1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 416 417 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 418 { 419 unsigned long *stack; 420 421 stack = arch_alloc_thread_stack_node(tsk, node); 422 tsk->stack = stack; 423 return stack ? 0 : -ENOMEM; 424 } 425 426 static void free_thread_stack(struct task_struct *tsk) 427 { 428 arch_free_thread_stack(tsk); 429 tsk->stack = NULL; 430 } 431 432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 433 434 /* SLAB cache for signal_struct structures (tsk->signal) */ 435 static struct kmem_cache *signal_cachep; 436 437 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 438 struct kmem_cache *sighand_cachep; 439 440 /* SLAB cache for files_struct structures (tsk->files) */ 441 struct kmem_cache *files_cachep; 442 443 /* SLAB cache for fs_struct structures (tsk->fs) */ 444 struct kmem_cache *fs_cachep; 445 446 /* SLAB cache for vm_area_struct structures */ 447 static struct kmem_cache *vm_area_cachep; 448 449 /* SLAB cache for mm_struct structures (tsk->mm) */ 450 static struct kmem_cache *mm_cachep; 451 452 #ifdef CONFIG_PER_VMA_LOCK 453 454 /* SLAB cache for vm_area_struct.lock */ 455 static struct kmem_cache *vma_lock_cachep; 456 457 static bool vma_lock_alloc(struct vm_area_struct *vma) 458 { 459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 460 if (!vma->vm_lock) 461 return false; 462 463 init_rwsem(&vma->vm_lock->lock); 464 vma->vm_lock_seq = -1; 465 466 return true; 467 } 468 469 static inline void vma_lock_free(struct vm_area_struct *vma) 470 { 471 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 472 } 473 474 #else /* CONFIG_PER_VMA_LOCK */ 475 476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 477 static inline void vma_lock_free(struct vm_area_struct *vma) {} 478 479 #endif /* CONFIG_PER_VMA_LOCK */ 480 481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 482 { 483 struct vm_area_struct *vma; 484 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 486 if (!vma) 487 return NULL; 488 489 vma_init(vma, mm); 490 if (!vma_lock_alloc(vma)) { 491 kmem_cache_free(vm_area_cachep, vma); 492 return NULL; 493 } 494 495 return vma; 496 } 497 498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 499 { 500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 501 502 if (!new) 503 return NULL; 504 505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 507 /* 508 * orig->shared.rb may be modified concurrently, but the clone 509 * will be reinitialized. 510 */ 511 data_race(memcpy(new, orig, sizeof(*new))); 512 if (!vma_lock_alloc(new)) { 513 kmem_cache_free(vm_area_cachep, new); 514 return NULL; 515 } 516 INIT_LIST_HEAD(&new->anon_vma_chain); 517 vma_numab_state_init(new); 518 dup_anon_vma_name(orig, new); 519 520 return new; 521 } 522 523 void __vm_area_free(struct vm_area_struct *vma) 524 { 525 vma_numab_state_free(vma); 526 free_anon_vma_name(vma); 527 vma_lock_free(vma); 528 kmem_cache_free(vm_area_cachep, vma); 529 } 530 531 #ifdef CONFIG_PER_VMA_LOCK 532 static void vm_area_free_rcu_cb(struct rcu_head *head) 533 { 534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 535 vm_rcu); 536 537 /* The vma should not be locked while being destroyed. */ 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 539 __vm_area_free(vma); 540 } 541 #endif 542 543 void vm_area_free(struct vm_area_struct *vma) 544 { 545 #ifdef CONFIG_PER_VMA_LOCK 546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 547 #else 548 __vm_area_free(vma); 549 #endif 550 } 551 552 static void account_kernel_stack(struct task_struct *tsk, int account) 553 { 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm = task_stack_vm_area(tsk); 556 int i; 557 558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 560 account * (PAGE_SIZE / 1024)); 561 } else { 562 void *stack = task_stack_page(tsk); 563 564 /* All stack pages are in the same node. */ 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 566 account * (THREAD_SIZE / 1024)); 567 } 568 } 569 570 void exit_task_stack_account(struct task_struct *tsk) 571 { 572 account_kernel_stack(tsk, -1); 573 574 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 575 struct vm_struct *vm; 576 int i; 577 578 vm = task_stack_vm_area(tsk); 579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 580 memcg_kmem_uncharge_page(vm->pages[i], 0); 581 } 582 } 583 584 static void release_task_stack(struct task_struct *tsk) 585 { 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 587 return; /* Better to leak the stack than to free prematurely */ 588 589 free_thread_stack(tsk); 590 } 591 592 #ifdef CONFIG_THREAD_INFO_IN_TASK 593 void put_task_stack(struct task_struct *tsk) 594 { 595 if (refcount_dec_and_test(&tsk->stack_refcount)) 596 release_task_stack(tsk); 597 } 598 #endif 599 600 void free_task(struct task_struct *tsk) 601 { 602 #ifdef CONFIG_SECCOMP 603 WARN_ON_ONCE(tsk->seccomp.filter); 604 #endif 605 release_user_cpus_ptr(tsk); 606 scs_release(tsk); 607 608 #ifndef CONFIG_THREAD_INFO_IN_TASK 609 /* 610 * The task is finally done with both the stack and thread_info, 611 * so free both. 612 */ 613 release_task_stack(tsk); 614 #else 615 /* 616 * If the task had a separate stack allocation, it should be gone 617 * by now. 618 */ 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 620 #endif 621 rt_mutex_debug_task_free(tsk); 622 ftrace_graph_exit_task(tsk); 623 arch_release_task_struct(tsk); 624 if (tsk->flags & PF_KTHREAD) 625 free_kthread_struct(tsk); 626 bpf_task_storage_free(tsk); 627 free_task_struct(tsk); 628 } 629 EXPORT_SYMBOL(free_task); 630 631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 632 { 633 struct file *exe_file; 634 635 exe_file = get_mm_exe_file(oldmm); 636 RCU_INIT_POINTER(mm->exe_file, exe_file); 637 /* 638 * We depend on the oldmm having properly denied write access to the 639 * exe_file already. 640 */ 641 if (exe_file && deny_write_access(exe_file)) 642 pr_warn_once("deny_write_access() failed in %s\n", __func__); 643 } 644 645 #ifdef CONFIG_MMU 646 static __latent_entropy int dup_mmap(struct mm_struct *mm, 647 struct mm_struct *oldmm) 648 { 649 struct vm_area_struct *mpnt, *tmp; 650 int retval; 651 unsigned long charge = 0; 652 LIST_HEAD(uf); 653 VMA_ITERATOR(old_vmi, oldmm, 0); 654 VMA_ITERATOR(vmi, mm, 0); 655 656 uprobe_start_dup_mmap(); 657 if (mmap_write_lock_killable(oldmm)) { 658 retval = -EINTR; 659 goto fail_uprobe_end; 660 } 661 flush_cache_dup_mm(oldmm); 662 uprobe_dup_mmap(oldmm, mm); 663 /* 664 * Not linked in yet - no deadlock potential: 665 */ 666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 667 668 /* No ordering required: file already has been exposed. */ 669 dup_mm_exe_file(mm, oldmm); 670 671 mm->total_vm = oldmm->total_vm; 672 mm->data_vm = oldmm->data_vm; 673 mm->exec_vm = oldmm->exec_vm; 674 mm->stack_vm = oldmm->stack_vm; 675 676 retval = ksm_fork(mm, oldmm); 677 if (retval) 678 goto out; 679 khugepaged_fork(mm, oldmm); 680 681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 682 if (retval) 683 goto out; 684 685 mt_clear_in_rcu(vmi.mas.tree); 686 for_each_vma(old_vmi, mpnt) { 687 struct file *file; 688 689 vma_start_write(mpnt); 690 if (mpnt->vm_flags & VM_DONTCOPY) { 691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 692 continue; 693 } 694 charge = 0; 695 /* 696 * Don't duplicate many vmas if we've been oom-killed (for 697 * example) 698 */ 699 if (fatal_signal_pending(current)) { 700 retval = -EINTR; 701 goto loop_out; 702 } 703 if (mpnt->vm_flags & VM_ACCOUNT) { 704 unsigned long len = vma_pages(mpnt); 705 706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 707 goto fail_nomem; 708 charge = len; 709 } 710 tmp = vm_area_dup(mpnt); 711 if (!tmp) 712 goto fail_nomem; 713 retval = vma_dup_policy(mpnt, tmp); 714 if (retval) 715 goto fail_nomem_policy; 716 tmp->vm_mm = mm; 717 retval = dup_userfaultfd(tmp, &uf); 718 if (retval) 719 goto fail_nomem_anon_vma_fork; 720 if (tmp->vm_flags & VM_WIPEONFORK) { 721 /* 722 * VM_WIPEONFORK gets a clean slate in the child. 723 * Don't prepare anon_vma until fault since we don't 724 * copy page for current vma. 725 */ 726 tmp->anon_vma = NULL; 727 } else if (anon_vma_fork(tmp, mpnt)) 728 goto fail_nomem_anon_vma_fork; 729 vm_flags_clear(tmp, VM_LOCKED_MASK); 730 file = tmp->vm_file; 731 if (file) { 732 struct address_space *mapping = file->f_mapping; 733 734 get_file(file); 735 i_mmap_lock_write(mapping); 736 if (tmp->vm_flags & VM_SHARED) 737 mapping_allow_writable(mapping); 738 flush_dcache_mmap_lock(mapping); 739 /* insert tmp into the share list, just after mpnt */ 740 vma_interval_tree_insert_after(tmp, mpnt, 741 &mapping->i_mmap); 742 flush_dcache_mmap_unlock(mapping); 743 i_mmap_unlock_write(mapping); 744 } 745 746 /* 747 * Copy/update hugetlb private vma information. 748 */ 749 if (is_vm_hugetlb_page(tmp)) 750 hugetlb_dup_vma_private(tmp); 751 752 /* Link the vma into the MT */ 753 if (vma_iter_bulk_store(&vmi, tmp)) 754 goto fail_nomem_vmi_store; 755 756 mm->map_count++; 757 if (!(tmp->vm_flags & VM_WIPEONFORK)) 758 retval = copy_page_range(tmp, mpnt); 759 760 if (tmp->vm_ops && tmp->vm_ops->open) 761 tmp->vm_ops->open(tmp); 762 763 if (retval) 764 goto loop_out; 765 } 766 /* a new mm has just been created */ 767 retval = arch_dup_mmap(oldmm, mm); 768 loop_out: 769 vma_iter_free(&vmi); 770 if (!retval) 771 mt_set_in_rcu(vmi.mas.tree); 772 out: 773 mmap_write_unlock(mm); 774 flush_tlb_mm(oldmm); 775 mmap_write_unlock(oldmm); 776 dup_userfaultfd_complete(&uf); 777 fail_uprobe_end: 778 uprobe_end_dup_mmap(); 779 return retval; 780 781 fail_nomem_vmi_store: 782 unlink_anon_vmas(tmp); 783 fail_nomem_anon_vma_fork: 784 mpol_put(vma_policy(tmp)); 785 fail_nomem_policy: 786 vm_area_free(tmp); 787 fail_nomem: 788 retval = -ENOMEM; 789 vm_unacct_memory(charge); 790 goto loop_out; 791 } 792 793 static inline int mm_alloc_pgd(struct mm_struct *mm) 794 { 795 mm->pgd = pgd_alloc(mm); 796 if (unlikely(!mm->pgd)) 797 return -ENOMEM; 798 return 0; 799 } 800 801 static inline void mm_free_pgd(struct mm_struct *mm) 802 { 803 pgd_free(mm, mm->pgd); 804 } 805 #else 806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 807 { 808 mmap_write_lock(oldmm); 809 dup_mm_exe_file(mm, oldmm); 810 mmap_write_unlock(oldmm); 811 return 0; 812 } 813 #define mm_alloc_pgd(mm) (0) 814 #define mm_free_pgd(mm) 815 #endif /* CONFIG_MMU */ 816 817 static void check_mm(struct mm_struct *mm) 818 { 819 int i; 820 821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 822 "Please make sure 'struct resident_page_types[]' is updated as well"); 823 824 for (i = 0; i < NR_MM_COUNTERS; i++) { 825 long x = percpu_counter_sum(&mm->rss_stat[i]); 826 827 if (unlikely(x)) 828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 829 mm, resident_page_types[i], x); 830 } 831 832 if (mm_pgtables_bytes(mm)) 833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 834 mm_pgtables_bytes(mm)); 835 836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 838 #endif 839 } 840 841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 843 844 static void do_check_lazy_tlb(void *arg) 845 { 846 struct mm_struct *mm = arg; 847 848 WARN_ON_ONCE(current->active_mm == mm); 849 } 850 851 static void do_shoot_lazy_tlb(void *arg) 852 { 853 struct mm_struct *mm = arg; 854 855 if (current->active_mm == mm) { 856 WARN_ON_ONCE(current->mm); 857 current->active_mm = &init_mm; 858 switch_mm(mm, &init_mm, current); 859 } 860 } 861 862 static void cleanup_lazy_tlbs(struct mm_struct *mm) 863 { 864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 865 /* 866 * In this case, lazy tlb mms are refounted and would not reach 867 * __mmdrop until all CPUs have switched away and mmdrop()ed. 868 */ 869 return; 870 } 871 872 /* 873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 874 * requires lazy mm users to switch to another mm when the refcount 875 * drops to zero, before the mm is freed. This requires IPIs here to 876 * switch kernel threads to init_mm. 877 * 878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 879 * switch with the final userspace teardown TLB flush which leaves the 880 * mm lazy on this CPU but no others, reducing the need for additional 881 * IPIs here. There are cases where a final IPI is still required here, 882 * such as the final mmdrop being performed on a different CPU than the 883 * one exiting, or kernel threads using the mm when userspace exits. 884 * 885 * IPI overheads have not found to be expensive, but they could be 886 * reduced in a number of possible ways, for example (roughly 887 * increasing order of complexity): 888 * - The last lazy reference created by exit_mm() could instead switch 889 * to init_mm, however it's probable this will run on the same CPU 890 * immediately afterwards, so this may not reduce IPIs much. 891 * - A batch of mms requiring IPIs could be gathered and freed at once. 892 * - CPUs store active_mm where it can be remotely checked without a 893 * lock, to filter out false-positives in the cpumask. 894 * - After mm_users or mm_count reaches zero, switching away from the 895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 896 * with some batching or delaying of the final IPIs. 897 * - A delayed freeing and RCU-like quiescing sequence based on mm 898 * switching to avoid IPIs completely. 899 */ 900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 903 } 904 905 /* 906 * Called when the last reference to the mm 907 * is dropped: either by a lazy thread or by 908 * mmput. Free the page directory and the mm. 909 */ 910 void __mmdrop(struct mm_struct *mm) 911 { 912 int i; 913 914 BUG_ON(mm == &init_mm); 915 WARN_ON_ONCE(mm == current->mm); 916 917 /* Ensure no CPUs are using this as their lazy tlb mm */ 918 cleanup_lazy_tlbs(mm); 919 920 WARN_ON_ONCE(mm == current->active_mm); 921 mm_free_pgd(mm); 922 destroy_context(mm); 923 mmu_notifier_subscriptions_destroy(mm); 924 check_mm(mm); 925 put_user_ns(mm->user_ns); 926 mm_pasid_drop(mm); 927 mm_destroy_cid(mm); 928 929 for (i = 0; i < NR_MM_COUNTERS; i++) 930 percpu_counter_destroy(&mm->rss_stat[i]); 931 free_mm(mm); 932 } 933 EXPORT_SYMBOL_GPL(__mmdrop); 934 935 static void mmdrop_async_fn(struct work_struct *work) 936 { 937 struct mm_struct *mm; 938 939 mm = container_of(work, struct mm_struct, async_put_work); 940 __mmdrop(mm); 941 } 942 943 static void mmdrop_async(struct mm_struct *mm) 944 { 945 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 946 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 947 schedule_work(&mm->async_put_work); 948 } 949 } 950 951 static inline void free_signal_struct(struct signal_struct *sig) 952 { 953 taskstats_tgid_free(sig); 954 sched_autogroup_exit(sig); 955 /* 956 * __mmdrop is not safe to call from softirq context on x86 due to 957 * pgd_dtor so postpone it to the async context 958 */ 959 if (sig->oom_mm) 960 mmdrop_async(sig->oom_mm); 961 kmem_cache_free(signal_cachep, sig); 962 } 963 964 static inline void put_signal_struct(struct signal_struct *sig) 965 { 966 if (refcount_dec_and_test(&sig->sigcnt)) 967 free_signal_struct(sig); 968 } 969 970 void __put_task_struct(struct task_struct *tsk) 971 { 972 WARN_ON(!tsk->exit_state); 973 WARN_ON(refcount_read(&tsk->usage)); 974 WARN_ON(tsk == current); 975 976 io_uring_free(tsk); 977 cgroup_free(tsk); 978 task_numa_free(tsk, true); 979 security_task_free(tsk); 980 exit_creds(tsk); 981 delayacct_tsk_free(tsk); 982 put_signal_struct(tsk->signal); 983 sched_core_free(tsk); 984 free_task(tsk); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct); 987 988 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 989 { 990 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 991 992 __put_task_struct(task); 993 } 994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 995 996 void __init __weak arch_task_cache_init(void) { } 997 998 /* 999 * set_max_threads 1000 */ 1001 static void set_max_threads(unsigned int max_threads_suggested) 1002 { 1003 u64 threads; 1004 unsigned long nr_pages = totalram_pages(); 1005 1006 /* 1007 * The number of threads shall be limited such that the thread 1008 * structures may only consume a small part of the available memory. 1009 */ 1010 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1011 threads = MAX_THREADS; 1012 else 1013 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1014 (u64) THREAD_SIZE * 8UL); 1015 1016 if (threads > max_threads_suggested) 1017 threads = max_threads_suggested; 1018 1019 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1020 } 1021 1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1023 /* Initialized by the architecture: */ 1024 int arch_task_struct_size __read_mostly; 1025 #endif 1026 1027 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1028 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1029 { 1030 /* Fetch thread_struct whitelist for the architecture. */ 1031 arch_thread_struct_whitelist(offset, size); 1032 1033 /* 1034 * Handle zero-sized whitelist or empty thread_struct, otherwise 1035 * adjust offset to position of thread_struct in task_struct. 1036 */ 1037 if (unlikely(*size == 0)) 1038 *offset = 0; 1039 else 1040 *offset += offsetof(struct task_struct, thread); 1041 } 1042 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1043 1044 void __init fork_init(void) 1045 { 1046 int i; 1047 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1048 #ifndef ARCH_MIN_TASKALIGN 1049 #define ARCH_MIN_TASKALIGN 0 1050 #endif 1051 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1052 unsigned long useroffset, usersize; 1053 1054 /* create a slab on which task_structs can be allocated */ 1055 task_struct_whitelist(&useroffset, &usersize); 1056 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1057 arch_task_struct_size, align, 1058 SLAB_PANIC|SLAB_ACCOUNT, 1059 useroffset, usersize, NULL); 1060 #endif 1061 1062 /* do the arch specific task caches init */ 1063 arch_task_cache_init(); 1064 1065 set_max_threads(MAX_THREADS); 1066 1067 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1068 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1069 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1070 init_task.signal->rlim[RLIMIT_NPROC]; 1071 1072 for (i = 0; i < UCOUNT_COUNTS; i++) 1073 init_user_ns.ucount_max[i] = max_threads/2; 1074 1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1079 1080 #ifdef CONFIG_VMAP_STACK 1081 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1082 NULL, free_vm_stack_cache); 1083 #endif 1084 1085 scs_init(); 1086 1087 lockdep_init_task(&init_task); 1088 uprobes_init(); 1089 } 1090 1091 int __weak arch_dup_task_struct(struct task_struct *dst, 1092 struct task_struct *src) 1093 { 1094 *dst = *src; 1095 return 0; 1096 } 1097 1098 void set_task_stack_end_magic(struct task_struct *tsk) 1099 { 1100 unsigned long *stackend; 1101 1102 stackend = end_of_stack(tsk); 1103 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1104 } 1105 1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1107 { 1108 struct task_struct *tsk; 1109 int err; 1110 1111 if (node == NUMA_NO_NODE) 1112 node = tsk_fork_get_node(orig); 1113 tsk = alloc_task_struct_node(node); 1114 if (!tsk) 1115 return NULL; 1116 1117 err = arch_dup_task_struct(tsk, orig); 1118 if (err) 1119 goto free_tsk; 1120 1121 err = alloc_thread_stack_node(tsk, node); 1122 if (err) 1123 goto free_tsk; 1124 1125 #ifdef CONFIG_THREAD_INFO_IN_TASK 1126 refcount_set(&tsk->stack_refcount, 1); 1127 #endif 1128 account_kernel_stack(tsk, 1); 1129 1130 err = scs_prepare(tsk, node); 1131 if (err) 1132 goto free_stack; 1133 1134 #ifdef CONFIG_SECCOMP 1135 /* 1136 * We must handle setting up seccomp filters once we're under 1137 * the sighand lock in case orig has changed between now and 1138 * then. Until then, filter must be NULL to avoid messing up 1139 * the usage counts on the error path calling free_task. 1140 */ 1141 tsk->seccomp.filter = NULL; 1142 #endif 1143 1144 setup_thread_stack(tsk, orig); 1145 clear_user_return_notifier(tsk); 1146 clear_tsk_need_resched(tsk); 1147 set_task_stack_end_magic(tsk); 1148 clear_syscall_work_syscall_user_dispatch(tsk); 1149 1150 #ifdef CONFIG_STACKPROTECTOR 1151 tsk->stack_canary = get_random_canary(); 1152 #endif 1153 if (orig->cpus_ptr == &orig->cpus_mask) 1154 tsk->cpus_ptr = &tsk->cpus_mask; 1155 dup_user_cpus_ptr(tsk, orig, node); 1156 1157 /* 1158 * One for the user space visible state that goes away when reaped. 1159 * One for the scheduler. 1160 */ 1161 refcount_set(&tsk->rcu_users, 2); 1162 /* One for the rcu users */ 1163 refcount_set(&tsk->usage, 1); 1164 #ifdef CONFIG_BLK_DEV_IO_TRACE 1165 tsk->btrace_seq = 0; 1166 #endif 1167 tsk->splice_pipe = NULL; 1168 tsk->task_frag.page = NULL; 1169 tsk->wake_q.next = NULL; 1170 tsk->worker_private = NULL; 1171 1172 kcov_task_init(tsk); 1173 kmsan_task_create(tsk); 1174 kmap_local_fork(tsk); 1175 1176 #ifdef CONFIG_FAULT_INJECTION 1177 tsk->fail_nth = 0; 1178 #endif 1179 1180 #ifdef CONFIG_BLK_CGROUP 1181 tsk->throttle_disk = NULL; 1182 tsk->use_memdelay = 0; 1183 #endif 1184 1185 #ifdef CONFIG_IOMMU_SVA 1186 tsk->pasid_activated = 0; 1187 #endif 1188 1189 #ifdef CONFIG_MEMCG 1190 tsk->active_memcg = NULL; 1191 #endif 1192 1193 #ifdef CONFIG_CPU_SUP_INTEL 1194 tsk->reported_split_lock = 0; 1195 #endif 1196 1197 #ifdef CONFIG_SCHED_MM_CID 1198 tsk->mm_cid = -1; 1199 tsk->last_mm_cid = -1; 1200 tsk->mm_cid_active = 0; 1201 tsk->migrate_from_cpu = -1; 1202 #endif 1203 return tsk; 1204 1205 free_stack: 1206 exit_task_stack_account(tsk); 1207 free_thread_stack(tsk); 1208 free_tsk: 1209 free_task_struct(tsk); 1210 return NULL; 1211 } 1212 1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1214 1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1216 1217 static int __init coredump_filter_setup(char *s) 1218 { 1219 default_dump_filter = 1220 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1221 MMF_DUMP_FILTER_MASK; 1222 return 1; 1223 } 1224 1225 __setup("coredump_filter=", coredump_filter_setup); 1226 1227 #include <linux/init_task.h> 1228 1229 static void mm_init_aio(struct mm_struct *mm) 1230 { 1231 #ifdef CONFIG_AIO 1232 spin_lock_init(&mm->ioctx_lock); 1233 mm->ioctx_table = NULL; 1234 #endif 1235 } 1236 1237 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1238 struct task_struct *p) 1239 { 1240 #ifdef CONFIG_MEMCG 1241 if (mm->owner == p) 1242 WRITE_ONCE(mm->owner, NULL); 1243 #endif 1244 } 1245 1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1247 { 1248 #ifdef CONFIG_MEMCG 1249 mm->owner = p; 1250 #endif 1251 } 1252 1253 static void mm_init_uprobes_state(struct mm_struct *mm) 1254 { 1255 #ifdef CONFIG_UPROBES 1256 mm->uprobes_state.xol_area = NULL; 1257 #endif 1258 } 1259 1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1261 struct user_namespace *user_ns) 1262 { 1263 int i; 1264 1265 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1266 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1267 atomic_set(&mm->mm_users, 1); 1268 atomic_set(&mm->mm_count, 1); 1269 seqcount_init(&mm->write_protect_seq); 1270 mmap_init_lock(mm); 1271 INIT_LIST_HEAD(&mm->mmlist); 1272 #ifdef CONFIG_PER_VMA_LOCK 1273 mm->mm_lock_seq = 0; 1274 #endif 1275 mm_pgtables_bytes_init(mm); 1276 mm->map_count = 0; 1277 mm->locked_vm = 0; 1278 atomic64_set(&mm->pinned_vm, 0); 1279 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1280 spin_lock_init(&mm->page_table_lock); 1281 spin_lock_init(&mm->arg_lock); 1282 mm_init_cpumask(mm); 1283 mm_init_aio(mm); 1284 mm_init_owner(mm, p); 1285 mm_pasid_init(mm); 1286 RCU_INIT_POINTER(mm->exe_file, NULL); 1287 mmu_notifier_subscriptions_init(mm); 1288 init_tlb_flush_pending(mm); 1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1290 mm->pmd_huge_pte = NULL; 1291 #endif 1292 mm_init_uprobes_state(mm); 1293 hugetlb_count_init(mm); 1294 1295 if (current->mm) { 1296 mm->flags = current->mm->flags & MMF_INIT_MASK; 1297 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1298 } else { 1299 mm->flags = default_dump_filter; 1300 mm->def_flags = 0; 1301 } 1302 1303 if (mm_alloc_pgd(mm)) 1304 goto fail_nopgd; 1305 1306 if (init_new_context(p, mm)) 1307 goto fail_nocontext; 1308 1309 if (mm_alloc_cid(mm)) 1310 goto fail_cid; 1311 1312 for (i = 0; i < NR_MM_COUNTERS; i++) 1313 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1314 goto fail_pcpu; 1315 1316 mm->user_ns = get_user_ns(user_ns); 1317 lru_gen_init_mm(mm); 1318 return mm; 1319 1320 fail_pcpu: 1321 while (i > 0) 1322 percpu_counter_destroy(&mm->rss_stat[--i]); 1323 mm_destroy_cid(mm); 1324 fail_cid: 1325 destroy_context(mm); 1326 fail_nocontext: 1327 mm_free_pgd(mm); 1328 fail_nopgd: 1329 free_mm(mm); 1330 return NULL; 1331 } 1332 1333 /* 1334 * Allocate and initialize an mm_struct. 1335 */ 1336 struct mm_struct *mm_alloc(void) 1337 { 1338 struct mm_struct *mm; 1339 1340 mm = allocate_mm(); 1341 if (!mm) 1342 return NULL; 1343 1344 memset(mm, 0, sizeof(*mm)); 1345 return mm_init(mm, current, current_user_ns()); 1346 } 1347 1348 static inline void __mmput(struct mm_struct *mm) 1349 { 1350 VM_BUG_ON(atomic_read(&mm->mm_users)); 1351 1352 uprobe_clear_state(mm); 1353 exit_aio(mm); 1354 ksm_exit(mm); 1355 khugepaged_exit(mm); /* must run before exit_mmap */ 1356 exit_mmap(mm); 1357 mm_put_huge_zero_page(mm); 1358 set_mm_exe_file(mm, NULL); 1359 if (!list_empty(&mm->mmlist)) { 1360 spin_lock(&mmlist_lock); 1361 list_del(&mm->mmlist); 1362 spin_unlock(&mmlist_lock); 1363 } 1364 if (mm->binfmt) 1365 module_put(mm->binfmt->module); 1366 lru_gen_del_mm(mm); 1367 mmdrop(mm); 1368 } 1369 1370 /* 1371 * Decrement the use count and release all resources for an mm. 1372 */ 1373 void mmput(struct mm_struct *mm) 1374 { 1375 might_sleep(); 1376 1377 if (atomic_dec_and_test(&mm->mm_users)) 1378 __mmput(mm); 1379 } 1380 EXPORT_SYMBOL_GPL(mmput); 1381 1382 #ifdef CONFIG_MMU 1383 static void mmput_async_fn(struct work_struct *work) 1384 { 1385 struct mm_struct *mm = container_of(work, struct mm_struct, 1386 async_put_work); 1387 1388 __mmput(mm); 1389 } 1390 1391 void mmput_async(struct mm_struct *mm) 1392 { 1393 if (atomic_dec_and_test(&mm->mm_users)) { 1394 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1395 schedule_work(&mm->async_put_work); 1396 } 1397 } 1398 EXPORT_SYMBOL_GPL(mmput_async); 1399 #endif 1400 1401 /** 1402 * set_mm_exe_file - change a reference to the mm's executable file 1403 * 1404 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1405 * 1406 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1407 * invocations: in mmput() nobody alive left, in execve task is single 1408 * threaded. 1409 * 1410 * Can only fail if new_exe_file != NULL. 1411 */ 1412 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1413 { 1414 struct file *old_exe_file; 1415 1416 /* 1417 * It is safe to dereference the exe_file without RCU as 1418 * this function is only called if nobody else can access 1419 * this mm -- see comment above for justification. 1420 */ 1421 old_exe_file = rcu_dereference_raw(mm->exe_file); 1422 1423 if (new_exe_file) { 1424 /* 1425 * We expect the caller (i.e., sys_execve) to already denied 1426 * write access, so this is unlikely to fail. 1427 */ 1428 if (unlikely(deny_write_access(new_exe_file))) 1429 return -EACCES; 1430 get_file(new_exe_file); 1431 } 1432 rcu_assign_pointer(mm->exe_file, new_exe_file); 1433 if (old_exe_file) { 1434 allow_write_access(old_exe_file); 1435 fput(old_exe_file); 1436 } 1437 return 0; 1438 } 1439 1440 /** 1441 * replace_mm_exe_file - replace a reference to the mm's executable file 1442 * 1443 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1444 * dealing with concurrent invocation and without grabbing the mmap lock in 1445 * write mode. 1446 * 1447 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1448 */ 1449 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1450 { 1451 struct vm_area_struct *vma; 1452 struct file *old_exe_file; 1453 int ret = 0; 1454 1455 /* Forbid mm->exe_file change if old file still mapped. */ 1456 old_exe_file = get_mm_exe_file(mm); 1457 if (old_exe_file) { 1458 VMA_ITERATOR(vmi, mm, 0); 1459 mmap_read_lock(mm); 1460 for_each_vma(vmi, vma) { 1461 if (!vma->vm_file) 1462 continue; 1463 if (path_equal(&vma->vm_file->f_path, 1464 &old_exe_file->f_path)) { 1465 ret = -EBUSY; 1466 break; 1467 } 1468 } 1469 mmap_read_unlock(mm); 1470 fput(old_exe_file); 1471 if (ret) 1472 return ret; 1473 } 1474 1475 /* set the new file, lockless */ 1476 ret = deny_write_access(new_exe_file); 1477 if (ret) 1478 return -EACCES; 1479 get_file(new_exe_file); 1480 1481 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1482 if (old_exe_file) { 1483 /* 1484 * Don't race with dup_mmap() getting the file and disallowing 1485 * write access while someone might open the file writable. 1486 */ 1487 mmap_read_lock(mm); 1488 allow_write_access(old_exe_file); 1489 fput(old_exe_file); 1490 mmap_read_unlock(mm); 1491 } 1492 return 0; 1493 } 1494 1495 /** 1496 * get_mm_exe_file - acquire a reference to the mm's executable file 1497 * 1498 * Returns %NULL if mm has no associated executable file. 1499 * User must release file via fput(). 1500 */ 1501 struct file *get_mm_exe_file(struct mm_struct *mm) 1502 { 1503 struct file *exe_file; 1504 1505 rcu_read_lock(); 1506 exe_file = rcu_dereference(mm->exe_file); 1507 if (exe_file && !get_file_rcu(exe_file)) 1508 exe_file = NULL; 1509 rcu_read_unlock(); 1510 return exe_file; 1511 } 1512 1513 /** 1514 * get_task_exe_file - acquire a reference to the task's executable file 1515 * 1516 * Returns %NULL if task's mm (if any) has no associated executable file or 1517 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1518 * User must release file via fput(). 1519 */ 1520 struct file *get_task_exe_file(struct task_struct *task) 1521 { 1522 struct file *exe_file = NULL; 1523 struct mm_struct *mm; 1524 1525 task_lock(task); 1526 mm = task->mm; 1527 if (mm) { 1528 if (!(task->flags & PF_KTHREAD)) 1529 exe_file = get_mm_exe_file(mm); 1530 } 1531 task_unlock(task); 1532 return exe_file; 1533 } 1534 1535 /** 1536 * get_task_mm - acquire a reference to the task's mm 1537 * 1538 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1539 * this kernel workthread has transiently adopted a user mm with use_mm, 1540 * to do its AIO) is not set and if so returns a reference to it, after 1541 * bumping up the use count. User must release the mm via mmput() 1542 * after use. Typically used by /proc and ptrace. 1543 */ 1544 struct mm_struct *get_task_mm(struct task_struct *task) 1545 { 1546 struct mm_struct *mm; 1547 1548 task_lock(task); 1549 mm = task->mm; 1550 if (mm) { 1551 if (task->flags & PF_KTHREAD) 1552 mm = NULL; 1553 else 1554 mmget(mm); 1555 } 1556 task_unlock(task); 1557 return mm; 1558 } 1559 EXPORT_SYMBOL_GPL(get_task_mm); 1560 1561 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1562 { 1563 struct mm_struct *mm; 1564 int err; 1565 1566 err = down_read_killable(&task->signal->exec_update_lock); 1567 if (err) 1568 return ERR_PTR(err); 1569 1570 mm = get_task_mm(task); 1571 if (mm && mm != current->mm && 1572 !ptrace_may_access(task, mode)) { 1573 mmput(mm); 1574 mm = ERR_PTR(-EACCES); 1575 } 1576 up_read(&task->signal->exec_update_lock); 1577 1578 return mm; 1579 } 1580 1581 static void complete_vfork_done(struct task_struct *tsk) 1582 { 1583 struct completion *vfork; 1584 1585 task_lock(tsk); 1586 vfork = tsk->vfork_done; 1587 if (likely(vfork)) { 1588 tsk->vfork_done = NULL; 1589 complete(vfork); 1590 } 1591 task_unlock(tsk); 1592 } 1593 1594 static int wait_for_vfork_done(struct task_struct *child, 1595 struct completion *vfork) 1596 { 1597 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1598 int killed; 1599 1600 cgroup_enter_frozen(); 1601 killed = wait_for_completion_state(vfork, state); 1602 cgroup_leave_frozen(false); 1603 1604 if (killed) { 1605 task_lock(child); 1606 child->vfork_done = NULL; 1607 task_unlock(child); 1608 } 1609 1610 put_task_struct(child); 1611 return killed; 1612 } 1613 1614 /* Please note the differences between mmput and mm_release. 1615 * mmput is called whenever we stop holding onto a mm_struct, 1616 * error success whatever. 1617 * 1618 * mm_release is called after a mm_struct has been removed 1619 * from the current process. 1620 * 1621 * This difference is important for error handling, when we 1622 * only half set up a mm_struct for a new process and need to restore 1623 * the old one. Because we mmput the new mm_struct before 1624 * restoring the old one. . . 1625 * Eric Biederman 10 January 1998 1626 */ 1627 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1628 { 1629 uprobe_free_utask(tsk); 1630 1631 /* Get rid of any cached register state */ 1632 deactivate_mm(tsk, mm); 1633 1634 /* 1635 * Signal userspace if we're not exiting with a core dump 1636 * because we want to leave the value intact for debugging 1637 * purposes. 1638 */ 1639 if (tsk->clear_child_tid) { 1640 if (atomic_read(&mm->mm_users) > 1) { 1641 /* 1642 * We don't check the error code - if userspace has 1643 * not set up a proper pointer then tough luck. 1644 */ 1645 put_user(0, tsk->clear_child_tid); 1646 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1647 1, NULL, NULL, 0, 0); 1648 } 1649 tsk->clear_child_tid = NULL; 1650 } 1651 1652 /* 1653 * All done, finally we can wake up parent and return this mm to him. 1654 * Also kthread_stop() uses this completion for synchronization. 1655 */ 1656 if (tsk->vfork_done) 1657 complete_vfork_done(tsk); 1658 } 1659 1660 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1661 { 1662 futex_exit_release(tsk); 1663 mm_release(tsk, mm); 1664 } 1665 1666 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1667 { 1668 futex_exec_release(tsk); 1669 mm_release(tsk, mm); 1670 } 1671 1672 /** 1673 * dup_mm() - duplicates an existing mm structure 1674 * @tsk: the task_struct with which the new mm will be associated. 1675 * @oldmm: the mm to duplicate. 1676 * 1677 * Allocates a new mm structure and duplicates the provided @oldmm structure 1678 * content into it. 1679 * 1680 * Return: the duplicated mm or NULL on failure. 1681 */ 1682 static struct mm_struct *dup_mm(struct task_struct *tsk, 1683 struct mm_struct *oldmm) 1684 { 1685 struct mm_struct *mm; 1686 int err; 1687 1688 mm = allocate_mm(); 1689 if (!mm) 1690 goto fail_nomem; 1691 1692 memcpy(mm, oldmm, sizeof(*mm)); 1693 1694 if (!mm_init(mm, tsk, mm->user_ns)) 1695 goto fail_nomem; 1696 1697 err = dup_mmap(mm, oldmm); 1698 if (err) 1699 goto free_pt; 1700 1701 mm->hiwater_rss = get_mm_rss(mm); 1702 mm->hiwater_vm = mm->total_vm; 1703 1704 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1705 goto free_pt; 1706 1707 return mm; 1708 1709 free_pt: 1710 /* don't put binfmt in mmput, we haven't got module yet */ 1711 mm->binfmt = NULL; 1712 mm_init_owner(mm, NULL); 1713 mmput(mm); 1714 1715 fail_nomem: 1716 return NULL; 1717 } 1718 1719 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1720 { 1721 struct mm_struct *mm, *oldmm; 1722 1723 tsk->min_flt = tsk->maj_flt = 0; 1724 tsk->nvcsw = tsk->nivcsw = 0; 1725 #ifdef CONFIG_DETECT_HUNG_TASK 1726 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1727 tsk->last_switch_time = 0; 1728 #endif 1729 1730 tsk->mm = NULL; 1731 tsk->active_mm = NULL; 1732 1733 /* 1734 * Are we cloning a kernel thread? 1735 * 1736 * We need to steal a active VM for that.. 1737 */ 1738 oldmm = current->mm; 1739 if (!oldmm) 1740 return 0; 1741 1742 if (clone_flags & CLONE_VM) { 1743 mmget(oldmm); 1744 mm = oldmm; 1745 } else { 1746 mm = dup_mm(tsk, current->mm); 1747 if (!mm) 1748 return -ENOMEM; 1749 } 1750 1751 tsk->mm = mm; 1752 tsk->active_mm = mm; 1753 sched_mm_cid_fork(tsk); 1754 return 0; 1755 } 1756 1757 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1758 { 1759 struct fs_struct *fs = current->fs; 1760 if (clone_flags & CLONE_FS) { 1761 /* tsk->fs is already what we want */ 1762 spin_lock(&fs->lock); 1763 if (fs->in_exec) { 1764 spin_unlock(&fs->lock); 1765 return -EAGAIN; 1766 } 1767 fs->users++; 1768 spin_unlock(&fs->lock); 1769 return 0; 1770 } 1771 tsk->fs = copy_fs_struct(fs); 1772 if (!tsk->fs) 1773 return -ENOMEM; 1774 return 0; 1775 } 1776 1777 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1778 int no_files) 1779 { 1780 struct files_struct *oldf, *newf; 1781 int error = 0; 1782 1783 /* 1784 * A background process may not have any files ... 1785 */ 1786 oldf = current->files; 1787 if (!oldf) 1788 goto out; 1789 1790 if (no_files) { 1791 tsk->files = NULL; 1792 goto out; 1793 } 1794 1795 if (clone_flags & CLONE_FILES) { 1796 atomic_inc(&oldf->count); 1797 goto out; 1798 } 1799 1800 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1801 if (!newf) 1802 goto out; 1803 1804 tsk->files = newf; 1805 error = 0; 1806 out: 1807 return error; 1808 } 1809 1810 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1811 { 1812 struct sighand_struct *sig; 1813 1814 if (clone_flags & CLONE_SIGHAND) { 1815 refcount_inc(¤t->sighand->count); 1816 return 0; 1817 } 1818 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1819 RCU_INIT_POINTER(tsk->sighand, sig); 1820 if (!sig) 1821 return -ENOMEM; 1822 1823 refcount_set(&sig->count, 1); 1824 spin_lock_irq(¤t->sighand->siglock); 1825 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1826 spin_unlock_irq(¤t->sighand->siglock); 1827 1828 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1829 if (clone_flags & CLONE_CLEAR_SIGHAND) 1830 flush_signal_handlers(tsk, 0); 1831 1832 return 0; 1833 } 1834 1835 void __cleanup_sighand(struct sighand_struct *sighand) 1836 { 1837 if (refcount_dec_and_test(&sighand->count)) { 1838 signalfd_cleanup(sighand); 1839 /* 1840 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1841 * without an RCU grace period, see __lock_task_sighand(). 1842 */ 1843 kmem_cache_free(sighand_cachep, sighand); 1844 } 1845 } 1846 1847 /* 1848 * Initialize POSIX timer handling for a thread group. 1849 */ 1850 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1851 { 1852 struct posix_cputimers *pct = &sig->posix_cputimers; 1853 unsigned long cpu_limit; 1854 1855 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1856 posix_cputimers_group_init(pct, cpu_limit); 1857 } 1858 1859 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1860 { 1861 struct signal_struct *sig; 1862 1863 if (clone_flags & CLONE_THREAD) 1864 return 0; 1865 1866 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1867 tsk->signal = sig; 1868 if (!sig) 1869 return -ENOMEM; 1870 1871 sig->nr_threads = 1; 1872 sig->quick_threads = 1; 1873 atomic_set(&sig->live, 1); 1874 refcount_set(&sig->sigcnt, 1); 1875 1876 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1877 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1878 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1879 1880 init_waitqueue_head(&sig->wait_chldexit); 1881 sig->curr_target = tsk; 1882 init_sigpending(&sig->shared_pending); 1883 INIT_HLIST_HEAD(&sig->multiprocess); 1884 seqlock_init(&sig->stats_lock); 1885 prev_cputime_init(&sig->prev_cputime); 1886 1887 #ifdef CONFIG_POSIX_TIMERS 1888 INIT_LIST_HEAD(&sig->posix_timers); 1889 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1890 sig->real_timer.function = it_real_fn; 1891 #endif 1892 1893 task_lock(current->group_leader); 1894 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1895 task_unlock(current->group_leader); 1896 1897 posix_cpu_timers_init_group(sig); 1898 1899 tty_audit_fork(sig); 1900 sched_autogroup_fork(sig); 1901 1902 sig->oom_score_adj = current->signal->oom_score_adj; 1903 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1904 1905 mutex_init(&sig->cred_guard_mutex); 1906 init_rwsem(&sig->exec_update_lock); 1907 1908 return 0; 1909 } 1910 1911 static void copy_seccomp(struct task_struct *p) 1912 { 1913 #ifdef CONFIG_SECCOMP 1914 /* 1915 * Must be called with sighand->lock held, which is common to 1916 * all threads in the group. Holding cred_guard_mutex is not 1917 * needed because this new task is not yet running and cannot 1918 * be racing exec. 1919 */ 1920 assert_spin_locked(¤t->sighand->siglock); 1921 1922 /* Ref-count the new filter user, and assign it. */ 1923 get_seccomp_filter(current); 1924 p->seccomp = current->seccomp; 1925 1926 /* 1927 * Explicitly enable no_new_privs here in case it got set 1928 * between the task_struct being duplicated and holding the 1929 * sighand lock. The seccomp state and nnp must be in sync. 1930 */ 1931 if (task_no_new_privs(current)) 1932 task_set_no_new_privs(p); 1933 1934 /* 1935 * If the parent gained a seccomp mode after copying thread 1936 * flags and between before we held the sighand lock, we have 1937 * to manually enable the seccomp thread flag here. 1938 */ 1939 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1940 set_task_syscall_work(p, SECCOMP); 1941 #endif 1942 } 1943 1944 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1945 { 1946 current->clear_child_tid = tidptr; 1947 1948 return task_pid_vnr(current); 1949 } 1950 1951 static void rt_mutex_init_task(struct task_struct *p) 1952 { 1953 raw_spin_lock_init(&p->pi_lock); 1954 #ifdef CONFIG_RT_MUTEXES 1955 p->pi_waiters = RB_ROOT_CACHED; 1956 p->pi_top_task = NULL; 1957 p->pi_blocked_on = NULL; 1958 #endif 1959 } 1960 1961 static inline void init_task_pid_links(struct task_struct *task) 1962 { 1963 enum pid_type type; 1964 1965 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1966 INIT_HLIST_NODE(&task->pid_links[type]); 1967 } 1968 1969 static inline void 1970 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1971 { 1972 if (type == PIDTYPE_PID) 1973 task->thread_pid = pid; 1974 else 1975 task->signal->pids[type] = pid; 1976 } 1977 1978 static inline void rcu_copy_process(struct task_struct *p) 1979 { 1980 #ifdef CONFIG_PREEMPT_RCU 1981 p->rcu_read_lock_nesting = 0; 1982 p->rcu_read_unlock_special.s = 0; 1983 p->rcu_blocked_node = NULL; 1984 INIT_LIST_HEAD(&p->rcu_node_entry); 1985 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1986 #ifdef CONFIG_TASKS_RCU 1987 p->rcu_tasks_holdout = false; 1988 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1989 p->rcu_tasks_idle_cpu = -1; 1990 #endif /* #ifdef CONFIG_TASKS_RCU */ 1991 #ifdef CONFIG_TASKS_TRACE_RCU 1992 p->trc_reader_nesting = 0; 1993 p->trc_reader_special.s = 0; 1994 INIT_LIST_HEAD(&p->trc_holdout_list); 1995 INIT_LIST_HEAD(&p->trc_blkd_node); 1996 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1997 } 1998 1999 struct pid *pidfd_pid(const struct file *file) 2000 { 2001 if (file->f_op == &pidfd_fops) 2002 return file->private_data; 2003 2004 return ERR_PTR(-EBADF); 2005 } 2006 2007 static int pidfd_release(struct inode *inode, struct file *file) 2008 { 2009 struct pid *pid = file->private_data; 2010 2011 file->private_data = NULL; 2012 put_pid(pid); 2013 return 0; 2014 } 2015 2016 #ifdef CONFIG_PROC_FS 2017 /** 2018 * pidfd_show_fdinfo - print information about a pidfd 2019 * @m: proc fdinfo file 2020 * @f: file referencing a pidfd 2021 * 2022 * Pid: 2023 * This function will print the pid that a given pidfd refers to in the 2024 * pid namespace of the procfs instance. 2025 * If the pid namespace of the process is not a descendant of the pid 2026 * namespace of the procfs instance 0 will be shown as its pid. This is 2027 * similar to calling getppid() on a process whose parent is outside of 2028 * its pid namespace. 2029 * 2030 * NSpid: 2031 * If pid namespaces are supported then this function will also print 2032 * the pid of a given pidfd refers to for all descendant pid namespaces 2033 * starting from the current pid namespace of the instance, i.e. the 2034 * Pid field and the first entry in the NSpid field will be identical. 2035 * If the pid namespace of the process is not a descendant of the pid 2036 * namespace of the procfs instance 0 will be shown as its first NSpid 2037 * entry and no others will be shown. 2038 * Note that this differs from the Pid and NSpid fields in 2039 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2040 * the pid namespace of the procfs instance. The difference becomes 2041 * obvious when sending around a pidfd between pid namespaces from a 2042 * different branch of the tree, i.e. where no ancestral relation is 2043 * present between the pid namespaces: 2044 * - create two new pid namespaces ns1 and ns2 in the initial pid 2045 * namespace (also take care to create new mount namespaces in the 2046 * new pid namespace and mount procfs) 2047 * - create a process with a pidfd in ns1 2048 * - send pidfd from ns1 to ns2 2049 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2050 * have exactly one entry, which is 0 2051 */ 2052 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2053 { 2054 struct pid *pid = f->private_data; 2055 struct pid_namespace *ns; 2056 pid_t nr = -1; 2057 2058 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2059 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2060 nr = pid_nr_ns(pid, ns); 2061 } 2062 2063 seq_put_decimal_ll(m, "Pid:\t", nr); 2064 2065 #ifdef CONFIG_PID_NS 2066 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2067 if (nr > 0) { 2068 int i; 2069 2070 /* If nr is non-zero it means that 'pid' is valid and that 2071 * ns, i.e. the pid namespace associated with the procfs 2072 * instance, is in the pid namespace hierarchy of pid. 2073 * Start at one below the already printed level. 2074 */ 2075 for (i = ns->level + 1; i <= pid->level; i++) 2076 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2077 } 2078 #endif 2079 seq_putc(m, '\n'); 2080 } 2081 #endif 2082 2083 /* 2084 * Poll support for process exit notification. 2085 */ 2086 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2087 { 2088 struct pid *pid = file->private_data; 2089 __poll_t poll_flags = 0; 2090 2091 poll_wait(file, &pid->wait_pidfd, pts); 2092 2093 /* 2094 * Inform pollers only when the whole thread group exits. 2095 * If the thread group leader exits before all other threads in the 2096 * group, then poll(2) should block, similar to the wait(2) family. 2097 */ 2098 if (thread_group_exited(pid)) 2099 poll_flags = EPOLLIN | EPOLLRDNORM; 2100 2101 return poll_flags; 2102 } 2103 2104 const struct file_operations pidfd_fops = { 2105 .release = pidfd_release, 2106 .poll = pidfd_poll, 2107 #ifdef CONFIG_PROC_FS 2108 .show_fdinfo = pidfd_show_fdinfo, 2109 #endif 2110 }; 2111 2112 /** 2113 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2114 * @pid: the struct pid for which to create a pidfd 2115 * @flags: flags of the new @pidfd 2116 * @pidfd: the pidfd to return 2117 * 2118 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2119 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2120 2121 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2122 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2123 * pidfd file are prepared. 2124 * 2125 * If this function returns successfully the caller is responsible to either 2126 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2127 * order to install the pidfd into its file descriptor table or they must use 2128 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2129 * respectively. 2130 * 2131 * This function is useful when a pidfd must already be reserved but there 2132 * might still be points of failure afterwards and the caller wants to ensure 2133 * that no pidfd is leaked into its file descriptor table. 2134 * 2135 * Return: On success, a reserved pidfd is returned from the function and a new 2136 * pidfd file is returned in the last argument to the function. On 2137 * error, a negative error code is returned from the function and the 2138 * last argument remains unchanged. 2139 */ 2140 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2141 { 2142 int pidfd; 2143 struct file *pidfd_file; 2144 2145 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2146 return -EINVAL; 2147 2148 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2149 if (pidfd < 0) 2150 return pidfd; 2151 2152 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2153 flags | O_RDWR | O_CLOEXEC); 2154 if (IS_ERR(pidfd_file)) { 2155 put_unused_fd(pidfd); 2156 return PTR_ERR(pidfd_file); 2157 } 2158 get_pid(pid); /* held by pidfd_file now */ 2159 *ret = pidfd_file; 2160 return pidfd; 2161 } 2162 2163 /** 2164 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2165 * @pid: the struct pid for which to create a pidfd 2166 * @flags: flags of the new @pidfd 2167 * @pidfd: the pidfd to return 2168 * 2169 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2170 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2171 * 2172 * The helper verifies that @pid is used as a thread group leader. 2173 * 2174 * If this function returns successfully the caller is responsible to either 2175 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2176 * order to install the pidfd into its file descriptor table or they must use 2177 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2178 * respectively. 2179 * 2180 * This function is useful when a pidfd must already be reserved but there 2181 * might still be points of failure afterwards and the caller wants to ensure 2182 * that no pidfd is leaked into its file descriptor table. 2183 * 2184 * Return: On success, a reserved pidfd is returned from the function and a new 2185 * pidfd file is returned in the last argument to the function. On 2186 * error, a negative error code is returned from the function and the 2187 * last argument remains unchanged. 2188 */ 2189 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2190 { 2191 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2192 return -EINVAL; 2193 2194 return __pidfd_prepare(pid, flags, ret); 2195 } 2196 2197 static void __delayed_free_task(struct rcu_head *rhp) 2198 { 2199 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2200 2201 free_task(tsk); 2202 } 2203 2204 static __always_inline void delayed_free_task(struct task_struct *tsk) 2205 { 2206 if (IS_ENABLED(CONFIG_MEMCG)) 2207 call_rcu(&tsk->rcu, __delayed_free_task); 2208 else 2209 free_task(tsk); 2210 } 2211 2212 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2213 { 2214 /* Skip if kernel thread */ 2215 if (!tsk->mm) 2216 return; 2217 2218 /* Skip if spawning a thread or using vfork */ 2219 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2220 return; 2221 2222 /* We need to synchronize with __set_oom_adj */ 2223 mutex_lock(&oom_adj_mutex); 2224 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2225 /* Update the values in case they were changed after copy_signal */ 2226 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2227 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2228 mutex_unlock(&oom_adj_mutex); 2229 } 2230 2231 #ifdef CONFIG_RV 2232 static void rv_task_fork(struct task_struct *p) 2233 { 2234 int i; 2235 2236 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2237 p->rv[i].da_mon.monitoring = false; 2238 } 2239 #else 2240 #define rv_task_fork(p) do {} while (0) 2241 #endif 2242 2243 /* 2244 * This creates a new process as a copy of the old one, 2245 * but does not actually start it yet. 2246 * 2247 * It copies the registers, and all the appropriate 2248 * parts of the process environment (as per the clone 2249 * flags). The actual kick-off is left to the caller. 2250 */ 2251 __latent_entropy struct task_struct *copy_process( 2252 struct pid *pid, 2253 int trace, 2254 int node, 2255 struct kernel_clone_args *args) 2256 { 2257 int pidfd = -1, retval; 2258 struct task_struct *p; 2259 struct multiprocess_signals delayed; 2260 struct file *pidfile = NULL; 2261 const u64 clone_flags = args->flags; 2262 struct nsproxy *nsp = current->nsproxy; 2263 2264 /* 2265 * Don't allow sharing the root directory with processes in a different 2266 * namespace 2267 */ 2268 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2269 return ERR_PTR(-EINVAL); 2270 2271 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2272 return ERR_PTR(-EINVAL); 2273 2274 /* 2275 * Thread groups must share signals as well, and detached threads 2276 * can only be started up within the thread group. 2277 */ 2278 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2279 return ERR_PTR(-EINVAL); 2280 2281 /* 2282 * Shared signal handlers imply shared VM. By way of the above, 2283 * thread groups also imply shared VM. Blocking this case allows 2284 * for various simplifications in other code. 2285 */ 2286 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2287 return ERR_PTR(-EINVAL); 2288 2289 /* 2290 * Siblings of global init remain as zombies on exit since they are 2291 * not reaped by their parent (swapper). To solve this and to avoid 2292 * multi-rooted process trees, prevent global and container-inits 2293 * from creating siblings. 2294 */ 2295 if ((clone_flags & CLONE_PARENT) && 2296 current->signal->flags & SIGNAL_UNKILLABLE) 2297 return ERR_PTR(-EINVAL); 2298 2299 /* 2300 * If the new process will be in a different pid or user namespace 2301 * do not allow it to share a thread group with the forking task. 2302 */ 2303 if (clone_flags & CLONE_THREAD) { 2304 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2305 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2306 return ERR_PTR(-EINVAL); 2307 } 2308 2309 if (clone_flags & CLONE_PIDFD) { 2310 /* 2311 * - CLONE_DETACHED is blocked so that we can potentially 2312 * reuse it later for CLONE_PIDFD. 2313 * - CLONE_THREAD is blocked until someone really needs it. 2314 */ 2315 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2316 return ERR_PTR(-EINVAL); 2317 } 2318 2319 /* 2320 * Force any signals received before this point to be delivered 2321 * before the fork happens. Collect up signals sent to multiple 2322 * processes that happen during the fork and delay them so that 2323 * they appear to happen after the fork. 2324 */ 2325 sigemptyset(&delayed.signal); 2326 INIT_HLIST_NODE(&delayed.node); 2327 2328 spin_lock_irq(¤t->sighand->siglock); 2329 if (!(clone_flags & CLONE_THREAD)) 2330 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2331 recalc_sigpending(); 2332 spin_unlock_irq(¤t->sighand->siglock); 2333 retval = -ERESTARTNOINTR; 2334 if (task_sigpending(current)) 2335 goto fork_out; 2336 2337 retval = -ENOMEM; 2338 p = dup_task_struct(current, node); 2339 if (!p) 2340 goto fork_out; 2341 p->flags &= ~PF_KTHREAD; 2342 if (args->kthread) 2343 p->flags |= PF_KTHREAD; 2344 if (args->user_worker) { 2345 /* 2346 * Mark us a user worker, and block any signal that isn't 2347 * fatal or STOP 2348 */ 2349 p->flags |= PF_USER_WORKER; 2350 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2351 } 2352 if (args->io_thread) 2353 p->flags |= PF_IO_WORKER; 2354 2355 if (args->name) 2356 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2357 2358 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2359 /* 2360 * Clear TID on mm_release()? 2361 */ 2362 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2363 2364 ftrace_graph_init_task(p); 2365 2366 rt_mutex_init_task(p); 2367 2368 lockdep_assert_irqs_enabled(); 2369 #ifdef CONFIG_PROVE_LOCKING 2370 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2371 #endif 2372 retval = copy_creds(p, clone_flags); 2373 if (retval < 0) 2374 goto bad_fork_free; 2375 2376 retval = -EAGAIN; 2377 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2378 if (p->real_cred->user != INIT_USER && 2379 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2380 goto bad_fork_cleanup_count; 2381 } 2382 current->flags &= ~PF_NPROC_EXCEEDED; 2383 2384 /* 2385 * If multiple threads are within copy_process(), then this check 2386 * triggers too late. This doesn't hurt, the check is only there 2387 * to stop root fork bombs. 2388 */ 2389 retval = -EAGAIN; 2390 if (data_race(nr_threads >= max_threads)) 2391 goto bad_fork_cleanup_count; 2392 2393 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2394 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2395 p->flags |= PF_FORKNOEXEC; 2396 INIT_LIST_HEAD(&p->children); 2397 INIT_LIST_HEAD(&p->sibling); 2398 rcu_copy_process(p); 2399 p->vfork_done = NULL; 2400 spin_lock_init(&p->alloc_lock); 2401 2402 init_sigpending(&p->pending); 2403 2404 p->utime = p->stime = p->gtime = 0; 2405 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2406 p->utimescaled = p->stimescaled = 0; 2407 #endif 2408 prev_cputime_init(&p->prev_cputime); 2409 2410 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2411 seqcount_init(&p->vtime.seqcount); 2412 p->vtime.starttime = 0; 2413 p->vtime.state = VTIME_INACTIVE; 2414 #endif 2415 2416 #ifdef CONFIG_IO_URING 2417 p->io_uring = NULL; 2418 #endif 2419 2420 #if defined(SPLIT_RSS_COUNTING) 2421 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2422 #endif 2423 2424 p->default_timer_slack_ns = current->timer_slack_ns; 2425 2426 #ifdef CONFIG_PSI 2427 p->psi_flags = 0; 2428 #endif 2429 2430 task_io_accounting_init(&p->ioac); 2431 acct_clear_integrals(p); 2432 2433 posix_cputimers_init(&p->posix_cputimers); 2434 2435 p->io_context = NULL; 2436 audit_set_context(p, NULL); 2437 cgroup_fork(p); 2438 if (args->kthread) { 2439 if (!set_kthread_struct(p)) 2440 goto bad_fork_cleanup_delayacct; 2441 } 2442 #ifdef CONFIG_NUMA 2443 p->mempolicy = mpol_dup(p->mempolicy); 2444 if (IS_ERR(p->mempolicy)) { 2445 retval = PTR_ERR(p->mempolicy); 2446 p->mempolicy = NULL; 2447 goto bad_fork_cleanup_delayacct; 2448 } 2449 #endif 2450 #ifdef CONFIG_CPUSETS 2451 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2452 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2453 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2454 #endif 2455 #ifdef CONFIG_TRACE_IRQFLAGS 2456 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2457 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2458 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2459 p->softirqs_enabled = 1; 2460 p->softirq_context = 0; 2461 #endif 2462 2463 p->pagefault_disabled = 0; 2464 2465 #ifdef CONFIG_LOCKDEP 2466 lockdep_init_task(p); 2467 #endif 2468 2469 #ifdef CONFIG_DEBUG_MUTEXES 2470 p->blocked_on = NULL; /* not blocked yet */ 2471 #endif 2472 #ifdef CONFIG_BCACHE 2473 p->sequential_io = 0; 2474 p->sequential_io_avg = 0; 2475 #endif 2476 #ifdef CONFIG_BPF_SYSCALL 2477 RCU_INIT_POINTER(p->bpf_storage, NULL); 2478 p->bpf_ctx = NULL; 2479 #endif 2480 2481 /* Perform scheduler related setup. Assign this task to a CPU. */ 2482 retval = sched_fork(clone_flags, p); 2483 if (retval) 2484 goto bad_fork_cleanup_policy; 2485 2486 retval = perf_event_init_task(p, clone_flags); 2487 if (retval) 2488 goto bad_fork_cleanup_policy; 2489 retval = audit_alloc(p); 2490 if (retval) 2491 goto bad_fork_cleanup_perf; 2492 /* copy all the process information */ 2493 shm_init_task(p); 2494 retval = security_task_alloc(p, clone_flags); 2495 if (retval) 2496 goto bad_fork_cleanup_audit; 2497 retval = copy_semundo(clone_flags, p); 2498 if (retval) 2499 goto bad_fork_cleanup_security; 2500 retval = copy_files(clone_flags, p, args->no_files); 2501 if (retval) 2502 goto bad_fork_cleanup_semundo; 2503 retval = copy_fs(clone_flags, p); 2504 if (retval) 2505 goto bad_fork_cleanup_files; 2506 retval = copy_sighand(clone_flags, p); 2507 if (retval) 2508 goto bad_fork_cleanup_fs; 2509 retval = copy_signal(clone_flags, p); 2510 if (retval) 2511 goto bad_fork_cleanup_sighand; 2512 retval = copy_mm(clone_flags, p); 2513 if (retval) 2514 goto bad_fork_cleanup_signal; 2515 retval = copy_namespaces(clone_flags, p); 2516 if (retval) 2517 goto bad_fork_cleanup_mm; 2518 retval = copy_io(clone_flags, p); 2519 if (retval) 2520 goto bad_fork_cleanup_namespaces; 2521 retval = copy_thread(p, args); 2522 if (retval) 2523 goto bad_fork_cleanup_io; 2524 2525 stackleak_task_init(p); 2526 2527 if (pid != &init_struct_pid) { 2528 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2529 args->set_tid_size); 2530 if (IS_ERR(pid)) { 2531 retval = PTR_ERR(pid); 2532 goto bad_fork_cleanup_thread; 2533 } 2534 } 2535 2536 /* 2537 * This has to happen after we've potentially unshared the file 2538 * descriptor table (so that the pidfd doesn't leak into the child 2539 * if the fd table isn't shared). 2540 */ 2541 if (clone_flags & CLONE_PIDFD) { 2542 /* Note that no task has been attached to @pid yet. */ 2543 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2544 if (retval < 0) 2545 goto bad_fork_free_pid; 2546 pidfd = retval; 2547 2548 retval = put_user(pidfd, args->pidfd); 2549 if (retval) 2550 goto bad_fork_put_pidfd; 2551 } 2552 2553 #ifdef CONFIG_BLOCK 2554 p->plug = NULL; 2555 #endif 2556 futex_init_task(p); 2557 2558 /* 2559 * sigaltstack should be cleared when sharing the same VM 2560 */ 2561 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2562 sas_ss_reset(p); 2563 2564 /* 2565 * Syscall tracing and stepping should be turned off in the 2566 * child regardless of CLONE_PTRACE. 2567 */ 2568 user_disable_single_step(p); 2569 clear_task_syscall_work(p, SYSCALL_TRACE); 2570 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2571 clear_task_syscall_work(p, SYSCALL_EMU); 2572 #endif 2573 clear_tsk_latency_tracing(p); 2574 2575 /* ok, now we should be set up.. */ 2576 p->pid = pid_nr(pid); 2577 if (clone_flags & CLONE_THREAD) { 2578 p->group_leader = current->group_leader; 2579 p->tgid = current->tgid; 2580 } else { 2581 p->group_leader = p; 2582 p->tgid = p->pid; 2583 } 2584 2585 p->nr_dirtied = 0; 2586 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2587 p->dirty_paused_when = 0; 2588 2589 p->pdeath_signal = 0; 2590 INIT_LIST_HEAD(&p->thread_group); 2591 p->task_works = NULL; 2592 clear_posix_cputimers_work(p); 2593 2594 #ifdef CONFIG_KRETPROBES 2595 p->kretprobe_instances.first = NULL; 2596 #endif 2597 #ifdef CONFIG_RETHOOK 2598 p->rethooks.first = NULL; 2599 #endif 2600 2601 /* 2602 * Ensure that the cgroup subsystem policies allow the new process to be 2603 * forked. It should be noted that the new process's css_set can be changed 2604 * between here and cgroup_post_fork() if an organisation operation is in 2605 * progress. 2606 */ 2607 retval = cgroup_can_fork(p, args); 2608 if (retval) 2609 goto bad_fork_put_pidfd; 2610 2611 /* 2612 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2613 * the new task on the correct runqueue. All this *before* the task 2614 * becomes visible. 2615 * 2616 * This isn't part of ->can_fork() because while the re-cloning is 2617 * cgroup specific, it unconditionally needs to place the task on a 2618 * runqueue. 2619 */ 2620 sched_cgroup_fork(p, args); 2621 2622 /* 2623 * From this point on we must avoid any synchronous user-space 2624 * communication until we take the tasklist-lock. In particular, we do 2625 * not want user-space to be able to predict the process start-time by 2626 * stalling fork(2) after we recorded the start_time but before it is 2627 * visible to the system. 2628 */ 2629 2630 p->start_time = ktime_get_ns(); 2631 p->start_boottime = ktime_get_boottime_ns(); 2632 2633 /* 2634 * Make it visible to the rest of the system, but dont wake it up yet. 2635 * Need tasklist lock for parent etc handling! 2636 */ 2637 write_lock_irq(&tasklist_lock); 2638 2639 /* CLONE_PARENT re-uses the old parent */ 2640 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2641 p->real_parent = current->real_parent; 2642 p->parent_exec_id = current->parent_exec_id; 2643 if (clone_flags & CLONE_THREAD) 2644 p->exit_signal = -1; 2645 else 2646 p->exit_signal = current->group_leader->exit_signal; 2647 } else { 2648 p->real_parent = current; 2649 p->parent_exec_id = current->self_exec_id; 2650 p->exit_signal = args->exit_signal; 2651 } 2652 2653 klp_copy_process(p); 2654 2655 sched_core_fork(p); 2656 2657 spin_lock(¤t->sighand->siglock); 2658 2659 rv_task_fork(p); 2660 2661 rseq_fork(p, clone_flags); 2662 2663 /* Don't start children in a dying pid namespace */ 2664 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2665 retval = -ENOMEM; 2666 goto bad_fork_cancel_cgroup; 2667 } 2668 2669 /* Let kill terminate clone/fork in the middle */ 2670 if (fatal_signal_pending(current)) { 2671 retval = -EINTR; 2672 goto bad_fork_cancel_cgroup; 2673 } 2674 2675 /* No more failure paths after this point. */ 2676 2677 /* 2678 * Copy seccomp details explicitly here, in case they were changed 2679 * before holding sighand lock. 2680 */ 2681 copy_seccomp(p); 2682 2683 init_task_pid_links(p); 2684 if (likely(p->pid)) { 2685 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2686 2687 init_task_pid(p, PIDTYPE_PID, pid); 2688 if (thread_group_leader(p)) { 2689 init_task_pid(p, PIDTYPE_TGID, pid); 2690 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2691 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2692 2693 if (is_child_reaper(pid)) { 2694 ns_of_pid(pid)->child_reaper = p; 2695 p->signal->flags |= SIGNAL_UNKILLABLE; 2696 } 2697 p->signal->shared_pending.signal = delayed.signal; 2698 p->signal->tty = tty_kref_get(current->signal->tty); 2699 /* 2700 * Inherit has_child_subreaper flag under the same 2701 * tasklist_lock with adding child to the process tree 2702 * for propagate_has_child_subreaper optimization. 2703 */ 2704 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2705 p->real_parent->signal->is_child_subreaper; 2706 list_add_tail(&p->sibling, &p->real_parent->children); 2707 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2708 attach_pid(p, PIDTYPE_TGID); 2709 attach_pid(p, PIDTYPE_PGID); 2710 attach_pid(p, PIDTYPE_SID); 2711 __this_cpu_inc(process_counts); 2712 } else { 2713 current->signal->nr_threads++; 2714 current->signal->quick_threads++; 2715 atomic_inc(¤t->signal->live); 2716 refcount_inc(¤t->signal->sigcnt); 2717 task_join_group_stop(p); 2718 list_add_tail_rcu(&p->thread_group, 2719 &p->group_leader->thread_group); 2720 list_add_tail_rcu(&p->thread_node, 2721 &p->signal->thread_head); 2722 } 2723 attach_pid(p, PIDTYPE_PID); 2724 nr_threads++; 2725 } 2726 total_forks++; 2727 hlist_del_init(&delayed.node); 2728 spin_unlock(¤t->sighand->siglock); 2729 syscall_tracepoint_update(p); 2730 write_unlock_irq(&tasklist_lock); 2731 2732 if (pidfile) 2733 fd_install(pidfd, pidfile); 2734 2735 proc_fork_connector(p); 2736 sched_post_fork(p); 2737 cgroup_post_fork(p, args); 2738 perf_event_fork(p); 2739 2740 trace_task_newtask(p, clone_flags); 2741 uprobe_copy_process(p, clone_flags); 2742 user_events_fork(p, clone_flags); 2743 2744 copy_oom_score_adj(clone_flags, p); 2745 2746 return p; 2747 2748 bad_fork_cancel_cgroup: 2749 sched_core_free(p); 2750 spin_unlock(¤t->sighand->siglock); 2751 write_unlock_irq(&tasklist_lock); 2752 cgroup_cancel_fork(p, args); 2753 bad_fork_put_pidfd: 2754 if (clone_flags & CLONE_PIDFD) { 2755 fput(pidfile); 2756 put_unused_fd(pidfd); 2757 } 2758 bad_fork_free_pid: 2759 if (pid != &init_struct_pid) 2760 free_pid(pid); 2761 bad_fork_cleanup_thread: 2762 exit_thread(p); 2763 bad_fork_cleanup_io: 2764 if (p->io_context) 2765 exit_io_context(p); 2766 bad_fork_cleanup_namespaces: 2767 exit_task_namespaces(p); 2768 bad_fork_cleanup_mm: 2769 if (p->mm) { 2770 mm_clear_owner(p->mm, p); 2771 mmput(p->mm); 2772 } 2773 bad_fork_cleanup_signal: 2774 if (!(clone_flags & CLONE_THREAD)) 2775 free_signal_struct(p->signal); 2776 bad_fork_cleanup_sighand: 2777 __cleanup_sighand(p->sighand); 2778 bad_fork_cleanup_fs: 2779 exit_fs(p); /* blocking */ 2780 bad_fork_cleanup_files: 2781 exit_files(p); /* blocking */ 2782 bad_fork_cleanup_semundo: 2783 exit_sem(p); 2784 bad_fork_cleanup_security: 2785 security_task_free(p); 2786 bad_fork_cleanup_audit: 2787 audit_free(p); 2788 bad_fork_cleanup_perf: 2789 perf_event_free_task(p); 2790 bad_fork_cleanup_policy: 2791 lockdep_free_task(p); 2792 #ifdef CONFIG_NUMA 2793 mpol_put(p->mempolicy); 2794 #endif 2795 bad_fork_cleanup_delayacct: 2796 delayacct_tsk_free(p); 2797 bad_fork_cleanup_count: 2798 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2799 exit_creds(p); 2800 bad_fork_free: 2801 WRITE_ONCE(p->__state, TASK_DEAD); 2802 exit_task_stack_account(p); 2803 put_task_stack(p); 2804 delayed_free_task(p); 2805 fork_out: 2806 spin_lock_irq(¤t->sighand->siglock); 2807 hlist_del_init(&delayed.node); 2808 spin_unlock_irq(¤t->sighand->siglock); 2809 return ERR_PTR(retval); 2810 } 2811 2812 static inline void init_idle_pids(struct task_struct *idle) 2813 { 2814 enum pid_type type; 2815 2816 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2817 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2818 init_task_pid(idle, type, &init_struct_pid); 2819 } 2820 } 2821 2822 static int idle_dummy(void *dummy) 2823 { 2824 /* This function is never called */ 2825 return 0; 2826 } 2827 2828 struct task_struct * __init fork_idle(int cpu) 2829 { 2830 struct task_struct *task; 2831 struct kernel_clone_args args = { 2832 .flags = CLONE_VM, 2833 .fn = &idle_dummy, 2834 .fn_arg = NULL, 2835 .kthread = 1, 2836 .idle = 1, 2837 }; 2838 2839 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2840 if (!IS_ERR(task)) { 2841 init_idle_pids(task); 2842 init_idle(task, cpu); 2843 } 2844 2845 return task; 2846 } 2847 2848 /* 2849 * This is like kernel_clone(), but shaved down and tailored to just 2850 * creating io_uring workers. It returns a created task, or an error pointer. 2851 * The returned task is inactive, and the caller must fire it up through 2852 * wake_up_new_task(p). All signals are blocked in the created task. 2853 */ 2854 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2855 { 2856 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2857 CLONE_IO; 2858 struct kernel_clone_args args = { 2859 .flags = ((lower_32_bits(flags) | CLONE_VM | 2860 CLONE_UNTRACED) & ~CSIGNAL), 2861 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2862 .fn = fn, 2863 .fn_arg = arg, 2864 .io_thread = 1, 2865 .user_worker = 1, 2866 }; 2867 2868 return copy_process(NULL, 0, node, &args); 2869 } 2870 2871 /* 2872 * Ok, this is the main fork-routine. 2873 * 2874 * It copies the process, and if successful kick-starts 2875 * it and waits for it to finish using the VM if required. 2876 * 2877 * args->exit_signal is expected to be checked for sanity by the caller. 2878 */ 2879 pid_t kernel_clone(struct kernel_clone_args *args) 2880 { 2881 u64 clone_flags = args->flags; 2882 struct completion vfork; 2883 struct pid *pid; 2884 struct task_struct *p; 2885 int trace = 0; 2886 pid_t nr; 2887 2888 /* 2889 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2890 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2891 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2892 * field in struct clone_args and it still doesn't make sense to have 2893 * them both point at the same memory location. Performing this check 2894 * here has the advantage that we don't need to have a separate helper 2895 * to check for legacy clone(). 2896 */ 2897 if ((args->flags & CLONE_PIDFD) && 2898 (args->flags & CLONE_PARENT_SETTID) && 2899 (args->pidfd == args->parent_tid)) 2900 return -EINVAL; 2901 2902 /* 2903 * Determine whether and which event to report to ptracer. When 2904 * called from kernel_thread or CLONE_UNTRACED is explicitly 2905 * requested, no event is reported; otherwise, report if the event 2906 * for the type of forking is enabled. 2907 */ 2908 if (!(clone_flags & CLONE_UNTRACED)) { 2909 if (clone_flags & CLONE_VFORK) 2910 trace = PTRACE_EVENT_VFORK; 2911 else if (args->exit_signal != SIGCHLD) 2912 trace = PTRACE_EVENT_CLONE; 2913 else 2914 trace = PTRACE_EVENT_FORK; 2915 2916 if (likely(!ptrace_event_enabled(current, trace))) 2917 trace = 0; 2918 } 2919 2920 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2921 add_latent_entropy(); 2922 2923 if (IS_ERR(p)) 2924 return PTR_ERR(p); 2925 2926 /* 2927 * Do this prior waking up the new thread - the thread pointer 2928 * might get invalid after that point, if the thread exits quickly. 2929 */ 2930 trace_sched_process_fork(current, p); 2931 2932 pid = get_task_pid(p, PIDTYPE_PID); 2933 nr = pid_vnr(pid); 2934 2935 if (clone_flags & CLONE_PARENT_SETTID) 2936 put_user(nr, args->parent_tid); 2937 2938 if (clone_flags & CLONE_VFORK) { 2939 p->vfork_done = &vfork; 2940 init_completion(&vfork); 2941 get_task_struct(p); 2942 } 2943 2944 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2945 /* lock the task to synchronize with memcg migration */ 2946 task_lock(p); 2947 lru_gen_add_mm(p->mm); 2948 task_unlock(p); 2949 } 2950 2951 wake_up_new_task(p); 2952 2953 /* forking complete and child started to run, tell ptracer */ 2954 if (unlikely(trace)) 2955 ptrace_event_pid(trace, pid); 2956 2957 if (clone_flags & CLONE_VFORK) { 2958 if (!wait_for_vfork_done(p, &vfork)) 2959 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2960 } 2961 2962 put_pid(pid); 2963 return nr; 2964 } 2965 2966 /* 2967 * Create a kernel thread. 2968 */ 2969 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2970 unsigned long flags) 2971 { 2972 struct kernel_clone_args args = { 2973 .flags = ((lower_32_bits(flags) | CLONE_VM | 2974 CLONE_UNTRACED) & ~CSIGNAL), 2975 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2976 .fn = fn, 2977 .fn_arg = arg, 2978 .name = name, 2979 .kthread = 1, 2980 }; 2981 2982 return kernel_clone(&args); 2983 } 2984 2985 /* 2986 * Create a user mode thread. 2987 */ 2988 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2989 { 2990 struct kernel_clone_args args = { 2991 .flags = ((lower_32_bits(flags) | CLONE_VM | 2992 CLONE_UNTRACED) & ~CSIGNAL), 2993 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2994 .fn = fn, 2995 .fn_arg = arg, 2996 }; 2997 2998 return kernel_clone(&args); 2999 } 3000 3001 #ifdef __ARCH_WANT_SYS_FORK 3002 SYSCALL_DEFINE0(fork) 3003 { 3004 #ifdef CONFIG_MMU 3005 struct kernel_clone_args args = { 3006 .exit_signal = SIGCHLD, 3007 }; 3008 3009 return kernel_clone(&args); 3010 #else 3011 /* can not support in nommu mode */ 3012 return -EINVAL; 3013 #endif 3014 } 3015 #endif 3016 3017 #ifdef __ARCH_WANT_SYS_VFORK 3018 SYSCALL_DEFINE0(vfork) 3019 { 3020 struct kernel_clone_args args = { 3021 .flags = CLONE_VFORK | CLONE_VM, 3022 .exit_signal = SIGCHLD, 3023 }; 3024 3025 return kernel_clone(&args); 3026 } 3027 #endif 3028 3029 #ifdef __ARCH_WANT_SYS_CLONE 3030 #ifdef CONFIG_CLONE_BACKWARDS 3031 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3032 int __user *, parent_tidptr, 3033 unsigned long, tls, 3034 int __user *, child_tidptr) 3035 #elif defined(CONFIG_CLONE_BACKWARDS2) 3036 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3037 int __user *, parent_tidptr, 3038 int __user *, child_tidptr, 3039 unsigned long, tls) 3040 #elif defined(CONFIG_CLONE_BACKWARDS3) 3041 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3042 int, stack_size, 3043 int __user *, parent_tidptr, 3044 int __user *, child_tidptr, 3045 unsigned long, tls) 3046 #else 3047 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3048 int __user *, parent_tidptr, 3049 int __user *, child_tidptr, 3050 unsigned long, tls) 3051 #endif 3052 { 3053 struct kernel_clone_args args = { 3054 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3055 .pidfd = parent_tidptr, 3056 .child_tid = child_tidptr, 3057 .parent_tid = parent_tidptr, 3058 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3059 .stack = newsp, 3060 .tls = tls, 3061 }; 3062 3063 return kernel_clone(&args); 3064 } 3065 #endif 3066 3067 #ifdef __ARCH_WANT_SYS_CLONE3 3068 3069 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3070 struct clone_args __user *uargs, 3071 size_t usize) 3072 { 3073 int err; 3074 struct clone_args args; 3075 pid_t *kset_tid = kargs->set_tid; 3076 3077 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3078 CLONE_ARGS_SIZE_VER0); 3079 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3080 CLONE_ARGS_SIZE_VER1); 3081 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3082 CLONE_ARGS_SIZE_VER2); 3083 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3084 3085 if (unlikely(usize > PAGE_SIZE)) 3086 return -E2BIG; 3087 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3088 return -EINVAL; 3089 3090 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3091 if (err) 3092 return err; 3093 3094 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3095 return -EINVAL; 3096 3097 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3098 return -EINVAL; 3099 3100 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3101 return -EINVAL; 3102 3103 /* 3104 * Verify that higher 32bits of exit_signal are unset and that 3105 * it is a valid signal 3106 */ 3107 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3108 !valid_signal(args.exit_signal))) 3109 return -EINVAL; 3110 3111 if ((args.flags & CLONE_INTO_CGROUP) && 3112 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3113 return -EINVAL; 3114 3115 *kargs = (struct kernel_clone_args){ 3116 .flags = args.flags, 3117 .pidfd = u64_to_user_ptr(args.pidfd), 3118 .child_tid = u64_to_user_ptr(args.child_tid), 3119 .parent_tid = u64_to_user_ptr(args.parent_tid), 3120 .exit_signal = args.exit_signal, 3121 .stack = args.stack, 3122 .stack_size = args.stack_size, 3123 .tls = args.tls, 3124 .set_tid_size = args.set_tid_size, 3125 .cgroup = args.cgroup, 3126 }; 3127 3128 if (args.set_tid && 3129 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3130 (kargs->set_tid_size * sizeof(pid_t)))) 3131 return -EFAULT; 3132 3133 kargs->set_tid = kset_tid; 3134 3135 return 0; 3136 } 3137 3138 /** 3139 * clone3_stack_valid - check and prepare stack 3140 * @kargs: kernel clone args 3141 * 3142 * Verify that the stack arguments userspace gave us are sane. 3143 * In addition, set the stack direction for userspace since it's easy for us to 3144 * determine. 3145 */ 3146 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3147 { 3148 if (kargs->stack == 0) { 3149 if (kargs->stack_size > 0) 3150 return false; 3151 } else { 3152 if (kargs->stack_size == 0) 3153 return false; 3154 3155 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3156 return false; 3157 3158 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3159 kargs->stack += kargs->stack_size; 3160 #endif 3161 } 3162 3163 return true; 3164 } 3165 3166 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3167 { 3168 /* Verify that no unknown flags are passed along. */ 3169 if (kargs->flags & 3170 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3171 return false; 3172 3173 /* 3174 * - make the CLONE_DETACHED bit reusable for clone3 3175 * - make the CSIGNAL bits reusable for clone3 3176 */ 3177 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3178 return false; 3179 3180 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3181 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3182 return false; 3183 3184 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3185 kargs->exit_signal) 3186 return false; 3187 3188 if (!clone3_stack_valid(kargs)) 3189 return false; 3190 3191 return true; 3192 } 3193 3194 /** 3195 * clone3 - create a new process with specific properties 3196 * @uargs: argument structure 3197 * @size: size of @uargs 3198 * 3199 * clone3() is the extensible successor to clone()/clone2(). 3200 * It takes a struct as argument that is versioned by its size. 3201 * 3202 * Return: On success, a positive PID for the child process. 3203 * On error, a negative errno number. 3204 */ 3205 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3206 { 3207 int err; 3208 3209 struct kernel_clone_args kargs; 3210 pid_t set_tid[MAX_PID_NS_LEVEL]; 3211 3212 kargs.set_tid = set_tid; 3213 3214 err = copy_clone_args_from_user(&kargs, uargs, size); 3215 if (err) 3216 return err; 3217 3218 if (!clone3_args_valid(&kargs)) 3219 return -EINVAL; 3220 3221 return kernel_clone(&kargs); 3222 } 3223 #endif 3224 3225 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3226 { 3227 struct task_struct *leader, *parent, *child; 3228 int res; 3229 3230 read_lock(&tasklist_lock); 3231 leader = top = top->group_leader; 3232 down: 3233 for_each_thread(leader, parent) { 3234 list_for_each_entry(child, &parent->children, sibling) { 3235 res = visitor(child, data); 3236 if (res) { 3237 if (res < 0) 3238 goto out; 3239 leader = child; 3240 goto down; 3241 } 3242 up: 3243 ; 3244 } 3245 } 3246 3247 if (leader != top) { 3248 child = leader; 3249 parent = child->real_parent; 3250 leader = parent->group_leader; 3251 goto up; 3252 } 3253 out: 3254 read_unlock(&tasklist_lock); 3255 } 3256 3257 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3258 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3259 #endif 3260 3261 static void sighand_ctor(void *data) 3262 { 3263 struct sighand_struct *sighand = data; 3264 3265 spin_lock_init(&sighand->siglock); 3266 init_waitqueue_head(&sighand->signalfd_wqh); 3267 } 3268 3269 void __init mm_cache_init(void) 3270 { 3271 unsigned int mm_size; 3272 3273 /* 3274 * The mm_cpumask is located at the end of mm_struct, and is 3275 * dynamically sized based on the maximum CPU number this system 3276 * can have, taking hotplug into account (nr_cpu_ids). 3277 */ 3278 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3279 3280 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3281 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3282 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3283 offsetof(struct mm_struct, saved_auxv), 3284 sizeof_field(struct mm_struct, saved_auxv), 3285 NULL); 3286 } 3287 3288 void __init proc_caches_init(void) 3289 { 3290 sighand_cachep = kmem_cache_create("sighand_cache", 3291 sizeof(struct sighand_struct), 0, 3292 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3293 SLAB_ACCOUNT, sighand_ctor); 3294 signal_cachep = kmem_cache_create("signal_cache", 3295 sizeof(struct signal_struct), 0, 3296 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3297 NULL); 3298 files_cachep = kmem_cache_create("files_cache", 3299 sizeof(struct files_struct), 0, 3300 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3301 NULL); 3302 fs_cachep = kmem_cache_create("fs_cache", 3303 sizeof(struct fs_struct), 0, 3304 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3305 NULL); 3306 3307 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3308 #ifdef CONFIG_PER_VMA_LOCK 3309 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3310 #endif 3311 mmap_init(); 3312 nsproxy_cache_init(); 3313 } 3314 3315 /* 3316 * Check constraints on flags passed to the unshare system call. 3317 */ 3318 static int check_unshare_flags(unsigned long unshare_flags) 3319 { 3320 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3321 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3322 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3323 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3324 CLONE_NEWTIME)) 3325 return -EINVAL; 3326 /* 3327 * Not implemented, but pretend it works if there is nothing 3328 * to unshare. Note that unsharing the address space or the 3329 * signal handlers also need to unshare the signal queues (aka 3330 * CLONE_THREAD). 3331 */ 3332 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3333 if (!thread_group_empty(current)) 3334 return -EINVAL; 3335 } 3336 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3337 if (refcount_read(¤t->sighand->count) > 1) 3338 return -EINVAL; 3339 } 3340 if (unshare_flags & CLONE_VM) { 3341 if (!current_is_single_threaded()) 3342 return -EINVAL; 3343 } 3344 3345 return 0; 3346 } 3347 3348 /* 3349 * Unshare the filesystem structure if it is being shared 3350 */ 3351 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3352 { 3353 struct fs_struct *fs = current->fs; 3354 3355 if (!(unshare_flags & CLONE_FS) || !fs) 3356 return 0; 3357 3358 /* don't need lock here; in the worst case we'll do useless copy */ 3359 if (fs->users == 1) 3360 return 0; 3361 3362 *new_fsp = copy_fs_struct(fs); 3363 if (!*new_fsp) 3364 return -ENOMEM; 3365 3366 return 0; 3367 } 3368 3369 /* 3370 * Unshare file descriptor table if it is being shared 3371 */ 3372 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3373 struct files_struct **new_fdp) 3374 { 3375 struct files_struct *fd = current->files; 3376 int error = 0; 3377 3378 if ((unshare_flags & CLONE_FILES) && 3379 (fd && atomic_read(&fd->count) > 1)) { 3380 *new_fdp = dup_fd(fd, max_fds, &error); 3381 if (!*new_fdp) 3382 return error; 3383 } 3384 3385 return 0; 3386 } 3387 3388 /* 3389 * unshare allows a process to 'unshare' part of the process 3390 * context which was originally shared using clone. copy_* 3391 * functions used by kernel_clone() cannot be used here directly 3392 * because they modify an inactive task_struct that is being 3393 * constructed. Here we are modifying the current, active, 3394 * task_struct. 3395 */ 3396 int ksys_unshare(unsigned long unshare_flags) 3397 { 3398 struct fs_struct *fs, *new_fs = NULL; 3399 struct files_struct *new_fd = NULL; 3400 struct cred *new_cred = NULL; 3401 struct nsproxy *new_nsproxy = NULL; 3402 int do_sysvsem = 0; 3403 int err; 3404 3405 /* 3406 * If unsharing a user namespace must also unshare the thread group 3407 * and unshare the filesystem root and working directories. 3408 */ 3409 if (unshare_flags & CLONE_NEWUSER) 3410 unshare_flags |= CLONE_THREAD | CLONE_FS; 3411 /* 3412 * If unsharing vm, must also unshare signal handlers. 3413 */ 3414 if (unshare_flags & CLONE_VM) 3415 unshare_flags |= CLONE_SIGHAND; 3416 /* 3417 * If unsharing a signal handlers, must also unshare the signal queues. 3418 */ 3419 if (unshare_flags & CLONE_SIGHAND) 3420 unshare_flags |= CLONE_THREAD; 3421 /* 3422 * If unsharing namespace, must also unshare filesystem information. 3423 */ 3424 if (unshare_flags & CLONE_NEWNS) 3425 unshare_flags |= CLONE_FS; 3426 3427 err = check_unshare_flags(unshare_flags); 3428 if (err) 3429 goto bad_unshare_out; 3430 /* 3431 * CLONE_NEWIPC must also detach from the undolist: after switching 3432 * to a new ipc namespace, the semaphore arrays from the old 3433 * namespace are unreachable. 3434 */ 3435 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3436 do_sysvsem = 1; 3437 err = unshare_fs(unshare_flags, &new_fs); 3438 if (err) 3439 goto bad_unshare_out; 3440 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3441 if (err) 3442 goto bad_unshare_cleanup_fs; 3443 err = unshare_userns(unshare_flags, &new_cred); 3444 if (err) 3445 goto bad_unshare_cleanup_fd; 3446 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3447 new_cred, new_fs); 3448 if (err) 3449 goto bad_unshare_cleanup_cred; 3450 3451 if (new_cred) { 3452 err = set_cred_ucounts(new_cred); 3453 if (err) 3454 goto bad_unshare_cleanup_cred; 3455 } 3456 3457 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3458 if (do_sysvsem) { 3459 /* 3460 * CLONE_SYSVSEM is equivalent to sys_exit(). 3461 */ 3462 exit_sem(current); 3463 } 3464 if (unshare_flags & CLONE_NEWIPC) { 3465 /* Orphan segments in old ns (see sem above). */ 3466 exit_shm(current); 3467 shm_init_task(current); 3468 } 3469 3470 if (new_nsproxy) 3471 switch_task_namespaces(current, new_nsproxy); 3472 3473 task_lock(current); 3474 3475 if (new_fs) { 3476 fs = current->fs; 3477 spin_lock(&fs->lock); 3478 current->fs = new_fs; 3479 if (--fs->users) 3480 new_fs = NULL; 3481 else 3482 new_fs = fs; 3483 spin_unlock(&fs->lock); 3484 } 3485 3486 if (new_fd) 3487 swap(current->files, new_fd); 3488 3489 task_unlock(current); 3490 3491 if (new_cred) { 3492 /* Install the new user namespace */ 3493 commit_creds(new_cred); 3494 new_cred = NULL; 3495 } 3496 } 3497 3498 perf_event_namespaces(current); 3499 3500 bad_unshare_cleanup_cred: 3501 if (new_cred) 3502 put_cred(new_cred); 3503 bad_unshare_cleanup_fd: 3504 if (new_fd) 3505 put_files_struct(new_fd); 3506 3507 bad_unshare_cleanup_fs: 3508 if (new_fs) 3509 free_fs_struct(new_fs); 3510 3511 bad_unshare_out: 3512 return err; 3513 } 3514 3515 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3516 { 3517 return ksys_unshare(unshare_flags); 3518 } 3519 3520 /* 3521 * Helper to unshare the files of the current task. 3522 * We don't want to expose copy_files internals to 3523 * the exec layer of the kernel. 3524 */ 3525 3526 int unshare_files(void) 3527 { 3528 struct task_struct *task = current; 3529 struct files_struct *old, *copy = NULL; 3530 int error; 3531 3532 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3533 if (error || !copy) 3534 return error; 3535 3536 old = task->files; 3537 task_lock(task); 3538 task->files = copy; 3539 task_unlock(task); 3540 put_files_struct(old); 3541 return 0; 3542 } 3543 3544 int sysctl_max_threads(struct ctl_table *table, int write, 3545 void *buffer, size_t *lenp, loff_t *ppos) 3546 { 3547 struct ctl_table t; 3548 int ret; 3549 int threads = max_threads; 3550 int min = 1; 3551 int max = MAX_THREADS; 3552 3553 t = *table; 3554 t.data = &threads; 3555 t.extra1 = &min; 3556 t.extra2 = &max; 3557 3558 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3559 if (ret || !write) 3560 return ret; 3561 3562 max_threads = threads; 3563 3564 return 0; 3565 } 3566