHED is blocked so that we can potentially
2058 		 *   reuse it later for CLONE_PIDFD.
2059 		 * - CLONE_THREAD is blocked until someone really needs it.
2060 		 */
2061 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2062 			return ERR_PTR(-EINVAL);
2063 	}
2064 
2065 	/*
2066 	 * Force any signals received before this point to be delivered
2067 	 * before the fork happens.  Collect up signals sent to multiple
2068 	 * processes that happen during the fork and delay them so that
2069 	 * they appear to happen after the fork.
2070 	 */
2071 	sigemptyset(&delayed.signal);
2072 	INIT_HLIST_NODE(&delayed.node);
2073 
2074 	spin_lock_irq(&current->sighand->siglock);
2075 	if (!(clone_flags & CLONE_THREAD))
2076 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2077 	recalc_sigpending();
2078 	spin_unlock_irq(&current->sighand->siglock);
2079 	retval = -ERESTARTNOINTR;
2080 	if (task_sigpending(current))
2081 		goto fork_out;
2082 
2083 	retval = -ENOMEM;
2084 	p = dup_task_struct(current, node);
2085 	if (!p)
2086 		goto fork_out;
2087 	p->flags &= ~PF_KTHREAD;
2088 	if (args->kthread)
2089 		p->flags |= PF_KTHREAD;
2090 	if (args->io_thread) {
2091 		/*
2092 		 * Mark us an IO worker, and block any signal that isn't
2093 		 * fatal or STOP
2094 		 */
2095 		p->flags |= PF_IO_WORKER;
2096 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2097 	}
2098 
2099 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2100 	/*
2101 	 * Clear TID on mm_release()?
2102 	 */
2103 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2104 
2105 	ftrace_graph_init_task(p);
2106 
2107 	rt_mutex_init_task(p);
2108 
2109 	lockdep_assert_irqs_enabled();
2110 #ifdef CONFIG_PROVE_LOCKING
2111 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2112 #endif
2113 	retval = copy_creds(p, clone_flags);
2114 	if (retval < 0)
2115 		goto bad_fork_free;
2116 
2117 	retval = -EAGAIN;
2118 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2119 		if (p->real_cred->user != INIT_USER &&
2120 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2121 			goto bad_fork_cleanup_count;
2122 	}
2123 	current->flags &= ~PF_NPROC_EXCEEDED;
2124 
2125 	/*
2126 	 * If multiple threads are within copy_process(), then this check
2127 	 * triggers too late. This doesn't hurt, the check is only there
2128 	 * to stop root fork bombs.
2129 	 */
2130 	retval = -EAGAIN;
2131 	if (data_race(nr_threads >= max_threads))
2132 		goto bad_fork_cleanup_count;
2133 
2134 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2135 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2136 	p->flags |= PF_FORKNOEXEC;
2137 	INIT_LIST_HEAD(&p->children);
2138 	INIT_LIST_HEAD(&p->sibling);
2139 	rcu_copy_process(p);
2140 	p->vfork_done = NULL;
2141 	spin_lock_init(&p->alloc_lock);
2142 
2143 	init_sigpending(&p->pending);
2144 
2145 	p->utime = p->stime = p->gtime = 0;
2146 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2147 	p->utimescaled = p->stimescaled = 0;
2148 #endif
2149 	prev_cputime_init(&p->prev_cputime);
2150 
2151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2152 	seqcount_init(&p->vtime.seqcount);
2153 	p->vtime.starttime = 0;
2154 	p->vtime.state = VTIME_INACTIVE;
2155 #endif
2156 
2157 #ifdef CONFIG_IO_URING
2158 	p->io_uring = NULL;
2159 #endif
2160 
2161 #if defined(SPLIT_RSS_COUNTING)
2162 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2163 #endif
2164 
2165 	p->default_timer_slack_ns = current->timer_slack_ns;
2166 
2167 #ifdef CONFIG_PSI
2168 	p->psi_flags = 0;
2169 #endif
2170 
2171 	task_io_accounting_init(&p->ioac);
2172 	acct_clear_integrals(p);
2173 
2174 	posix_cputimers_init(&p->posix_cputimers);
2175 
2176 	p->io_context = NULL;
2177 	audit_set_context(p, NULL);
2178 	cgroup_fork(p);
2179 	if (args->kthread) {
2180 		if (!set_kthread_struct(p))
2181 			goto bad_fork_cleanup_delayacct;
2182 	}
2183 #ifdef CONFIG_NUMA
2184 	p->mempolicy = mpol_dup(p->mempolicy);
2185 	if (IS_ERR(p->mempolicy)) {
2186 		retval = PTR_ERR(p->mempolicy);
2187 		p->mempolicy = NULL;
2188 		goto bad_fork_cleanup_delayacct;
2189 	}
2190 #endif
2191 #ifdef CONFIG_CPUSETS
2192 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2193 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2194 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2195 #endif
2196 #ifdef CONFIG_TRACE_IRQFLAGS
2197 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2198 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2199 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2200 	p->softirqs_enabled		= 1;
2201 	p->softirq_context		= 0;
2202 #endif
2203 
2204 	p->pagefault_disabled = 0;
2205 
2206 #ifdef CONFIG_LOCKDEP
2207 	lockdep_init_task(p);
2208 #endif
2209 
2210 #ifdef CONFIG_DEBUG_MUTEXES
2211 	p->blocked_on = NULL; /* not blocked yet */
2212 #endif
2213 #ifdef CONFIG_BCACHE
2214 	p->sequential_io	= 0;
2215 	p->sequential_io_avg	= 0;
2216 #endif
2217 #ifdef CONFIG_BPF_SYSCALL
2218 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2219 	p->bpf_ctx = NULL;
2220 #endif
2221 
2222 	/* Perform scheduler related setup. Assign this task to a CPU. */
2223 	retval = sched_fork(clone_flags, p);
2224 	if (retval)
2225 		goto bad_fork_cleanup_policy;
2226 
2227 	retval = perf_event_init_task(p, clone_flags);
2228 	if (retval)
2229 		goto bad_fork_cleanup_policy;
2230 	retval = audit_alloc(p);
2231 	if (retval)
2232 		goto bad_fork_cleanup_perf;
2233 	/* copy all the process information */
2234 	shm_init_task(p);
2235 	retval = security_task_alloc(p, clone_flags);
2236 	if (retval)
2237 		goto bad_fork_cleanup_audit;
2238 	retval = copy_semundo(clone_flags, p);
2239 	if (retval)
2240 		goto bad_fork_cleanup_security;
2241 	retval = copy_files(clone_flags, p);
2242 	if (retval)
2243 		goto bad_fork_cleanup_semundo;
2244 	retval = copy_fs(clone_flags, p);
2245 	if (retval)
2246 		goto bad_fork_cleanup_files;
2247 	retval = copy_sighand(clone_flags, p);
2248 	if (retval)
2249 		goto bad_fork_cleanup_fs;
2250 	retval = copy_signal(clone_flags, p);
2251 	if (retval)
2252 		goto bad_fork_cleanup_sighand;
2253 	retval = copy_mm(clone_flags, p);
2254 	if (retval)
2255 		goto bad_fork_cleanup_signal;
2256 	retval = copy_namespaces(clone_flags, p);
2257 	if (retval)
2258 		goto bad_fork_cleanup_mm;
2259 	retval = copy_io(clone_flags, p);
2260 	if (retval)
2261 		goto bad_fork_cleanup_namespaces;
2262 	retval = copy_thread(p, args);
2263 	if (retval)
2264 		goto bad_fork_cleanup_io;
2265 
2266 	stackleak_task_init(p);
2267 
2268 	if (pid != &init_struct_pid) {
2269 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2270 				args->set_tid_size);
2271 		if (IS_ERR(pid)) {
2272 			retval = PTR_ERR(pid);
2273 			goto bad_fork_cleanup_thread;
2274 		}
2275 	}
2276 
2277 	/*
2278 	 * This has to happen after we've potentially unshared the file
2279 	 * descriptor table (so that the pidfd doesn't leak into the child
2280 	 * if the fd table isn't shared).
2281 	 */
2282 	if (clone_flags & CLONE_PIDFD) {
2283 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2284 		if (retval < 0)
2285 			goto bad_fork_free_pid;
2286 
2287 		pidfd = retval;
2288 
2289 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2290 					      O_RDWR | O_CLOEXEC);
2291 		if (IS_ERR(pidfile)) {
2292 			put_unused_fd(pidfd);
2293 			retval = PTR_ERR(pidfile);
2294 			goto bad_fork_free_pid;
2295 		}
2296 		get_pid(pid);	/* held by pidfile now */
2297 
2298 		retval = put_user(pidfd, args->pidfd);
2299 		if (retval)
2300 			goto bad_fork_put_pidfd;
2301 	}
2302 
2303 #ifdef CONFIG_BLOCK
2304 	p->plug = NULL;
2305 #endif
2306 	futex_init_task(p);
2307 
2308 	/*
2309 	 * sigaltstack should be cleared when sharing the same VM
2310 	 */
2311 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2312 		sas_ss_reset(p);
2313 
2314 	/*
2315 	 * Syscall tracing and stepping should be turned off in the
2316 	 * child regardless of CLONE_PTRACE.
2317 	 */
2318 	user_disable_single_step(p);
2319 	clear_task_syscall_work(p, SYSCALL_TRACE);
2320 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2321 	clear_task_syscall_work(p, SYSCALL_EMU);
2322 #endif
2323 	clear_tsk_latency_tracing(p);
2324 
2325 	/* ok, now we should be set up.. */
2326 	p->pid = pid_nr(pid);
2327 	if (clone_flags & CLONE_THREAD) {
2328 		p->group_leader = current->group_leader;
2329 		p->tgid = current->tgid;
2330 	} else {
2331 		p->group_leader = p;
2332 		p->tgid = p->pid;
2333 	}
2334 
2335 	p->nr_dirtied = 0;
2336 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2337 	p->dirty_paused_when = 0;
2338 
2339 	p->pdeath_signal = 0;
2340 	INIT_LIST_HEAD(&p->thread_group);
2341 	p->task_works = NULL;
2342 	clear_posix_cputimers_work(p);
2343 
2344 #ifdef CONFIG_KRETPROBES
2345 	p->kretprobe_instances.first = NULL;
2346 #endif
2347 #ifdef CONFIG_RETHOOK
2348 	p->rethooks.first = NULL;
2349 #endif
2350 
2351 	/*
2352 	 * Ensure that the cgroup subsystem policies allow the new process to be
2353 	 * forked. It should be noted that the new process's css_set can be changed
2354 	 * between here and cgroup_post_fork() if an organisation operation is in
2355 	 * progress.
2356 	 */
2357 	retval = cgroup_can_fork(p, args);
2358 	if (retval)
2359 		goto bad_fork_put_pidfd;
2360 
2361 	/*
2362 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2363 	 * the new task on the correct runqueue. All this *before* the task
2364 	 * becomes visible.
2365 	 *
2366 	 * This isn't part of ->can_fork() because while the re-cloning is
2367 	 * cgroup specific, it unconditionally needs to place the task on a
2368 	 * runqueue.
2369 	 */
2370 	sched_cgroup_fork(p, args);
2371 
2372 	/*
2373 	 * From this point on we must avoid any synchronous user-space
2374 	 * communication until we take the tasklist-lock. In particular, we do
2375 	 * not want user-space to be able to predict the process start-time by
2376 	 * stalling fork(2) after we recorded the start_time but before it is
2377 	 * visible to the system.
2378 	 */
2379 
2380 	p->start_time = ktime_get_ns();
2381 	p->start_boottime = ktime_get_boottime_ns();
2382 
2383 	/*
2384 	 * Make it visible to the rest of the system, but dont wake it up yet.
2385 	 * Need tasklist lock for parent etc handling!
2386 	 */
2387 	write_lock_irq(&tasklist_lock);
2388 
2389 	/* CLONE_PARENT re-uses the old parent */
2390 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2391 		p->real_parent = current->real_parent;
2392 		p->parent_exec_id = current->parent_exec_id;
2393 		if (clone_flags & CLONE_THREAD)
2394 			p->exit_signal = -1;
2395 		else
2396 			p->exit_signal = current->group_leader->exit_signal;
2397 	} else {
2398 		p->real_parent = current;
2399 		p->parent_exec_id = current->self_exec_id;
2400 		p->exit_signal = args->exit_signal;
2401 	}
2402 
2403 	klp_copy_process(p);
2404 
2405 	sched_core_fork(p);
2406 
2407 	spin_lock(&current->sighand->siglock);
2408 
2409 	/*
2410 	 * Copy seccomp details explicitly here, in case they were changed
2411 	 * before holding sighand lock.
2412 	 */
2413 	copy_seccomp(p);
2414 
2415 	rv_task_fork(p);
2416 
2417 	rseq_fork(p, clone_flags);
2418 
2419 	/* Don't start children in a dying pid namespace */
2420 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2421 		retval = -ENOMEM;
2422 		goto bad_fork_cancel_cgroup;
2423 	}
2424 
2425 	/* Let kill terminate clone/fork in the middle */
2426 	if (fatal_signal_pending(current)) {
2427 		retval = -EINTR;
2428 		goto bad_fork_cancel_cgroup;
2429 	}
2430 
2431 	init_task_pid_links(p);
2432 	if (likely(p->pid)) {
2433 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2434 
2435 		init_task_pid(p, PIDTYPE_PID, pid);
2436 		if (thread_group_leader(p)) {
2437 			init_task_pid(p, PIDTYPE_TGID, pid);
2438 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2439 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2440 
2441 			if (is_child_reaper(pid)) {
2442 				ns_of_pid(pid)->child_reaper = p;
2443 				p->signal->flags |= SIGNAL_UNKILLABLE;
2444 			}
2445 			p->signal->shared_pending.signal = delayed.signal;
2446 			p->signal->tty = tty_kref_get(current->signal->tty);
2447 			/*
2448 			 * Inherit has_child_subreaper flag under the same
2449 			 * tasklist_lock with adding child to the process tree
2450 			 * for propagate_has_child_subreaper optimization.
2451 			 */
2452 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2453 							 p->real_parent->signal->is_child_subreaper;
2454 			list_add_tail(&p->sibling, &p->real_parent->children);
2455 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2456 			attach_pid(p, PIDTYPE_TGID);
2457 			attach_pid(p, PIDTYPE_PGID);
2458 			attach_pid(p, PIDTYPE_SID);
2459 			__this_cpu_inc(process_counts);
2460 		} else {
2461 			current->signal->nr_threads++;
2462 			current->signal->quick_threads++;
2463 			atomic_inc(&current->signal->live);
2464 			refcount_inc(&current->signal->sigcnt);
2465 			task_join_group_stop(p);
2466 			list_add_tail_rcu(&p->thread_group,
2467 					  &p->group_leader->thread_group);
2468 			list_add_tail_rcu(&p->thread_node,
2469 					  &p->signal->thread_head);
2470 		}
2471 		attach_pid(p, PIDTYPE_PID);
2472 		nr_threads++;
2473 	}
2474 	total_forks++;
2475 	hlist_del_init(&delayed.node);
2476 	spin_unlock(&current->sighand->siglock);
2477 	syscall_tracepoint_update(p);
2478 	write_unlock_irq(&tasklist_lock);
2479 
2480 	if (pidfile)
2481 		fd_install(pidfd, pidfile);
2482 
2483 	proc_fork_connector(p);
2484 	sched_post_fork(p);
2485 	cgroup_post_fork(p, args);
2486 	perf_event_fork(p);
2487 
2488 	trace_task_newtask(p, clone_flags);
2489 	uprobe_copy_process(p, clone_flags);
2490 
2491 	copy_oom_score_adj(clone_flags, p);
2492 
2493 	return p;
2494 
2495 bad_fork_cancel_cgroup:
2496 	sched_core_free(p);
2497 	spin_unlock(&current->sighand->siglock);
2498 	write_unlock_irq(&tasklist_lock);
2499 	cgroup_cancel_fork(p, args);
2500 bad_fork_put_pidfd:
2501 	if (clone_flags & CLONE_PIDFD) {
2502 		fput(pidfile);
2503 		put_unused_fd(pidfd);
2504 	}
2505 bad_fork_free_pid:
2506 	if (pid != &init_struct_pid)
2507 		free_pid(pid);
2508 bad_fork_cleanup_thread:
2509 	exit_thread(p);
2510 bad_fork_cleanup_io:
2511 	if (p->io_context)
2512 		exit_io_context(p);
2513 bad_fork_cleanup_namespaces:
2514 	exit_task_namespaces(p);
2515 bad_fork_cleanup_mm:
2516 	if (p->mm) {
2517 		mm_clear_owner(p->mm, p);
2518 		mmput(p->mm);
2519 	}
2520 bad_fork_cleanup_signal:
2521 	if (!(clone_flags & CLONE_THREAD))
2522 		free_signal_struct(p->signal);
2523 bad_fork_cleanup_sighand:
2524 	__cleanup_sighand(p->sighand);
2525 bad_fork_cleanup_fs:
2526 	exit_fs(p); /* blocking */
2527 bad_fork_cleanup_files:
2528 	exit_files(p); /* blocking */
2529 bad_fork_cleanup_semundo:
2530 	exit_sem(p);
2531 bad_fork_cleanup_security:
2532 	security_task_free(p);
2533 bad_fork_cleanup_audit:
2534 	audit_free(p);
2535 bad_fork_cleanup_perf:
2536 	perf_event_free_task(p);
2537 bad_fork_cleanup_policy:
2538 	lockdep_free_task(p);
2539 #ifdef CONFIG_NUMA
2540 	mpol_put(p->mempolicy);
2541 #endif
2542 bad_fork_cleanup_delayacct:
2543 	delayacct_tsk_free(p);
2544 bad_fork_cleanup_count:
2545 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2546 	exit_creds(p);
2547 bad_fork_free:
2548 	WRITE_ONCE(p->__state, TASK_DEAD);
2549 	exit_task_stack_account(p);
2550 	put_task_stack(p);
2551 	delayed_free_task(p);
2552 fork_out:
2553 	spin_lock_irq(&current->sighand->siglock);
2554 	hlist_del_init(&delayed.node);
2555 	spin_unlock_irq(&current->sighand->siglock);
2556 	return ERR_PTR(retval);
2557 }
2558 
2559 static inline void init_idle_pids(struct task_struct *idle)
2560 {
2561 	enum pid_type type;
2562 
2563 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2564 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2565 		init_task_pid(idle, type, &init_struct_pid);
2566 	}
2567 }
2568 
2569 static int idle_dummy(void *dummy)
2570 {
2571 	/* This function is never called */
2572 	return 0;
2573 }
2574 
2575 struct task_struct * __init fork_idle(int cpu)
2576 {
2577 	struct task_struct *task;
2578 	struct kernel_clone_args args = {
2579 		.flags		= CLONE_VM,
2580 		.fn		= &idle_dummy,
2581 		.fn_arg		= NULL,
2582 		.kthread	= 1,
2583 		.idle		= 1,
2584 	};
2585 
2586 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2587 	if (!IS_ERR(task)) {
2588 		init_idle_pids(task);
2589 		init_idle(task, cpu);
2590 	}
2591 
2592 	return task;
2593 }
2594 
2595 struct mm_struct *copy_init_mm(void)
2596 {
2597 	return dup_mm(NULL, &init_mm);
2598 }
2599 
2600 /*
2601  * This is like kernel_clone(), but shaved down and tailored to just
2602  * creating io_uring workers. It returns a created task, or an error pointer.
2603  * The returned task is inactive, and the caller must fire it up through
2604  * wake_up_new_task(p). All signals are blocked in the created task.
2605  */
2606 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2607 {
2608 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2609 				CLONE_IO;
2610 	struct kernel_clone_args args = {
2611 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2612 				    CLONE_UNTRACED) & ~CSIGNAL),
2613 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2614 		.fn		= fn,
2615 		.fn_arg		= arg,
2616 		.io_thread	= 1,
2617 	};
2618 
2619 	return copy_process(NULL, 0, node, &args);
2620 }
2621 
2622 /*
2623  *  Ok, this is the main fork-routine.
2624  *
2625  * It copies the process, and if successful kick-starts
2626  * it and waits for it to finish using the VM if required.
2627  *
2628  * args->exit_signal is expected to be checked for sanity by the caller.
2629  */
2630 pid_t kernel_clone(struct kernel_clone_args *args)
2631 {
2632 	u64 clone_flags = args->flags;
2633 	struct completion vfork;
2634 	struct pid *pid;
2635 	struct task_struct *p;
2636 	int trace = 0;
2637 	pid_t nr;
2638 
2639 	/*
2640 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2641 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2642 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2643 	 * field in struct clone_args and it still doesn't make sense to have
2644 	 * them both point at the same memory location. Performing this check
2645 	 * here has the advantage that we don't need to have a separate helper
2646 	 * to check for legacy clone().
2647 	 */
2648 	if ((args->flags & CLONE_PIDFD) &&
2649 	    (args->flags & CLONE_PARENT_SETTID) &&
2650 	    (args->pidfd == args->parent_tid))
2651 		return -EINVAL;
2652 
2653 	/*
2654 	 * Determine whether and which event to report to ptracer.  When
2655 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2656 	 * requested, no event is reported; otherwise, report if the event
2657 	 * for the type of forking is enabled.
2658 	 */
2659 	if (!(clone_flags & CLONE_UNTRACED)) {
2660 		if (clone_flags & CLONE_VFORK)
2661 			trace = PTRACE_EVENT_VFORK;
2662 		else if (args->exit_signal != SIGCHLD)
2663 			trace = PTRACE_EVENT_CLONE;
2664 		else
2665 			trace = PTRACE_EVENT_FORK;
2666 
2667 		if (likely(!ptrace_event_enabled(current, trace)))
2668 			trace = 0;
2669 	}
2670 
2671 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2672 	add_latent_entropy();
2673 
2674 	if (IS_ERR(p))
2675 		return PTR_ERR(p);
2676 
2677 	/*
2678 	 * Do this prior waking up the new thread - the thread pointer
2679 	 * might get invalid after that point, if the thread exits quickly.
2680 	 */
2681 	trace_sched_process_fork(current, p);
2682 
2683 	pid = get_task_pid(p, PIDTYPE_PID);
2684 	nr = pid_vnr(pid);
2685 
2686 	if (clone_flags & CLONE_PARENT_SETTID)
2687 		put_user(nr, args->parent_tid);
2688 
2689 	if (clone_flags & CLONE_VFORK) {
2690 		p->vfork_done = &vfork;
2691 		init_completion(&vfork);
2692 		get_task_struct(p);
2693 	}
2694 
2695 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2696 		/* lock the task to synchronize with memcg migration */
2697 		task_lock(p);
2698 		lru_gen_add_mm(p->mm);
2699 		task_unlock(p);
2700 	}
2701 
2702 	wake_up_new_task(p);
2703 
2704 	/* forking complete and child started to run, tell ptracer */
2705 	if (unlikely(trace))
2706 		ptrace_event_pid(trace, pid);
2707 
2708 	if (clone_flags & CLONE_VFORK) {
2709 		if (!wait_for_vfork_done(p, &vfork))
2710 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2711 	}
2712 
2713 	put_pid(pid);
2714 	return nr;
2715 }
2716 
2717 /*
2718  * Create a kernel thread.
2719  */
2720 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2721 {
2722 	struct kernel_clone_args args = {
2723 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2724 				    CLONE_UNTRACED) & ~CSIGNAL),
2725 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2726 		.fn		= fn,
2727 		.fn_arg		= arg,
2728 		.kthread	= 1,
2729 	};
2730 
2731 	return kernel_clone(&args);
2732 }
2733 
2734 /*
2735  * Create a user mode thread.
2736  */
2737 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2738 {
2739 	struct kernel_clone_args args = {
2740 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2741 				    CLONE_UNTRACED) & ~CSIGNAL),
2742 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2743 		.fn		= fn,
2744 		.fn_arg		= arg,
2745 	};
2746 
2747 	return kernel_clone(&args);
2748 }
2749 
2750 #ifdef __ARCH_WANT_SYS_FORK
2751 SYSCALL_DEFINE0(fork)
2752 {
2753 #ifdef CONFIG_MMU
2754 	struct kernel_clone_args args = {
2755 		.exit_signal = SIGCHLD,
2756 	};
2757 
2758 	return kernel_clone(&args);
2759 #else
2760 	/* can not support in nommu mode */
2761 	return -EINVAL;
2762 #endif
2763 }
2764 #endif
2765 
2766 #ifdef __ARCH_WANT_SYS_VFORK
2767 SYSCALL_DEFINE0(vfork)
2768 {
2769 	struct kernel_clone_args args = {
2770 		.flags		= CLONE_VFORK | CLONE_VM,
2771 		.exit_signal	= SIGCHLD,
2772 	};
2773 
2774 	return kernel_clone(&args);
2775 }
2776 #endif
2777 
2778 #ifdef __ARCH_WANT_SYS_CLONE
2779 #ifdef CONFIG_CLONE_BACKWARDS
2780 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2781 		 int __user *, parent_tidptr,
2782 		 unsigned long, tls,
2783 		 int __user *, child_tidptr)
2784 #elif defined(CONFIG_CLONE_BACKWARDS2)
2785 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2786 		 int __user *, parent_tidptr,
2787 		 int __user *, child_tidptr,
2788 		 unsigned long, tls)
2789 #elif defined(CONFIG_CLONE_BACKWARDS3)
2790 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2791 		int, stack_size,
2792 		int __user *, parent_tidptr,
2793 		int __user *, child_tidptr,
2794 		unsigned long, tls)
2795 #else
2796 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2797 		 int __user *, parent_tidptr,
2798 		 int __user *, child_tidptr,
2799 		 unsigned long, tls)
2800 #endif
2801 {
2802 	struct kernel_clone_args args = {
2803 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2804 		.pidfd		= parent_tidptr,
2805 		.child_tid	= child_tidptr,
2806 		.parent_tid	= parent_tidptr,
2807 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2808 		.stack		= newsp,
2809 		.tls		= tls,
2810 	};
2811 
2812 	return kernel_clone(&args);
2813 }
2814 #endif
2815 
2816 #ifdef __ARCH_WANT_SYS_CLONE3
2817 
2818 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2819 					      struct clone_args __user *uargs,
2820 					      size_t usize)
2821 {
2822 	int err;
2823 	struct clone_args args;
2824 	pid_t *kset_tid = kargs->set_tid;
2825 
2826 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2827 		     CLONE_ARGS_SIZE_VER0);
2828 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2829 		     CLONE_ARGS_SIZE_VER1);
2830 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2831 		     CLONE_ARGS_SIZE_VER2);
2832 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2833 
2834 	if (unlikely(usize > PAGE_SIZE))
2835 		return -E2BIG;
2836 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2837 		return -EINVAL;
2838 
2839 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2840 	if (err)
2841 		return err;
2842 
2843 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2844 		return -EINVAL;
2845 
2846 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2847 		return -EINVAL;
2848 
2849 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2850 		return -EINVAL;
2851 
2852 	/*
2853 	 * Verify that higher 32bits of exit_signal are unset and that
2854 	 * it is a valid signal
2855 	 */
2856 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2857 		     !valid_signal(args.exit_signal)))
2858 		return -EINVAL;
2859 
2860 	if ((args.flags & CLONE_INTO_CGROUP) &&
2861 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2862 		return -EINVAL;
2863 
2864 	*kargs = (struct kernel_clone_args){
2865 		.flags		= args.flags,
2866 		.pidfd		= u64_to_user_ptr(args.pidfd),
2867 		.child_tid	= u64_to_user_ptr(args.child_tid),
2868 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2869 		.exit_signal	= args.exit_signal,
2870 		.stack		= args.stack,
2871 		.stack_size	= args.stack_size,
2872 		.tls		= args.tls,
2873 		.set_tid_size	= args.set_tid_size,
2874 		.cgroup		= args.cgroup,
2875 	};
2876 
2877 	if (args.set_tid &&
2878 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2879 			(kargs->set_tid_size * sizeof(pid_t))))
2880 		return -EFAULT;
2881 
2882 	kargs->set_tid = kset_tid;
2883 
2884 	return 0;
2885 }
2886 
2887 /**
2888  * clone3_stack_valid - check and prepare stack
2889  * @kargs: kernel clone args
2890  *
2891  * Verify that the stack arguments userspace gave us are sane.
2892  * In addition, set the stack direction for userspace since it's easy for us to
2893  * determine.
2894  */
2895 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2896 {
2897 	if (kargs->stack == 0) {
2898 		if (kargs->stack_size > 0)
2899 			return false;
2900 	} else {
2901 		if (kargs->stack_size == 0)
2902 			return false;
2903 
2904 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2905 			return false;
2906 
2907 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2908 		kargs->stack += kargs->stack_size;
2909 #endif
2910 	}
2911 
2912 	return true;
2913 }
2914 
2915 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2916 {
2917 	/* Verify that no unknown flags are passed along. */
2918 	if (kargs->flags &
2919 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2920 		return false;
2921 
2922 	/*
2923 	 * - make the CLONE_DETACHED bit reusable for clone3
2924 	 * - make the CSIGNAL bits reusable for clone3
2925 	 */
2926 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2927 		return false;
2928 
2929 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2930 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2931 		return false;
2932 
2933 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2934 	    kargs->exit_signal)
2935 		return false;
2936 
2937 	if (!clone3_stack_valid(kargs))
2938 		return false;
2939 
2940 	return true;
2941 }
2942 
2943 /**
2944  * clone3 - create a new process with specific properties
2945  * @uargs: argument structure
2946  * @size:  size of @uargs
2947  *
2948  * clone3() is the extensible successor to clone()/clone2().
2949  * It takes a struct as argument that is versioned by its size.
2950  *
2951  * Return: On success, a positive PID for the child process.
2952  *         On error, a negative errno number.
2953  */
2954 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2955 {
2956 	int err;
2957 
2958 	struct kernel_clone_args kargs;
2959 	pid_t set_tid[MAX_PID_NS_LEVEL];
2960 
2961 	kargs.set_tid = set_tid;
2962 
2963 	err = copy_clone_args_from_user(&kargs, uargs, size);
2964 	if (err)
2965 		return err;
2966 
2967 	if (!clone3_args_valid(&kargs))
2968 		return -EINVAL;
2969 
2970 	return kernel_clone(&kargs);
2971 }
2972 #endif
2973 
2974 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2975 {
2976 	struct task_struct *leader, *parent, *child;
2977 	int res;
2978 
2979 	read_lock(&tasklist_lock);
2980 	leader = top = top->group_leader;
2981 down:
2982 	for_each_thread(leader, parent) {
2983 		list_for_each_entry(child, &parent->children, sibling) {
2984 			res = visitor(child, data);
2985 			if (res) {
2986 				if (res < 0)
2987 					goto out;
2988 				leader = child;
2989 				goto down;
2990 			}
2991 up:
2992 			;
2993 		}
2994 	}
2995 
2996 	if (leader != top) {
2997 		child = leader;
2998 		parent = child->real_parent;
2999 		leader = parent->group_leader;
3000 		goto up;
3001 	}
3002 out:
3003 	read_unlock(&tasklist_lock);
3004 }
3005 
3006 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3007 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3008 #endif
3009 
3010 static void sighand_ctor(void *data)
3011 {
3012 	struct sighand_struct *sighand = data;
3013 
3014 	spin_lock_init(&sighand->siglock);
3015 	init_waitqueue_head(&sighand->signalfd_wqh);
3016 }
3017 
3018 void __init proc_caches_init(void)
3019 {
3020 	unsigned int mm_size;
3021 
3022 	sighand_cachep = kmem_cache_create("sighand_cache",
3023 			sizeof(struct sighand_struct), 0,
3024 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3025 			SLAB_ACCOUNT, sighand_ctor);
3026 	signal_cachep = kmem_cache_create("signal_cache",
3027 			sizeof(struct signal_struct), 0,
3028 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3029 			NULL);
3030 	files_cachep = kmem_cache_create("files_cache",
3031 			sizeof(struct files_struct), 0,
3032 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3033 			NULL);
3034 	fs_cachep = kmem_cache_create("fs_cache",
3035 			sizeof(struct fs_struct), 0,
3036 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3037 			NULL);
3038 
3039 	/*
3040 	 * The mm_cpumask is located at the end of mm_struct, and is
3041 	 * dynamically sized based on the maximum CPU number this system
3042 	 * can have, taking hotplug into account (nr_cpu_ids).
3043 	 */
3044 	mm_size = sizeof(struct mm_struct) + cpumask_size();
3045 
3046 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3047 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3048 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3049 			offsetof(struct mm_struct, saved_auxv),
3050 			sizeof_field(struct mm_struct, saved_auxv),
3051 			NULL);
3052 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3053 	mmap_init();
3054 	nsproxy_cache_init();
3055 }
3056 
3057 /*
3058  * Check constraints on flags passed to the unshare system call.
3059  */
3060 static int check_unshare_flags(unsigned long unshare_flags)
3061 {
3062 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3063 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3064 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3065 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3066 				CLONE_NEWTIME))
3067 		return -EINVAL;
3068 	/*
3069 	 * Not implemented, but pretend it works if there is nothing
3070 	 * to unshare.  Note that unsharing the address space or the
3071 	 * signal handlers also need to unshare the signal queues (aka
3072 	 * CLONE_THREAD).
3073 	 */
3074 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3075 		if (!thread_group_empty(current))
3076 			return -EINVAL;
3077 	}
3078 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3079 		if (refcount_read(&current->sighand->count) > 1)
3080 			return -EINVAL;
3081 	}
3082 	if (unshare_flags & CLONE_VM) {
3083 		if (!current_is_single_threaded())
3084 			return -EINVAL;
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 /*
3091  * Unshare the filesystem structure if it is being shared
3092  */
3093 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3094 {
3095 	struct fs_struct *fs = current->fs;
3096 
3097 	if (!(unshare_flags & CLONE_FS) || !fs)
3098 		return 0;
3099 
3100 	/* don't need lock here; in the worst case we'll do useless copy */
3101 	if (fs->users == 1)
3102 		return 0;
3103 
3104 	*new_fsp = copy_fs_struct(fs);
3105 	if (!*new_fsp)
3106 		return -ENOMEM;
3107 
3108 	return 0;
3109 }
3110 
3111 /*
3112  * Unshare file descriptor table if it is being shared
3113  */
3114 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3115 	       struct files_struct **new_fdp)
3116 {
3117 	struct files_struct *fd = current->files;
3118 	int error = 0;
3119 
3120 	if ((unshare_flags & CLONE_FILES) &&
3121 	    (fd && atomic_read(&fd->count) > 1)) {
3122 		*new_fdp = dup_fd(fd, max_fds, &error);
3123 		if (!*new_fdp)
3124 			return error;
3125 	}
3126 
3127 	return 0;
3128 }
3129 
3130 /*
3131  * unshare allows a process to 'unshare' part of the process
3132  * context which was originally shared using clone.  copy_*
3133  * functions used by kernel_clone() cannot be used here directly
3134  * because they modify an inactive task_struct that is being
3135  * constructed. Here we are modifying the current, active,
3136  * task_struct.
3137  */
3138 int ksys_unshare(unsigned long unshare_flags)
3139 {
3140 	struct fs_struct *fs, *new_fs = NULL;
3141 	struct files_struct *new_fd = NULL;
3142 	struct cred *new_cred = NULL;
3143 	struct nsproxy *new_nsproxy = NULL;
3144 	int do_sysvsem = 0;
3145 	int err;
3146 
3147 	/*
3148 	 * If unsharing a user namespace must also unshare the thread group
3149 	 * and unshare the filesystem root and working directories.
3150 	 */
3151 	if (unshare_flags & CLONE_NEWUSER)
3152 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3153 	/*
3154 	 * If unsharing vm, must also unshare signal handlers.
3155 	 */
3156 	if (unshare_flags & CLONE_VM)
3157 		unshare_flags |= CLONE_SIGHAND;
3158 	/*
3159 	 * If unsharing a signal handlers, must also unshare the signal queues.
3160 	 */
3161 	if (unshare_flags & CLONE_SIGHAND)
3162 		unshare_flags |= CLONE_THREAD;
3163 	/*
3164 	 * If unsharing namespace, must also unshare filesystem information.
3165 	 */
3166 	if (unshare_flags & CLONE_NEWNS)
3167 		unshare_flags |= CLONE_FS;
3168 
3169 	err = check_unshare_flags(unshare_flags);
3170 	if (err)
3171 		goto bad_unshare_out;
3172 	/*
3173 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3174 	 * to a new ipc namespace, the semaphore arrays from the old
3175 	 * namespace are unreachable.
3176 	 */
3177 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3178 		do_sysvsem = 1;
3179 	err = unshare_fs(unshare_flags, &new_fs);
3180 	if (err)
3181 		goto bad_unshare_out;
3182 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3183 	if (err)
3184 		goto bad_unshare_cleanup_fs;
3185 	err = unshare_userns(unshare_flags, &new_cred);
3186 	if (err)
3187 		goto bad_unshare_cleanup_fd;
3188 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3189 					 new_cred, new_fs);
3190 	if (err)
3191 		goto bad_unshare_cleanup_cred;
3192 
3193 	if (new_cred) {
3194 		err = set_cred_ucounts(new_cred);
3195 		if (err)
3196 			goto bad_unshare_cleanup_cred;
3197 	}
3198 
3199 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3200 		if (do_sysvsem) {
3201 			/*
3202 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3203 			 */
3204 			exit_sem(current);
3205 		}
3206 		if (unshare_flags & CLONE_NEWIPC) {
3207 			/* Orphan segments in old ns (see sem above). */
3208 			exit_shm(current);
3209 			shm_init_task(current);
3210 		}
3211 
3212 		if (new_nsproxy)
3213 			switch_task_namespaces(current, new_nsproxy);
3214 
3215 		task_lock(current);
3216 
3217 		if (new_fs) {
3218 			fs = current->fs;
3219 			spin_lock(&fs->lock);
3220 			current->fs = new_fs;
3221 			if (--fs->users)
3222 				new_fs = NULL;
3223 			else
3224 				new_fs = fs;
3225 			spin_unlock(&fs->lock);
3226 		}
3227 
3228 		if (new_fd)
3229 			swap(current->files, new_fd);
3230 
3231 		task_unlock(current);
3232 
3233 		if (new_cred) {
3234 			/* Install the new user namespace */
3235 			commit_creds(new_cred);
3236 			new_cred = NULL;
3237 		}
3238 	}
3239 
3240 	perf_event_namespaces(current);
3241 
3242 bad_unshare_cleanup_cred:
3243 	if (new_cred)
3244 		put_cred(new_cred);
3245 bad_unshare_cleanup_fd:
3246 	if (new_fd)
3247 		put_files_struct(new_fd);
3248 
3249 bad_unshare_cleanup_fs:
3250 	if (new_fs)
3251 		free_fs_struct(new_fs);
3252 
3253 bad_unshare_out:
3254 	return err;
3255 }
3256 
3257 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3258 {
3259 	return ksys_unshare(unshare_flags);
3260 }
3261 
3262 /*
3263  *	Helper to unshare the files of the current task.
3264  *	We don't want to expose copy_files internals to
3265  *	the exec layer of the kernel.
3266  */
3267 
3268 int unshare_files(void)
3269 {
3270 	struct task_struct *task = current;
3271 	struct files_struct *old, *copy = NULL;
3272 	int error;
3273 
3274 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3275 	if (error || !copy)
3276 		return error;
3277 
3278 	old = task->files;
3279 	task_lock(task);
3280 	task->files = copy;
3281 	task_unlock(task);
3282 	put_files_struct(old);
3283 	return 0;
3284 }
3285 
3286 int sysctl_max_threads(struct ctl_table *table, int write,
3287 		       void *buffer, size_t *lenp, loff_t *ppos)
3288 {
3289 	struct ctl_table t;
3290 	int ret;
3291 	int threads = max_threads;
3292 	int min = 1;
3293 	int max = MAX_THREADS;
3294 
3295 	t = *table;
3296 	t.data = &threads;
3297 	t.extra1 = &min;
3298 	t.extra2 = &max;
3299 
3300 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3301 	if (ret || !write)
3302 		return ret;
3303 
3304 	max_threads = threads;
3305 
3306 	return 0;
3307 }
3308