xref: /openbmc/linux/kernel/fork.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(old_vmi, oldmm, 0);
654 	VMA_ITERATOR(vmi, mm, 0);
655 
656 	uprobe_start_dup_mmap();
657 	if (mmap_write_lock_killable(oldmm)) {
658 		retval = -EINTR;
659 		goto fail_uprobe_end;
660 	}
661 	flush_cache_dup_mm(oldmm);
662 	uprobe_dup_mmap(oldmm, mm);
663 	/*
664 	 * Not linked in yet - no deadlock potential:
665 	 */
666 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 
668 	/* No ordering required: file already has been exposed. */
669 	dup_mm_exe_file(mm, oldmm);
670 
671 	mm->total_vm = oldmm->total_vm;
672 	mm->data_vm = oldmm->data_vm;
673 	mm->exec_vm = oldmm->exec_vm;
674 	mm->stack_vm = oldmm->stack_vm;
675 
676 	retval = ksm_fork(mm, oldmm);
677 	if (retval)
678 		goto out;
679 	khugepaged_fork(mm, oldmm);
680 
681 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 	if (retval)
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(old_vmi, mpnt) {
687 		struct file *file;
688 
689 		vma_start_write(mpnt);
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 			continue;
693 		}
694 		charge = 0;
695 		/*
696 		 * Don't duplicate many vmas if we've been oom-killed (for
697 		 * example)
698 		 */
699 		if (fatal_signal_pending(current)) {
700 			retval = -EINTR;
701 			goto loop_out;
702 		}
703 		if (mpnt->vm_flags & VM_ACCOUNT) {
704 			unsigned long len = vma_pages(mpnt);
705 
706 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 				goto fail_nomem;
708 			charge = len;
709 		}
710 		tmp = vm_area_dup(mpnt);
711 		if (!tmp)
712 			goto fail_nomem;
713 		retval = vma_dup_policy(mpnt, tmp);
714 		if (retval)
715 			goto fail_nomem_policy;
716 		tmp->vm_mm = mm;
717 		retval = dup_userfaultfd(tmp, &uf);
718 		if (retval)
719 			goto fail_nomem_anon_vma_fork;
720 		if (tmp->vm_flags & VM_WIPEONFORK) {
721 			/*
722 			 * VM_WIPEONFORK gets a clean slate in the child.
723 			 * Don't prepare anon_vma until fault since we don't
724 			 * copy page for current vma.
725 			 */
726 			tmp->anon_vma = NULL;
727 		} else if (anon_vma_fork(tmp, mpnt))
728 			goto fail_nomem_anon_vma_fork;
729 		vm_flags_clear(tmp, VM_LOCKED_MASK);
730 		file = tmp->vm_file;
731 		if (file) {
732 			struct address_space *mapping = file->f_mapping;
733 
734 			get_file(file);
735 			i_mmap_lock_write(mapping);
736 			if (tmp->vm_flags & VM_SHARED)
737 				mapping_allow_writable(mapping);
738 			flush_dcache_mmap_lock(mapping);
739 			/* insert tmp into the share list, just after mpnt */
740 			vma_interval_tree_insert_after(tmp, mpnt,
741 					&mapping->i_mmap);
742 			flush_dcache_mmap_unlock(mapping);
743 			i_mmap_unlock_write(mapping);
744 		}
745 
746 		/*
747 		 * Copy/update hugetlb private vma information.
748 		 */
749 		if (is_vm_hugetlb_page(tmp))
750 			hugetlb_dup_vma_private(tmp);
751 
752 		/* Link the vma into the MT */
753 		if (vma_iter_bulk_store(&vmi, tmp))
754 			goto fail_nomem_vmi_store;
755 
756 		mm->map_count++;
757 		if (!(tmp->vm_flags & VM_WIPEONFORK))
758 			retval = copy_page_range(tmp, mpnt);
759 
760 		if (tmp->vm_ops && tmp->vm_ops->open)
761 			tmp->vm_ops->open(tmp);
762 
763 		if (retval)
764 			goto loop_out;
765 	}
766 	/* a new mm has just been created */
767 	retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 	vma_iter_free(&vmi);
770 	if (!retval)
771 		mt_set_in_rcu(vmi.mas.tree);
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_vmi_store:
782 	unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	int i;
913 
914 	BUG_ON(mm == &init_mm);
915 	WARN_ON_ONCE(mm == current->mm);
916 
917 	/* Ensure no CPUs are using this as their lazy tlb mm */
918 	cleanup_lazy_tlbs(mm);
919 
920 	WARN_ON_ONCE(mm == current->active_mm);
921 	mm_free_pgd(mm);
922 	destroy_context(mm);
923 	mmu_notifier_subscriptions_destroy(mm);
924 	check_mm(mm);
925 	put_user_ns(mm->user_ns);
926 	mm_pasid_drop(mm);
927 	mm_destroy_cid(mm);
928 
929 	for (i = 0; i < NR_MM_COUNTERS; i++)
930 		percpu_counter_destroy(&mm->rss_stat[i]);
931 	free_mm(mm);
932 }
933 EXPORT_SYMBOL_GPL(__mmdrop);
934 
935 static void mmdrop_async_fn(struct work_struct *work)
936 {
937 	struct mm_struct *mm;
938 
939 	mm = container_of(work, struct mm_struct, async_put_work);
940 	__mmdrop(mm);
941 }
942 
943 static void mmdrop_async(struct mm_struct *mm)
944 {
945 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
946 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
947 		schedule_work(&mm->async_put_work);
948 	}
949 }
950 
951 static inline void free_signal_struct(struct signal_struct *sig)
952 {
953 	taskstats_tgid_free(sig);
954 	sched_autogroup_exit(sig);
955 	/*
956 	 * __mmdrop is not safe to call from softirq context on x86 due to
957 	 * pgd_dtor so postpone it to the async context
958 	 */
959 	if (sig->oom_mm)
960 		mmdrop_async(sig->oom_mm);
961 	kmem_cache_free(signal_cachep, sig);
962 }
963 
964 static inline void put_signal_struct(struct signal_struct *sig)
965 {
966 	if (refcount_dec_and_test(&sig->sigcnt))
967 		free_signal_struct(sig);
968 }
969 
970 void __put_task_struct(struct task_struct *tsk)
971 {
972 	WARN_ON(!tsk->exit_state);
973 	WARN_ON(refcount_read(&tsk->usage));
974 	WARN_ON(tsk == current);
975 
976 	io_uring_free(tsk);
977 	cgroup_free(tsk);
978 	task_numa_free(tsk, true);
979 	security_task_free(tsk);
980 	exit_creds(tsk);
981 	delayacct_tsk_free(tsk);
982 	put_signal_struct(tsk->signal);
983 	sched_core_free(tsk);
984 	free_task(tsk);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct);
987 
988 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
989 {
990 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
991 
992 	__put_task_struct(task);
993 }
994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
995 
996 void __init __weak arch_task_cache_init(void) { }
997 
998 /*
999  * set_max_threads
1000  */
1001 static void set_max_threads(unsigned int max_threads_suggested)
1002 {
1003 	u64 threads;
1004 	unsigned long nr_pages = totalram_pages();
1005 
1006 	/*
1007 	 * The number of threads shall be limited such that the thread
1008 	 * structures may only consume a small part of the available memory.
1009 	 */
1010 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1011 		threads = MAX_THREADS;
1012 	else
1013 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1014 				    (u64) THREAD_SIZE * 8UL);
1015 
1016 	if (threads > max_threads_suggested)
1017 		threads = max_threads_suggested;
1018 
1019 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1020 }
1021 
1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1023 /* Initialized by the architecture: */
1024 int arch_task_struct_size __read_mostly;
1025 #endif
1026 
1027 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1028 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1029 {
1030 	/* Fetch thread_struct whitelist for the architecture. */
1031 	arch_thread_struct_whitelist(offset, size);
1032 
1033 	/*
1034 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1035 	 * adjust offset to position of thread_struct in task_struct.
1036 	 */
1037 	if (unlikely(*size == 0))
1038 		*offset = 0;
1039 	else
1040 		*offset += offsetof(struct task_struct, thread);
1041 }
1042 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1043 
1044 void __init fork_init(void)
1045 {
1046 	int i;
1047 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1048 #ifndef ARCH_MIN_TASKALIGN
1049 #define ARCH_MIN_TASKALIGN	0
1050 #endif
1051 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1052 	unsigned long useroffset, usersize;
1053 
1054 	/* create a slab on which task_structs can be allocated */
1055 	task_struct_whitelist(&useroffset, &usersize);
1056 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1057 			arch_task_struct_size, align,
1058 			SLAB_PANIC|SLAB_ACCOUNT,
1059 			useroffset, usersize, NULL);
1060 #endif
1061 
1062 	/* do the arch specific task caches init */
1063 	arch_task_cache_init();
1064 
1065 	set_max_threads(MAX_THREADS);
1066 
1067 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1068 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1069 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1070 		init_task.signal->rlim[RLIMIT_NPROC];
1071 
1072 	for (i = 0; i < UCOUNT_COUNTS; i++)
1073 		init_user_ns.ucount_max[i] = max_threads/2;
1074 
1075 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1076 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1077 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1078 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1079 
1080 #ifdef CONFIG_VMAP_STACK
1081 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1082 			  NULL, free_vm_stack_cache);
1083 #endif
1084 
1085 	scs_init();
1086 
1087 	lockdep_init_task(&init_task);
1088 	uprobes_init();
1089 }
1090 
1091 int __weak arch_dup_task_struct(struct task_struct *dst,
1092 					       struct task_struct *src)
1093 {
1094 	*dst = *src;
1095 	return 0;
1096 }
1097 
1098 void set_task_stack_end_magic(struct task_struct *tsk)
1099 {
1100 	unsigned long *stackend;
1101 
1102 	stackend = end_of_stack(tsk);
1103 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1104 }
1105 
1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1107 {
1108 	struct task_struct *tsk;
1109 	int err;
1110 
1111 	if (node == NUMA_NO_NODE)
1112 		node = tsk_fork_get_node(orig);
1113 	tsk = alloc_task_struct_node(node);
1114 	if (!tsk)
1115 		return NULL;
1116 
1117 	err = arch_dup_task_struct(tsk, orig);
1118 	if (err)
1119 		goto free_tsk;
1120 
1121 	err = alloc_thread_stack_node(tsk, node);
1122 	if (err)
1123 		goto free_tsk;
1124 
1125 #ifdef CONFIG_THREAD_INFO_IN_TASK
1126 	refcount_set(&tsk->stack_refcount, 1);
1127 #endif
1128 	account_kernel_stack(tsk, 1);
1129 
1130 	err = scs_prepare(tsk, node);
1131 	if (err)
1132 		goto free_stack;
1133 
1134 #ifdef CONFIG_SECCOMP
1135 	/*
1136 	 * We must handle setting up seccomp filters once we're under
1137 	 * the sighand lock in case orig has changed between now and
1138 	 * then. Until then, filter must be NULL to avoid messing up
1139 	 * the usage counts on the error path calling free_task.
1140 	 */
1141 	tsk->seccomp.filter = NULL;
1142 #endif
1143 
1144 	setup_thread_stack(tsk, orig);
1145 	clear_user_return_notifier(tsk);
1146 	clear_tsk_need_resched(tsk);
1147 	set_task_stack_end_magic(tsk);
1148 	clear_syscall_work_syscall_user_dispatch(tsk);
1149 
1150 #ifdef CONFIG_STACKPROTECTOR
1151 	tsk->stack_canary = get_random_canary();
1152 #endif
1153 	if (orig->cpus_ptr == &orig->cpus_mask)
1154 		tsk->cpus_ptr = &tsk->cpus_mask;
1155 	dup_user_cpus_ptr(tsk, orig, node);
1156 
1157 	/*
1158 	 * One for the user space visible state that goes away when reaped.
1159 	 * One for the scheduler.
1160 	 */
1161 	refcount_set(&tsk->rcu_users, 2);
1162 	/* One for the rcu users */
1163 	refcount_set(&tsk->usage, 1);
1164 #ifdef CONFIG_BLK_DEV_IO_TRACE
1165 	tsk->btrace_seq = 0;
1166 #endif
1167 	tsk->splice_pipe = NULL;
1168 	tsk->task_frag.page = NULL;
1169 	tsk->wake_q.next = NULL;
1170 	tsk->worker_private = NULL;
1171 
1172 	kcov_task_init(tsk);
1173 	kmsan_task_create(tsk);
1174 	kmap_local_fork(tsk);
1175 
1176 #ifdef CONFIG_FAULT_INJECTION
1177 	tsk->fail_nth = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_BLK_CGROUP
1181 	tsk->throttle_disk = NULL;
1182 	tsk->use_memdelay = 0;
1183 #endif
1184 
1185 #ifdef CONFIG_IOMMU_SVA
1186 	tsk->pasid_activated = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_MEMCG
1190 	tsk->active_memcg = NULL;
1191 #endif
1192 
1193 #ifdef CONFIG_CPU_SUP_INTEL
1194 	tsk->reported_split_lock = 0;
1195 #endif
1196 
1197 #ifdef CONFIG_SCHED_MM_CID
1198 	tsk->mm_cid = -1;
1199 	tsk->last_mm_cid = -1;
1200 	tsk->mm_cid_active = 0;
1201 	tsk->migrate_from_cpu = -1;
1202 #endif
1203 	return tsk;
1204 
1205 free_stack:
1206 	exit_task_stack_account(tsk);
1207 	free_thread_stack(tsk);
1208 free_tsk:
1209 	free_task_struct(tsk);
1210 	return NULL;
1211 }
1212 
1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1214 
1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1216 
1217 static int __init coredump_filter_setup(char *s)
1218 {
1219 	default_dump_filter =
1220 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1221 		MMF_DUMP_FILTER_MASK;
1222 	return 1;
1223 }
1224 
1225 __setup("coredump_filter=", coredump_filter_setup);
1226 
1227 #include <linux/init_task.h>
1228 
1229 static void mm_init_aio(struct mm_struct *mm)
1230 {
1231 #ifdef CONFIG_AIO
1232 	spin_lock_init(&mm->ioctx_lock);
1233 	mm->ioctx_table = NULL;
1234 #endif
1235 }
1236 
1237 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1238 					   struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241 	if (mm->owner == p)
1242 		WRITE_ONCE(mm->owner, NULL);
1243 #endif
1244 }
1245 
1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1247 {
1248 #ifdef CONFIG_MEMCG
1249 	mm->owner = p;
1250 #endif
1251 }
1252 
1253 static void mm_init_uprobes_state(struct mm_struct *mm)
1254 {
1255 #ifdef CONFIG_UPROBES
1256 	mm->uprobes_state.xol_area = NULL;
1257 #endif
1258 }
1259 
1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1261 	struct user_namespace *user_ns)
1262 {
1263 	int i;
1264 
1265 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1266 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1267 	atomic_set(&mm->mm_users, 1);
1268 	atomic_set(&mm->mm_count, 1);
1269 	seqcount_init(&mm->write_protect_seq);
1270 	mmap_init_lock(mm);
1271 	INIT_LIST_HEAD(&mm->mmlist);
1272 #ifdef CONFIG_PER_VMA_LOCK
1273 	mm->mm_lock_seq = 0;
1274 #endif
1275 	mm_pgtables_bytes_init(mm);
1276 	mm->map_count = 0;
1277 	mm->locked_vm = 0;
1278 	atomic64_set(&mm->pinned_vm, 0);
1279 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1280 	spin_lock_init(&mm->page_table_lock);
1281 	spin_lock_init(&mm->arg_lock);
1282 	mm_init_cpumask(mm);
1283 	mm_init_aio(mm);
1284 	mm_init_owner(mm, p);
1285 	mm_pasid_init(mm);
1286 	RCU_INIT_POINTER(mm->exe_file, NULL);
1287 	mmu_notifier_subscriptions_init(mm);
1288 	init_tlb_flush_pending(mm);
1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1290 	mm->pmd_huge_pte = NULL;
1291 #endif
1292 	mm_init_uprobes_state(mm);
1293 	hugetlb_count_init(mm);
1294 
1295 	if (current->mm) {
1296 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1297 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1298 	} else {
1299 		mm->flags = default_dump_filter;
1300 		mm->def_flags = 0;
1301 	}
1302 
1303 	if (mm_alloc_pgd(mm))
1304 		goto fail_nopgd;
1305 
1306 	if (init_new_context(p, mm))
1307 		goto fail_nocontext;
1308 
1309 	if (mm_alloc_cid(mm))
1310 		goto fail_cid;
1311 
1312 	for (i = 0; i < NR_MM_COUNTERS; i++)
1313 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1314 			goto fail_pcpu;
1315 
1316 	mm->user_ns = get_user_ns(user_ns);
1317 	lru_gen_init_mm(mm);
1318 	return mm;
1319 
1320 fail_pcpu:
1321 	while (i > 0)
1322 		percpu_counter_destroy(&mm->rss_stat[--i]);
1323 	mm_destroy_cid(mm);
1324 fail_cid:
1325 	destroy_context(mm);
1326 fail_nocontext:
1327 	mm_free_pgd(mm);
1328 fail_nopgd:
1329 	free_mm(mm);
1330 	return NULL;
1331 }
1332 
1333 /*
1334  * Allocate and initialize an mm_struct.
1335  */
1336 struct mm_struct *mm_alloc(void)
1337 {
1338 	struct mm_struct *mm;
1339 
1340 	mm = allocate_mm();
1341 	if (!mm)
1342 		return NULL;
1343 
1344 	memset(mm, 0, sizeof(*mm));
1345 	return mm_init(mm, current, current_user_ns());
1346 }
1347 
1348 static inline void __mmput(struct mm_struct *mm)
1349 {
1350 	VM_BUG_ON(atomic_read(&mm->mm_users));
1351 
1352 	uprobe_clear_state(mm);
1353 	exit_aio(mm);
1354 	ksm_exit(mm);
1355 	khugepaged_exit(mm); /* must run before exit_mmap */
1356 	exit_mmap(mm);
1357 	mm_put_huge_zero_page(mm);
1358 	set_mm_exe_file(mm, NULL);
1359 	if (!list_empty(&mm->mmlist)) {
1360 		spin_lock(&mmlist_lock);
1361 		list_del(&mm->mmlist);
1362 		spin_unlock(&mmlist_lock);
1363 	}
1364 	if (mm->binfmt)
1365 		module_put(mm->binfmt->module);
1366 	lru_gen_del_mm(mm);
1367 	mmdrop(mm);
1368 }
1369 
1370 /*
1371  * Decrement the use count and release all resources for an mm.
1372  */
1373 void mmput(struct mm_struct *mm)
1374 {
1375 	might_sleep();
1376 
1377 	if (atomic_dec_and_test(&mm->mm_users))
1378 		__mmput(mm);
1379 }
1380 EXPORT_SYMBOL_GPL(mmput);
1381 
1382 #ifdef CONFIG_MMU
1383 static void mmput_async_fn(struct work_struct *work)
1384 {
1385 	struct mm_struct *mm = container_of(work, struct mm_struct,
1386 					    async_put_work);
1387 
1388 	__mmput(mm);
1389 }
1390 
1391 void mmput_async(struct mm_struct *mm)
1392 {
1393 	if (atomic_dec_and_test(&mm->mm_users)) {
1394 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1395 		schedule_work(&mm->async_put_work);
1396 	}
1397 }
1398 EXPORT_SYMBOL_GPL(mmput_async);
1399 #endif
1400 
1401 /**
1402  * set_mm_exe_file - change a reference to the mm's executable file
1403  *
1404  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1405  *
1406  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1407  * invocations: in mmput() nobody alive left, in execve task is single
1408  * threaded.
1409  *
1410  * Can only fail if new_exe_file != NULL.
1411  */
1412 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1413 {
1414 	struct file *old_exe_file;
1415 
1416 	/*
1417 	 * It is safe to dereference the exe_file without RCU as
1418 	 * this function is only called if nobody else can access
1419 	 * this mm -- see comment above for justification.
1420 	 */
1421 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1422 
1423 	if (new_exe_file) {
1424 		/*
1425 		 * We expect the caller (i.e., sys_execve) to already denied
1426 		 * write access, so this is unlikely to fail.
1427 		 */
1428 		if (unlikely(deny_write_access(new_exe_file)))
1429 			return -EACCES;
1430 		get_file(new_exe_file);
1431 	}
1432 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1433 	if (old_exe_file) {
1434 		allow_write_access(old_exe_file);
1435 		fput(old_exe_file);
1436 	}
1437 	return 0;
1438 }
1439 
1440 /**
1441  * replace_mm_exe_file - replace a reference to the mm's executable file
1442  *
1443  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1444  * dealing with concurrent invocation and without grabbing the mmap lock in
1445  * write mode.
1446  *
1447  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1448  */
1449 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1450 {
1451 	struct vm_area_struct *vma;
1452 	struct file *old_exe_file;
1453 	int ret = 0;
1454 
1455 	/* Forbid mm->exe_file change if old file still mapped. */
1456 	old_exe_file = get_mm_exe_file(mm);
1457 	if (old_exe_file) {
1458 		VMA_ITERATOR(vmi, mm, 0);
1459 		mmap_read_lock(mm);
1460 		for_each_vma(vmi, vma) {
1461 			if (!vma->vm_file)
1462 				continue;
1463 			if (path_equal(&vma->vm_file->f_path,
1464 				       &old_exe_file->f_path)) {
1465 				ret = -EBUSY;
1466 				break;
1467 			}
1468 		}
1469 		mmap_read_unlock(mm);
1470 		fput(old_exe_file);
1471 		if (ret)
1472 			return ret;
1473 	}
1474 
1475 	/* set the new file, lockless */
1476 	ret = deny_write_access(new_exe_file);
1477 	if (ret)
1478 		return -EACCES;
1479 	get_file(new_exe_file);
1480 
1481 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1482 	if (old_exe_file) {
1483 		/*
1484 		 * Don't race with dup_mmap() getting the file and disallowing
1485 		 * write access while someone might open the file writable.
1486 		 */
1487 		mmap_read_lock(mm);
1488 		allow_write_access(old_exe_file);
1489 		fput(old_exe_file);
1490 		mmap_read_unlock(mm);
1491 	}
1492 	return 0;
1493 }
1494 
1495 /**
1496  * get_mm_exe_file - acquire a reference to the mm's executable file
1497  *
1498  * Returns %NULL if mm has no associated executable file.
1499  * User must release file via fput().
1500  */
1501 struct file *get_mm_exe_file(struct mm_struct *mm)
1502 {
1503 	struct file *exe_file;
1504 
1505 	rcu_read_lock();
1506 	exe_file = rcu_dereference(mm->exe_file);
1507 	if (exe_file && !get_file_rcu(exe_file))
1508 		exe_file = NULL;
1509 	rcu_read_unlock();
1510 	return exe_file;
1511 }
1512 
1513 /**
1514  * get_task_exe_file - acquire a reference to the task's executable file
1515  *
1516  * Returns %NULL if task's mm (if any) has no associated executable file or
1517  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1518  * User must release file via fput().
1519  */
1520 struct file *get_task_exe_file(struct task_struct *task)
1521 {
1522 	struct file *exe_file = NULL;
1523 	struct mm_struct *mm;
1524 
1525 	task_lock(task);
1526 	mm = task->mm;
1527 	if (mm) {
1528 		if (!(task->flags & PF_KTHREAD))
1529 			exe_file = get_mm_exe_file(mm);
1530 	}
1531 	task_unlock(task);
1532 	return exe_file;
1533 }
1534 
1535 /**
1536  * get_task_mm - acquire a reference to the task's mm
1537  *
1538  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1539  * this kernel workthread has transiently adopted a user mm with use_mm,
1540  * to do its AIO) is not set and if so returns a reference to it, after
1541  * bumping up the use count.  User must release the mm via mmput()
1542  * after use.  Typically used by /proc and ptrace.
1543  */
1544 struct mm_struct *get_task_mm(struct task_struct *task)
1545 {
1546 	struct mm_struct *mm;
1547 
1548 	task_lock(task);
1549 	mm = task->mm;
1550 	if (mm) {
1551 		if (task->flags & PF_KTHREAD)
1552 			mm = NULL;
1553 		else
1554 			mmget(mm);
1555 	}
1556 	task_unlock(task);
1557 	return mm;
1558 }
1559 EXPORT_SYMBOL_GPL(get_task_mm);
1560 
1561 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1562 {
1563 	struct mm_struct *mm;
1564 	int err;
1565 
1566 	err =  down_read_killable(&task->signal->exec_update_lock);
1567 	if (err)
1568 		return ERR_PTR(err);
1569 
1570 	mm = get_task_mm(task);
1571 	if (mm && mm != current->mm &&
1572 			!ptrace_may_access(task, mode)) {
1573 		mmput(mm);
1574 		mm = ERR_PTR(-EACCES);
1575 	}
1576 	up_read(&task->signal->exec_update_lock);
1577 
1578 	return mm;
1579 }
1580 
1581 static void complete_vfork_done(struct task_struct *tsk)
1582 {
1583 	struct completion *vfork;
1584 
1585 	task_lock(tsk);
1586 	vfork = tsk->vfork_done;
1587 	if (likely(vfork)) {
1588 		tsk->vfork_done = NULL;
1589 		complete(vfork);
1590 	}
1591 	task_unlock(tsk);
1592 }
1593 
1594 static int wait_for_vfork_done(struct task_struct *child,
1595 				struct completion *vfork)
1596 {
1597 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1598 	int killed;
1599 
1600 	cgroup_enter_frozen();
1601 	killed = wait_for_completion_state(vfork, state);
1602 	cgroup_leave_frozen(false);
1603 
1604 	if (killed) {
1605 		task_lock(child);
1606 		child->vfork_done = NULL;
1607 		task_unlock(child);
1608 	}
1609 
1610 	put_task_struct(child);
1611 	return killed;
1612 }
1613 
1614 /* Please note the differences between mmput and mm_release.
1615  * mmput is called whenever we stop holding onto a mm_struct,
1616  * error success whatever.
1617  *
1618  * mm_release is called after a mm_struct has been removed
1619  * from the current process.
1620  *
1621  * This difference is important for error handling, when we
1622  * only half set up a mm_struct for a new process and need to restore
1623  * the old one.  Because we mmput the new mm_struct before
1624  * restoring the old one. . .
1625  * Eric Biederman 10 January 1998
1626  */
1627 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1628 {
1629 	uprobe_free_utask(tsk);
1630 
1631 	/* Get rid of any cached register state */
1632 	deactivate_mm(tsk, mm);
1633 
1634 	/*
1635 	 * Signal userspace if we're not exiting with a core dump
1636 	 * because we want to leave the value intact for debugging
1637 	 * purposes.
1638 	 */
1639 	if (tsk->clear_child_tid) {
1640 		if (atomic_read(&mm->mm_users) > 1) {
1641 			/*
1642 			 * We don't check the error code - if userspace has
1643 			 * not set up a proper pointer then tough luck.
1644 			 */
1645 			put_user(0, tsk->clear_child_tid);
1646 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1647 					1, NULL, NULL, 0, 0);
1648 		}
1649 		tsk->clear_child_tid = NULL;
1650 	}
1651 
1652 	/*
1653 	 * All done, finally we can wake up parent and return this mm to him.
1654 	 * Also kthread_stop() uses this completion for synchronization.
1655 	 */
1656 	if (tsk->vfork_done)
1657 		complete_vfork_done(tsk);
1658 }
1659 
1660 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661 {
1662 	futex_exit_release(tsk);
1663 	mm_release(tsk, mm);
1664 }
1665 
1666 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1667 {
1668 	futex_exec_release(tsk);
1669 	mm_release(tsk, mm);
1670 }
1671 
1672 /**
1673  * dup_mm() - duplicates an existing mm structure
1674  * @tsk: the task_struct with which the new mm will be associated.
1675  * @oldmm: the mm to duplicate.
1676  *
1677  * Allocates a new mm structure and duplicates the provided @oldmm structure
1678  * content into it.
1679  *
1680  * Return: the duplicated mm or NULL on failure.
1681  */
1682 static struct mm_struct *dup_mm(struct task_struct *tsk,
1683 				struct mm_struct *oldmm)
1684 {
1685 	struct mm_struct *mm;
1686 	int err;
1687 
1688 	mm = allocate_mm();
1689 	if (!mm)
1690 		goto fail_nomem;
1691 
1692 	memcpy(mm, oldmm, sizeof(*mm));
1693 
1694 	if (!mm_init(mm, tsk, mm->user_ns))
1695 		goto fail_nomem;
1696 
1697 	err = dup_mmap(mm, oldmm);
1698 	if (err)
1699 		goto free_pt;
1700 
1701 	mm->hiwater_rss = get_mm_rss(mm);
1702 	mm->hiwater_vm = mm->total_vm;
1703 
1704 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1705 		goto free_pt;
1706 
1707 	return mm;
1708 
1709 free_pt:
1710 	/* don't put binfmt in mmput, we haven't got module yet */
1711 	mm->binfmt = NULL;
1712 	mm_init_owner(mm, NULL);
1713 	mmput(mm);
1714 
1715 fail_nomem:
1716 	return NULL;
1717 }
1718 
1719 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1720 {
1721 	struct mm_struct *mm, *oldmm;
1722 
1723 	tsk->min_flt = tsk->maj_flt = 0;
1724 	tsk->nvcsw = tsk->nivcsw = 0;
1725 #ifdef CONFIG_DETECT_HUNG_TASK
1726 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1727 	tsk->last_switch_time = 0;
1728 #endif
1729 
1730 	tsk->mm = NULL;
1731 	tsk->active_mm = NULL;
1732 
1733 	/*
1734 	 * Are we cloning a kernel thread?
1735 	 *
1736 	 * We need to steal a active VM for that..
1737 	 */
1738 	oldmm = current->mm;
1739 	if (!oldmm)
1740 		return 0;
1741 
1742 	if (clone_flags & CLONE_VM) {
1743 		mmget(oldmm);
1744 		mm = oldmm;
1745 	} else {
1746 		mm = dup_mm(tsk, current->mm);
1747 		if (!mm)
1748 			return -ENOMEM;
1749 	}
1750 
1751 	tsk->mm = mm;
1752 	tsk->active_mm = mm;
1753 	sched_mm_cid_fork(tsk);
1754 	return 0;
1755 }
1756 
1757 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1758 {
1759 	struct fs_struct *fs = current->fs;
1760 	if (clone_flags & CLONE_FS) {
1761 		/* tsk->fs is already what we want */
1762 		spin_lock(&fs->lock);
1763 		if (fs->in_exec) {
1764 			spin_unlock(&fs->lock);
1765 			return -EAGAIN;
1766 		}
1767 		fs->users++;
1768 		spin_unlock(&fs->lock);
1769 		return 0;
1770 	}
1771 	tsk->fs = copy_fs_struct(fs);
1772 	if (!tsk->fs)
1773 		return -ENOMEM;
1774 	return 0;
1775 }
1776 
1777 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1778 		      int no_files)
1779 {
1780 	struct files_struct *oldf, *newf;
1781 	int error = 0;
1782 
1783 	/*
1784 	 * A background process may not have any files ...
1785 	 */
1786 	oldf = current->files;
1787 	if (!oldf)
1788 		goto out;
1789 
1790 	if (no_files) {
1791 		tsk->files = NULL;
1792 		goto out;
1793 	}
1794 
1795 	if (clone_flags & CLONE_FILES) {
1796 		atomic_inc(&oldf->count);
1797 		goto out;
1798 	}
1799 
1800 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1801 	if (!newf)
1802 		goto out;
1803 
1804 	tsk->files = newf;
1805 	error = 0;
1806 out:
1807 	return error;
1808 }
1809 
1810 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1811 {
1812 	struct sighand_struct *sig;
1813 
1814 	if (clone_flags & CLONE_SIGHAND) {
1815 		refcount_inc(&current->sighand->count);
1816 		return 0;
1817 	}
1818 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1819 	RCU_INIT_POINTER(tsk->sighand, sig);
1820 	if (!sig)
1821 		return -ENOMEM;
1822 
1823 	refcount_set(&sig->count, 1);
1824 	spin_lock_irq(&current->sighand->siglock);
1825 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1826 	spin_unlock_irq(&current->sighand->siglock);
1827 
1828 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1829 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1830 		flush_signal_handlers(tsk, 0);
1831 
1832 	return 0;
1833 }
1834 
1835 void __cleanup_sighand(struct sighand_struct *sighand)
1836 {
1837 	if (refcount_dec_and_test(&sighand->count)) {
1838 		signalfd_cleanup(sighand);
1839 		/*
1840 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1841 		 * without an RCU grace period, see __lock_task_sighand().
1842 		 */
1843 		kmem_cache_free(sighand_cachep, sighand);
1844 	}
1845 }
1846 
1847 /*
1848  * Initialize POSIX timer handling for a thread group.
1849  */
1850 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1851 {
1852 	struct posix_cputimers *pct = &sig->posix_cputimers;
1853 	unsigned long cpu_limit;
1854 
1855 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1856 	posix_cputimers_group_init(pct, cpu_limit);
1857 }
1858 
1859 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1860 {
1861 	struct signal_struct *sig;
1862 
1863 	if (clone_flags & CLONE_THREAD)
1864 		return 0;
1865 
1866 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1867 	tsk->signal = sig;
1868 	if (!sig)
1869 		return -ENOMEM;
1870 
1871 	sig->nr_threads = 1;
1872 	sig->quick_threads = 1;
1873 	atomic_set(&sig->live, 1);
1874 	refcount_set(&sig->sigcnt, 1);
1875 
1876 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1877 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1878 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1879 
1880 	init_waitqueue_head(&sig->wait_chldexit);
1881 	sig->curr_target = tsk;
1882 	init_sigpending(&sig->shared_pending);
1883 	INIT_HLIST_HEAD(&sig->multiprocess);
1884 	seqlock_init(&sig->stats_lock);
1885 	prev_cputime_init(&sig->prev_cputime);
1886 
1887 #ifdef CONFIG_POSIX_TIMERS
1888 	INIT_LIST_HEAD(&sig->posix_timers);
1889 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1890 	sig->real_timer.function = it_real_fn;
1891 #endif
1892 
1893 	task_lock(current->group_leader);
1894 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1895 	task_unlock(current->group_leader);
1896 
1897 	posix_cpu_timers_init_group(sig);
1898 
1899 	tty_audit_fork(sig);
1900 	sched_autogroup_fork(sig);
1901 
1902 	sig->oom_score_adj = current->signal->oom_score_adj;
1903 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1904 
1905 	mutex_init(&sig->cred_guard_mutex);
1906 	init_rwsem(&sig->exec_update_lock);
1907 
1908 	return 0;
1909 }
1910 
1911 static void copy_seccomp(struct task_struct *p)
1912 {
1913 #ifdef CONFIG_SECCOMP
1914 	/*
1915 	 * Must be called with sighand->lock held, which is common to
1916 	 * all threads in the group. Holding cred_guard_mutex is not
1917 	 * needed because this new task is not yet running and cannot
1918 	 * be racing exec.
1919 	 */
1920 	assert_spin_locked(&current->sighand->siglock);
1921 
1922 	/* Ref-count the new filter user, and assign it. */
1923 	get_seccomp_filter(current);
1924 	p->seccomp = current->seccomp;
1925 
1926 	/*
1927 	 * Explicitly enable no_new_privs here in case it got set
1928 	 * between the task_struct being duplicated and holding the
1929 	 * sighand lock. The seccomp state and nnp must be in sync.
1930 	 */
1931 	if (task_no_new_privs(current))
1932 		task_set_no_new_privs(p);
1933 
1934 	/*
1935 	 * If the parent gained a seccomp mode after copying thread
1936 	 * flags and between before we held the sighand lock, we have
1937 	 * to manually enable the seccomp thread flag here.
1938 	 */
1939 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1940 		set_task_syscall_work(p, SECCOMP);
1941 #endif
1942 }
1943 
1944 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1945 {
1946 	current->clear_child_tid = tidptr;
1947 
1948 	return task_pid_vnr(current);
1949 }
1950 
1951 static void rt_mutex_init_task(struct task_struct *p)
1952 {
1953 	raw_spin_lock_init(&p->pi_lock);
1954 #ifdef CONFIG_RT_MUTEXES
1955 	p->pi_waiters = RB_ROOT_CACHED;
1956 	p->pi_top_task = NULL;
1957 	p->pi_blocked_on = NULL;
1958 #endif
1959 }
1960 
1961 static inline void init_task_pid_links(struct task_struct *task)
1962 {
1963 	enum pid_type type;
1964 
1965 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1966 		INIT_HLIST_NODE(&task->pid_links[type]);
1967 }
1968 
1969 static inline void
1970 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1971 {
1972 	if (type == PIDTYPE_PID)
1973 		task->thread_pid = pid;
1974 	else
1975 		task->signal->pids[type] = pid;
1976 }
1977 
1978 static inline void rcu_copy_process(struct task_struct *p)
1979 {
1980 #ifdef CONFIG_PREEMPT_RCU
1981 	p->rcu_read_lock_nesting = 0;
1982 	p->rcu_read_unlock_special.s = 0;
1983 	p->rcu_blocked_node = NULL;
1984 	INIT_LIST_HEAD(&p->rcu_node_entry);
1985 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1986 #ifdef CONFIG_TASKS_RCU
1987 	p->rcu_tasks_holdout = false;
1988 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1989 	p->rcu_tasks_idle_cpu = -1;
1990 #endif /* #ifdef CONFIG_TASKS_RCU */
1991 #ifdef CONFIG_TASKS_TRACE_RCU
1992 	p->trc_reader_nesting = 0;
1993 	p->trc_reader_special.s = 0;
1994 	INIT_LIST_HEAD(&p->trc_holdout_list);
1995 	INIT_LIST_HEAD(&p->trc_blkd_node);
1996 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1997 }
1998 
1999 struct pid *pidfd_pid(const struct file *file)
2000 {
2001 	if (file->f_op == &pidfd_fops)
2002 		return file->private_data;
2003 
2004 	return ERR_PTR(-EBADF);
2005 }
2006 
2007 static int pidfd_release(struct inode *inode, struct file *file)
2008 {
2009 	struct pid *pid = file->private_data;
2010 
2011 	file->private_data = NULL;
2012 	put_pid(pid);
2013 	return 0;
2014 }
2015 
2016 #ifdef CONFIG_PROC_FS
2017 /**
2018  * pidfd_show_fdinfo - print information about a pidfd
2019  * @m: proc fdinfo file
2020  * @f: file referencing a pidfd
2021  *
2022  * Pid:
2023  * This function will print the pid that a given pidfd refers to in the
2024  * pid namespace of the procfs instance.
2025  * If the pid namespace of the process is not a descendant of the pid
2026  * namespace of the procfs instance 0 will be shown as its pid. This is
2027  * similar to calling getppid() on a process whose parent is outside of
2028  * its pid namespace.
2029  *
2030  * NSpid:
2031  * If pid namespaces are supported then this function will also print
2032  * the pid of a given pidfd refers to for all descendant pid namespaces
2033  * starting from the current pid namespace of the instance, i.e. the
2034  * Pid field and the first entry in the NSpid field will be identical.
2035  * If the pid namespace of the process is not a descendant of the pid
2036  * namespace of the procfs instance 0 will be shown as its first NSpid
2037  * entry and no others will be shown.
2038  * Note that this differs from the Pid and NSpid fields in
2039  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2040  * the  pid namespace of the procfs instance. The difference becomes
2041  * obvious when sending around a pidfd between pid namespaces from a
2042  * different branch of the tree, i.e. where no ancestral relation is
2043  * present between the pid namespaces:
2044  * - create two new pid namespaces ns1 and ns2 in the initial pid
2045  *   namespace (also take care to create new mount namespaces in the
2046  *   new pid namespace and mount procfs)
2047  * - create a process with a pidfd in ns1
2048  * - send pidfd from ns1 to ns2
2049  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2050  *   have exactly one entry, which is 0
2051  */
2052 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2053 {
2054 	struct pid *pid = f->private_data;
2055 	struct pid_namespace *ns;
2056 	pid_t nr = -1;
2057 
2058 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2059 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2060 		nr = pid_nr_ns(pid, ns);
2061 	}
2062 
2063 	seq_put_decimal_ll(m, "Pid:\t", nr);
2064 
2065 #ifdef CONFIG_PID_NS
2066 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2067 	if (nr > 0) {
2068 		int i;
2069 
2070 		/* If nr is non-zero it means that 'pid' is valid and that
2071 		 * ns, i.e. the pid namespace associated with the procfs
2072 		 * instance, is in the pid namespace hierarchy of pid.
2073 		 * Start at one below the already printed level.
2074 		 */
2075 		for (i = ns->level + 1; i <= pid->level; i++)
2076 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2077 	}
2078 #endif
2079 	seq_putc(m, '\n');
2080 }
2081 #endif
2082 
2083 /*
2084  * Poll support for process exit notification.
2085  */
2086 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2087 {
2088 	struct pid *pid = file->private_data;
2089 	__poll_t poll_flags = 0;
2090 
2091 	poll_wait(file, &pid->wait_pidfd, pts);
2092 
2093 	/*
2094 	 * Inform pollers only when the whole thread group exits.
2095 	 * If the thread group leader exits before all other threads in the
2096 	 * group, then poll(2) should block, similar to the wait(2) family.
2097 	 */
2098 	if (thread_group_exited(pid))
2099 		poll_flags = EPOLLIN | EPOLLRDNORM;
2100 
2101 	return poll_flags;
2102 }
2103 
2104 const struct file_operations pidfd_fops = {
2105 	.release = pidfd_release,
2106 	.poll = pidfd_poll,
2107 #ifdef CONFIG_PROC_FS
2108 	.show_fdinfo = pidfd_show_fdinfo,
2109 #endif
2110 };
2111 
2112 /**
2113  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2114  * @pid:   the struct pid for which to create a pidfd
2115  * @flags: flags of the new @pidfd
2116  * @pidfd: the pidfd to return
2117  *
2118  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2119  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2120 
2121  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2122  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2123  * pidfd file are prepared.
2124  *
2125  * If this function returns successfully the caller is responsible to either
2126  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2127  * order to install the pidfd into its file descriptor table or they must use
2128  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2129  * respectively.
2130  *
2131  * This function is useful when a pidfd must already be reserved but there
2132  * might still be points of failure afterwards and the caller wants to ensure
2133  * that no pidfd is leaked into its file descriptor table.
2134  *
2135  * Return: On success, a reserved pidfd is returned from the function and a new
2136  *         pidfd file is returned in the last argument to the function. On
2137  *         error, a negative error code is returned from the function and the
2138  *         last argument remains unchanged.
2139  */
2140 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2141 {
2142 	int pidfd;
2143 	struct file *pidfd_file;
2144 
2145 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2146 		return -EINVAL;
2147 
2148 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2149 	if (pidfd < 0)
2150 		return pidfd;
2151 
2152 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2153 					flags | O_RDWR | O_CLOEXEC);
2154 	if (IS_ERR(pidfd_file)) {
2155 		put_unused_fd(pidfd);
2156 		return PTR_ERR(pidfd_file);
2157 	}
2158 	get_pid(pid); /* held by pidfd_file now */
2159 	*ret = pidfd_file;
2160 	return pidfd;
2161 }
2162 
2163 /**
2164  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2165  * @pid:   the struct pid for which to create a pidfd
2166  * @flags: flags of the new @pidfd
2167  * @pidfd: the pidfd to return
2168  *
2169  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2170  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2171  *
2172  * The helper verifies that @pid is used as a thread group leader.
2173  *
2174  * If this function returns successfully the caller is responsible to either
2175  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2176  * order to install the pidfd into its file descriptor table or they must use
2177  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2178  * respectively.
2179  *
2180  * This function is useful when a pidfd must already be reserved but there
2181  * might still be points of failure afterwards and the caller wants to ensure
2182  * that no pidfd is leaked into its file descriptor table.
2183  *
2184  * Return: On success, a reserved pidfd is returned from the function and a new
2185  *         pidfd file is returned in the last argument to the function. On
2186  *         error, a negative error code is returned from the function and the
2187  *         last argument remains unchanged.
2188  */
2189 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2190 {
2191 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2192 		return -EINVAL;
2193 
2194 	return __pidfd_prepare(pid, flags, ret);
2195 }
2196 
2197 static void __delayed_free_task(struct rcu_head *rhp)
2198 {
2199 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2200 
2201 	free_task(tsk);
2202 }
2203 
2204 static __always_inline void delayed_free_task(struct task_struct *tsk)
2205 {
2206 	if (IS_ENABLED(CONFIG_MEMCG))
2207 		call_rcu(&tsk->rcu, __delayed_free_task);
2208 	else
2209 		free_task(tsk);
2210 }
2211 
2212 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2213 {
2214 	/* Skip if kernel thread */
2215 	if (!tsk->mm)
2216 		return;
2217 
2218 	/* Skip if spawning a thread or using vfork */
2219 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2220 		return;
2221 
2222 	/* We need to synchronize with __set_oom_adj */
2223 	mutex_lock(&oom_adj_mutex);
2224 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2225 	/* Update the values in case they were changed after copy_signal */
2226 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2227 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2228 	mutex_unlock(&oom_adj_mutex);
2229 }
2230 
2231 #ifdef CONFIG_RV
2232 static void rv_task_fork(struct task_struct *p)
2233 {
2234 	int i;
2235 
2236 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2237 		p->rv[i].da_mon.monitoring = false;
2238 }
2239 #else
2240 #define rv_task_fork(p) do {} while (0)
2241 #endif
2242 
2243 /*
2244  * This creates a new process as a copy of the old one,
2245  * but does not actually start it yet.
2246  *
2247  * It copies the registers, and all the appropriate
2248  * parts of the process environment (as per the clone
2249  * flags). The actual kick-off is left to the caller.
2250  */
2251 __latent_entropy struct task_struct *copy_process(
2252 					struct pid *pid,
2253 					int trace,
2254 					int node,
2255 					struct kernel_clone_args *args)
2256 {
2257 	int pidfd = -1, retval;
2258 	struct task_struct *p;
2259 	struct multiprocess_signals delayed;
2260 	struct file *pidfile = NULL;
2261 	const u64 clone_flags = args->flags;
2262 	struct nsproxy *nsp = current->nsproxy;
2263 
2264 	/*
2265 	 * Don't allow sharing the root directory with processes in a different
2266 	 * namespace
2267 	 */
2268 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2269 		return ERR_PTR(-EINVAL);
2270 
2271 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2272 		return ERR_PTR(-EINVAL);
2273 
2274 	/*
2275 	 * Thread groups must share signals as well, and detached threads
2276 	 * can only be started up within the thread group.
2277 	 */
2278 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2279 		return ERR_PTR(-EINVAL);
2280 
2281 	/*
2282 	 * Shared signal handlers imply shared VM. By way of the above,
2283 	 * thread groups also imply shared VM. Blocking this case allows
2284 	 * for various simplifications in other code.
2285 	 */
2286 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2287 		return ERR_PTR(-EINVAL);
2288 
2289 	/*
2290 	 * Siblings of global init remain as zombies on exit since they are
2291 	 * not reaped by their parent (swapper). To solve this and to avoid
2292 	 * multi-rooted process trees, prevent global and container-inits
2293 	 * from creating siblings.
2294 	 */
2295 	if ((clone_flags & CLONE_PARENT) &&
2296 				current->signal->flags & SIGNAL_UNKILLABLE)
2297 		return ERR_PTR(-EINVAL);
2298 
2299 	/*
2300 	 * If the new process will be in a different pid or user namespace
2301 	 * do not allow it to share a thread group with the forking task.
2302 	 */
2303 	if (clone_flags & CLONE_THREAD) {
2304 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2305 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2306 			return ERR_PTR(-EINVAL);
2307 	}
2308 
2309 	if (clone_flags & CLONE_PIDFD) {
2310 		/*
2311 		 * - CLONE_DETACHED is blocked so that we can potentially
2312 		 *   reuse it later for CLONE_PIDFD.
2313 		 * - CLONE_THREAD is blocked until someone really needs it.
2314 		 */
2315 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2316 			return ERR_PTR(-EINVAL);
2317 	}
2318 
2319 	/*
2320 	 * Force any signals received before this point to be delivered
2321 	 * before the fork happens.  Collect up signals sent to multiple
2322 	 * processes that happen during the fork and delay them so that
2323 	 * they appear to happen after the fork.
2324 	 */
2325 	sigemptyset(&delayed.signal);
2326 	INIT_HLIST_NODE(&delayed.node);
2327 
2328 	spin_lock_irq(&current->sighand->siglock);
2329 	if (!(clone_flags & CLONE_THREAD))
2330 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2331 	recalc_sigpending();
2332 	spin_unlock_irq(&current->sighand->siglock);
2333 	retval = -ERESTARTNOINTR;
2334 	if (task_sigpending(current))
2335 		goto fork_out;
2336 
2337 	retval = -ENOMEM;
2338 	p = dup_task_struct(current, node);
2339 	if (!p)
2340 		goto fork_out;
2341 	p->flags &= ~PF_KTHREAD;
2342 	if (args->kthread)
2343 		p->flags |= PF_KTHREAD;
2344 	if (args->user_worker) {
2345 		/*
2346 		 * Mark us a user worker, and block any signal that isn't
2347 		 * fatal or STOP
2348 		 */
2349 		p->flags |= PF_USER_WORKER;
2350 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2351 	}
2352 	if (args->io_thread)
2353 		p->flags |= PF_IO_WORKER;
2354 
2355 	if (args->name)
2356 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2357 
2358 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2359 	/*
2360 	 * Clear TID on mm_release()?
2361 	 */
2362 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2363 
2364 	ftrace_graph_init_task(p);
2365 
2366 	rt_mutex_init_task(p);
2367 
2368 	lockdep_assert_irqs_enabled();
2369 #ifdef CONFIG_PROVE_LOCKING
2370 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2371 #endif
2372 	retval = copy_creds(p, clone_flags);
2373 	if (retval < 0)
2374 		goto bad_fork_free;
2375 
2376 	retval = -EAGAIN;
2377 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2378 		if (p->real_cred->user != INIT_USER &&
2379 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2380 			goto bad_fork_cleanup_count;
2381 	}
2382 	current->flags &= ~PF_NPROC_EXCEEDED;
2383 
2384 	/*
2385 	 * If multiple threads are within copy_process(), then this check
2386 	 * triggers too late. This doesn't hurt, the check is only there
2387 	 * to stop root fork bombs.
2388 	 */
2389 	retval = -EAGAIN;
2390 	if (data_race(nr_threads >= max_threads))
2391 		goto bad_fork_cleanup_count;
2392 
2393 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2394 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2395 	p->flags |= PF_FORKNOEXEC;
2396 	INIT_LIST_HEAD(&p->children);
2397 	INIT_LIST_HEAD(&p->sibling);
2398 	rcu_copy_process(p);
2399 	p->vfork_done = NULL;
2400 	spin_lock_init(&p->alloc_lock);
2401 
2402 	init_sigpending(&p->pending);
2403 
2404 	p->utime = p->stime = p->gtime = 0;
2405 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2406 	p->utimescaled = p->stimescaled = 0;
2407 #endif
2408 	prev_cputime_init(&p->prev_cputime);
2409 
2410 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2411 	seqcount_init(&p->vtime.seqcount);
2412 	p->vtime.starttime = 0;
2413 	p->vtime.state = VTIME_INACTIVE;
2414 #endif
2415 
2416 #ifdef CONFIG_IO_URING
2417 	p->io_uring = NULL;
2418 #endif
2419 
2420 #if defined(SPLIT_RSS_COUNTING)
2421 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2422 #endif
2423 
2424 	p->default_timer_slack_ns = current->timer_slack_ns;
2425 
2426 #ifdef CONFIG_PSI
2427 	p->psi_flags = 0;
2428 #endif
2429 
2430 	task_io_accounting_init(&p->ioac);
2431 	acct_clear_integrals(p);
2432 
2433 	posix_cputimers_init(&p->posix_cputimers);
2434 
2435 	p->io_context = NULL;
2436 	audit_set_context(p, NULL);
2437 	cgroup_fork(p);
2438 	if (args->kthread) {
2439 		if (!set_kthread_struct(p))
2440 			goto bad_fork_cleanup_delayacct;
2441 	}
2442 #ifdef CONFIG_NUMA
2443 	p->mempolicy = mpol_dup(p->mempolicy);
2444 	if (IS_ERR(p->mempolicy)) {
2445 		retval = PTR_ERR(p->mempolicy);
2446 		p->mempolicy = NULL;
2447 		goto bad_fork_cleanup_delayacct;
2448 	}
2449 #endif
2450 #ifdef CONFIG_CPUSETS
2451 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2452 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2453 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2454 #endif
2455 #ifdef CONFIG_TRACE_IRQFLAGS
2456 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2457 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2458 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2459 	p->softirqs_enabled		= 1;
2460 	p->softirq_context		= 0;
2461 #endif
2462 
2463 	p->pagefault_disabled = 0;
2464 
2465 #ifdef CONFIG_LOCKDEP
2466 	lockdep_init_task(p);
2467 #endif
2468 
2469 #ifdef CONFIG_DEBUG_MUTEXES
2470 	p->blocked_on = NULL; /* not blocked yet */
2471 #endif
2472 #ifdef CONFIG_BCACHE
2473 	p->sequential_io	= 0;
2474 	p->sequential_io_avg	= 0;
2475 #endif
2476 #ifdef CONFIG_BPF_SYSCALL
2477 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2478 	p->bpf_ctx = NULL;
2479 #endif
2480 
2481 	/* Perform scheduler related setup. Assign this task to a CPU. */
2482 	retval = sched_fork(clone_flags, p);
2483 	if (retval)
2484 		goto bad_fork_cleanup_policy;
2485 
2486 	retval = perf_event_init_task(p, clone_flags);
2487 	if (retval)
2488 		goto bad_fork_cleanup_policy;
2489 	retval = audit_alloc(p);
2490 	if (retval)
2491 		goto bad_fork_cleanup_perf;
2492 	/* copy all the process information */
2493 	shm_init_task(p);
2494 	retval = security_task_alloc(p, clone_flags);
2495 	if (retval)
2496 		goto bad_fork_cleanup_audit;
2497 	retval = copy_semundo(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_security;
2500 	retval = copy_files(clone_flags, p, args->no_files);
2501 	if (retval)
2502 		goto bad_fork_cleanup_semundo;
2503 	retval = copy_fs(clone_flags, p);
2504 	if (retval)
2505 		goto bad_fork_cleanup_files;
2506 	retval = copy_sighand(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_fs;
2509 	retval = copy_signal(clone_flags, p);
2510 	if (retval)
2511 		goto bad_fork_cleanup_sighand;
2512 	retval = copy_mm(clone_flags, p);
2513 	if (retval)
2514 		goto bad_fork_cleanup_signal;
2515 	retval = copy_namespaces(clone_flags, p);
2516 	if (retval)
2517 		goto bad_fork_cleanup_mm;
2518 	retval = copy_io(clone_flags, p);
2519 	if (retval)
2520 		goto bad_fork_cleanup_namespaces;
2521 	retval = copy_thread(p, args);
2522 	if (retval)
2523 		goto bad_fork_cleanup_io;
2524 
2525 	stackleak_task_init(p);
2526 
2527 	if (pid != &init_struct_pid) {
2528 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2529 				args->set_tid_size);
2530 		if (IS_ERR(pid)) {
2531 			retval = PTR_ERR(pid);
2532 			goto bad_fork_cleanup_thread;
2533 		}
2534 	}
2535 
2536 	/*
2537 	 * This has to happen after we've potentially unshared the file
2538 	 * descriptor table (so that the pidfd doesn't leak into the child
2539 	 * if the fd table isn't shared).
2540 	 */
2541 	if (clone_flags & CLONE_PIDFD) {
2542 		/* Note that no task has been attached to @pid yet. */
2543 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2544 		if (retval < 0)
2545 			goto bad_fork_free_pid;
2546 		pidfd = retval;
2547 
2548 		retval = put_user(pidfd, args->pidfd);
2549 		if (retval)
2550 			goto bad_fork_put_pidfd;
2551 	}
2552 
2553 #ifdef CONFIG_BLOCK
2554 	p->plug = NULL;
2555 #endif
2556 	futex_init_task(p);
2557 
2558 	/*
2559 	 * sigaltstack should be cleared when sharing the same VM
2560 	 */
2561 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2562 		sas_ss_reset(p);
2563 
2564 	/*
2565 	 * Syscall tracing and stepping should be turned off in the
2566 	 * child regardless of CLONE_PTRACE.
2567 	 */
2568 	user_disable_single_step(p);
2569 	clear_task_syscall_work(p, SYSCALL_TRACE);
2570 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2571 	clear_task_syscall_work(p, SYSCALL_EMU);
2572 #endif
2573 	clear_tsk_latency_tracing(p);
2574 
2575 	/* ok, now we should be set up.. */
2576 	p->pid = pid_nr(pid);
2577 	if (clone_flags & CLONE_THREAD) {
2578 		p->group_leader = current->group_leader;
2579 		p->tgid = current->tgid;
2580 	} else {
2581 		p->group_leader = p;
2582 		p->tgid = p->pid;
2583 	}
2584 
2585 	p->nr_dirtied = 0;
2586 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2587 	p->dirty_paused_when = 0;
2588 
2589 	p->pdeath_signal = 0;
2590 	INIT_LIST_HEAD(&p->thread_group);
2591 	p->task_works = NULL;
2592 	clear_posix_cputimers_work(p);
2593 
2594 #ifdef CONFIG_KRETPROBES
2595 	p->kretprobe_instances.first = NULL;
2596 #endif
2597 #ifdef CONFIG_RETHOOK
2598 	p->rethooks.first = NULL;
2599 #endif
2600 
2601 	/*
2602 	 * Ensure that the cgroup subsystem policies allow the new process to be
2603 	 * forked. It should be noted that the new process's css_set can be changed
2604 	 * between here and cgroup_post_fork() if an organisation operation is in
2605 	 * progress.
2606 	 */
2607 	retval = cgroup_can_fork(p, args);
2608 	if (retval)
2609 		goto bad_fork_put_pidfd;
2610 
2611 	/*
2612 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2613 	 * the new task on the correct runqueue. All this *before* the task
2614 	 * becomes visible.
2615 	 *
2616 	 * This isn't part of ->can_fork() because while the re-cloning is
2617 	 * cgroup specific, it unconditionally needs to place the task on a
2618 	 * runqueue.
2619 	 */
2620 	sched_cgroup_fork(p, args);
2621 
2622 	/*
2623 	 * From this point on we must avoid any synchronous user-space
2624 	 * communication until we take the tasklist-lock. In particular, we do
2625 	 * not want user-space to be able to predict the process start-time by
2626 	 * stalling fork(2) after we recorded the start_time but before it is
2627 	 * visible to the system.
2628 	 */
2629 
2630 	p->start_time = ktime_get_ns();
2631 	p->start_boottime = ktime_get_boottime_ns();
2632 
2633 	/*
2634 	 * Make it visible to the rest of the system, but dont wake it up yet.
2635 	 * Need tasklist lock for parent etc handling!
2636 	 */
2637 	write_lock_irq(&tasklist_lock);
2638 
2639 	/* CLONE_PARENT re-uses the old parent */
2640 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2641 		p->real_parent = current->real_parent;
2642 		p->parent_exec_id = current->parent_exec_id;
2643 		if (clone_flags & CLONE_THREAD)
2644 			p->exit_signal = -1;
2645 		else
2646 			p->exit_signal = current->group_leader->exit_signal;
2647 	} else {
2648 		p->real_parent = current;
2649 		p->parent_exec_id = current->self_exec_id;
2650 		p->exit_signal = args->exit_signal;
2651 	}
2652 
2653 	klp_copy_process(p);
2654 
2655 	sched_core_fork(p);
2656 
2657 	spin_lock(&current->sighand->siglock);
2658 
2659 	rv_task_fork(p);
2660 
2661 	rseq_fork(p, clone_flags);
2662 
2663 	/* Don't start children in a dying pid namespace */
2664 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2665 		retval = -ENOMEM;
2666 		goto bad_fork_cancel_cgroup;
2667 	}
2668 
2669 	/* Let kill terminate clone/fork in the middle */
2670 	if (fatal_signal_pending(current)) {
2671 		retval = -EINTR;
2672 		goto bad_fork_cancel_cgroup;
2673 	}
2674 
2675 	/* No more failure paths after this point. */
2676 
2677 	/*
2678 	 * Copy seccomp details explicitly here, in case they were changed
2679 	 * before holding sighand lock.
2680 	 */
2681 	copy_seccomp(p);
2682 
2683 	init_task_pid_links(p);
2684 	if (likely(p->pid)) {
2685 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2686 
2687 		init_task_pid(p, PIDTYPE_PID, pid);
2688 		if (thread_group_leader(p)) {
2689 			init_task_pid(p, PIDTYPE_TGID, pid);
2690 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2691 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2692 
2693 			if (is_child_reaper(pid)) {
2694 				ns_of_pid(pid)->child_reaper = p;
2695 				p->signal->flags |= SIGNAL_UNKILLABLE;
2696 			}
2697 			p->signal->shared_pending.signal = delayed.signal;
2698 			p->signal->tty = tty_kref_get(current->signal->tty);
2699 			/*
2700 			 * Inherit has_child_subreaper flag under the same
2701 			 * tasklist_lock with adding child to the process tree
2702 			 * for propagate_has_child_subreaper optimization.
2703 			 */
2704 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2705 							 p->real_parent->signal->is_child_subreaper;
2706 			list_add_tail(&p->sibling, &p->real_parent->children);
2707 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2708 			attach_pid(p, PIDTYPE_TGID);
2709 			attach_pid(p, PIDTYPE_PGID);
2710 			attach_pid(p, PIDTYPE_SID);
2711 			__this_cpu_inc(process_counts);
2712 		} else {
2713 			current->signal->nr_threads++;
2714 			current->signal->quick_threads++;
2715 			atomic_inc(&current->signal->live);
2716 			refcount_inc(&current->signal->sigcnt);
2717 			task_join_group_stop(p);
2718 			list_add_tail_rcu(&p->thread_group,
2719 					  &p->group_leader->thread_group);
2720 			list_add_tail_rcu(&p->thread_node,
2721 					  &p->signal->thread_head);
2722 		}
2723 		attach_pid(p, PIDTYPE_PID);
2724 		nr_threads++;
2725 	}
2726 	total_forks++;
2727 	hlist_del_init(&delayed.node);
2728 	spin_unlock(&current->sighand->siglock);
2729 	syscall_tracepoint_update(p);
2730 	write_unlock_irq(&tasklist_lock);
2731 
2732 	if (pidfile)
2733 		fd_install(pidfd, pidfile);
2734 
2735 	proc_fork_connector(p);
2736 	sched_post_fork(p);
2737 	cgroup_post_fork(p, args);
2738 	perf_event_fork(p);
2739 
2740 	trace_task_newtask(p, clone_flags);
2741 	uprobe_copy_process(p, clone_flags);
2742 	user_events_fork(p, clone_flags);
2743 
2744 	copy_oom_score_adj(clone_flags, p);
2745 
2746 	return p;
2747 
2748 bad_fork_cancel_cgroup:
2749 	sched_core_free(p);
2750 	spin_unlock(&current->sighand->siglock);
2751 	write_unlock_irq(&tasklist_lock);
2752 	cgroup_cancel_fork(p, args);
2753 bad_fork_put_pidfd:
2754 	if (clone_flags & CLONE_PIDFD) {
2755 		fput(pidfile);
2756 		put_unused_fd(pidfd);
2757 	}
2758 bad_fork_free_pid:
2759 	if (pid != &init_struct_pid)
2760 		free_pid(pid);
2761 bad_fork_cleanup_thread:
2762 	exit_thread(p);
2763 bad_fork_cleanup_io:
2764 	if (p->io_context)
2765 		exit_io_context(p);
2766 bad_fork_cleanup_namespaces:
2767 	exit_task_namespaces(p);
2768 bad_fork_cleanup_mm:
2769 	if (p->mm) {
2770 		mm_clear_owner(p->mm, p);
2771 		mmput(p->mm);
2772 	}
2773 bad_fork_cleanup_signal:
2774 	if (!(clone_flags & CLONE_THREAD))
2775 		free_signal_struct(p->signal);
2776 bad_fork_cleanup_sighand:
2777 	__cleanup_sighand(p->sighand);
2778 bad_fork_cleanup_fs:
2779 	exit_fs(p); /* blocking */
2780 bad_fork_cleanup_files:
2781 	exit_files(p); /* blocking */
2782 bad_fork_cleanup_semundo:
2783 	exit_sem(p);
2784 bad_fork_cleanup_security:
2785 	security_task_free(p);
2786 bad_fork_cleanup_audit:
2787 	audit_free(p);
2788 bad_fork_cleanup_perf:
2789 	perf_event_free_task(p);
2790 bad_fork_cleanup_policy:
2791 	lockdep_free_task(p);
2792 #ifdef CONFIG_NUMA
2793 	mpol_put(p->mempolicy);
2794 #endif
2795 bad_fork_cleanup_delayacct:
2796 	delayacct_tsk_free(p);
2797 bad_fork_cleanup_count:
2798 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2799 	exit_creds(p);
2800 bad_fork_free:
2801 	WRITE_ONCE(p->__state, TASK_DEAD);
2802 	exit_task_stack_account(p);
2803 	put_task_stack(p);
2804 	delayed_free_task(p);
2805 fork_out:
2806 	spin_lock_irq(&current->sighand->siglock);
2807 	hlist_del_init(&delayed.node);
2808 	spin_unlock_irq(&current->sighand->siglock);
2809 	return ERR_PTR(retval);
2810 }
2811 
2812 static inline void init_idle_pids(struct task_struct *idle)
2813 {
2814 	enum pid_type type;
2815 
2816 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2817 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2818 		init_task_pid(idle, type, &init_struct_pid);
2819 	}
2820 }
2821 
2822 static int idle_dummy(void *dummy)
2823 {
2824 	/* This function is never called */
2825 	return 0;
2826 }
2827 
2828 struct task_struct * __init fork_idle(int cpu)
2829 {
2830 	struct task_struct *task;
2831 	struct kernel_clone_args args = {
2832 		.flags		= CLONE_VM,
2833 		.fn		= &idle_dummy,
2834 		.fn_arg		= NULL,
2835 		.kthread	= 1,
2836 		.idle		= 1,
2837 	};
2838 
2839 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2840 	if (!IS_ERR(task)) {
2841 		init_idle_pids(task);
2842 		init_idle(task, cpu);
2843 	}
2844 
2845 	return task;
2846 }
2847 
2848 /*
2849  * This is like kernel_clone(), but shaved down and tailored to just
2850  * creating io_uring workers. It returns a created task, or an error pointer.
2851  * The returned task is inactive, and the caller must fire it up through
2852  * wake_up_new_task(p). All signals are blocked in the created task.
2853  */
2854 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2855 {
2856 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2857 				CLONE_IO;
2858 	struct kernel_clone_args args = {
2859 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2860 				    CLONE_UNTRACED) & ~CSIGNAL),
2861 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2862 		.fn		= fn,
2863 		.fn_arg		= arg,
2864 		.io_thread	= 1,
2865 		.user_worker	= 1,
2866 	};
2867 
2868 	return copy_process(NULL, 0, node, &args);
2869 }
2870 
2871 /*
2872  *  Ok, this is the main fork-routine.
2873  *
2874  * It copies the process, and if successful kick-starts
2875  * it and waits for it to finish using the VM if required.
2876  *
2877  * args->exit_signal is expected to be checked for sanity by the caller.
2878  */
2879 pid_t kernel_clone(struct kernel_clone_args *args)
2880 {
2881 	u64 clone_flags = args->flags;
2882 	struct completion vfork;
2883 	struct pid *pid;
2884 	struct task_struct *p;
2885 	int trace = 0;
2886 	pid_t nr;
2887 
2888 	/*
2889 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2890 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2891 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2892 	 * field in struct clone_args and it still doesn't make sense to have
2893 	 * them both point at the same memory location. Performing this check
2894 	 * here has the advantage that we don't need to have a separate helper
2895 	 * to check for legacy clone().
2896 	 */
2897 	if ((args->flags & CLONE_PIDFD) &&
2898 	    (args->flags & CLONE_PARENT_SETTID) &&
2899 	    (args->pidfd == args->parent_tid))
2900 		return -EINVAL;
2901 
2902 	/*
2903 	 * Determine whether and which event to report to ptracer.  When
2904 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2905 	 * requested, no event is reported; otherwise, report if the event
2906 	 * for the type of forking is enabled.
2907 	 */
2908 	if (!(clone_flags & CLONE_UNTRACED)) {
2909 		if (clone_flags & CLONE_VFORK)
2910 			trace = PTRACE_EVENT_VFORK;
2911 		else if (args->exit_signal != SIGCHLD)
2912 			trace = PTRACE_EVENT_CLONE;
2913 		else
2914 			trace = PTRACE_EVENT_FORK;
2915 
2916 		if (likely(!ptrace_event_enabled(current, trace)))
2917 			trace = 0;
2918 	}
2919 
2920 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2921 	add_latent_entropy();
2922 
2923 	if (IS_ERR(p))
2924 		return PTR_ERR(p);
2925 
2926 	/*
2927 	 * Do this prior waking up the new thread - the thread pointer
2928 	 * might get invalid after that point, if the thread exits quickly.
2929 	 */
2930 	trace_sched_process_fork(current, p);
2931 
2932 	pid = get_task_pid(p, PIDTYPE_PID);
2933 	nr = pid_vnr(pid);
2934 
2935 	if (clone_flags & CLONE_PARENT_SETTID)
2936 		put_user(nr, args->parent_tid);
2937 
2938 	if (clone_flags & CLONE_VFORK) {
2939 		p->vfork_done = &vfork;
2940 		init_completion(&vfork);
2941 		get_task_struct(p);
2942 	}
2943 
2944 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2945 		/* lock the task to synchronize with memcg migration */
2946 		task_lock(p);
2947 		lru_gen_add_mm(p->mm);
2948 		task_unlock(p);
2949 	}
2950 
2951 	wake_up_new_task(p);
2952 
2953 	/* forking complete and child started to run, tell ptracer */
2954 	if (unlikely(trace))
2955 		ptrace_event_pid(trace, pid);
2956 
2957 	if (clone_flags & CLONE_VFORK) {
2958 		if (!wait_for_vfork_done(p, &vfork))
2959 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2960 	}
2961 
2962 	put_pid(pid);
2963 	return nr;
2964 }
2965 
2966 /*
2967  * Create a kernel thread.
2968  */
2969 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2970 		    unsigned long flags)
2971 {
2972 	struct kernel_clone_args args = {
2973 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2974 				    CLONE_UNTRACED) & ~CSIGNAL),
2975 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2976 		.fn		= fn,
2977 		.fn_arg		= arg,
2978 		.name		= name,
2979 		.kthread	= 1,
2980 	};
2981 
2982 	return kernel_clone(&args);
2983 }
2984 
2985 /*
2986  * Create a user mode thread.
2987  */
2988 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2989 {
2990 	struct kernel_clone_args args = {
2991 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2992 				    CLONE_UNTRACED) & ~CSIGNAL),
2993 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2994 		.fn		= fn,
2995 		.fn_arg		= arg,
2996 	};
2997 
2998 	return kernel_clone(&args);
2999 }
3000 
3001 #ifdef __ARCH_WANT_SYS_FORK
3002 SYSCALL_DEFINE0(fork)
3003 {
3004 #ifdef CONFIG_MMU
3005 	struct kernel_clone_args args = {
3006 		.exit_signal = SIGCHLD,
3007 	};
3008 
3009 	return kernel_clone(&args);
3010 #else
3011 	/* can not support in nommu mode */
3012 	return -EINVAL;
3013 #endif
3014 }
3015 #endif
3016 
3017 #ifdef __ARCH_WANT_SYS_VFORK
3018 SYSCALL_DEFINE0(vfork)
3019 {
3020 	struct kernel_clone_args args = {
3021 		.flags		= CLONE_VFORK | CLONE_VM,
3022 		.exit_signal	= SIGCHLD,
3023 	};
3024 
3025 	return kernel_clone(&args);
3026 }
3027 #endif
3028 
3029 #ifdef __ARCH_WANT_SYS_CLONE
3030 #ifdef CONFIG_CLONE_BACKWARDS
3031 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3032 		 int __user *, parent_tidptr,
3033 		 unsigned long, tls,
3034 		 int __user *, child_tidptr)
3035 #elif defined(CONFIG_CLONE_BACKWARDS2)
3036 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3037 		 int __user *, parent_tidptr,
3038 		 int __user *, child_tidptr,
3039 		 unsigned long, tls)
3040 #elif defined(CONFIG_CLONE_BACKWARDS3)
3041 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3042 		int, stack_size,
3043 		int __user *, parent_tidptr,
3044 		int __user *, child_tidptr,
3045 		unsigned long, tls)
3046 #else
3047 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3048 		 int __user *, parent_tidptr,
3049 		 int __user *, child_tidptr,
3050 		 unsigned long, tls)
3051 #endif
3052 {
3053 	struct kernel_clone_args args = {
3054 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3055 		.pidfd		= parent_tidptr,
3056 		.child_tid	= child_tidptr,
3057 		.parent_tid	= parent_tidptr,
3058 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3059 		.stack		= newsp,
3060 		.tls		= tls,
3061 	};
3062 
3063 	return kernel_clone(&args);
3064 }
3065 #endif
3066 
3067 #ifdef __ARCH_WANT_SYS_CLONE3
3068 
3069 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3070 					      struct clone_args __user *uargs,
3071 					      size_t usize)
3072 {
3073 	int err;
3074 	struct clone_args args;
3075 	pid_t *kset_tid = kargs->set_tid;
3076 
3077 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3078 		     CLONE_ARGS_SIZE_VER0);
3079 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3080 		     CLONE_ARGS_SIZE_VER1);
3081 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3082 		     CLONE_ARGS_SIZE_VER2);
3083 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3084 
3085 	if (unlikely(usize > PAGE_SIZE))
3086 		return -E2BIG;
3087 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3088 		return -EINVAL;
3089 
3090 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3091 	if (err)
3092 		return err;
3093 
3094 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3095 		return -EINVAL;
3096 
3097 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3098 		return -EINVAL;
3099 
3100 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3101 		return -EINVAL;
3102 
3103 	/*
3104 	 * Verify that higher 32bits of exit_signal are unset and that
3105 	 * it is a valid signal
3106 	 */
3107 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3108 		     !valid_signal(args.exit_signal)))
3109 		return -EINVAL;
3110 
3111 	if ((args.flags & CLONE_INTO_CGROUP) &&
3112 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3113 		return -EINVAL;
3114 
3115 	*kargs = (struct kernel_clone_args){
3116 		.flags		= args.flags,
3117 		.pidfd		= u64_to_user_ptr(args.pidfd),
3118 		.child_tid	= u64_to_user_ptr(args.child_tid),
3119 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3120 		.exit_signal	= args.exit_signal,
3121 		.stack		= args.stack,
3122 		.stack_size	= args.stack_size,
3123 		.tls		= args.tls,
3124 		.set_tid_size	= args.set_tid_size,
3125 		.cgroup		= args.cgroup,
3126 	};
3127 
3128 	if (args.set_tid &&
3129 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3130 			(kargs->set_tid_size * sizeof(pid_t))))
3131 		return -EFAULT;
3132 
3133 	kargs->set_tid = kset_tid;
3134 
3135 	return 0;
3136 }
3137 
3138 /**
3139  * clone3_stack_valid - check and prepare stack
3140  * @kargs: kernel clone args
3141  *
3142  * Verify that the stack arguments userspace gave us are sane.
3143  * In addition, set the stack direction for userspace since it's easy for us to
3144  * determine.
3145  */
3146 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3147 {
3148 	if (kargs->stack == 0) {
3149 		if (kargs->stack_size > 0)
3150 			return false;
3151 	} else {
3152 		if (kargs->stack_size == 0)
3153 			return false;
3154 
3155 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3156 			return false;
3157 
3158 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3159 		kargs->stack += kargs->stack_size;
3160 #endif
3161 	}
3162 
3163 	return true;
3164 }
3165 
3166 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3167 {
3168 	/* Verify that no unknown flags are passed along. */
3169 	if (kargs->flags &
3170 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3171 		return false;
3172 
3173 	/*
3174 	 * - make the CLONE_DETACHED bit reusable for clone3
3175 	 * - make the CSIGNAL bits reusable for clone3
3176 	 */
3177 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3178 		return false;
3179 
3180 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3181 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3182 		return false;
3183 
3184 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3185 	    kargs->exit_signal)
3186 		return false;
3187 
3188 	if (!clone3_stack_valid(kargs))
3189 		return false;
3190 
3191 	return true;
3192 }
3193 
3194 /**
3195  * clone3 - create a new process with specific properties
3196  * @uargs: argument structure
3197  * @size:  size of @uargs
3198  *
3199  * clone3() is the extensible successor to clone()/clone2().
3200  * It takes a struct as argument that is versioned by its size.
3201  *
3202  * Return: On success, a positive PID for the child process.
3203  *         On error, a negative errno number.
3204  */
3205 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3206 {
3207 	int err;
3208 
3209 	struct kernel_clone_args kargs;
3210 	pid_t set_tid[MAX_PID_NS_LEVEL];
3211 
3212 	kargs.set_tid = set_tid;
3213 
3214 	err = copy_clone_args_from_user(&kargs, uargs, size);
3215 	if (err)
3216 		return err;
3217 
3218 	if (!clone3_args_valid(&kargs))
3219 		return -EINVAL;
3220 
3221 	return kernel_clone(&kargs);
3222 }
3223 #endif
3224 
3225 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3226 {
3227 	struct task_struct *leader, *parent, *child;
3228 	int res;
3229 
3230 	read_lock(&tasklist_lock);
3231 	leader = top = top->group_leader;
3232 down:
3233 	for_each_thread(leader, parent) {
3234 		list_for_each_entry(child, &parent->children, sibling) {
3235 			res = visitor(child, data);
3236 			if (res) {
3237 				if (res < 0)
3238 					goto out;
3239 				leader = child;
3240 				goto down;
3241 			}
3242 up:
3243 			;
3244 		}
3245 	}
3246 
3247 	if (leader != top) {
3248 		child = leader;
3249 		parent = child->real_parent;
3250 		leader = parent->group_leader;
3251 		goto up;
3252 	}
3253 out:
3254 	read_unlock(&tasklist_lock);
3255 }
3256 
3257 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3258 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3259 #endif
3260 
3261 static void sighand_ctor(void *data)
3262 {
3263 	struct sighand_struct *sighand = data;
3264 
3265 	spin_lock_init(&sighand->siglock);
3266 	init_waitqueue_head(&sighand->signalfd_wqh);
3267 }
3268 
3269 void __init mm_cache_init(void)
3270 {
3271 	unsigned int mm_size;
3272 
3273 	/*
3274 	 * The mm_cpumask is located at the end of mm_struct, and is
3275 	 * dynamically sized based on the maximum CPU number this system
3276 	 * can have, taking hotplug into account (nr_cpu_ids).
3277 	 */
3278 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3279 
3280 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3281 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3282 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3283 			offsetof(struct mm_struct, saved_auxv),
3284 			sizeof_field(struct mm_struct, saved_auxv),
3285 			NULL);
3286 }
3287 
3288 void __init proc_caches_init(void)
3289 {
3290 	sighand_cachep = kmem_cache_create("sighand_cache",
3291 			sizeof(struct sighand_struct), 0,
3292 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3293 			SLAB_ACCOUNT, sighand_ctor);
3294 	signal_cachep = kmem_cache_create("signal_cache",
3295 			sizeof(struct signal_struct), 0,
3296 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3297 			NULL);
3298 	files_cachep = kmem_cache_create("files_cache",
3299 			sizeof(struct files_struct), 0,
3300 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3301 			NULL);
3302 	fs_cachep = kmem_cache_create("fs_cache",
3303 			sizeof(struct fs_struct), 0,
3304 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3305 			NULL);
3306 
3307 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3308 #ifdef CONFIG_PER_VMA_LOCK
3309 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3310 #endif
3311 	mmap_init();
3312 	nsproxy_cache_init();
3313 }
3314 
3315 /*
3316  * Check constraints on flags passed to the unshare system call.
3317  */
3318 static int check_unshare_flags(unsigned long unshare_flags)
3319 {
3320 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3321 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3322 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3323 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3324 				CLONE_NEWTIME))
3325 		return -EINVAL;
3326 	/*
3327 	 * Not implemented, but pretend it works if there is nothing
3328 	 * to unshare.  Note that unsharing the address space or the
3329 	 * signal handlers also need to unshare the signal queues (aka
3330 	 * CLONE_THREAD).
3331 	 */
3332 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3333 		if (!thread_group_empty(current))
3334 			return -EINVAL;
3335 	}
3336 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3337 		if (refcount_read(&current->sighand->count) > 1)
3338 			return -EINVAL;
3339 	}
3340 	if (unshare_flags & CLONE_VM) {
3341 		if (!current_is_single_threaded())
3342 			return -EINVAL;
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Unshare the filesystem structure if it is being shared
3350  */
3351 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3352 {
3353 	struct fs_struct *fs = current->fs;
3354 
3355 	if (!(unshare_flags & CLONE_FS) || !fs)
3356 		return 0;
3357 
3358 	/* don't need lock here; in the worst case we'll do useless copy */
3359 	if (fs->users == 1)
3360 		return 0;
3361 
3362 	*new_fsp = copy_fs_struct(fs);
3363 	if (!*new_fsp)
3364 		return -ENOMEM;
3365 
3366 	return 0;
3367 }
3368 
3369 /*
3370  * Unshare file descriptor table if it is being shared
3371  */
3372 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3373 	       struct files_struct **new_fdp)
3374 {
3375 	struct files_struct *fd = current->files;
3376 	int error = 0;
3377 
3378 	if ((unshare_flags & CLONE_FILES) &&
3379 	    (fd && atomic_read(&fd->count) > 1)) {
3380 		*new_fdp = dup_fd(fd, max_fds, &error);
3381 		if (!*new_fdp)
3382 			return error;
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 /*
3389  * unshare allows a process to 'unshare' part of the process
3390  * context which was originally shared using clone.  copy_*
3391  * functions used by kernel_clone() cannot be used here directly
3392  * because they modify an inactive task_struct that is being
3393  * constructed. Here we are modifying the current, active,
3394  * task_struct.
3395  */
3396 int ksys_unshare(unsigned long unshare_flags)
3397 {
3398 	struct fs_struct *fs, *new_fs = NULL;
3399 	struct files_struct *new_fd = NULL;
3400 	struct cred *new_cred = NULL;
3401 	struct nsproxy *new_nsproxy = NULL;
3402 	int do_sysvsem = 0;
3403 	int err;
3404 
3405 	/*
3406 	 * If unsharing a user namespace must also unshare the thread group
3407 	 * and unshare the filesystem root and working directories.
3408 	 */
3409 	if (unshare_flags & CLONE_NEWUSER)
3410 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3411 	/*
3412 	 * If unsharing vm, must also unshare signal handlers.
3413 	 */
3414 	if (unshare_flags & CLONE_VM)
3415 		unshare_flags |= CLONE_SIGHAND;
3416 	/*
3417 	 * If unsharing a signal handlers, must also unshare the signal queues.
3418 	 */
3419 	if (unshare_flags & CLONE_SIGHAND)
3420 		unshare_flags |= CLONE_THREAD;
3421 	/*
3422 	 * If unsharing namespace, must also unshare filesystem information.
3423 	 */
3424 	if (unshare_flags & CLONE_NEWNS)
3425 		unshare_flags |= CLONE_FS;
3426 
3427 	err = check_unshare_flags(unshare_flags);
3428 	if (err)
3429 		goto bad_unshare_out;
3430 	/*
3431 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3432 	 * to a new ipc namespace, the semaphore arrays from the old
3433 	 * namespace are unreachable.
3434 	 */
3435 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3436 		do_sysvsem = 1;
3437 	err = unshare_fs(unshare_flags, &new_fs);
3438 	if (err)
3439 		goto bad_unshare_out;
3440 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3441 	if (err)
3442 		goto bad_unshare_cleanup_fs;
3443 	err = unshare_userns(unshare_flags, &new_cred);
3444 	if (err)
3445 		goto bad_unshare_cleanup_fd;
3446 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3447 					 new_cred, new_fs);
3448 	if (err)
3449 		goto bad_unshare_cleanup_cred;
3450 
3451 	if (new_cred) {
3452 		err = set_cred_ucounts(new_cred);
3453 		if (err)
3454 			goto bad_unshare_cleanup_cred;
3455 	}
3456 
3457 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3458 		if (do_sysvsem) {
3459 			/*
3460 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3461 			 */
3462 			exit_sem(current);
3463 		}
3464 		if (unshare_flags & CLONE_NEWIPC) {
3465 			/* Orphan segments in old ns (see sem above). */
3466 			exit_shm(current);
3467 			shm_init_task(current);
3468 		}
3469 
3470 		if (new_nsproxy)
3471 			switch_task_namespaces(current, new_nsproxy);
3472 
3473 		task_lock(current);
3474 
3475 		if (new_fs) {
3476 			fs = current->fs;
3477 			spin_lock(&fs->lock);
3478 			current->fs = new_fs;
3479 			if (--fs->users)
3480 				new_fs = NULL;
3481 			else
3482 				new_fs = fs;
3483 			spin_unlock(&fs->lock);
3484 		}
3485 
3486 		if (new_fd)
3487 			swap(current->files, new_fd);
3488 
3489 		task_unlock(current);
3490 
3491 		if (new_cred) {
3492 			/* Install the new user namespace */
3493 			commit_creds(new_cred);
3494 			new_cred = NULL;
3495 		}
3496 	}
3497 
3498 	perf_event_namespaces(current);
3499 
3500 bad_unshare_cleanup_cred:
3501 	if (new_cred)
3502 		put_cred(new_cred);
3503 bad_unshare_cleanup_fd:
3504 	if (new_fd)
3505 		put_files_struct(new_fd);
3506 
3507 bad_unshare_cleanup_fs:
3508 	if (new_fs)
3509 		free_fs_struct(new_fs);
3510 
3511 bad_unshare_out:
3512 	return err;
3513 }
3514 
3515 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3516 {
3517 	return ksys_unshare(unshare_flags);
3518 }
3519 
3520 /*
3521  *	Helper to unshare the files of the current task.
3522  *	We don't want to expose copy_files internals to
3523  *	the exec layer of the kernel.
3524  */
3525 
3526 int unshare_files(void)
3527 {
3528 	struct task_struct *task = current;
3529 	struct files_struct *old, *copy = NULL;
3530 	int error;
3531 
3532 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3533 	if (error || !copy)
3534 		return error;
3535 
3536 	old = task->files;
3537 	task_lock(task);
3538 	task->files = copy;
3539 	task_unlock(task);
3540 	put_files_struct(old);
3541 	return 0;
3542 }
3543 
3544 int sysctl_max_threads(struct ctl_table *table, int write,
3545 		       void *buffer, size_t *lenp, loff_t *ppos)
3546 {
3547 	struct ctl_table t;
3548 	int ret;
3549 	int threads = max_threads;
3550 	int min = 1;
3551 	int max = MAX_THREADS;
3552 
3553 	t = *table;
3554 	t.data = &threads;
3555 	t.extra1 = &min;
3556 	t.extra2 = &max;
3557 
3558 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3559 	if (ret || !write)
3560 		return ret;
3561 
3562 	max_threads = threads;
3563 
3564 	return 0;
3565 }
3566