xref: /openbmc/linux/kernel/fork.c (revision 19d0070a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 			mod_memcg_page_state(vm->pages[i],
281 					     MEMCG_KERNEL_STACK_KB,
282 					     -(int)(PAGE_SIZE / 1024));
283 
284 			memcg_kmem_uncharge_page(vm->pages[i], 0);
285 		}
286 
287 		for (i = 0; i < NR_CACHED_STACKS; i++) {
288 			if (this_cpu_cmpxchg(cached_stacks[i],
289 					NULL, tsk->stack_vm_area) != NULL)
290 				continue;
291 
292 			return;
293 		}
294 
295 		vfree_atomic(tsk->stack);
296 		return;
297 	}
298 #endif
299 
300 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304 
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 						  int node)
307 {
308 	unsigned long *stack;
309 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 	tsk->stack = stack;
311 	return stack;
312 }
313 
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 	kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318 
319 void thread_stack_cache_init(void)
320 {
321 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 					THREAD_SIZE, THREAD_SIZE, 0, 0,
323 					THREAD_SIZE, NULL);
324 	BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328 
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331 
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334 
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337 
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340 
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343 
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346 
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 	struct vm_area_struct *vma;
350 
351 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 	if (vma)
353 		vma_init(vma, mm);
354 	return vma;
355 }
356 
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 
361 	if (new) {
362 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
363 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
364 		/*
365 		 * orig->shared.rb may be modified concurrently, but the clone
366 		 * will be reinitialized.
367 		 */
368 		*new = data_race(*orig);
369 		INIT_LIST_HEAD(&new->anon_vma_chain);
370 		new->vm_next = new->vm_prev = NULL;
371 	}
372 	return new;
373 }
374 
375 void vm_area_free(struct vm_area_struct *vma)
376 {
377 	kmem_cache_free(vm_area_cachep, vma);
378 }
379 
380 static void account_kernel_stack(struct task_struct *tsk, int account)
381 {
382 	void *stack = task_stack_page(tsk);
383 	struct vm_struct *vm = task_stack_vm_area(tsk);
384 
385 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
386 
387 	if (vm) {
388 		int i;
389 
390 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
391 
392 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
393 			mod_zone_page_state(page_zone(vm->pages[i]),
394 					    NR_KERNEL_STACK_KB,
395 					    PAGE_SIZE / 1024 * account);
396 		}
397 	} else {
398 		/*
399 		 * All stack pages are in the same zone and belong to the
400 		 * same memcg.
401 		 */
402 		struct page *first_page = virt_to_page(stack);
403 
404 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
405 				    THREAD_SIZE / 1024 * account);
406 
407 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
408 				    account * (THREAD_SIZE / 1024));
409 	}
410 }
411 
412 static int memcg_charge_kernel_stack(struct task_struct *tsk)
413 {
414 #ifdef CONFIG_VMAP_STACK
415 	struct vm_struct *vm = task_stack_vm_area(tsk);
416 	int ret;
417 
418 	if (vm) {
419 		int i;
420 
421 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
422 			/*
423 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
424 			 * pointer is NULL, and both memcg_kmem_uncharge_page()
425 			 * and mod_memcg_page_state() in free_thread_stack()
426 			 * will ignore this page. So it's safe.
427 			 */
428 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
429 						     0);
430 			if (ret)
431 				return ret;
432 
433 			mod_memcg_page_state(vm->pages[i],
434 					     MEMCG_KERNEL_STACK_KB,
435 					     PAGE_SIZE / 1024);
436 		}
437 	}
438 #endif
439 	return 0;
440 }
441 
442 static void release_task_stack(struct task_struct *tsk)
443 {
444 	if (WARN_ON(tsk->state != TASK_DEAD))
445 		return;  /* Better to leak the stack than to free prematurely */
446 
447 	account_kernel_stack(tsk, -1);
448 	free_thread_stack(tsk);
449 	tsk->stack = NULL;
450 #ifdef CONFIG_VMAP_STACK
451 	tsk->stack_vm_area = NULL;
452 #endif
453 }
454 
455 #ifdef CONFIG_THREAD_INFO_IN_TASK
456 void put_task_stack(struct task_struct *tsk)
457 {
458 	if (refcount_dec_and_test(&tsk->stack_refcount))
459 		release_task_stack(tsk);
460 }
461 #endif
462 
463 void free_task(struct task_struct *tsk)
464 {
465 	scs_release(tsk);
466 
467 #ifndef CONFIG_THREAD_INFO_IN_TASK
468 	/*
469 	 * The task is finally done with both the stack and thread_info,
470 	 * so free both.
471 	 */
472 	release_task_stack(tsk);
473 #else
474 	/*
475 	 * If the task had a separate stack allocation, it should be gone
476 	 * by now.
477 	 */
478 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
479 #endif
480 	rt_mutex_debug_task_free(tsk);
481 	ftrace_graph_exit_task(tsk);
482 	arch_release_task_struct(tsk);
483 	if (tsk->flags & PF_KTHREAD)
484 		free_kthread_struct(tsk);
485 	free_task_struct(tsk);
486 }
487 EXPORT_SYMBOL(free_task);
488 
489 #ifdef CONFIG_MMU
490 static __latent_entropy int dup_mmap(struct mm_struct *mm,
491 					struct mm_struct *oldmm)
492 {
493 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
494 	struct rb_node **rb_link, *rb_parent;
495 	int retval;
496 	unsigned long charge;
497 	LIST_HEAD(uf);
498 
499 	uprobe_start_dup_mmap();
500 	if (mmap_write_lock_killable(oldmm)) {
501 		retval = -EINTR;
502 		goto fail_uprobe_end;
503 	}
504 	flush_cache_dup_mm(oldmm);
505 	uprobe_dup_mmap(oldmm, mm);
506 	/*
507 	 * Not linked in yet - no deadlock potential:
508 	 */
509 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
510 
511 	/* No ordering required: file already has been exposed. */
512 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
513 
514 	mm->total_vm = oldmm->total_vm;
515 	mm->data_vm = oldmm->data_vm;
516 	mm->exec_vm = oldmm->exec_vm;
517 	mm->stack_vm = oldmm->stack_vm;
518 
519 	rb_link = &mm->mm_rb.rb_node;
520 	rb_parent = NULL;
521 	pprev = &mm->mmap;
522 	retval = ksm_fork(mm, oldmm);
523 	if (retval)
524 		goto out;
525 	retval = khugepaged_fork(mm, oldmm);
526 	if (retval)
527 		goto out;
528 
529 	prev = NULL;
530 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
531 		struct file *file;
532 
533 		if (mpnt->vm_flags & VM_DONTCOPY) {
534 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
535 			continue;
536 		}
537 		charge = 0;
538 		/*
539 		 * Don't duplicate many vmas if we've been oom-killed (for
540 		 * example)
541 		 */
542 		if (fatal_signal_pending(current)) {
543 			retval = -EINTR;
544 			goto out;
545 		}
546 		if (mpnt->vm_flags & VM_ACCOUNT) {
547 			unsigned long len = vma_pages(mpnt);
548 
549 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
550 				goto fail_nomem;
551 			charge = len;
552 		}
553 		tmp = vm_area_dup(mpnt);
554 		if (!tmp)
555 			goto fail_nomem;
556 		retval = vma_dup_policy(mpnt, tmp);
557 		if (retval)
558 			goto fail_nomem_policy;
559 		tmp->vm_mm = mm;
560 		retval = dup_userfaultfd(tmp, &uf);
561 		if (retval)
562 			goto fail_nomem_anon_vma_fork;
563 		if (tmp->vm_flags & VM_WIPEONFORK) {
564 			/*
565 			 * VM_WIPEONFORK gets a clean slate in the child.
566 			 * Don't prepare anon_vma until fault since we don't
567 			 * copy page for current vma.
568 			 */
569 			tmp->anon_vma = NULL;
570 		} else if (anon_vma_fork(tmp, mpnt))
571 			goto fail_nomem_anon_vma_fork;
572 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
573 		file = tmp->vm_file;
574 		if (file) {
575 			struct inode *inode = file_inode(file);
576 			struct address_space *mapping = file->f_mapping;
577 
578 			get_file(file);
579 			if (tmp->vm_flags & VM_DENYWRITE)
580 				atomic_dec(&inode->i_writecount);
581 			i_mmap_lock_write(mapping);
582 			if (tmp->vm_flags & VM_SHARED)
583 				atomic_inc(&mapping->i_mmap_writable);
584 			flush_dcache_mmap_lock(mapping);
585 			/* insert tmp into the share list, just after mpnt */
586 			vma_interval_tree_insert_after(tmp, mpnt,
587 					&mapping->i_mmap);
588 			flush_dcache_mmap_unlock(mapping);
589 			i_mmap_unlock_write(mapping);
590 		}
591 
592 		/*
593 		 * Clear hugetlb-related page reserves for children. This only
594 		 * affects MAP_PRIVATE mappings. Faults generated by the child
595 		 * are not guaranteed to succeed, even if read-only
596 		 */
597 		if (is_vm_hugetlb_page(tmp))
598 			reset_vma_resv_huge_pages(tmp);
599 
600 		/*
601 		 * Link in the new vma and copy the page table entries.
602 		 */
603 		*pprev = tmp;
604 		pprev = &tmp->vm_next;
605 		tmp->vm_prev = prev;
606 		prev = tmp;
607 
608 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
609 		rb_link = &tmp->vm_rb.rb_right;
610 		rb_parent = &tmp->vm_rb;
611 
612 		mm->map_count++;
613 		if (!(tmp->vm_flags & VM_WIPEONFORK))
614 			retval = copy_page_range(mm, oldmm, mpnt);
615 
616 		if (tmp->vm_ops && tmp->vm_ops->open)
617 			tmp->vm_ops->open(tmp);
618 
619 		if (retval)
620 			goto out;
621 	}
622 	/* a new mm has just been created */
623 	retval = arch_dup_mmap(oldmm, mm);
624 out:
625 	mmap_write_unlock(mm);
626 	flush_tlb_mm(oldmm);
627 	mmap_write_unlock(oldmm);
628 	dup_userfaultfd_complete(&uf);
629 fail_uprobe_end:
630 	uprobe_end_dup_mmap();
631 	return retval;
632 fail_nomem_anon_vma_fork:
633 	mpol_put(vma_policy(tmp));
634 fail_nomem_policy:
635 	vm_area_free(tmp);
636 fail_nomem:
637 	retval = -ENOMEM;
638 	vm_unacct_memory(charge);
639 	goto out;
640 }
641 
642 static inline int mm_alloc_pgd(struct mm_struct *mm)
643 {
644 	mm->pgd = pgd_alloc(mm);
645 	if (unlikely(!mm->pgd))
646 		return -ENOMEM;
647 	return 0;
648 }
649 
650 static inline void mm_free_pgd(struct mm_struct *mm)
651 {
652 	pgd_free(mm, mm->pgd);
653 }
654 #else
655 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
656 {
657 	mmap_write_lock(oldmm);
658 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
659 	mmap_write_unlock(oldmm);
660 	return 0;
661 }
662 #define mm_alloc_pgd(mm)	(0)
663 #define mm_free_pgd(mm)
664 #endif /* CONFIG_MMU */
665 
666 static void check_mm(struct mm_struct *mm)
667 {
668 	int i;
669 
670 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
671 			 "Please make sure 'struct resident_page_types[]' is updated as well");
672 
673 	for (i = 0; i < NR_MM_COUNTERS; i++) {
674 		long x = atomic_long_read(&mm->rss_stat.count[i]);
675 
676 		if (unlikely(x))
677 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
678 				 mm, resident_page_types[i], x);
679 	}
680 
681 	if (mm_pgtables_bytes(mm))
682 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
683 				mm_pgtables_bytes(mm));
684 
685 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
686 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
687 #endif
688 }
689 
690 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
691 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
692 
693 /*
694  * Called when the last reference to the mm
695  * is dropped: either by a lazy thread or by
696  * mmput. Free the page directory and the mm.
697  */
698 void __mmdrop(struct mm_struct *mm)
699 {
700 	BUG_ON(mm == &init_mm);
701 	WARN_ON_ONCE(mm == current->mm);
702 	WARN_ON_ONCE(mm == current->active_mm);
703 	mm_free_pgd(mm);
704 	destroy_context(mm);
705 	mmu_notifier_subscriptions_destroy(mm);
706 	check_mm(mm);
707 	put_user_ns(mm->user_ns);
708 	free_mm(mm);
709 }
710 EXPORT_SYMBOL_GPL(__mmdrop);
711 
712 static void mmdrop_async_fn(struct work_struct *work)
713 {
714 	struct mm_struct *mm;
715 
716 	mm = container_of(work, struct mm_struct, async_put_work);
717 	__mmdrop(mm);
718 }
719 
720 static void mmdrop_async(struct mm_struct *mm)
721 {
722 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
723 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
724 		schedule_work(&mm->async_put_work);
725 	}
726 }
727 
728 static inline void free_signal_struct(struct signal_struct *sig)
729 {
730 	taskstats_tgid_free(sig);
731 	sched_autogroup_exit(sig);
732 	/*
733 	 * __mmdrop is not safe to call from softirq context on x86 due to
734 	 * pgd_dtor so postpone it to the async context
735 	 */
736 	if (sig->oom_mm)
737 		mmdrop_async(sig->oom_mm);
738 	kmem_cache_free(signal_cachep, sig);
739 }
740 
741 static inline void put_signal_struct(struct signal_struct *sig)
742 {
743 	if (refcount_dec_and_test(&sig->sigcnt))
744 		free_signal_struct(sig);
745 }
746 
747 void __put_task_struct(struct task_struct *tsk)
748 {
749 	WARN_ON(!tsk->exit_state);
750 	WARN_ON(refcount_read(&tsk->usage));
751 	WARN_ON(tsk == current);
752 
753 	cgroup_free(tsk);
754 	task_numa_free(tsk, true);
755 	security_task_free(tsk);
756 	exit_creds(tsk);
757 	delayacct_tsk_free(tsk);
758 	put_signal_struct(tsk->signal);
759 
760 	if (!profile_handoff_task(tsk))
761 		free_task(tsk);
762 }
763 EXPORT_SYMBOL_GPL(__put_task_struct);
764 
765 void __init __weak arch_task_cache_init(void) { }
766 
767 /*
768  * set_max_threads
769  */
770 static void set_max_threads(unsigned int max_threads_suggested)
771 {
772 	u64 threads;
773 	unsigned long nr_pages = totalram_pages();
774 
775 	/*
776 	 * The number of threads shall be limited such that the thread
777 	 * structures may only consume a small part of the available memory.
778 	 */
779 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
780 		threads = MAX_THREADS;
781 	else
782 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
783 				    (u64) THREAD_SIZE * 8UL);
784 
785 	if (threads > max_threads_suggested)
786 		threads = max_threads_suggested;
787 
788 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
789 }
790 
791 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
792 /* Initialized by the architecture: */
793 int arch_task_struct_size __read_mostly;
794 #endif
795 
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
798 {
799 	/* Fetch thread_struct whitelist for the architecture. */
800 	arch_thread_struct_whitelist(offset, size);
801 
802 	/*
803 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
804 	 * adjust offset to position of thread_struct in task_struct.
805 	 */
806 	if (unlikely(*size == 0))
807 		*offset = 0;
808 	else
809 		*offset += offsetof(struct task_struct, thread);
810 }
811 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
812 
813 void __init fork_init(void)
814 {
815 	int i;
816 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
817 #ifndef ARCH_MIN_TASKALIGN
818 #define ARCH_MIN_TASKALIGN	0
819 #endif
820 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
821 	unsigned long useroffset, usersize;
822 
823 	/* create a slab on which task_structs can be allocated */
824 	task_struct_whitelist(&useroffset, &usersize);
825 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
826 			arch_task_struct_size, align,
827 			SLAB_PANIC|SLAB_ACCOUNT,
828 			useroffset, usersize, NULL);
829 #endif
830 
831 	/* do the arch specific task caches init */
832 	arch_task_cache_init();
833 
834 	set_max_threads(MAX_THREADS);
835 
836 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
837 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
838 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
839 		init_task.signal->rlim[RLIMIT_NPROC];
840 
841 	for (i = 0; i < UCOUNT_COUNTS; i++) {
842 		init_user_ns.ucount_max[i] = max_threads/2;
843 	}
844 
845 #ifdef CONFIG_VMAP_STACK
846 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
847 			  NULL, free_vm_stack_cache);
848 #endif
849 
850 	scs_init();
851 
852 	lockdep_init_task(&init_task);
853 	uprobes_init();
854 }
855 
856 int __weak arch_dup_task_struct(struct task_struct *dst,
857 					       struct task_struct *src)
858 {
859 	*dst = *src;
860 	return 0;
861 }
862 
863 void set_task_stack_end_magic(struct task_struct *tsk)
864 {
865 	unsigned long *stackend;
866 
867 	stackend = end_of_stack(tsk);
868 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
869 }
870 
871 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
872 {
873 	struct task_struct *tsk;
874 	unsigned long *stack;
875 	struct vm_struct *stack_vm_area __maybe_unused;
876 	int err;
877 
878 	if (node == NUMA_NO_NODE)
879 		node = tsk_fork_get_node(orig);
880 	tsk = alloc_task_struct_node(node);
881 	if (!tsk)
882 		return NULL;
883 
884 	stack = alloc_thread_stack_node(tsk, node);
885 	if (!stack)
886 		goto free_tsk;
887 
888 	if (memcg_charge_kernel_stack(tsk))
889 		goto free_stack;
890 
891 	stack_vm_area = task_stack_vm_area(tsk);
892 
893 	err = arch_dup_task_struct(tsk, orig);
894 
895 	/*
896 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
897 	 * sure they're properly initialized before using any stack-related
898 	 * functions again.
899 	 */
900 	tsk->stack = stack;
901 #ifdef CONFIG_VMAP_STACK
902 	tsk->stack_vm_area = stack_vm_area;
903 #endif
904 #ifdef CONFIG_THREAD_INFO_IN_TASK
905 	refcount_set(&tsk->stack_refcount, 1);
906 #endif
907 
908 	if (err)
909 		goto free_stack;
910 
911 	err = scs_prepare(tsk, node);
912 	if (err)
913 		goto free_stack;
914 
915 #ifdef CONFIG_SECCOMP
916 	/*
917 	 * We must handle setting up seccomp filters once we're under
918 	 * the sighand lock in case orig has changed between now and
919 	 * then. Until then, filter must be NULL to avoid messing up
920 	 * the usage counts on the error path calling free_task.
921 	 */
922 	tsk->seccomp.filter = NULL;
923 #endif
924 
925 	setup_thread_stack(tsk, orig);
926 	clear_user_return_notifier(tsk);
927 	clear_tsk_need_resched(tsk);
928 	set_task_stack_end_magic(tsk);
929 
930 #ifdef CONFIG_STACKPROTECTOR
931 	tsk->stack_canary = get_random_canary();
932 #endif
933 	if (orig->cpus_ptr == &orig->cpus_mask)
934 		tsk->cpus_ptr = &tsk->cpus_mask;
935 
936 	/*
937 	 * One for the user space visible state that goes away when reaped.
938 	 * One for the scheduler.
939 	 */
940 	refcount_set(&tsk->rcu_users, 2);
941 	/* One for the rcu users */
942 	refcount_set(&tsk->usage, 1);
943 #ifdef CONFIG_BLK_DEV_IO_TRACE
944 	tsk->btrace_seq = 0;
945 #endif
946 	tsk->splice_pipe = NULL;
947 	tsk->task_frag.page = NULL;
948 	tsk->wake_q.next = NULL;
949 
950 	account_kernel_stack(tsk, 1);
951 
952 	kcov_task_init(tsk);
953 
954 #ifdef CONFIG_FAULT_INJECTION
955 	tsk->fail_nth = 0;
956 #endif
957 
958 #ifdef CONFIG_BLK_CGROUP
959 	tsk->throttle_queue = NULL;
960 	tsk->use_memdelay = 0;
961 #endif
962 
963 #ifdef CONFIG_MEMCG
964 	tsk->active_memcg = NULL;
965 #endif
966 	return tsk;
967 
968 free_stack:
969 	free_thread_stack(tsk);
970 free_tsk:
971 	free_task_struct(tsk);
972 	return NULL;
973 }
974 
975 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
976 
977 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
978 
979 static int __init coredump_filter_setup(char *s)
980 {
981 	default_dump_filter =
982 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
983 		MMF_DUMP_FILTER_MASK;
984 	return 1;
985 }
986 
987 __setup("coredump_filter=", coredump_filter_setup);
988 
989 #include <linux/init_task.h>
990 
991 static void mm_init_aio(struct mm_struct *mm)
992 {
993 #ifdef CONFIG_AIO
994 	spin_lock_init(&mm->ioctx_lock);
995 	mm->ioctx_table = NULL;
996 #endif
997 }
998 
999 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1000 					   struct task_struct *p)
1001 {
1002 #ifdef CONFIG_MEMCG
1003 	if (mm->owner == p)
1004 		WRITE_ONCE(mm->owner, NULL);
1005 #endif
1006 }
1007 
1008 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1009 {
1010 #ifdef CONFIG_MEMCG
1011 	mm->owner = p;
1012 #endif
1013 }
1014 
1015 static void mm_init_uprobes_state(struct mm_struct *mm)
1016 {
1017 #ifdef CONFIG_UPROBES
1018 	mm->uprobes_state.xol_area = NULL;
1019 #endif
1020 }
1021 
1022 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1023 	struct user_namespace *user_ns)
1024 {
1025 	mm->mmap = NULL;
1026 	mm->mm_rb = RB_ROOT;
1027 	mm->vmacache_seqnum = 0;
1028 	atomic_set(&mm->mm_users, 1);
1029 	atomic_set(&mm->mm_count, 1);
1030 	mmap_init_lock(mm);
1031 	INIT_LIST_HEAD(&mm->mmlist);
1032 	mm->core_state = NULL;
1033 	mm_pgtables_bytes_init(mm);
1034 	mm->map_count = 0;
1035 	mm->locked_vm = 0;
1036 	atomic64_set(&mm->pinned_vm, 0);
1037 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1038 	spin_lock_init(&mm->page_table_lock);
1039 	spin_lock_init(&mm->arg_lock);
1040 	mm_init_cpumask(mm);
1041 	mm_init_aio(mm);
1042 	mm_init_owner(mm, p);
1043 	RCU_INIT_POINTER(mm->exe_file, NULL);
1044 	mmu_notifier_subscriptions_init(mm);
1045 	init_tlb_flush_pending(mm);
1046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1047 	mm->pmd_huge_pte = NULL;
1048 #endif
1049 	mm_init_uprobes_state(mm);
1050 
1051 	if (current->mm) {
1052 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1053 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1054 	} else {
1055 		mm->flags = default_dump_filter;
1056 		mm->def_flags = 0;
1057 	}
1058 
1059 	if (mm_alloc_pgd(mm))
1060 		goto fail_nopgd;
1061 
1062 	if (init_new_context(p, mm))
1063 		goto fail_nocontext;
1064 
1065 	mm->user_ns = get_user_ns(user_ns);
1066 	return mm;
1067 
1068 fail_nocontext:
1069 	mm_free_pgd(mm);
1070 fail_nopgd:
1071 	free_mm(mm);
1072 	return NULL;
1073 }
1074 
1075 /*
1076  * Allocate and initialize an mm_struct.
1077  */
1078 struct mm_struct *mm_alloc(void)
1079 {
1080 	struct mm_struct *mm;
1081 
1082 	mm = allocate_mm();
1083 	if (!mm)
1084 		return NULL;
1085 
1086 	memset(mm, 0, sizeof(*mm));
1087 	return mm_init(mm, current, current_user_ns());
1088 }
1089 
1090 static inline void __mmput(struct mm_struct *mm)
1091 {
1092 	VM_BUG_ON(atomic_read(&mm->mm_users));
1093 
1094 	uprobe_clear_state(mm);
1095 	exit_aio(mm);
1096 	ksm_exit(mm);
1097 	khugepaged_exit(mm); /* must run before exit_mmap */
1098 	exit_mmap(mm);
1099 	mm_put_huge_zero_page(mm);
1100 	set_mm_exe_file(mm, NULL);
1101 	if (!list_empty(&mm->mmlist)) {
1102 		spin_lock(&mmlist_lock);
1103 		list_del(&mm->mmlist);
1104 		spin_unlock(&mmlist_lock);
1105 	}
1106 	if (mm->binfmt)
1107 		module_put(mm->binfmt->module);
1108 	mmdrop(mm);
1109 }
1110 
1111 /*
1112  * Decrement the use count and release all resources for an mm.
1113  */
1114 void mmput(struct mm_struct *mm)
1115 {
1116 	might_sleep();
1117 
1118 	if (atomic_dec_and_test(&mm->mm_users))
1119 		__mmput(mm);
1120 }
1121 EXPORT_SYMBOL_GPL(mmput);
1122 
1123 #ifdef CONFIG_MMU
1124 static void mmput_async_fn(struct work_struct *work)
1125 {
1126 	struct mm_struct *mm = container_of(work, struct mm_struct,
1127 					    async_put_work);
1128 
1129 	__mmput(mm);
1130 }
1131 
1132 void mmput_async(struct mm_struct *mm)
1133 {
1134 	if (atomic_dec_and_test(&mm->mm_users)) {
1135 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1136 		schedule_work(&mm->async_put_work);
1137 	}
1138 }
1139 #endif
1140 
1141 /**
1142  * set_mm_exe_file - change a reference to the mm's executable file
1143  *
1144  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1145  *
1146  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1147  * invocations: in mmput() nobody alive left, in execve task is single
1148  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1149  * mm->exe_file, but does so without using set_mm_exe_file() in order
1150  * to do avoid the need for any locks.
1151  */
1152 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1153 {
1154 	struct file *old_exe_file;
1155 
1156 	/*
1157 	 * It is safe to dereference the exe_file without RCU as
1158 	 * this function is only called if nobody else can access
1159 	 * this mm -- see comment above for justification.
1160 	 */
1161 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1162 
1163 	if (new_exe_file)
1164 		get_file(new_exe_file);
1165 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1166 	if (old_exe_file)
1167 		fput(old_exe_file);
1168 }
1169 
1170 /**
1171  * get_mm_exe_file - acquire a reference to the mm's executable file
1172  *
1173  * Returns %NULL if mm has no associated executable file.
1174  * User must release file via fput().
1175  */
1176 struct file *get_mm_exe_file(struct mm_struct *mm)
1177 {
1178 	struct file *exe_file;
1179 
1180 	rcu_read_lock();
1181 	exe_file = rcu_dereference(mm->exe_file);
1182 	if (exe_file && !get_file_rcu(exe_file))
1183 		exe_file = NULL;
1184 	rcu_read_unlock();
1185 	return exe_file;
1186 }
1187 EXPORT_SYMBOL(get_mm_exe_file);
1188 
1189 /**
1190  * get_task_exe_file - acquire a reference to the task's executable file
1191  *
1192  * Returns %NULL if task's mm (if any) has no associated executable file or
1193  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1194  * User must release file via fput().
1195  */
1196 struct file *get_task_exe_file(struct task_struct *task)
1197 {
1198 	struct file *exe_file = NULL;
1199 	struct mm_struct *mm;
1200 
1201 	task_lock(task);
1202 	mm = task->mm;
1203 	if (mm) {
1204 		if (!(task->flags & PF_KTHREAD))
1205 			exe_file = get_mm_exe_file(mm);
1206 	}
1207 	task_unlock(task);
1208 	return exe_file;
1209 }
1210 EXPORT_SYMBOL(get_task_exe_file);
1211 
1212 /**
1213  * get_task_mm - acquire a reference to the task's mm
1214  *
1215  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1216  * this kernel workthread has transiently adopted a user mm with use_mm,
1217  * to do its AIO) is not set and if so returns a reference to it, after
1218  * bumping up the use count.  User must release the mm via mmput()
1219  * after use.  Typically used by /proc and ptrace.
1220  */
1221 struct mm_struct *get_task_mm(struct task_struct *task)
1222 {
1223 	struct mm_struct *mm;
1224 
1225 	task_lock(task);
1226 	mm = task->mm;
1227 	if (mm) {
1228 		if (task->flags & PF_KTHREAD)
1229 			mm = NULL;
1230 		else
1231 			mmget(mm);
1232 	}
1233 	task_unlock(task);
1234 	return mm;
1235 }
1236 EXPORT_SYMBOL_GPL(get_task_mm);
1237 
1238 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1239 {
1240 	struct mm_struct *mm;
1241 	int err;
1242 
1243 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1244 	if (err)
1245 		return ERR_PTR(err);
1246 
1247 	mm = get_task_mm(task);
1248 	if (mm && mm != current->mm &&
1249 			!ptrace_may_access(task, mode)) {
1250 		mmput(mm);
1251 		mm = ERR_PTR(-EACCES);
1252 	}
1253 	mutex_unlock(&task->signal->exec_update_mutex);
1254 
1255 	return mm;
1256 }
1257 
1258 static void complete_vfork_done(struct task_struct *tsk)
1259 {
1260 	struct completion *vfork;
1261 
1262 	task_lock(tsk);
1263 	vfork = tsk->vfork_done;
1264 	if (likely(vfork)) {
1265 		tsk->vfork_done = NULL;
1266 		complete(vfork);
1267 	}
1268 	task_unlock(tsk);
1269 }
1270 
1271 static int wait_for_vfork_done(struct task_struct *child,
1272 				struct completion *vfork)
1273 {
1274 	int killed;
1275 
1276 	freezer_do_not_count();
1277 	cgroup_enter_frozen();
1278 	killed = wait_for_completion_killable(vfork);
1279 	cgroup_leave_frozen(false);
1280 	freezer_count();
1281 
1282 	if (killed) {
1283 		task_lock(child);
1284 		child->vfork_done = NULL;
1285 		task_unlock(child);
1286 	}
1287 
1288 	put_task_struct(child);
1289 	return killed;
1290 }
1291 
1292 /* Please note the differences between mmput and mm_release.
1293  * mmput is called whenever we stop holding onto a mm_struct,
1294  * error success whatever.
1295  *
1296  * mm_release is called after a mm_struct has been removed
1297  * from the current process.
1298  *
1299  * This difference is important for error handling, when we
1300  * only half set up a mm_struct for a new process and need to restore
1301  * the old one.  Because we mmput the new mm_struct before
1302  * restoring the old one. . .
1303  * Eric Biederman 10 January 1998
1304  */
1305 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1306 {
1307 	uprobe_free_utask(tsk);
1308 
1309 	/* Get rid of any cached register state */
1310 	deactivate_mm(tsk, mm);
1311 
1312 	/*
1313 	 * Signal userspace if we're not exiting with a core dump
1314 	 * because we want to leave the value intact for debugging
1315 	 * purposes.
1316 	 */
1317 	if (tsk->clear_child_tid) {
1318 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1319 		    atomic_read(&mm->mm_users) > 1) {
1320 			/*
1321 			 * We don't check the error code - if userspace has
1322 			 * not set up a proper pointer then tough luck.
1323 			 */
1324 			put_user(0, tsk->clear_child_tid);
1325 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1326 					1, NULL, NULL, 0, 0);
1327 		}
1328 		tsk->clear_child_tid = NULL;
1329 	}
1330 
1331 	/*
1332 	 * All done, finally we can wake up parent and return this mm to him.
1333 	 * Also kthread_stop() uses this completion for synchronization.
1334 	 */
1335 	if (tsk->vfork_done)
1336 		complete_vfork_done(tsk);
1337 }
1338 
1339 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1340 {
1341 	futex_exit_release(tsk);
1342 	mm_release(tsk, mm);
1343 }
1344 
1345 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1346 {
1347 	futex_exec_release(tsk);
1348 	mm_release(tsk, mm);
1349 }
1350 
1351 /**
1352  * dup_mm() - duplicates an existing mm structure
1353  * @tsk: the task_struct with which the new mm will be associated.
1354  * @oldmm: the mm to duplicate.
1355  *
1356  * Allocates a new mm structure and duplicates the provided @oldmm structure
1357  * content into it.
1358  *
1359  * Return: the duplicated mm or NULL on failure.
1360  */
1361 static struct mm_struct *dup_mm(struct task_struct *tsk,
1362 				struct mm_struct *oldmm)
1363 {
1364 	struct mm_struct *mm;
1365 	int err;
1366 
1367 	mm = allocate_mm();
1368 	if (!mm)
1369 		goto fail_nomem;
1370 
1371 	memcpy(mm, oldmm, sizeof(*mm));
1372 
1373 	if (!mm_init(mm, tsk, mm->user_ns))
1374 		goto fail_nomem;
1375 
1376 	err = dup_mmap(mm, oldmm);
1377 	if (err)
1378 		goto free_pt;
1379 
1380 	mm->hiwater_rss = get_mm_rss(mm);
1381 	mm->hiwater_vm = mm->total_vm;
1382 
1383 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1384 		goto free_pt;
1385 
1386 	return mm;
1387 
1388 free_pt:
1389 	/* don't put binfmt in mmput, we haven't got module yet */
1390 	mm->binfmt = NULL;
1391 	mm_init_owner(mm, NULL);
1392 	mmput(mm);
1393 
1394 fail_nomem:
1395 	return NULL;
1396 }
1397 
1398 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1399 {
1400 	struct mm_struct *mm, *oldmm;
1401 	int retval;
1402 
1403 	tsk->min_flt = tsk->maj_flt = 0;
1404 	tsk->nvcsw = tsk->nivcsw = 0;
1405 #ifdef CONFIG_DETECT_HUNG_TASK
1406 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1407 	tsk->last_switch_time = 0;
1408 #endif
1409 
1410 	tsk->mm = NULL;
1411 	tsk->active_mm = NULL;
1412 
1413 	/*
1414 	 * Are we cloning a kernel thread?
1415 	 *
1416 	 * We need to steal a active VM for that..
1417 	 */
1418 	oldmm = current->mm;
1419 	if (!oldmm)
1420 		return 0;
1421 
1422 	/* initialize the new vmacache entries */
1423 	vmacache_flush(tsk);
1424 
1425 	if (clone_flags & CLONE_VM) {
1426 		mmget(oldmm);
1427 		mm = oldmm;
1428 		goto good_mm;
1429 	}
1430 
1431 	retval = -ENOMEM;
1432 	mm = dup_mm(tsk, current->mm);
1433 	if (!mm)
1434 		goto fail_nomem;
1435 
1436 good_mm:
1437 	tsk->mm = mm;
1438 	tsk->active_mm = mm;
1439 	return 0;
1440 
1441 fail_nomem:
1442 	return retval;
1443 }
1444 
1445 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1446 {
1447 	struct fs_struct *fs = current->fs;
1448 	if (clone_flags & CLONE_FS) {
1449 		/* tsk->fs is already what we want */
1450 		spin_lock(&fs->lock);
1451 		if (fs->in_exec) {
1452 			spin_unlock(&fs->lock);
1453 			return -EAGAIN;
1454 		}
1455 		fs->users++;
1456 		spin_unlock(&fs->lock);
1457 		return 0;
1458 	}
1459 	tsk->fs = copy_fs_struct(fs);
1460 	if (!tsk->fs)
1461 		return -ENOMEM;
1462 	return 0;
1463 }
1464 
1465 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1466 {
1467 	struct files_struct *oldf, *newf;
1468 	int error = 0;
1469 
1470 	/*
1471 	 * A background process may not have any files ...
1472 	 */
1473 	oldf = current->files;
1474 	if (!oldf)
1475 		goto out;
1476 
1477 	if (clone_flags & CLONE_FILES) {
1478 		atomic_inc(&oldf->count);
1479 		goto out;
1480 	}
1481 
1482 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1483 	if (!newf)
1484 		goto out;
1485 
1486 	tsk->files = newf;
1487 	error = 0;
1488 out:
1489 	return error;
1490 }
1491 
1492 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1493 {
1494 #ifdef CONFIG_BLOCK
1495 	struct io_context *ioc = current->io_context;
1496 	struct io_context *new_ioc;
1497 
1498 	if (!ioc)
1499 		return 0;
1500 	/*
1501 	 * Share io context with parent, if CLONE_IO is set
1502 	 */
1503 	if (clone_flags & CLONE_IO) {
1504 		ioc_task_link(ioc);
1505 		tsk->io_context = ioc;
1506 	} else if (ioprio_valid(ioc->ioprio)) {
1507 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1508 		if (unlikely(!new_ioc))
1509 			return -ENOMEM;
1510 
1511 		new_ioc->ioprio = ioc->ioprio;
1512 		put_io_context(new_ioc);
1513 	}
1514 #endif
1515 	return 0;
1516 }
1517 
1518 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1519 {
1520 	struct sighand_struct *sig;
1521 
1522 	if (clone_flags & CLONE_SIGHAND) {
1523 		refcount_inc(&current->sighand->count);
1524 		return 0;
1525 	}
1526 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1527 	RCU_INIT_POINTER(tsk->sighand, sig);
1528 	if (!sig)
1529 		return -ENOMEM;
1530 
1531 	refcount_set(&sig->count, 1);
1532 	spin_lock_irq(&current->sighand->siglock);
1533 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1534 	spin_unlock_irq(&current->sighand->siglock);
1535 
1536 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1537 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1538 		flush_signal_handlers(tsk, 0);
1539 
1540 	return 0;
1541 }
1542 
1543 void __cleanup_sighand(struct sighand_struct *sighand)
1544 {
1545 	if (refcount_dec_and_test(&sighand->count)) {
1546 		signalfd_cleanup(sighand);
1547 		/*
1548 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1549 		 * without an RCU grace period, see __lock_task_sighand().
1550 		 */
1551 		kmem_cache_free(sighand_cachep, sighand);
1552 	}
1553 }
1554 
1555 /*
1556  * Initialize POSIX timer handling for a thread group.
1557  */
1558 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1559 {
1560 	struct posix_cputimers *pct = &sig->posix_cputimers;
1561 	unsigned long cpu_limit;
1562 
1563 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1564 	posix_cputimers_group_init(pct, cpu_limit);
1565 }
1566 
1567 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1568 {
1569 	struct signal_struct *sig;
1570 
1571 	if (clone_flags & CLONE_THREAD)
1572 		return 0;
1573 
1574 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1575 	tsk->signal = sig;
1576 	if (!sig)
1577 		return -ENOMEM;
1578 
1579 	sig->nr_threads = 1;
1580 	atomic_set(&sig->live, 1);
1581 	refcount_set(&sig->sigcnt, 1);
1582 
1583 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1584 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1585 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1586 
1587 	init_waitqueue_head(&sig->wait_chldexit);
1588 	sig->curr_target = tsk;
1589 	init_sigpending(&sig->shared_pending);
1590 	INIT_HLIST_HEAD(&sig->multiprocess);
1591 	seqlock_init(&sig->stats_lock);
1592 	prev_cputime_init(&sig->prev_cputime);
1593 
1594 #ifdef CONFIG_POSIX_TIMERS
1595 	INIT_LIST_HEAD(&sig->posix_timers);
1596 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1597 	sig->real_timer.function = it_real_fn;
1598 #endif
1599 
1600 	task_lock(current->group_leader);
1601 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1602 	task_unlock(current->group_leader);
1603 
1604 	posix_cpu_timers_init_group(sig);
1605 
1606 	tty_audit_fork(sig);
1607 	sched_autogroup_fork(sig);
1608 
1609 	sig->oom_score_adj = current->signal->oom_score_adj;
1610 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1611 
1612 	mutex_init(&sig->cred_guard_mutex);
1613 	mutex_init(&sig->exec_update_mutex);
1614 
1615 	return 0;
1616 }
1617 
1618 static void copy_seccomp(struct task_struct *p)
1619 {
1620 #ifdef CONFIG_SECCOMP
1621 	/*
1622 	 * Must be called with sighand->lock held, which is common to
1623 	 * all threads in the group. Holding cred_guard_mutex is not
1624 	 * needed because this new task is not yet running and cannot
1625 	 * be racing exec.
1626 	 */
1627 	assert_spin_locked(&current->sighand->siglock);
1628 
1629 	/* Ref-count the new filter user, and assign it. */
1630 	get_seccomp_filter(current);
1631 	p->seccomp = current->seccomp;
1632 
1633 	/*
1634 	 * Explicitly enable no_new_privs here in case it got set
1635 	 * between the task_struct being duplicated and holding the
1636 	 * sighand lock. The seccomp state and nnp must be in sync.
1637 	 */
1638 	if (task_no_new_privs(current))
1639 		task_set_no_new_privs(p);
1640 
1641 	/*
1642 	 * If the parent gained a seccomp mode after copying thread
1643 	 * flags and between before we held the sighand lock, we have
1644 	 * to manually enable the seccomp thread flag here.
1645 	 */
1646 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1647 		set_tsk_thread_flag(p, TIF_SECCOMP);
1648 #endif
1649 }
1650 
1651 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1652 {
1653 	current->clear_child_tid = tidptr;
1654 
1655 	return task_pid_vnr(current);
1656 }
1657 
1658 static void rt_mutex_init_task(struct task_struct *p)
1659 {
1660 	raw_spin_lock_init(&p->pi_lock);
1661 #ifdef CONFIG_RT_MUTEXES
1662 	p->pi_waiters = RB_ROOT_CACHED;
1663 	p->pi_top_task = NULL;
1664 	p->pi_blocked_on = NULL;
1665 #endif
1666 }
1667 
1668 static inline void init_task_pid_links(struct task_struct *task)
1669 {
1670 	enum pid_type type;
1671 
1672 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1673 		INIT_HLIST_NODE(&task->pid_links[type]);
1674 	}
1675 }
1676 
1677 static inline void
1678 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1679 {
1680 	if (type == PIDTYPE_PID)
1681 		task->thread_pid = pid;
1682 	else
1683 		task->signal->pids[type] = pid;
1684 }
1685 
1686 static inline void rcu_copy_process(struct task_struct *p)
1687 {
1688 #ifdef CONFIG_PREEMPT_RCU
1689 	p->rcu_read_lock_nesting = 0;
1690 	p->rcu_read_unlock_special.s = 0;
1691 	p->rcu_blocked_node = NULL;
1692 	INIT_LIST_HEAD(&p->rcu_node_entry);
1693 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1694 #ifdef CONFIG_TASKS_RCU
1695 	p->rcu_tasks_holdout = false;
1696 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1697 	p->rcu_tasks_idle_cpu = -1;
1698 #endif /* #ifdef CONFIG_TASKS_RCU */
1699 #ifdef CONFIG_TASKS_TRACE_RCU
1700 	p->trc_reader_nesting = 0;
1701 	p->trc_reader_special.s = 0;
1702 	INIT_LIST_HEAD(&p->trc_holdout_list);
1703 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1704 }
1705 
1706 struct pid *pidfd_pid(const struct file *file)
1707 {
1708 	if (file->f_op == &pidfd_fops)
1709 		return file->private_data;
1710 
1711 	return ERR_PTR(-EBADF);
1712 }
1713 
1714 static int pidfd_release(struct inode *inode, struct file *file)
1715 {
1716 	struct pid *pid = file->private_data;
1717 
1718 	file->private_data = NULL;
1719 	put_pid(pid);
1720 	return 0;
1721 }
1722 
1723 #ifdef CONFIG_PROC_FS
1724 /**
1725  * pidfd_show_fdinfo - print information about a pidfd
1726  * @m: proc fdinfo file
1727  * @f: file referencing a pidfd
1728  *
1729  * Pid:
1730  * This function will print the pid that a given pidfd refers to in the
1731  * pid namespace of the procfs instance.
1732  * If the pid namespace of the process is not a descendant of the pid
1733  * namespace of the procfs instance 0 will be shown as its pid. This is
1734  * similar to calling getppid() on a process whose parent is outside of
1735  * its pid namespace.
1736  *
1737  * NSpid:
1738  * If pid namespaces are supported then this function will also print
1739  * the pid of a given pidfd refers to for all descendant pid namespaces
1740  * starting from the current pid namespace of the instance, i.e. the
1741  * Pid field and the first entry in the NSpid field will be identical.
1742  * If the pid namespace of the process is not a descendant of the pid
1743  * namespace of the procfs instance 0 will be shown as its first NSpid
1744  * entry and no others will be shown.
1745  * Note that this differs from the Pid and NSpid fields in
1746  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1747  * the  pid namespace of the procfs instance. The difference becomes
1748  * obvious when sending around a pidfd between pid namespaces from a
1749  * different branch of the tree, i.e. where no ancestoral relation is
1750  * present between the pid namespaces:
1751  * - create two new pid namespaces ns1 and ns2 in the initial pid
1752  *   namespace (also take care to create new mount namespaces in the
1753  *   new pid namespace and mount procfs)
1754  * - create a process with a pidfd in ns1
1755  * - send pidfd from ns1 to ns2
1756  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1757  *   have exactly one entry, which is 0
1758  */
1759 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1760 {
1761 	struct pid *pid = f->private_data;
1762 	struct pid_namespace *ns;
1763 	pid_t nr = -1;
1764 
1765 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1766 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1767 		nr = pid_nr_ns(pid, ns);
1768 	}
1769 
1770 	seq_put_decimal_ll(m, "Pid:\t", nr);
1771 
1772 #ifdef CONFIG_PID_NS
1773 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1774 	if (nr > 0) {
1775 		int i;
1776 
1777 		/* If nr is non-zero it means that 'pid' is valid and that
1778 		 * ns, i.e. the pid namespace associated with the procfs
1779 		 * instance, is in the pid namespace hierarchy of pid.
1780 		 * Start at one below the already printed level.
1781 		 */
1782 		for (i = ns->level + 1; i <= pid->level; i++)
1783 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1784 	}
1785 #endif
1786 	seq_putc(m, '\n');
1787 }
1788 #endif
1789 
1790 /*
1791  * Poll support for process exit notification.
1792  */
1793 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1794 {
1795 	struct pid *pid = file->private_data;
1796 	__poll_t poll_flags = 0;
1797 
1798 	poll_wait(file, &pid->wait_pidfd, pts);
1799 
1800 	/*
1801 	 * Inform pollers only when the whole thread group exits.
1802 	 * If the thread group leader exits before all other threads in the
1803 	 * group, then poll(2) should block, similar to the wait(2) family.
1804 	 */
1805 	if (thread_group_exited(pid))
1806 		poll_flags = EPOLLIN | EPOLLRDNORM;
1807 
1808 	return poll_flags;
1809 }
1810 
1811 const struct file_operations pidfd_fops = {
1812 	.release = pidfd_release,
1813 	.poll = pidfd_poll,
1814 #ifdef CONFIG_PROC_FS
1815 	.show_fdinfo = pidfd_show_fdinfo,
1816 #endif
1817 };
1818 
1819 static void __delayed_free_task(struct rcu_head *rhp)
1820 {
1821 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1822 
1823 	free_task(tsk);
1824 }
1825 
1826 static __always_inline void delayed_free_task(struct task_struct *tsk)
1827 {
1828 	if (IS_ENABLED(CONFIG_MEMCG))
1829 		call_rcu(&tsk->rcu, __delayed_free_task);
1830 	else
1831 		free_task(tsk);
1832 }
1833 
1834 /*
1835  * This creates a new process as a copy of the old one,
1836  * but does not actually start it yet.
1837  *
1838  * It copies the registers, and all the appropriate
1839  * parts of the process environment (as per the clone
1840  * flags). The actual kick-off is left to the caller.
1841  */
1842 static __latent_entropy struct task_struct *copy_process(
1843 					struct pid *pid,
1844 					int trace,
1845 					int node,
1846 					struct kernel_clone_args *args)
1847 {
1848 	int pidfd = -1, retval;
1849 	struct task_struct *p;
1850 	struct multiprocess_signals delayed;
1851 	struct file *pidfile = NULL;
1852 	u64 clone_flags = args->flags;
1853 	struct nsproxy *nsp = current->nsproxy;
1854 
1855 	/*
1856 	 * Don't allow sharing the root directory with processes in a different
1857 	 * namespace
1858 	 */
1859 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 		return ERR_PTR(-EINVAL);
1861 
1862 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 		return ERR_PTR(-EINVAL);
1864 
1865 	/*
1866 	 * Thread groups must share signals as well, and detached threads
1867 	 * can only be started up within the thread group.
1868 	 */
1869 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 		return ERR_PTR(-EINVAL);
1871 
1872 	/*
1873 	 * Shared signal handlers imply shared VM. By way of the above,
1874 	 * thread groups also imply shared VM. Blocking this case allows
1875 	 * for various simplifications in other code.
1876 	 */
1877 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 		return ERR_PTR(-EINVAL);
1879 
1880 	/*
1881 	 * Siblings of global init remain as zombies on exit since they are
1882 	 * not reaped by their parent (swapper). To solve this and to avoid
1883 	 * multi-rooted process trees, prevent global and container-inits
1884 	 * from creating siblings.
1885 	 */
1886 	if ((clone_flags & CLONE_PARENT) &&
1887 				current->signal->flags & SIGNAL_UNKILLABLE)
1888 		return ERR_PTR(-EINVAL);
1889 
1890 	/*
1891 	 * If the new process will be in a different pid or user namespace
1892 	 * do not allow it to share a thread group with the forking task.
1893 	 */
1894 	if (clone_flags & CLONE_THREAD) {
1895 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1896 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 			return ERR_PTR(-EINVAL);
1898 	}
1899 
1900 	/*
1901 	 * If the new process will be in a different time namespace
1902 	 * do not allow it to share VM or a thread group with the forking task.
1903 	 */
1904 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 		if (nsp->time_ns != nsp->time_ns_for_children)
1906 			return ERR_PTR(-EINVAL);
1907 	}
1908 
1909 	if (clone_flags & CLONE_PIDFD) {
1910 		/*
1911 		 * - CLONE_DETACHED is blocked so that we can potentially
1912 		 *   reuse it later for CLONE_PIDFD.
1913 		 * - CLONE_THREAD is blocked until someone really needs it.
1914 		 */
1915 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1916 			return ERR_PTR(-EINVAL);
1917 	}
1918 
1919 	/*
1920 	 * Force any signals received before this point to be delivered
1921 	 * before the fork happens.  Collect up signals sent to multiple
1922 	 * processes that happen during the fork and delay them so that
1923 	 * they appear to happen after the fork.
1924 	 */
1925 	sigemptyset(&delayed.signal);
1926 	INIT_HLIST_NODE(&delayed.node);
1927 
1928 	spin_lock_irq(&current->sighand->siglock);
1929 	if (!(clone_flags & CLONE_THREAD))
1930 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1931 	recalc_sigpending();
1932 	spin_unlock_irq(&current->sighand->siglock);
1933 	retval = -ERESTARTNOINTR;
1934 	if (signal_pending(current))
1935 		goto fork_out;
1936 
1937 	retval = -ENOMEM;
1938 	p = dup_task_struct(current, node);
1939 	if (!p)
1940 		goto fork_out;
1941 
1942 	/*
1943 	 * This _must_ happen before we call free_task(), i.e. before we jump
1944 	 * to any of the bad_fork_* labels. This is to avoid freeing
1945 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 	 * kernel threads (PF_KTHREAD).
1947 	 */
1948 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1949 	/*
1950 	 * Clear TID on mm_release()?
1951 	 */
1952 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1953 
1954 	ftrace_graph_init_task(p);
1955 
1956 	rt_mutex_init_task(p);
1957 
1958 	lockdep_assert_irqs_enabled();
1959 #ifdef CONFIG_PROVE_LOCKING
1960 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961 #endif
1962 	retval = -EAGAIN;
1963 	if (atomic_read(&p->real_cred->user->processes) >=
1964 			task_rlimit(p, RLIMIT_NPROC)) {
1965 		if (p->real_cred->user != INIT_USER &&
1966 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1967 			goto bad_fork_free;
1968 	}
1969 	current->flags &= ~PF_NPROC_EXCEEDED;
1970 
1971 	retval = copy_creds(p, clone_flags);
1972 	if (retval < 0)
1973 		goto bad_fork_free;
1974 
1975 	/*
1976 	 * If multiple threads are within copy_process(), then this check
1977 	 * triggers too late. This doesn't hurt, the check is only there
1978 	 * to stop root fork bombs.
1979 	 */
1980 	retval = -EAGAIN;
1981 	if (data_race(nr_threads >= max_threads))
1982 		goto bad_fork_cleanup_count;
1983 
1984 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1985 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1986 	p->flags |= PF_FORKNOEXEC;
1987 	INIT_LIST_HEAD(&p->children);
1988 	INIT_LIST_HEAD(&p->sibling);
1989 	rcu_copy_process(p);
1990 	p->vfork_done = NULL;
1991 	spin_lock_init(&p->alloc_lock);
1992 
1993 	init_sigpending(&p->pending);
1994 
1995 	p->utime = p->stime = p->gtime = 0;
1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1997 	p->utimescaled = p->stimescaled = 0;
1998 #endif
1999 	prev_cputime_init(&p->prev_cputime);
2000 
2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2002 	seqcount_init(&p->vtime.seqcount);
2003 	p->vtime.starttime = 0;
2004 	p->vtime.state = VTIME_INACTIVE;
2005 #endif
2006 
2007 #if defined(SPLIT_RSS_COUNTING)
2008 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2009 #endif
2010 
2011 	p->default_timer_slack_ns = current->timer_slack_ns;
2012 
2013 #ifdef CONFIG_PSI
2014 	p->psi_flags = 0;
2015 #endif
2016 
2017 	task_io_accounting_init(&p->ioac);
2018 	acct_clear_integrals(p);
2019 
2020 	posix_cputimers_init(&p->posix_cputimers);
2021 
2022 	p->io_context = NULL;
2023 	audit_set_context(p, NULL);
2024 	cgroup_fork(p);
2025 #ifdef CONFIG_NUMA
2026 	p->mempolicy = mpol_dup(p->mempolicy);
2027 	if (IS_ERR(p->mempolicy)) {
2028 		retval = PTR_ERR(p->mempolicy);
2029 		p->mempolicy = NULL;
2030 		goto bad_fork_cleanup_threadgroup_lock;
2031 	}
2032 #endif
2033 #ifdef CONFIG_CPUSETS
2034 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2035 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2036 	seqcount_init(&p->mems_allowed_seq);
2037 #endif
2038 #ifdef CONFIG_TRACE_IRQFLAGS
2039 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2040 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2041 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2042 	p->softirqs_enabled		= 1;
2043 	p->softirq_context		= 0;
2044 #endif
2045 
2046 	p->pagefault_disabled = 0;
2047 
2048 #ifdef CONFIG_LOCKDEP
2049 	lockdep_init_task(p);
2050 #endif
2051 
2052 #ifdef CONFIG_DEBUG_MUTEXES
2053 	p->blocked_on = NULL; /* not blocked yet */
2054 #endif
2055 #ifdef CONFIG_BCACHE
2056 	p->sequential_io	= 0;
2057 	p->sequential_io_avg	= 0;
2058 #endif
2059 
2060 	/* Perform scheduler related setup. Assign this task to a CPU. */
2061 	retval = sched_fork(clone_flags, p);
2062 	if (retval)
2063 		goto bad_fork_cleanup_policy;
2064 
2065 	retval = perf_event_init_task(p);
2066 	if (retval)
2067 		goto bad_fork_cleanup_policy;
2068 	retval = audit_alloc(p);
2069 	if (retval)
2070 		goto bad_fork_cleanup_perf;
2071 	/* copy all the process information */
2072 	shm_init_task(p);
2073 	retval = security_task_alloc(p, clone_flags);
2074 	if (retval)
2075 		goto bad_fork_cleanup_audit;
2076 	retval = copy_semundo(clone_flags, p);
2077 	if (retval)
2078 		goto bad_fork_cleanup_security;
2079 	retval = copy_files(clone_flags, p);
2080 	if (retval)
2081 		goto bad_fork_cleanup_semundo;
2082 	retval = copy_fs(clone_flags, p);
2083 	if (retval)
2084 		goto bad_fork_cleanup_files;
2085 	retval = copy_sighand(clone_flags, p);
2086 	if (retval)
2087 		goto bad_fork_cleanup_fs;
2088 	retval = copy_signal(clone_flags, p);
2089 	if (retval)
2090 		goto bad_fork_cleanup_sighand;
2091 	retval = copy_mm(clone_flags, p);
2092 	if (retval)
2093 		goto bad_fork_cleanup_signal;
2094 	retval = copy_namespaces(clone_flags, p);
2095 	if (retval)
2096 		goto bad_fork_cleanup_mm;
2097 	retval = copy_io(clone_flags, p);
2098 	if (retval)
2099 		goto bad_fork_cleanup_namespaces;
2100 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2101 	if (retval)
2102 		goto bad_fork_cleanup_io;
2103 
2104 	stackleak_task_init(p);
2105 
2106 	if (pid != &init_struct_pid) {
2107 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2108 				args->set_tid_size);
2109 		if (IS_ERR(pid)) {
2110 			retval = PTR_ERR(pid);
2111 			goto bad_fork_cleanup_thread;
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * This has to happen after we've potentially unshared the file
2117 	 * descriptor table (so that the pidfd doesn't leak into the child
2118 	 * if the fd table isn't shared).
2119 	 */
2120 	if (clone_flags & CLONE_PIDFD) {
2121 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2122 		if (retval < 0)
2123 			goto bad_fork_free_pid;
2124 
2125 		pidfd = retval;
2126 
2127 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2128 					      O_RDWR | O_CLOEXEC);
2129 		if (IS_ERR(pidfile)) {
2130 			put_unused_fd(pidfd);
2131 			retval = PTR_ERR(pidfile);
2132 			goto bad_fork_free_pid;
2133 		}
2134 		get_pid(pid);	/* held by pidfile now */
2135 
2136 		retval = put_user(pidfd, args->pidfd);
2137 		if (retval)
2138 			goto bad_fork_put_pidfd;
2139 	}
2140 
2141 #ifdef CONFIG_BLOCK
2142 	p->plug = NULL;
2143 #endif
2144 	futex_init_task(p);
2145 
2146 	/*
2147 	 * sigaltstack should be cleared when sharing the same VM
2148 	 */
2149 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2150 		sas_ss_reset(p);
2151 
2152 	/*
2153 	 * Syscall tracing and stepping should be turned off in the
2154 	 * child regardless of CLONE_PTRACE.
2155 	 */
2156 	user_disable_single_step(p);
2157 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2158 #ifdef TIF_SYSCALL_EMU
2159 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2160 #endif
2161 	clear_tsk_latency_tracing(p);
2162 
2163 	/* ok, now we should be set up.. */
2164 	p->pid = pid_nr(pid);
2165 	if (clone_flags & CLONE_THREAD) {
2166 		p->exit_signal = -1;
2167 		p->group_leader = current->group_leader;
2168 		p->tgid = current->tgid;
2169 	} else {
2170 		if (clone_flags & CLONE_PARENT)
2171 			p->exit_signal = current->group_leader->exit_signal;
2172 		else
2173 			p->exit_signal = args->exit_signal;
2174 		p->group_leader = p;
2175 		p->tgid = p->pid;
2176 	}
2177 
2178 	p->nr_dirtied = 0;
2179 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2180 	p->dirty_paused_when = 0;
2181 
2182 	p->pdeath_signal = 0;
2183 	INIT_LIST_HEAD(&p->thread_group);
2184 	p->task_works = NULL;
2185 
2186 	/*
2187 	 * Ensure that the cgroup subsystem policies allow the new process to be
2188 	 * forked. It should be noted the the new process's css_set can be changed
2189 	 * between here and cgroup_post_fork() if an organisation operation is in
2190 	 * progress.
2191 	 */
2192 	retval = cgroup_can_fork(p, args);
2193 	if (retval)
2194 		goto bad_fork_put_pidfd;
2195 
2196 	/*
2197 	 * From this point on we must avoid any synchronous user-space
2198 	 * communication until we take the tasklist-lock. In particular, we do
2199 	 * not want user-space to be able to predict the process start-time by
2200 	 * stalling fork(2) after we recorded the start_time but before it is
2201 	 * visible to the system.
2202 	 */
2203 
2204 	p->start_time = ktime_get_ns();
2205 	p->start_boottime = ktime_get_boottime_ns();
2206 
2207 	/*
2208 	 * Make it visible to the rest of the system, but dont wake it up yet.
2209 	 * Need tasklist lock for parent etc handling!
2210 	 */
2211 	write_lock_irq(&tasklist_lock);
2212 
2213 	/* CLONE_PARENT re-uses the old parent */
2214 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2215 		p->real_parent = current->real_parent;
2216 		p->parent_exec_id = current->parent_exec_id;
2217 	} else {
2218 		p->real_parent = current;
2219 		p->parent_exec_id = current->self_exec_id;
2220 	}
2221 
2222 	klp_copy_process(p);
2223 
2224 	spin_lock(&current->sighand->siglock);
2225 
2226 	/*
2227 	 * Copy seccomp details explicitly here, in case they were changed
2228 	 * before holding sighand lock.
2229 	 */
2230 	copy_seccomp(p);
2231 
2232 	rseq_fork(p, clone_flags);
2233 
2234 	/* Don't start children in a dying pid namespace */
2235 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2236 		retval = -ENOMEM;
2237 		goto bad_fork_cancel_cgroup;
2238 	}
2239 
2240 	/* Let kill terminate clone/fork in the middle */
2241 	if (fatal_signal_pending(current)) {
2242 		retval = -EINTR;
2243 		goto bad_fork_cancel_cgroup;
2244 	}
2245 
2246 	/* past the last point of failure */
2247 	if (pidfile)
2248 		fd_install(pidfd, pidfile);
2249 
2250 	init_task_pid_links(p);
2251 	if (likely(p->pid)) {
2252 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2253 
2254 		init_task_pid(p, PIDTYPE_PID, pid);
2255 		if (thread_group_leader(p)) {
2256 			init_task_pid(p, PIDTYPE_TGID, pid);
2257 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2258 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2259 
2260 			if (is_child_reaper(pid)) {
2261 				ns_of_pid(pid)->child_reaper = p;
2262 				p->signal->flags |= SIGNAL_UNKILLABLE;
2263 			}
2264 			p->signal->shared_pending.signal = delayed.signal;
2265 			p->signal->tty = tty_kref_get(current->signal->tty);
2266 			/*
2267 			 * Inherit has_child_subreaper flag under the same
2268 			 * tasklist_lock with adding child to the process tree
2269 			 * for propagate_has_child_subreaper optimization.
2270 			 */
2271 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2272 							 p->real_parent->signal->is_child_subreaper;
2273 			list_add_tail(&p->sibling, &p->real_parent->children);
2274 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2275 			attach_pid(p, PIDTYPE_TGID);
2276 			attach_pid(p, PIDTYPE_PGID);
2277 			attach_pid(p, PIDTYPE_SID);
2278 			__this_cpu_inc(process_counts);
2279 		} else {
2280 			current->signal->nr_threads++;
2281 			atomic_inc(&current->signal->live);
2282 			refcount_inc(&current->signal->sigcnt);
2283 			task_join_group_stop(p);
2284 			list_add_tail_rcu(&p->thread_group,
2285 					  &p->group_leader->thread_group);
2286 			list_add_tail_rcu(&p->thread_node,
2287 					  &p->signal->thread_head);
2288 		}
2289 		attach_pid(p, PIDTYPE_PID);
2290 		nr_threads++;
2291 	}
2292 	total_forks++;
2293 	hlist_del_init(&delayed.node);
2294 	spin_unlock(&current->sighand->siglock);
2295 	syscall_tracepoint_update(p);
2296 	write_unlock_irq(&tasklist_lock);
2297 
2298 	proc_fork_connector(p);
2299 	sched_post_fork(p);
2300 	cgroup_post_fork(p, args);
2301 	perf_event_fork(p);
2302 
2303 	trace_task_newtask(p, clone_flags);
2304 	uprobe_copy_process(p, clone_flags);
2305 
2306 	return p;
2307 
2308 bad_fork_cancel_cgroup:
2309 	spin_unlock(&current->sighand->siglock);
2310 	write_unlock_irq(&tasklist_lock);
2311 	cgroup_cancel_fork(p, args);
2312 bad_fork_put_pidfd:
2313 	if (clone_flags & CLONE_PIDFD) {
2314 		fput(pidfile);
2315 		put_unused_fd(pidfd);
2316 	}
2317 bad_fork_free_pid:
2318 	if (pid != &init_struct_pid)
2319 		free_pid(pid);
2320 bad_fork_cleanup_thread:
2321 	exit_thread(p);
2322 bad_fork_cleanup_io:
2323 	if (p->io_context)
2324 		exit_io_context(p);
2325 bad_fork_cleanup_namespaces:
2326 	exit_task_namespaces(p);
2327 bad_fork_cleanup_mm:
2328 	if (p->mm) {
2329 		mm_clear_owner(p->mm, p);
2330 		mmput(p->mm);
2331 	}
2332 bad_fork_cleanup_signal:
2333 	if (!(clone_flags & CLONE_THREAD))
2334 		free_signal_struct(p->signal);
2335 bad_fork_cleanup_sighand:
2336 	__cleanup_sighand(p->sighand);
2337 bad_fork_cleanup_fs:
2338 	exit_fs(p); /* blocking */
2339 bad_fork_cleanup_files:
2340 	exit_files(p); /* blocking */
2341 bad_fork_cleanup_semundo:
2342 	exit_sem(p);
2343 bad_fork_cleanup_security:
2344 	security_task_free(p);
2345 bad_fork_cleanup_audit:
2346 	audit_free(p);
2347 bad_fork_cleanup_perf:
2348 	perf_event_free_task(p);
2349 bad_fork_cleanup_policy:
2350 	lockdep_free_task(p);
2351 #ifdef CONFIG_NUMA
2352 	mpol_put(p->mempolicy);
2353 bad_fork_cleanup_threadgroup_lock:
2354 #endif
2355 	delayacct_tsk_free(p);
2356 bad_fork_cleanup_count:
2357 	atomic_dec(&p->cred->user->processes);
2358 	exit_creds(p);
2359 bad_fork_free:
2360 	p->state = TASK_DEAD;
2361 	put_task_stack(p);
2362 	delayed_free_task(p);
2363 fork_out:
2364 	spin_lock_irq(&current->sighand->siglock);
2365 	hlist_del_init(&delayed.node);
2366 	spin_unlock_irq(&current->sighand->siglock);
2367 	return ERR_PTR(retval);
2368 }
2369 
2370 static inline void init_idle_pids(struct task_struct *idle)
2371 {
2372 	enum pid_type type;
2373 
2374 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2375 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2376 		init_task_pid(idle, type, &init_struct_pid);
2377 	}
2378 }
2379 
2380 struct task_struct *fork_idle(int cpu)
2381 {
2382 	struct task_struct *task;
2383 	struct kernel_clone_args args = {
2384 		.flags = CLONE_VM,
2385 	};
2386 
2387 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2388 	if (!IS_ERR(task)) {
2389 		init_idle_pids(task);
2390 		init_idle(task, cpu);
2391 	}
2392 
2393 	return task;
2394 }
2395 
2396 struct mm_struct *copy_init_mm(void)
2397 {
2398 	return dup_mm(NULL, &init_mm);
2399 }
2400 
2401 /*
2402  *  Ok, this is the main fork-routine.
2403  *
2404  * It copies the process, and if successful kick-starts
2405  * it and waits for it to finish using the VM if required.
2406  *
2407  * args->exit_signal is expected to be checked for sanity by the caller.
2408  */
2409 long _do_fork(struct kernel_clone_args *args)
2410 {
2411 	u64 clone_flags = args->flags;
2412 	struct completion vfork;
2413 	struct pid *pid;
2414 	struct task_struct *p;
2415 	int trace = 0;
2416 	long nr;
2417 
2418 	/*
2419 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2420 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2421 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2422 	 * field in struct clone_args and it still doesn't make sense to have
2423 	 * them both point at the same memory location. Performing this check
2424 	 * here has the advantage that we don't need to have a separate helper
2425 	 * to check for legacy clone().
2426 	 */
2427 	if ((args->flags & CLONE_PIDFD) &&
2428 	    (args->flags & CLONE_PARENT_SETTID) &&
2429 	    (args->pidfd == args->parent_tid))
2430 		return -EINVAL;
2431 
2432 	/*
2433 	 * Determine whether and which event to report to ptracer.  When
2434 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2435 	 * requested, no event is reported; otherwise, report if the event
2436 	 * for the type of forking is enabled.
2437 	 */
2438 	if (!(clone_flags & CLONE_UNTRACED)) {
2439 		if (clone_flags & CLONE_VFORK)
2440 			trace = PTRACE_EVENT_VFORK;
2441 		else if (args->exit_signal != SIGCHLD)
2442 			trace = PTRACE_EVENT_CLONE;
2443 		else
2444 			trace = PTRACE_EVENT_FORK;
2445 
2446 		if (likely(!ptrace_event_enabled(current, trace)))
2447 			trace = 0;
2448 	}
2449 
2450 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2451 	add_latent_entropy();
2452 
2453 	if (IS_ERR(p))
2454 		return PTR_ERR(p);
2455 
2456 	/*
2457 	 * Do this prior waking up the new thread - the thread pointer
2458 	 * might get invalid after that point, if the thread exits quickly.
2459 	 */
2460 	trace_sched_process_fork(current, p);
2461 
2462 	pid = get_task_pid(p, PIDTYPE_PID);
2463 	nr = pid_vnr(pid);
2464 
2465 	if (clone_flags & CLONE_PARENT_SETTID)
2466 		put_user(nr, args->parent_tid);
2467 
2468 	if (clone_flags & CLONE_VFORK) {
2469 		p->vfork_done = &vfork;
2470 		init_completion(&vfork);
2471 		get_task_struct(p);
2472 	}
2473 
2474 	wake_up_new_task(p);
2475 
2476 	/* forking complete and child started to run, tell ptracer */
2477 	if (unlikely(trace))
2478 		ptrace_event_pid(trace, pid);
2479 
2480 	if (clone_flags & CLONE_VFORK) {
2481 		if (!wait_for_vfork_done(p, &vfork))
2482 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2483 	}
2484 
2485 	put_pid(pid);
2486 	return nr;
2487 }
2488 
2489 /*
2490  * Create a kernel thread.
2491  */
2492 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2493 {
2494 	struct kernel_clone_args args = {
2495 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2496 				    CLONE_UNTRACED) & ~CSIGNAL),
2497 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2498 		.stack		= (unsigned long)fn,
2499 		.stack_size	= (unsigned long)arg,
2500 	};
2501 
2502 	return _do_fork(&args);
2503 }
2504 
2505 #ifdef __ARCH_WANT_SYS_FORK
2506 SYSCALL_DEFINE0(fork)
2507 {
2508 #ifdef CONFIG_MMU
2509 	struct kernel_clone_args args = {
2510 		.exit_signal = SIGCHLD,
2511 	};
2512 
2513 	return _do_fork(&args);
2514 #else
2515 	/* can not support in nommu mode */
2516 	return -EINVAL;
2517 #endif
2518 }
2519 #endif
2520 
2521 #ifdef __ARCH_WANT_SYS_VFORK
2522 SYSCALL_DEFINE0(vfork)
2523 {
2524 	struct kernel_clone_args args = {
2525 		.flags		= CLONE_VFORK | CLONE_VM,
2526 		.exit_signal	= SIGCHLD,
2527 	};
2528 
2529 	return _do_fork(&args);
2530 }
2531 #endif
2532 
2533 #ifdef __ARCH_WANT_SYS_CLONE
2534 #ifdef CONFIG_CLONE_BACKWARDS
2535 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2536 		 int __user *, parent_tidptr,
2537 		 unsigned long, tls,
2538 		 int __user *, child_tidptr)
2539 #elif defined(CONFIG_CLONE_BACKWARDS2)
2540 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2541 		 int __user *, parent_tidptr,
2542 		 int __user *, child_tidptr,
2543 		 unsigned long, tls)
2544 #elif defined(CONFIG_CLONE_BACKWARDS3)
2545 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2546 		int, stack_size,
2547 		int __user *, parent_tidptr,
2548 		int __user *, child_tidptr,
2549 		unsigned long, tls)
2550 #else
2551 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 		 int __user *, parent_tidptr,
2553 		 int __user *, child_tidptr,
2554 		 unsigned long, tls)
2555 #endif
2556 {
2557 	struct kernel_clone_args args = {
2558 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2559 		.pidfd		= parent_tidptr,
2560 		.child_tid	= child_tidptr,
2561 		.parent_tid	= parent_tidptr,
2562 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2563 		.stack		= newsp,
2564 		.tls		= tls,
2565 	};
2566 
2567 	return _do_fork(&args);
2568 }
2569 #endif
2570 
2571 #ifdef __ARCH_WANT_SYS_CLONE3
2572 
2573 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2574 					      struct clone_args __user *uargs,
2575 					      size_t usize)
2576 {
2577 	int err;
2578 	struct clone_args args;
2579 	pid_t *kset_tid = kargs->set_tid;
2580 
2581 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2582 		     CLONE_ARGS_SIZE_VER0);
2583 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2584 		     CLONE_ARGS_SIZE_VER1);
2585 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2586 		     CLONE_ARGS_SIZE_VER2);
2587 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2588 
2589 	if (unlikely(usize > PAGE_SIZE))
2590 		return -E2BIG;
2591 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2592 		return -EINVAL;
2593 
2594 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2595 	if (err)
2596 		return err;
2597 
2598 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2599 		return -EINVAL;
2600 
2601 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2602 		return -EINVAL;
2603 
2604 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2605 		return -EINVAL;
2606 
2607 	/*
2608 	 * Verify that higher 32bits of exit_signal are unset and that
2609 	 * it is a valid signal
2610 	 */
2611 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2612 		     !valid_signal(args.exit_signal)))
2613 		return -EINVAL;
2614 
2615 	if ((args.flags & CLONE_INTO_CGROUP) &&
2616 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2617 		return -EINVAL;
2618 
2619 	*kargs = (struct kernel_clone_args){
2620 		.flags		= args.flags,
2621 		.pidfd		= u64_to_user_ptr(args.pidfd),
2622 		.child_tid	= u64_to_user_ptr(args.child_tid),
2623 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2624 		.exit_signal	= args.exit_signal,
2625 		.stack		= args.stack,
2626 		.stack_size	= args.stack_size,
2627 		.tls		= args.tls,
2628 		.set_tid_size	= args.set_tid_size,
2629 		.cgroup		= args.cgroup,
2630 	};
2631 
2632 	if (args.set_tid &&
2633 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2634 			(kargs->set_tid_size * sizeof(pid_t))))
2635 		return -EFAULT;
2636 
2637 	kargs->set_tid = kset_tid;
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * clone3_stack_valid - check and prepare stack
2644  * @kargs: kernel clone args
2645  *
2646  * Verify that the stack arguments userspace gave us are sane.
2647  * In addition, set the stack direction for userspace since it's easy for us to
2648  * determine.
2649  */
2650 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2651 {
2652 	if (kargs->stack == 0) {
2653 		if (kargs->stack_size > 0)
2654 			return false;
2655 	} else {
2656 		if (kargs->stack_size == 0)
2657 			return false;
2658 
2659 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2660 			return false;
2661 
2662 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2663 		kargs->stack += kargs->stack_size;
2664 #endif
2665 	}
2666 
2667 	return true;
2668 }
2669 
2670 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2671 {
2672 	/* Verify that no unknown flags are passed along. */
2673 	if (kargs->flags &
2674 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2675 		return false;
2676 
2677 	/*
2678 	 * - make the CLONE_DETACHED bit reuseable for clone3
2679 	 * - make the CSIGNAL bits reuseable for clone3
2680 	 */
2681 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2682 		return false;
2683 
2684 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2685 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2686 		return false;
2687 
2688 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2689 	    kargs->exit_signal)
2690 		return false;
2691 
2692 	if (!clone3_stack_valid(kargs))
2693 		return false;
2694 
2695 	return true;
2696 }
2697 
2698 /**
2699  * clone3 - create a new process with specific properties
2700  * @uargs: argument structure
2701  * @size:  size of @uargs
2702  *
2703  * clone3() is the extensible successor to clone()/clone2().
2704  * It takes a struct as argument that is versioned by its size.
2705  *
2706  * Return: On success, a positive PID for the child process.
2707  *         On error, a negative errno number.
2708  */
2709 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2710 {
2711 	int err;
2712 
2713 	struct kernel_clone_args kargs;
2714 	pid_t set_tid[MAX_PID_NS_LEVEL];
2715 
2716 	kargs.set_tid = set_tid;
2717 
2718 	err = copy_clone_args_from_user(&kargs, uargs, size);
2719 	if (err)
2720 		return err;
2721 
2722 	if (!clone3_args_valid(&kargs))
2723 		return -EINVAL;
2724 
2725 	return _do_fork(&kargs);
2726 }
2727 #endif
2728 
2729 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2730 {
2731 	struct task_struct *leader, *parent, *child;
2732 	int res;
2733 
2734 	read_lock(&tasklist_lock);
2735 	leader = top = top->group_leader;
2736 down:
2737 	for_each_thread(leader, parent) {
2738 		list_for_each_entry(child, &parent->children, sibling) {
2739 			res = visitor(child, data);
2740 			if (res) {
2741 				if (res < 0)
2742 					goto out;
2743 				leader = child;
2744 				goto down;
2745 			}
2746 up:
2747 			;
2748 		}
2749 	}
2750 
2751 	if (leader != top) {
2752 		child = leader;
2753 		parent = child->real_parent;
2754 		leader = parent->group_leader;
2755 		goto up;
2756 	}
2757 out:
2758 	read_unlock(&tasklist_lock);
2759 }
2760 
2761 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2762 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2763 #endif
2764 
2765 static void sighand_ctor(void *data)
2766 {
2767 	struct sighand_struct *sighand = data;
2768 
2769 	spin_lock_init(&sighand->siglock);
2770 	init_waitqueue_head(&sighand->signalfd_wqh);
2771 }
2772 
2773 void __init proc_caches_init(void)
2774 {
2775 	unsigned int mm_size;
2776 
2777 	sighand_cachep = kmem_cache_create("sighand_cache",
2778 			sizeof(struct sighand_struct), 0,
2779 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2780 			SLAB_ACCOUNT, sighand_ctor);
2781 	signal_cachep = kmem_cache_create("signal_cache",
2782 			sizeof(struct signal_struct), 0,
2783 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2784 			NULL);
2785 	files_cachep = kmem_cache_create("files_cache",
2786 			sizeof(struct files_struct), 0,
2787 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2788 			NULL);
2789 	fs_cachep = kmem_cache_create("fs_cache",
2790 			sizeof(struct fs_struct), 0,
2791 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2792 			NULL);
2793 
2794 	/*
2795 	 * The mm_cpumask is located at the end of mm_struct, and is
2796 	 * dynamically sized based on the maximum CPU number this system
2797 	 * can have, taking hotplug into account (nr_cpu_ids).
2798 	 */
2799 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2800 
2801 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2802 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2803 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2804 			offsetof(struct mm_struct, saved_auxv),
2805 			sizeof_field(struct mm_struct, saved_auxv),
2806 			NULL);
2807 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2808 	mmap_init();
2809 	nsproxy_cache_init();
2810 }
2811 
2812 /*
2813  * Check constraints on flags passed to the unshare system call.
2814  */
2815 static int check_unshare_flags(unsigned long unshare_flags)
2816 {
2817 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2818 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2819 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2820 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2821 				CLONE_NEWTIME))
2822 		return -EINVAL;
2823 	/*
2824 	 * Not implemented, but pretend it works if there is nothing
2825 	 * to unshare.  Note that unsharing the address space or the
2826 	 * signal handlers also need to unshare the signal queues (aka
2827 	 * CLONE_THREAD).
2828 	 */
2829 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2830 		if (!thread_group_empty(current))
2831 			return -EINVAL;
2832 	}
2833 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2834 		if (refcount_read(&current->sighand->count) > 1)
2835 			return -EINVAL;
2836 	}
2837 	if (unshare_flags & CLONE_VM) {
2838 		if (!current_is_single_threaded())
2839 			return -EINVAL;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  * Unshare the filesystem structure if it is being shared
2847  */
2848 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2849 {
2850 	struct fs_struct *fs = current->fs;
2851 
2852 	if (!(unshare_flags & CLONE_FS) || !fs)
2853 		return 0;
2854 
2855 	/* don't need lock here; in the worst case we'll do useless copy */
2856 	if (fs->users == 1)
2857 		return 0;
2858 
2859 	*new_fsp = copy_fs_struct(fs);
2860 	if (!*new_fsp)
2861 		return -ENOMEM;
2862 
2863 	return 0;
2864 }
2865 
2866 /*
2867  * Unshare file descriptor table if it is being shared
2868  */
2869 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2870 	       struct files_struct **new_fdp)
2871 {
2872 	struct files_struct *fd = current->files;
2873 	int error = 0;
2874 
2875 	if ((unshare_flags & CLONE_FILES) &&
2876 	    (fd && atomic_read(&fd->count) > 1)) {
2877 		*new_fdp = dup_fd(fd, max_fds, &error);
2878 		if (!*new_fdp)
2879 			return error;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 /*
2886  * unshare allows a process to 'unshare' part of the process
2887  * context which was originally shared using clone.  copy_*
2888  * functions used by _do_fork() cannot be used here directly
2889  * because they modify an inactive task_struct that is being
2890  * constructed. Here we are modifying the current, active,
2891  * task_struct.
2892  */
2893 int ksys_unshare(unsigned long unshare_flags)
2894 {
2895 	struct fs_struct *fs, *new_fs = NULL;
2896 	struct files_struct *fd, *new_fd = NULL;
2897 	struct cred *new_cred = NULL;
2898 	struct nsproxy *new_nsproxy = NULL;
2899 	int do_sysvsem = 0;
2900 	int err;
2901 
2902 	/*
2903 	 * If unsharing a user namespace must also unshare the thread group
2904 	 * and unshare the filesystem root and working directories.
2905 	 */
2906 	if (unshare_flags & CLONE_NEWUSER)
2907 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2908 	/*
2909 	 * If unsharing vm, must also unshare signal handlers.
2910 	 */
2911 	if (unshare_flags & CLONE_VM)
2912 		unshare_flags |= CLONE_SIGHAND;
2913 	/*
2914 	 * If unsharing a signal handlers, must also unshare the signal queues.
2915 	 */
2916 	if (unshare_flags & CLONE_SIGHAND)
2917 		unshare_flags |= CLONE_THREAD;
2918 	/*
2919 	 * If unsharing namespace, must also unshare filesystem information.
2920 	 */
2921 	if (unshare_flags & CLONE_NEWNS)
2922 		unshare_flags |= CLONE_FS;
2923 
2924 	err = check_unshare_flags(unshare_flags);
2925 	if (err)
2926 		goto bad_unshare_out;
2927 	/*
2928 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2929 	 * to a new ipc namespace, the semaphore arrays from the old
2930 	 * namespace are unreachable.
2931 	 */
2932 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2933 		do_sysvsem = 1;
2934 	err = unshare_fs(unshare_flags, &new_fs);
2935 	if (err)
2936 		goto bad_unshare_out;
2937 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2938 	if (err)
2939 		goto bad_unshare_cleanup_fs;
2940 	err = unshare_userns(unshare_flags, &new_cred);
2941 	if (err)
2942 		goto bad_unshare_cleanup_fd;
2943 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2944 					 new_cred, new_fs);
2945 	if (err)
2946 		goto bad_unshare_cleanup_cred;
2947 
2948 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2949 		if (do_sysvsem) {
2950 			/*
2951 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2952 			 */
2953 			exit_sem(current);
2954 		}
2955 		if (unshare_flags & CLONE_NEWIPC) {
2956 			/* Orphan segments in old ns (see sem above). */
2957 			exit_shm(current);
2958 			shm_init_task(current);
2959 		}
2960 
2961 		if (new_nsproxy)
2962 			switch_task_namespaces(current, new_nsproxy);
2963 
2964 		task_lock(current);
2965 
2966 		if (new_fs) {
2967 			fs = current->fs;
2968 			spin_lock(&fs->lock);
2969 			current->fs = new_fs;
2970 			if (--fs->users)
2971 				new_fs = NULL;
2972 			else
2973 				new_fs = fs;
2974 			spin_unlock(&fs->lock);
2975 		}
2976 
2977 		if (new_fd) {
2978 			fd = current->files;
2979 			current->files = new_fd;
2980 			new_fd = fd;
2981 		}
2982 
2983 		task_unlock(current);
2984 
2985 		if (new_cred) {
2986 			/* Install the new user namespace */
2987 			commit_creds(new_cred);
2988 			new_cred = NULL;
2989 		}
2990 	}
2991 
2992 	perf_event_namespaces(current);
2993 
2994 bad_unshare_cleanup_cred:
2995 	if (new_cred)
2996 		put_cred(new_cred);
2997 bad_unshare_cleanup_fd:
2998 	if (new_fd)
2999 		put_files_struct(new_fd);
3000 
3001 bad_unshare_cleanup_fs:
3002 	if (new_fs)
3003 		free_fs_struct(new_fs);
3004 
3005 bad_unshare_out:
3006 	return err;
3007 }
3008 
3009 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3010 {
3011 	return ksys_unshare(unshare_flags);
3012 }
3013 
3014 /*
3015  *	Helper to unshare the files of the current task.
3016  *	We don't want to expose copy_files internals to
3017  *	the exec layer of the kernel.
3018  */
3019 
3020 int unshare_files(struct files_struct **displaced)
3021 {
3022 	struct task_struct *task = current;
3023 	struct files_struct *copy = NULL;
3024 	int error;
3025 
3026 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3027 	if (error || !copy) {
3028 		*displaced = NULL;
3029 		return error;
3030 	}
3031 	*displaced = task->files;
3032 	task_lock(task);
3033 	task->files = copy;
3034 	task_unlock(task);
3035 	return 0;
3036 }
3037 
3038 int sysctl_max_threads(struct ctl_table *table, int write,
3039 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3040 {
3041 	struct ctl_table t;
3042 	int ret;
3043 	int threads = max_threads;
3044 	int min = 1;
3045 	int max = MAX_THREADS;
3046 
3047 	t = *table;
3048 	t.data = &threads;
3049 	t.extra1 = &min;
3050 	t.extra2 = &max;
3051 
3052 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3053 	if (ret || !write)
3054 		return ret;
3055 
3056 	max_threads = threads;
3057 
3058 	return 0;
3059 }
3060