xref: /openbmc/linux/kernel/fork.c (revision 179dd8c0)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85 
86 #include <trace/events/sched.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90 
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95 
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100 
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;	/* Handle normal Linux uptimes. */
105 int nr_threads;			/* The idle threads do not count.. */
106 
107 int max_threads;		/* tunable limit on nr_threads */
108 
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110 
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112 
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 	return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120 
121 int nr_processes(void)
122 {
123 	int cpu;
124 	int total = 0;
125 
126 	for_each_possible_cpu(cpu)
127 		total += per_cpu(process_counts, cpu);
128 
129 	return total;
130 }
131 
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135 
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138 
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143 
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 	kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149 
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155 
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 						  int node)
163 {
164 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 						  THREAD_SIZE_ORDER);
166 
167 	return page ? page_address(page) : NULL;
168 }
169 
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176 
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 						  int node)
179 {
180 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182 
183 static void free_thread_info(struct thread_info *ti)
184 {
185 	kmem_cache_free(thread_info_cache, ti);
186 }
187 
188 void thread_info_cache_init(void)
189 {
190 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 					      THREAD_SIZE, 0, NULL);
192 	BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196 
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199 
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202 
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205 
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208 
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211 
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214 
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 	struct zone *zone = page_zone(virt_to_page(ti));
218 
219 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221 
222 void free_task(struct task_struct *tsk)
223 {
224 	account_kernel_stack(tsk->stack, -1);
225 	arch_release_thread_info(tsk->stack);
226 	free_thread_info(tsk->stack);
227 	rt_mutex_debug_task_free(tsk);
228 	ftrace_graph_exit_task(tsk);
229 	put_seccomp_filter(tsk);
230 	arch_release_task_struct(tsk);
231 	free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234 
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 	taskstats_tgid_free(sig);
238 	sched_autogroup_exit(sig);
239 	kmem_cache_free(signal_cachep, sig);
240 }
241 
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 	if (atomic_dec_and_test(&sig->sigcnt))
245 		free_signal_struct(sig);
246 }
247 
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 	WARN_ON(!tsk->exit_state);
251 	WARN_ON(atomic_read(&tsk->usage));
252 	WARN_ON(tsk == current);
253 
254 	task_numa_free(tsk);
255 	security_task_free(tsk);
256 	exit_creds(tsk);
257 	delayacct_tsk_free(tsk);
258 	put_signal_struct(tsk->signal);
259 
260 	if (!profile_handoff_task(tsk))
261 		free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264 
265 void __init __weak arch_task_cache_init(void) { }
266 
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 	u64 threads;
273 
274 	/*
275 	 * The number of threads shall be limited such that the thread
276 	 * structures may only consume a small part of the available memory.
277 	 */
278 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 		threads = MAX_THREADS;
280 	else
281 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 				    (u64) THREAD_SIZE * 8UL);
283 
284 	if (threads > max_threads_suggested)
285 		threads = max_threads_suggested;
286 
287 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289 
290 void __init fork_init(void)
291 {
292 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
293 #ifndef ARCH_MIN_TASKALIGN
294 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
295 #endif
296 	/* create a slab on which task_structs can be allocated */
297 	task_struct_cachep =
298 		kmem_cache_create("task_struct", sizeof(struct task_struct),
299 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
300 #endif
301 
302 	/* do the arch specific task caches init */
303 	arch_task_cache_init();
304 
305 	set_max_threads(MAX_THREADS);
306 
307 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
308 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
309 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
310 		init_task.signal->rlim[RLIMIT_NPROC];
311 }
312 
313 int __weak arch_dup_task_struct(struct task_struct *dst,
314 					       struct task_struct *src)
315 {
316 	*dst = *src;
317 	return 0;
318 }
319 
320 void set_task_stack_end_magic(struct task_struct *tsk)
321 {
322 	unsigned long *stackend;
323 
324 	stackend = end_of_stack(tsk);
325 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
326 }
327 
328 static struct task_struct *dup_task_struct(struct task_struct *orig)
329 {
330 	struct task_struct *tsk;
331 	struct thread_info *ti;
332 	int node = tsk_fork_get_node(orig);
333 	int err;
334 
335 	tsk = alloc_task_struct_node(node);
336 	if (!tsk)
337 		return NULL;
338 
339 	ti = alloc_thread_info_node(tsk, node);
340 	if (!ti)
341 		goto free_tsk;
342 
343 	err = arch_dup_task_struct(tsk, orig);
344 	if (err)
345 		goto free_ti;
346 
347 	tsk->stack = ti;
348 #ifdef CONFIG_SECCOMP
349 	/*
350 	 * We must handle setting up seccomp filters once we're under
351 	 * the sighand lock in case orig has changed between now and
352 	 * then. Until then, filter must be NULL to avoid messing up
353 	 * the usage counts on the error path calling free_task.
354 	 */
355 	tsk->seccomp.filter = NULL;
356 #endif
357 
358 	setup_thread_stack(tsk, orig);
359 	clear_user_return_notifier(tsk);
360 	clear_tsk_need_resched(tsk);
361 	set_task_stack_end_magic(tsk);
362 
363 #ifdef CONFIG_CC_STACKPROTECTOR
364 	tsk->stack_canary = get_random_int();
365 #endif
366 
367 	/*
368 	 * One for us, one for whoever does the "release_task()" (usually
369 	 * parent)
370 	 */
371 	atomic_set(&tsk->usage, 2);
372 #ifdef CONFIG_BLK_DEV_IO_TRACE
373 	tsk->btrace_seq = 0;
374 #endif
375 	tsk->splice_pipe = NULL;
376 	tsk->task_frag.page = NULL;
377 
378 	account_kernel_stack(ti, 1);
379 
380 	return tsk;
381 
382 free_ti:
383 	free_thread_info(ti);
384 free_tsk:
385 	free_task_struct(tsk);
386 	return NULL;
387 }
388 
389 #ifdef CONFIG_MMU
390 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
391 {
392 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
393 	struct rb_node **rb_link, *rb_parent;
394 	int retval;
395 	unsigned long charge;
396 
397 	uprobe_start_dup_mmap();
398 	down_write(&oldmm->mmap_sem);
399 	flush_cache_dup_mm(oldmm);
400 	uprobe_dup_mmap(oldmm, mm);
401 	/*
402 	 * Not linked in yet - no deadlock potential:
403 	 */
404 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
405 
406 	/* No ordering required: file already has been exposed. */
407 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
408 
409 	mm->total_vm = oldmm->total_vm;
410 	mm->shared_vm = oldmm->shared_vm;
411 	mm->exec_vm = oldmm->exec_vm;
412 	mm->stack_vm = oldmm->stack_vm;
413 
414 	rb_link = &mm->mm_rb.rb_node;
415 	rb_parent = NULL;
416 	pprev = &mm->mmap;
417 	retval = ksm_fork(mm, oldmm);
418 	if (retval)
419 		goto out;
420 	retval = khugepaged_fork(mm, oldmm);
421 	if (retval)
422 		goto out;
423 
424 	prev = NULL;
425 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
426 		struct file *file;
427 
428 		if (mpnt->vm_flags & VM_DONTCOPY) {
429 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
430 							-vma_pages(mpnt));
431 			continue;
432 		}
433 		charge = 0;
434 		if (mpnt->vm_flags & VM_ACCOUNT) {
435 			unsigned long len = vma_pages(mpnt);
436 
437 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
438 				goto fail_nomem;
439 			charge = len;
440 		}
441 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 		if (!tmp)
443 			goto fail_nomem;
444 		*tmp = *mpnt;
445 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
446 		retval = vma_dup_policy(mpnt, tmp);
447 		if (retval)
448 			goto fail_nomem_policy;
449 		tmp->vm_mm = mm;
450 		if (anon_vma_fork(tmp, mpnt))
451 			goto fail_nomem_anon_vma_fork;
452 		tmp->vm_flags &= ~VM_LOCKED;
453 		tmp->vm_next = tmp->vm_prev = NULL;
454 		file = tmp->vm_file;
455 		if (file) {
456 			struct inode *inode = file_inode(file);
457 			struct address_space *mapping = file->f_mapping;
458 
459 			get_file(file);
460 			if (tmp->vm_flags & VM_DENYWRITE)
461 				atomic_dec(&inode->i_writecount);
462 			i_mmap_lock_write(mapping);
463 			if (tmp->vm_flags & VM_SHARED)
464 				atomic_inc(&mapping->i_mmap_writable);
465 			flush_dcache_mmap_lock(mapping);
466 			/* insert tmp into the share list, just after mpnt */
467 			vma_interval_tree_insert_after(tmp, mpnt,
468 					&mapping->i_mmap);
469 			flush_dcache_mmap_unlock(mapping);
470 			i_mmap_unlock_write(mapping);
471 		}
472 
473 		/*
474 		 * Clear hugetlb-related page reserves for children. This only
475 		 * affects MAP_PRIVATE mappings. Faults generated by the child
476 		 * are not guaranteed to succeed, even if read-only
477 		 */
478 		if (is_vm_hugetlb_page(tmp))
479 			reset_vma_resv_huge_pages(tmp);
480 
481 		/*
482 		 * Link in the new vma and copy the page table entries.
483 		 */
484 		*pprev = tmp;
485 		pprev = &tmp->vm_next;
486 		tmp->vm_prev = prev;
487 		prev = tmp;
488 
489 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
490 		rb_link = &tmp->vm_rb.rb_right;
491 		rb_parent = &tmp->vm_rb;
492 
493 		mm->map_count++;
494 		retval = copy_page_range(mm, oldmm, mpnt);
495 
496 		if (tmp->vm_ops && tmp->vm_ops->open)
497 			tmp->vm_ops->open(tmp);
498 
499 		if (retval)
500 			goto out;
501 	}
502 	/* a new mm has just been created */
503 	arch_dup_mmap(oldmm, mm);
504 	retval = 0;
505 out:
506 	up_write(&mm->mmap_sem);
507 	flush_tlb_mm(oldmm);
508 	up_write(&oldmm->mmap_sem);
509 	uprobe_end_dup_mmap();
510 	return retval;
511 fail_nomem_anon_vma_fork:
512 	mpol_put(vma_policy(tmp));
513 fail_nomem_policy:
514 	kmem_cache_free(vm_area_cachep, tmp);
515 fail_nomem:
516 	retval = -ENOMEM;
517 	vm_unacct_memory(charge);
518 	goto out;
519 }
520 
521 static inline int mm_alloc_pgd(struct mm_struct *mm)
522 {
523 	mm->pgd = pgd_alloc(mm);
524 	if (unlikely(!mm->pgd))
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 static inline void mm_free_pgd(struct mm_struct *mm)
530 {
531 	pgd_free(mm, mm->pgd);
532 }
533 #else
534 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
535 {
536 	down_write(&oldmm->mmap_sem);
537 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
538 	up_write(&oldmm->mmap_sem);
539 	return 0;
540 }
541 #define mm_alloc_pgd(mm)	(0)
542 #define mm_free_pgd(mm)
543 #endif /* CONFIG_MMU */
544 
545 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
546 
547 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
548 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
549 
550 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
551 
552 static int __init coredump_filter_setup(char *s)
553 {
554 	default_dump_filter =
555 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
556 		MMF_DUMP_FILTER_MASK;
557 	return 1;
558 }
559 
560 __setup("coredump_filter=", coredump_filter_setup);
561 
562 #include <linux/init_task.h>
563 
564 static void mm_init_aio(struct mm_struct *mm)
565 {
566 #ifdef CONFIG_AIO
567 	spin_lock_init(&mm->ioctx_lock);
568 	mm->ioctx_table = NULL;
569 #endif
570 }
571 
572 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
573 {
574 #ifdef CONFIG_MEMCG
575 	mm->owner = p;
576 #endif
577 }
578 
579 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
580 {
581 	mm->mmap = NULL;
582 	mm->mm_rb = RB_ROOT;
583 	mm->vmacache_seqnum = 0;
584 	atomic_set(&mm->mm_users, 1);
585 	atomic_set(&mm->mm_count, 1);
586 	init_rwsem(&mm->mmap_sem);
587 	INIT_LIST_HEAD(&mm->mmlist);
588 	mm->core_state = NULL;
589 	atomic_long_set(&mm->nr_ptes, 0);
590 	mm_nr_pmds_init(mm);
591 	mm->map_count = 0;
592 	mm->locked_vm = 0;
593 	mm->pinned_vm = 0;
594 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
595 	spin_lock_init(&mm->page_table_lock);
596 	mm_init_cpumask(mm);
597 	mm_init_aio(mm);
598 	mm_init_owner(mm, p);
599 	mmu_notifier_mm_init(mm);
600 	clear_tlb_flush_pending(mm);
601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 	mm->pmd_huge_pte = NULL;
603 #endif
604 
605 	if (current->mm) {
606 		mm->flags = current->mm->flags & MMF_INIT_MASK;
607 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
608 	} else {
609 		mm->flags = default_dump_filter;
610 		mm->def_flags = 0;
611 	}
612 
613 	if (mm_alloc_pgd(mm))
614 		goto fail_nopgd;
615 
616 	if (init_new_context(p, mm))
617 		goto fail_nocontext;
618 
619 	return mm;
620 
621 fail_nocontext:
622 	mm_free_pgd(mm);
623 fail_nopgd:
624 	free_mm(mm);
625 	return NULL;
626 }
627 
628 static void check_mm(struct mm_struct *mm)
629 {
630 	int i;
631 
632 	for (i = 0; i < NR_MM_COUNTERS; i++) {
633 		long x = atomic_long_read(&mm->rss_stat.count[i]);
634 
635 		if (unlikely(x))
636 			printk(KERN_ALERT "BUG: Bad rss-counter state "
637 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
638 	}
639 
640 	if (atomic_long_read(&mm->nr_ptes))
641 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
642 				atomic_long_read(&mm->nr_ptes));
643 	if (mm_nr_pmds(mm))
644 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
645 				mm_nr_pmds(mm));
646 
647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
648 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
649 #endif
650 }
651 
652 /*
653  * Allocate and initialize an mm_struct.
654  */
655 struct mm_struct *mm_alloc(void)
656 {
657 	struct mm_struct *mm;
658 
659 	mm = allocate_mm();
660 	if (!mm)
661 		return NULL;
662 
663 	memset(mm, 0, sizeof(*mm));
664 	return mm_init(mm, current);
665 }
666 
667 /*
668  * Called when the last reference to the mm
669  * is dropped: either by a lazy thread or by
670  * mmput. Free the page directory and the mm.
671  */
672 void __mmdrop(struct mm_struct *mm)
673 {
674 	BUG_ON(mm == &init_mm);
675 	mm_free_pgd(mm);
676 	destroy_context(mm);
677 	mmu_notifier_mm_destroy(mm);
678 	check_mm(mm);
679 	free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682 
683 /*
684  * Decrement the use count and release all resources for an mm.
685  */
686 void mmput(struct mm_struct *mm)
687 {
688 	might_sleep();
689 
690 	if (atomic_dec_and_test(&mm->mm_users)) {
691 		uprobe_clear_state(mm);
692 		exit_aio(mm);
693 		ksm_exit(mm);
694 		khugepaged_exit(mm); /* must run before exit_mmap */
695 		exit_mmap(mm);
696 		set_mm_exe_file(mm, NULL);
697 		if (!list_empty(&mm->mmlist)) {
698 			spin_lock(&mmlist_lock);
699 			list_del(&mm->mmlist);
700 			spin_unlock(&mmlist_lock);
701 		}
702 		if (mm->binfmt)
703 			module_put(mm->binfmt->module);
704 		mmdrop(mm);
705 	}
706 }
707 EXPORT_SYMBOL_GPL(mmput);
708 
709 /**
710  * set_mm_exe_file - change a reference to the mm's executable file
711  *
712  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
713  *
714  * Main users are mmput() and sys_execve(). Callers prevent concurrent
715  * invocations: in mmput() nobody alive left, in execve task is single
716  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
717  * mm->exe_file, but does so without using set_mm_exe_file() in order
718  * to do avoid the need for any locks.
719  */
720 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
721 {
722 	struct file *old_exe_file;
723 
724 	/*
725 	 * It is safe to dereference the exe_file without RCU as
726 	 * this function is only called if nobody else can access
727 	 * this mm -- see comment above for justification.
728 	 */
729 	old_exe_file = rcu_dereference_raw(mm->exe_file);
730 
731 	if (new_exe_file)
732 		get_file(new_exe_file);
733 	rcu_assign_pointer(mm->exe_file, new_exe_file);
734 	if (old_exe_file)
735 		fput(old_exe_file);
736 }
737 
738 /**
739  * get_mm_exe_file - acquire a reference to the mm's executable file
740  *
741  * Returns %NULL if mm has no associated executable file.
742  * User must release file via fput().
743  */
744 struct file *get_mm_exe_file(struct mm_struct *mm)
745 {
746 	struct file *exe_file;
747 
748 	rcu_read_lock();
749 	exe_file = rcu_dereference(mm->exe_file);
750 	if (exe_file && !get_file_rcu(exe_file))
751 		exe_file = NULL;
752 	rcu_read_unlock();
753 	return exe_file;
754 }
755 EXPORT_SYMBOL(get_mm_exe_file);
756 
757 /**
758  * get_task_mm - acquire a reference to the task's mm
759  *
760  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
761  * this kernel workthread has transiently adopted a user mm with use_mm,
762  * to do its AIO) is not set and if so returns a reference to it, after
763  * bumping up the use count.  User must release the mm via mmput()
764  * after use.  Typically used by /proc and ptrace.
765  */
766 struct mm_struct *get_task_mm(struct task_struct *task)
767 {
768 	struct mm_struct *mm;
769 
770 	task_lock(task);
771 	mm = task->mm;
772 	if (mm) {
773 		if (task->flags & PF_KTHREAD)
774 			mm = NULL;
775 		else
776 			atomic_inc(&mm->mm_users);
777 	}
778 	task_unlock(task);
779 	return mm;
780 }
781 EXPORT_SYMBOL_GPL(get_task_mm);
782 
783 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
784 {
785 	struct mm_struct *mm;
786 	int err;
787 
788 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
789 	if (err)
790 		return ERR_PTR(err);
791 
792 	mm = get_task_mm(task);
793 	if (mm && mm != current->mm &&
794 			!ptrace_may_access(task, mode)) {
795 		mmput(mm);
796 		mm = ERR_PTR(-EACCES);
797 	}
798 	mutex_unlock(&task->signal->cred_guard_mutex);
799 
800 	return mm;
801 }
802 
803 static void complete_vfork_done(struct task_struct *tsk)
804 {
805 	struct completion *vfork;
806 
807 	task_lock(tsk);
808 	vfork = tsk->vfork_done;
809 	if (likely(vfork)) {
810 		tsk->vfork_done = NULL;
811 		complete(vfork);
812 	}
813 	task_unlock(tsk);
814 }
815 
816 static int wait_for_vfork_done(struct task_struct *child,
817 				struct completion *vfork)
818 {
819 	int killed;
820 
821 	freezer_do_not_count();
822 	killed = wait_for_completion_killable(vfork);
823 	freezer_count();
824 
825 	if (killed) {
826 		task_lock(child);
827 		child->vfork_done = NULL;
828 		task_unlock(child);
829 	}
830 
831 	put_task_struct(child);
832 	return killed;
833 }
834 
835 /* Please note the differences between mmput and mm_release.
836  * mmput is called whenever we stop holding onto a mm_struct,
837  * error success whatever.
838  *
839  * mm_release is called after a mm_struct has been removed
840  * from the current process.
841  *
842  * This difference is important for error handling, when we
843  * only half set up a mm_struct for a new process and need to restore
844  * the old one.  Because we mmput the new mm_struct before
845  * restoring the old one. . .
846  * Eric Biederman 10 January 1998
847  */
848 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
849 {
850 	/* Get rid of any futexes when releasing the mm */
851 #ifdef CONFIG_FUTEX
852 	if (unlikely(tsk->robust_list)) {
853 		exit_robust_list(tsk);
854 		tsk->robust_list = NULL;
855 	}
856 #ifdef CONFIG_COMPAT
857 	if (unlikely(tsk->compat_robust_list)) {
858 		compat_exit_robust_list(tsk);
859 		tsk->compat_robust_list = NULL;
860 	}
861 #endif
862 	if (unlikely(!list_empty(&tsk->pi_state_list)))
863 		exit_pi_state_list(tsk);
864 #endif
865 
866 	uprobe_free_utask(tsk);
867 
868 	/* Get rid of any cached register state */
869 	deactivate_mm(tsk, mm);
870 
871 	/*
872 	 * If we're exiting normally, clear a user-space tid field if
873 	 * requested.  We leave this alone when dying by signal, to leave
874 	 * the value intact in a core dump, and to save the unnecessary
875 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
876 	 * Userland only wants this done for a sys_exit.
877 	 */
878 	if (tsk->clear_child_tid) {
879 		if (!(tsk->flags & PF_SIGNALED) &&
880 		    atomic_read(&mm->mm_users) > 1) {
881 			/*
882 			 * We don't check the error code - if userspace has
883 			 * not set up a proper pointer then tough luck.
884 			 */
885 			put_user(0, tsk->clear_child_tid);
886 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
887 					1, NULL, NULL, 0);
888 		}
889 		tsk->clear_child_tid = NULL;
890 	}
891 
892 	/*
893 	 * All done, finally we can wake up parent and return this mm to him.
894 	 * Also kthread_stop() uses this completion for synchronization.
895 	 */
896 	if (tsk->vfork_done)
897 		complete_vfork_done(tsk);
898 }
899 
900 /*
901  * Allocate a new mm structure and copy contents from the
902  * mm structure of the passed in task structure.
903  */
904 static struct mm_struct *dup_mm(struct task_struct *tsk)
905 {
906 	struct mm_struct *mm, *oldmm = current->mm;
907 	int err;
908 
909 	mm = allocate_mm();
910 	if (!mm)
911 		goto fail_nomem;
912 
913 	memcpy(mm, oldmm, sizeof(*mm));
914 
915 	if (!mm_init(mm, tsk))
916 		goto fail_nomem;
917 
918 	err = dup_mmap(mm, oldmm);
919 	if (err)
920 		goto free_pt;
921 
922 	mm->hiwater_rss = get_mm_rss(mm);
923 	mm->hiwater_vm = mm->total_vm;
924 
925 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
926 		goto free_pt;
927 
928 	return mm;
929 
930 free_pt:
931 	/* don't put binfmt in mmput, we haven't got module yet */
932 	mm->binfmt = NULL;
933 	mmput(mm);
934 
935 fail_nomem:
936 	return NULL;
937 }
938 
939 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 	struct mm_struct *mm, *oldmm;
942 	int retval;
943 
944 	tsk->min_flt = tsk->maj_flt = 0;
945 	tsk->nvcsw = tsk->nivcsw = 0;
946 #ifdef CONFIG_DETECT_HUNG_TASK
947 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
948 #endif
949 
950 	tsk->mm = NULL;
951 	tsk->active_mm = NULL;
952 
953 	/*
954 	 * Are we cloning a kernel thread?
955 	 *
956 	 * We need to steal a active VM for that..
957 	 */
958 	oldmm = current->mm;
959 	if (!oldmm)
960 		return 0;
961 
962 	/* initialize the new vmacache entries */
963 	vmacache_flush(tsk);
964 
965 	if (clone_flags & CLONE_VM) {
966 		atomic_inc(&oldmm->mm_users);
967 		mm = oldmm;
968 		goto good_mm;
969 	}
970 
971 	retval = -ENOMEM;
972 	mm = dup_mm(tsk);
973 	if (!mm)
974 		goto fail_nomem;
975 
976 good_mm:
977 	tsk->mm = mm;
978 	tsk->active_mm = mm;
979 	return 0;
980 
981 fail_nomem:
982 	return retval;
983 }
984 
985 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 	struct fs_struct *fs = current->fs;
988 	if (clone_flags & CLONE_FS) {
989 		/* tsk->fs is already what we want */
990 		spin_lock(&fs->lock);
991 		if (fs->in_exec) {
992 			spin_unlock(&fs->lock);
993 			return -EAGAIN;
994 		}
995 		fs->users++;
996 		spin_unlock(&fs->lock);
997 		return 0;
998 	}
999 	tsk->fs = copy_fs_struct(fs);
1000 	if (!tsk->fs)
1001 		return -ENOMEM;
1002 	return 0;
1003 }
1004 
1005 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 	struct files_struct *oldf, *newf;
1008 	int error = 0;
1009 
1010 	/*
1011 	 * A background process may not have any files ...
1012 	 */
1013 	oldf = current->files;
1014 	if (!oldf)
1015 		goto out;
1016 
1017 	if (clone_flags & CLONE_FILES) {
1018 		atomic_inc(&oldf->count);
1019 		goto out;
1020 	}
1021 
1022 	newf = dup_fd(oldf, &error);
1023 	if (!newf)
1024 		goto out;
1025 
1026 	tsk->files = newf;
1027 	error = 0;
1028 out:
1029 	return error;
1030 }
1031 
1032 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 #ifdef CONFIG_BLOCK
1035 	struct io_context *ioc = current->io_context;
1036 	struct io_context *new_ioc;
1037 
1038 	if (!ioc)
1039 		return 0;
1040 	/*
1041 	 * Share io context with parent, if CLONE_IO is set
1042 	 */
1043 	if (clone_flags & CLONE_IO) {
1044 		ioc_task_link(ioc);
1045 		tsk->io_context = ioc;
1046 	} else if (ioprio_valid(ioc->ioprio)) {
1047 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1048 		if (unlikely(!new_ioc))
1049 			return -ENOMEM;
1050 
1051 		new_ioc->ioprio = ioc->ioprio;
1052 		put_io_context(new_ioc);
1053 	}
1054 #endif
1055 	return 0;
1056 }
1057 
1058 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060 	struct sighand_struct *sig;
1061 
1062 	if (clone_flags & CLONE_SIGHAND) {
1063 		atomic_inc(&current->sighand->count);
1064 		return 0;
1065 	}
1066 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1067 	rcu_assign_pointer(tsk->sighand, sig);
1068 	if (!sig)
1069 		return -ENOMEM;
1070 	atomic_set(&sig->count, 1);
1071 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1072 	return 0;
1073 }
1074 
1075 void __cleanup_sighand(struct sighand_struct *sighand)
1076 {
1077 	if (atomic_dec_and_test(&sighand->count)) {
1078 		signalfd_cleanup(sighand);
1079 		/*
1080 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1081 		 * without an RCU grace period, see __lock_task_sighand().
1082 		 */
1083 		kmem_cache_free(sighand_cachep, sighand);
1084 	}
1085 }
1086 
1087 /*
1088  * Initialize POSIX timer handling for a thread group.
1089  */
1090 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1091 {
1092 	unsigned long cpu_limit;
1093 
1094 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1095 	if (cpu_limit != RLIM_INFINITY) {
1096 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1097 		sig->cputimer.running = 1;
1098 	}
1099 
1100 	/* The timer lists. */
1101 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1102 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1103 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1104 }
1105 
1106 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1107 {
1108 	struct signal_struct *sig;
1109 
1110 	if (clone_flags & CLONE_THREAD)
1111 		return 0;
1112 
1113 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1114 	tsk->signal = sig;
1115 	if (!sig)
1116 		return -ENOMEM;
1117 
1118 	sig->nr_threads = 1;
1119 	atomic_set(&sig->live, 1);
1120 	atomic_set(&sig->sigcnt, 1);
1121 
1122 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1123 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1124 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1125 
1126 	init_waitqueue_head(&sig->wait_chldexit);
1127 	sig->curr_target = tsk;
1128 	init_sigpending(&sig->shared_pending);
1129 	INIT_LIST_HEAD(&sig->posix_timers);
1130 	seqlock_init(&sig->stats_lock);
1131 
1132 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 	sig->real_timer.function = it_real_fn;
1134 
1135 	task_lock(current->group_leader);
1136 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1137 	task_unlock(current->group_leader);
1138 
1139 	posix_cpu_timers_init_group(sig);
1140 
1141 	tty_audit_fork(sig);
1142 	sched_autogroup_fork(sig);
1143 
1144 	sig->oom_score_adj = current->signal->oom_score_adj;
1145 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1146 
1147 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1148 				   current->signal->is_child_subreaper;
1149 
1150 	mutex_init(&sig->cred_guard_mutex);
1151 
1152 	return 0;
1153 }
1154 
1155 static void copy_seccomp(struct task_struct *p)
1156 {
1157 #ifdef CONFIG_SECCOMP
1158 	/*
1159 	 * Must be called with sighand->lock held, which is common to
1160 	 * all threads in the group. Holding cred_guard_mutex is not
1161 	 * needed because this new task is not yet running and cannot
1162 	 * be racing exec.
1163 	 */
1164 	assert_spin_locked(&current->sighand->siglock);
1165 
1166 	/* Ref-count the new filter user, and assign it. */
1167 	get_seccomp_filter(current);
1168 	p->seccomp = current->seccomp;
1169 
1170 	/*
1171 	 * Explicitly enable no_new_privs here in case it got set
1172 	 * between the task_struct being duplicated and holding the
1173 	 * sighand lock. The seccomp state and nnp must be in sync.
1174 	 */
1175 	if (task_no_new_privs(current))
1176 		task_set_no_new_privs(p);
1177 
1178 	/*
1179 	 * If the parent gained a seccomp mode after copying thread
1180 	 * flags and between before we held the sighand lock, we have
1181 	 * to manually enable the seccomp thread flag here.
1182 	 */
1183 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1184 		set_tsk_thread_flag(p, TIF_SECCOMP);
1185 #endif
1186 }
1187 
1188 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1189 {
1190 	current->clear_child_tid = tidptr;
1191 
1192 	return task_pid_vnr(current);
1193 }
1194 
1195 static void rt_mutex_init_task(struct task_struct *p)
1196 {
1197 	raw_spin_lock_init(&p->pi_lock);
1198 #ifdef CONFIG_RT_MUTEXES
1199 	p->pi_waiters = RB_ROOT;
1200 	p->pi_waiters_leftmost = NULL;
1201 	p->pi_blocked_on = NULL;
1202 #endif
1203 }
1204 
1205 /*
1206  * Initialize POSIX timer handling for a single task.
1207  */
1208 static void posix_cpu_timers_init(struct task_struct *tsk)
1209 {
1210 	tsk->cputime_expires.prof_exp = 0;
1211 	tsk->cputime_expires.virt_exp = 0;
1212 	tsk->cputime_expires.sched_exp = 0;
1213 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1214 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1215 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1216 }
1217 
1218 static inline void
1219 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1220 {
1221 	 task->pids[type].pid = pid;
1222 }
1223 
1224 /*
1225  * This creates a new process as a copy of the old one,
1226  * but does not actually start it yet.
1227  *
1228  * It copies the registers, and all the appropriate
1229  * parts of the process environment (as per the clone
1230  * flags). The actual kick-off is left to the caller.
1231  */
1232 static struct task_struct *copy_process(unsigned long clone_flags,
1233 					unsigned long stack_start,
1234 					unsigned long stack_size,
1235 					int __user *child_tidptr,
1236 					struct pid *pid,
1237 					int trace,
1238 					unsigned long tls)
1239 {
1240 	int retval;
1241 	struct task_struct *p;
1242 
1243 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1244 		return ERR_PTR(-EINVAL);
1245 
1246 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1247 		return ERR_PTR(-EINVAL);
1248 
1249 	/*
1250 	 * Thread groups must share signals as well, and detached threads
1251 	 * can only be started up within the thread group.
1252 	 */
1253 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1254 		return ERR_PTR(-EINVAL);
1255 
1256 	/*
1257 	 * Shared signal handlers imply shared VM. By way of the above,
1258 	 * thread groups also imply shared VM. Blocking this case allows
1259 	 * for various simplifications in other code.
1260 	 */
1261 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1262 		return ERR_PTR(-EINVAL);
1263 
1264 	/*
1265 	 * Siblings of global init remain as zombies on exit since they are
1266 	 * not reaped by their parent (swapper). To solve this and to avoid
1267 	 * multi-rooted process trees, prevent global and container-inits
1268 	 * from creating siblings.
1269 	 */
1270 	if ((clone_flags & CLONE_PARENT) &&
1271 				current->signal->flags & SIGNAL_UNKILLABLE)
1272 		return ERR_PTR(-EINVAL);
1273 
1274 	/*
1275 	 * If the new process will be in a different pid or user namespace
1276 	 * do not allow it to share a thread group or signal handlers or
1277 	 * parent with the forking task.
1278 	 */
1279 	if (clone_flags & CLONE_SIGHAND) {
1280 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1281 		    (task_active_pid_ns(current) !=
1282 				current->nsproxy->pid_ns_for_children))
1283 			return ERR_PTR(-EINVAL);
1284 	}
1285 
1286 	retval = security_task_create(clone_flags);
1287 	if (retval)
1288 		goto fork_out;
1289 
1290 	retval = -ENOMEM;
1291 	p = dup_task_struct(current);
1292 	if (!p)
1293 		goto fork_out;
1294 
1295 	ftrace_graph_init_task(p);
1296 
1297 	rt_mutex_init_task(p);
1298 
1299 #ifdef CONFIG_PROVE_LOCKING
1300 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1301 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1302 #endif
1303 	retval = -EAGAIN;
1304 	if (atomic_read(&p->real_cred->user->processes) >=
1305 			task_rlimit(p, RLIMIT_NPROC)) {
1306 		if (p->real_cred->user != INIT_USER &&
1307 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1308 			goto bad_fork_free;
1309 	}
1310 	current->flags &= ~PF_NPROC_EXCEEDED;
1311 
1312 	retval = copy_creds(p, clone_flags);
1313 	if (retval < 0)
1314 		goto bad_fork_free;
1315 
1316 	/*
1317 	 * If multiple threads are within copy_process(), then this check
1318 	 * triggers too late. This doesn't hurt, the check is only there
1319 	 * to stop root fork bombs.
1320 	 */
1321 	retval = -EAGAIN;
1322 	if (nr_threads >= max_threads)
1323 		goto bad_fork_cleanup_count;
1324 
1325 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1326 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1327 	p->flags |= PF_FORKNOEXEC;
1328 	INIT_LIST_HEAD(&p->children);
1329 	INIT_LIST_HEAD(&p->sibling);
1330 	rcu_copy_process(p);
1331 	p->vfork_done = NULL;
1332 	spin_lock_init(&p->alloc_lock);
1333 
1334 	init_sigpending(&p->pending);
1335 
1336 	p->utime = p->stime = p->gtime = 0;
1337 	p->utimescaled = p->stimescaled = 0;
1338 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1339 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1340 #endif
1341 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1342 	seqlock_init(&p->vtime_seqlock);
1343 	p->vtime_snap = 0;
1344 	p->vtime_snap_whence = VTIME_SLEEPING;
1345 #endif
1346 
1347 #if defined(SPLIT_RSS_COUNTING)
1348 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1349 #endif
1350 
1351 	p->default_timer_slack_ns = current->timer_slack_ns;
1352 
1353 	task_io_accounting_init(&p->ioac);
1354 	acct_clear_integrals(p);
1355 
1356 	posix_cpu_timers_init(p);
1357 
1358 	p->start_time = ktime_get_ns();
1359 	p->real_start_time = ktime_get_boot_ns();
1360 	p->io_context = NULL;
1361 	p->audit_context = NULL;
1362 	if (clone_flags & CLONE_THREAD)
1363 		threadgroup_change_begin(current);
1364 	cgroup_fork(p);
1365 #ifdef CONFIG_NUMA
1366 	p->mempolicy = mpol_dup(p->mempolicy);
1367 	if (IS_ERR(p->mempolicy)) {
1368 		retval = PTR_ERR(p->mempolicy);
1369 		p->mempolicy = NULL;
1370 		goto bad_fork_cleanup_threadgroup_lock;
1371 	}
1372 #endif
1373 #ifdef CONFIG_CPUSETS
1374 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1375 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1376 	seqcount_init(&p->mems_allowed_seq);
1377 #endif
1378 #ifdef CONFIG_TRACE_IRQFLAGS
1379 	p->irq_events = 0;
1380 	p->hardirqs_enabled = 0;
1381 	p->hardirq_enable_ip = 0;
1382 	p->hardirq_enable_event = 0;
1383 	p->hardirq_disable_ip = _THIS_IP_;
1384 	p->hardirq_disable_event = 0;
1385 	p->softirqs_enabled = 1;
1386 	p->softirq_enable_ip = _THIS_IP_;
1387 	p->softirq_enable_event = 0;
1388 	p->softirq_disable_ip = 0;
1389 	p->softirq_disable_event = 0;
1390 	p->hardirq_context = 0;
1391 	p->softirq_context = 0;
1392 #endif
1393 
1394 	p->pagefault_disabled = 0;
1395 
1396 #ifdef CONFIG_LOCKDEP
1397 	p->lockdep_depth = 0; /* no locks held yet */
1398 	p->curr_chain_key = 0;
1399 	p->lockdep_recursion = 0;
1400 #endif
1401 
1402 #ifdef CONFIG_DEBUG_MUTEXES
1403 	p->blocked_on = NULL; /* not blocked yet */
1404 #endif
1405 #ifdef CONFIG_BCACHE
1406 	p->sequential_io	= 0;
1407 	p->sequential_io_avg	= 0;
1408 #endif
1409 
1410 	/* Perform scheduler related setup. Assign this task to a CPU. */
1411 	retval = sched_fork(clone_flags, p);
1412 	if (retval)
1413 		goto bad_fork_cleanup_policy;
1414 
1415 	retval = perf_event_init_task(p);
1416 	if (retval)
1417 		goto bad_fork_cleanup_policy;
1418 	retval = audit_alloc(p);
1419 	if (retval)
1420 		goto bad_fork_cleanup_perf;
1421 	/* copy all the process information */
1422 	shm_init_task(p);
1423 	retval = copy_semundo(clone_flags, p);
1424 	if (retval)
1425 		goto bad_fork_cleanup_audit;
1426 	retval = copy_files(clone_flags, p);
1427 	if (retval)
1428 		goto bad_fork_cleanup_semundo;
1429 	retval = copy_fs(clone_flags, p);
1430 	if (retval)
1431 		goto bad_fork_cleanup_files;
1432 	retval = copy_sighand(clone_flags, p);
1433 	if (retval)
1434 		goto bad_fork_cleanup_fs;
1435 	retval = copy_signal(clone_flags, p);
1436 	if (retval)
1437 		goto bad_fork_cleanup_sighand;
1438 	retval = copy_mm(clone_flags, p);
1439 	if (retval)
1440 		goto bad_fork_cleanup_signal;
1441 	retval = copy_namespaces(clone_flags, p);
1442 	if (retval)
1443 		goto bad_fork_cleanup_mm;
1444 	retval = copy_io(clone_flags, p);
1445 	if (retval)
1446 		goto bad_fork_cleanup_namespaces;
1447 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1448 	if (retval)
1449 		goto bad_fork_cleanup_io;
1450 
1451 	if (pid != &init_struct_pid) {
1452 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1453 		if (IS_ERR(pid)) {
1454 			retval = PTR_ERR(pid);
1455 			goto bad_fork_cleanup_io;
1456 		}
1457 	}
1458 
1459 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1460 	/*
1461 	 * Clear TID on mm_release()?
1462 	 */
1463 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1464 #ifdef CONFIG_BLOCK
1465 	p->plug = NULL;
1466 #endif
1467 #ifdef CONFIG_FUTEX
1468 	p->robust_list = NULL;
1469 #ifdef CONFIG_COMPAT
1470 	p->compat_robust_list = NULL;
1471 #endif
1472 	INIT_LIST_HEAD(&p->pi_state_list);
1473 	p->pi_state_cache = NULL;
1474 #endif
1475 	/*
1476 	 * sigaltstack should be cleared when sharing the same VM
1477 	 */
1478 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1479 		p->sas_ss_sp = p->sas_ss_size = 0;
1480 
1481 	/*
1482 	 * Syscall tracing and stepping should be turned off in the
1483 	 * child regardless of CLONE_PTRACE.
1484 	 */
1485 	user_disable_single_step(p);
1486 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1487 #ifdef TIF_SYSCALL_EMU
1488 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1489 #endif
1490 	clear_all_latency_tracing(p);
1491 
1492 	/* ok, now we should be set up.. */
1493 	p->pid = pid_nr(pid);
1494 	if (clone_flags & CLONE_THREAD) {
1495 		p->exit_signal = -1;
1496 		p->group_leader = current->group_leader;
1497 		p->tgid = current->tgid;
1498 	} else {
1499 		if (clone_flags & CLONE_PARENT)
1500 			p->exit_signal = current->group_leader->exit_signal;
1501 		else
1502 			p->exit_signal = (clone_flags & CSIGNAL);
1503 		p->group_leader = p;
1504 		p->tgid = p->pid;
1505 	}
1506 
1507 	p->nr_dirtied = 0;
1508 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1509 	p->dirty_paused_when = 0;
1510 
1511 	p->pdeath_signal = 0;
1512 	INIT_LIST_HEAD(&p->thread_group);
1513 	p->task_works = NULL;
1514 
1515 	/*
1516 	 * Make it visible to the rest of the system, but dont wake it up yet.
1517 	 * Need tasklist lock for parent etc handling!
1518 	 */
1519 	write_lock_irq(&tasklist_lock);
1520 
1521 	/* CLONE_PARENT re-uses the old parent */
1522 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1523 		p->real_parent = current->real_parent;
1524 		p->parent_exec_id = current->parent_exec_id;
1525 	} else {
1526 		p->real_parent = current;
1527 		p->parent_exec_id = current->self_exec_id;
1528 	}
1529 
1530 	spin_lock(&current->sighand->siglock);
1531 
1532 	/*
1533 	 * Copy seccomp details explicitly here, in case they were changed
1534 	 * before holding sighand lock.
1535 	 */
1536 	copy_seccomp(p);
1537 
1538 	/*
1539 	 * Process group and session signals need to be delivered to just the
1540 	 * parent before the fork or both the parent and the child after the
1541 	 * fork. Restart if a signal comes in before we add the new process to
1542 	 * it's process group.
1543 	 * A fatal signal pending means that current will exit, so the new
1544 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1545 	*/
1546 	recalc_sigpending();
1547 	if (signal_pending(current)) {
1548 		spin_unlock(&current->sighand->siglock);
1549 		write_unlock_irq(&tasklist_lock);
1550 		retval = -ERESTARTNOINTR;
1551 		goto bad_fork_free_pid;
1552 	}
1553 
1554 	if (likely(p->pid)) {
1555 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1556 
1557 		init_task_pid(p, PIDTYPE_PID, pid);
1558 		if (thread_group_leader(p)) {
1559 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1560 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1561 
1562 			if (is_child_reaper(pid)) {
1563 				ns_of_pid(pid)->child_reaper = p;
1564 				p->signal->flags |= SIGNAL_UNKILLABLE;
1565 			}
1566 
1567 			p->signal->leader_pid = pid;
1568 			p->signal->tty = tty_kref_get(current->signal->tty);
1569 			list_add_tail(&p->sibling, &p->real_parent->children);
1570 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1571 			attach_pid(p, PIDTYPE_PGID);
1572 			attach_pid(p, PIDTYPE_SID);
1573 			__this_cpu_inc(process_counts);
1574 		} else {
1575 			current->signal->nr_threads++;
1576 			atomic_inc(&current->signal->live);
1577 			atomic_inc(&current->signal->sigcnt);
1578 			list_add_tail_rcu(&p->thread_group,
1579 					  &p->group_leader->thread_group);
1580 			list_add_tail_rcu(&p->thread_node,
1581 					  &p->signal->thread_head);
1582 		}
1583 		attach_pid(p, PIDTYPE_PID);
1584 		nr_threads++;
1585 	}
1586 
1587 	total_forks++;
1588 	spin_unlock(&current->sighand->siglock);
1589 	syscall_tracepoint_update(p);
1590 	write_unlock_irq(&tasklist_lock);
1591 
1592 	proc_fork_connector(p);
1593 	cgroup_post_fork(p);
1594 	if (clone_flags & CLONE_THREAD)
1595 		threadgroup_change_end(current);
1596 	perf_event_fork(p);
1597 
1598 	trace_task_newtask(p, clone_flags);
1599 	uprobe_copy_process(p, clone_flags);
1600 
1601 	return p;
1602 
1603 bad_fork_free_pid:
1604 	if (pid != &init_struct_pid)
1605 		free_pid(pid);
1606 bad_fork_cleanup_io:
1607 	if (p->io_context)
1608 		exit_io_context(p);
1609 bad_fork_cleanup_namespaces:
1610 	exit_task_namespaces(p);
1611 bad_fork_cleanup_mm:
1612 	if (p->mm)
1613 		mmput(p->mm);
1614 bad_fork_cleanup_signal:
1615 	if (!(clone_flags & CLONE_THREAD))
1616 		free_signal_struct(p->signal);
1617 bad_fork_cleanup_sighand:
1618 	__cleanup_sighand(p->sighand);
1619 bad_fork_cleanup_fs:
1620 	exit_fs(p); /* blocking */
1621 bad_fork_cleanup_files:
1622 	exit_files(p); /* blocking */
1623 bad_fork_cleanup_semundo:
1624 	exit_sem(p);
1625 bad_fork_cleanup_audit:
1626 	audit_free(p);
1627 bad_fork_cleanup_perf:
1628 	perf_event_free_task(p);
1629 bad_fork_cleanup_policy:
1630 #ifdef CONFIG_NUMA
1631 	mpol_put(p->mempolicy);
1632 bad_fork_cleanup_threadgroup_lock:
1633 #endif
1634 	if (clone_flags & CLONE_THREAD)
1635 		threadgroup_change_end(current);
1636 	delayacct_tsk_free(p);
1637 bad_fork_cleanup_count:
1638 	atomic_dec(&p->cred->user->processes);
1639 	exit_creds(p);
1640 bad_fork_free:
1641 	free_task(p);
1642 fork_out:
1643 	return ERR_PTR(retval);
1644 }
1645 
1646 static inline void init_idle_pids(struct pid_link *links)
1647 {
1648 	enum pid_type type;
1649 
1650 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1651 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1652 		links[type].pid = &init_struct_pid;
1653 	}
1654 }
1655 
1656 struct task_struct *fork_idle(int cpu)
1657 {
1658 	struct task_struct *task;
1659 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1660 	if (!IS_ERR(task)) {
1661 		init_idle_pids(task->pids);
1662 		init_idle(task, cpu);
1663 	}
1664 
1665 	return task;
1666 }
1667 
1668 /*
1669  *  Ok, this is the main fork-routine.
1670  *
1671  * It copies the process, and if successful kick-starts
1672  * it and waits for it to finish using the VM if required.
1673  */
1674 long _do_fork(unsigned long clone_flags,
1675 	      unsigned long stack_start,
1676 	      unsigned long stack_size,
1677 	      int __user *parent_tidptr,
1678 	      int __user *child_tidptr,
1679 	      unsigned long tls)
1680 {
1681 	struct task_struct *p;
1682 	int trace = 0;
1683 	long nr;
1684 
1685 	/*
1686 	 * Determine whether and which event to report to ptracer.  When
1687 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1688 	 * requested, no event is reported; otherwise, report if the event
1689 	 * for the type of forking is enabled.
1690 	 */
1691 	if (!(clone_flags & CLONE_UNTRACED)) {
1692 		if (clone_flags & CLONE_VFORK)
1693 			trace = PTRACE_EVENT_VFORK;
1694 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1695 			trace = PTRACE_EVENT_CLONE;
1696 		else
1697 			trace = PTRACE_EVENT_FORK;
1698 
1699 		if (likely(!ptrace_event_enabled(current, trace)))
1700 			trace = 0;
1701 	}
1702 
1703 	p = copy_process(clone_flags, stack_start, stack_size,
1704 			 child_tidptr, NULL, trace, tls);
1705 	/*
1706 	 * Do this prior waking up the new thread - the thread pointer
1707 	 * might get invalid after that point, if the thread exits quickly.
1708 	 */
1709 	if (!IS_ERR(p)) {
1710 		struct completion vfork;
1711 		struct pid *pid;
1712 
1713 		trace_sched_process_fork(current, p);
1714 
1715 		pid = get_task_pid(p, PIDTYPE_PID);
1716 		nr = pid_vnr(pid);
1717 
1718 		if (clone_flags & CLONE_PARENT_SETTID)
1719 			put_user(nr, parent_tidptr);
1720 
1721 		if (clone_flags & CLONE_VFORK) {
1722 			p->vfork_done = &vfork;
1723 			init_completion(&vfork);
1724 			get_task_struct(p);
1725 		}
1726 
1727 		wake_up_new_task(p);
1728 
1729 		/* forking complete and child started to run, tell ptracer */
1730 		if (unlikely(trace))
1731 			ptrace_event_pid(trace, pid);
1732 
1733 		if (clone_flags & CLONE_VFORK) {
1734 			if (!wait_for_vfork_done(p, &vfork))
1735 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1736 		}
1737 
1738 		put_pid(pid);
1739 	} else {
1740 		nr = PTR_ERR(p);
1741 	}
1742 	return nr;
1743 }
1744 
1745 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1746 /* For compatibility with architectures that call do_fork directly rather than
1747  * using the syscall entry points below. */
1748 long do_fork(unsigned long clone_flags,
1749 	      unsigned long stack_start,
1750 	      unsigned long stack_size,
1751 	      int __user *parent_tidptr,
1752 	      int __user *child_tidptr)
1753 {
1754 	return _do_fork(clone_flags, stack_start, stack_size,
1755 			parent_tidptr, child_tidptr, 0);
1756 }
1757 #endif
1758 
1759 /*
1760  * Create a kernel thread.
1761  */
1762 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1763 {
1764 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1765 		(unsigned long)arg, NULL, NULL, 0);
1766 }
1767 
1768 #ifdef __ARCH_WANT_SYS_FORK
1769 SYSCALL_DEFINE0(fork)
1770 {
1771 #ifdef CONFIG_MMU
1772 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1773 #else
1774 	/* can not support in nommu mode */
1775 	return -EINVAL;
1776 #endif
1777 }
1778 #endif
1779 
1780 #ifdef __ARCH_WANT_SYS_VFORK
1781 SYSCALL_DEFINE0(vfork)
1782 {
1783 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1784 			0, NULL, NULL, 0);
1785 }
1786 #endif
1787 
1788 #ifdef __ARCH_WANT_SYS_CLONE
1789 #ifdef CONFIG_CLONE_BACKWARDS
1790 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1791 		 int __user *, parent_tidptr,
1792 		 unsigned long, tls,
1793 		 int __user *, child_tidptr)
1794 #elif defined(CONFIG_CLONE_BACKWARDS2)
1795 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1796 		 int __user *, parent_tidptr,
1797 		 int __user *, child_tidptr,
1798 		 unsigned long, tls)
1799 #elif defined(CONFIG_CLONE_BACKWARDS3)
1800 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1801 		int, stack_size,
1802 		int __user *, parent_tidptr,
1803 		int __user *, child_tidptr,
1804 		unsigned long, tls)
1805 #else
1806 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1807 		 int __user *, parent_tidptr,
1808 		 int __user *, child_tidptr,
1809 		 unsigned long, tls)
1810 #endif
1811 {
1812 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1813 }
1814 #endif
1815 
1816 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1817 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1818 #endif
1819 
1820 static void sighand_ctor(void *data)
1821 {
1822 	struct sighand_struct *sighand = data;
1823 
1824 	spin_lock_init(&sighand->siglock);
1825 	init_waitqueue_head(&sighand->signalfd_wqh);
1826 }
1827 
1828 void __init proc_caches_init(void)
1829 {
1830 	sighand_cachep = kmem_cache_create("sighand_cache",
1831 			sizeof(struct sighand_struct), 0,
1832 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1833 			SLAB_NOTRACK, sighand_ctor);
1834 	signal_cachep = kmem_cache_create("signal_cache",
1835 			sizeof(struct signal_struct), 0,
1836 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1837 	files_cachep = kmem_cache_create("files_cache",
1838 			sizeof(struct files_struct), 0,
1839 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1840 	fs_cachep = kmem_cache_create("fs_cache",
1841 			sizeof(struct fs_struct), 0,
1842 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1843 	/*
1844 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1845 	 * whole struct cpumask for the OFFSTACK case. We could change
1846 	 * this to *only* allocate as much of it as required by the
1847 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1848 	 * is at the end of the structure, exactly for that reason.
1849 	 */
1850 	mm_cachep = kmem_cache_create("mm_struct",
1851 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1852 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1853 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1854 	mmap_init();
1855 	nsproxy_cache_init();
1856 }
1857 
1858 /*
1859  * Check constraints on flags passed to the unshare system call.
1860  */
1861 static int check_unshare_flags(unsigned long unshare_flags)
1862 {
1863 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1864 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1865 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1866 				CLONE_NEWUSER|CLONE_NEWPID))
1867 		return -EINVAL;
1868 	/*
1869 	 * Not implemented, but pretend it works if there is nothing to
1870 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1871 	 * needs to unshare vm.
1872 	 */
1873 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1874 		/* FIXME: get_task_mm() increments ->mm_users */
1875 		if (atomic_read(&current->mm->mm_users) > 1)
1876 			return -EINVAL;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 /*
1883  * Unshare the filesystem structure if it is being shared
1884  */
1885 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1886 {
1887 	struct fs_struct *fs = current->fs;
1888 
1889 	if (!(unshare_flags & CLONE_FS) || !fs)
1890 		return 0;
1891 
1892 	/* don't need lock here; in the worst case we'll do useless copy */
1893 	if (fs->users == 1)
1894 		return 0;
1895 
1896 	*new_fsp = copy_fs_struct(fs);
1897 	if (!*new_fsp)
1898 		return -ENOMEM;
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Unshare file descriptor table if it is being shared
1905  */
1906 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1907 {
1908 	struct files_struct *fd = current->files;
1909 	int error = 0;
1910 
1911 	if ((unshare_flags & CLONE_FILES) &&
1912 	    (fd && atomic_read(&fd->count) > 1)) {
1913 		*new_fdp = dup_fd(fd, &error);
1914 		if (!*new_fdp)
1915 			return error;
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 /*
1922  * unshare allows a process to 'unshare' part of the process
1923  * context which was originally shared using clone.  copy_*
1924  * functions used by do_fork() cannot be used here directly
1925  * because they modify an inactive task_struct that is being
1926  * constructed. Here we are modifying the current, active,
1927  * task_struct.
1928  */
1929 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1930 {
1931 	struct fs_struct *fs, *new_fs = NULL;
1932 	struct files_struct *fd, *new_fd = NULL;
1933 	struct cred *new_cred = NULL;
1934 	struct nsproxy *new_nsproxy = NULL;
1935 	int do_sysvsem = 0;
1936 	int err;
1937 
1938 	/*
1939 	 * If unsharing a user namespace must also unshare the thread.
1940 	 */
1941 	if (unshare_flags & CLONE_NEWUSER)
1942 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1943 	/*
1944 	 * If unsharing a thread from a thread group, must also unshare vm.
1945 	 */
1946 	if (unshare_flags & CLONE_THREAD)
1947 		unshare_flags |= CLONE_VM;
1948 	/*
1949 	 * If unsharing vm, must also unshare signal handlers.
1950 	 */
1951 	if (unshare_flags & CLONE_VM)
1952 		unshare_flags |= CLONE_SIGHAND;
1953 	/*
1954 	 * If unsharing namespace, must also unshare filesystem information.
1955 	 */
1956 	if (unshare_flags & CLONE_NEWNS)
1957 		unshare_flags |= CLONE_FS;
1958 
1959 	err = check_unshare_flags(unshare_flags);
1960 	if (err)
1961 		goto bad_unshare_out;
1962 	/*
1963 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1964 	 * to a new ipc namespace, the semaphore arrays from the old
1965 	 * namespace are unreachable.
1966 	 */
1967 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1968 		do_sysvsem = 1;
1969 	err = unshare_fs(unshare_flags, &new_fs);
1970 	if (err)
1971 		goto bad_unshare_out;
1972 	err = unshare_fd(unshare_flags, &new_fd);
1973 	if (err)
1974 		goto bad_unshare_cleanup_fs;
1975 	err = unshare_userns(unshare_flags, &new_cred);
1976 	if (err)
1977 		goto bad_unshare_cleanup_fd;
1978 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1979 					 new_cred, new_fs);
1980 	if (err)
1981 		goto bad_unshare_cleanup_cred;
1982 
1983 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1984 		if (do_sysvsem) {
1985 			/*
1986 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1987 			 */
1988 			exit_sem(current);
1989 		}
1990 		if (unshare_flags & CLONE_NEWIPC) {
1991 			/* Orphan segments in old ns (see sem above). */
1992 			exit_shm(current);
1993 			shm_init_task(current);
1994 		}
1995 
1996 		if (new_nsproxy)
1997 			switch_task_namespaces(current, new_nsproxy);
1998 
1999 		task_lock(current);
2000 
2001 		if (new_fs) {
2002 			fs = current->fs;
2003 			spin_lock(&fs->lock);
2004 			current->fs = new_fs;
2005 			if (--fs->users)
2006 				new_fs = NULL;
2007 			else
2008 				new_fs = fs;
2009 			spin_unlock(&fs->lock);
2010 		}
2011 
2012 		if (new_fd) {
2013 			fd = current->files;
2014 			current->files = new_fd;
2015 			new_fd = fd;
2016 		}
2017 
2018 		task_unlock(current);
2019 
2020 		if (new_cred) {
2021 			/* Install the new user namespace */
2022 			commit_creds(new_cred);
2023 			new_cred = NULL;
2024 		}
2025 	}
2026 
2027 bad_unshare_cleanup_cred:
2028 	if (new_cred)
2029 		put_cred(new_cred);
2030 bad_unshare_cleanup_fd:
2031 	if (new_fd)
2032 		put_files_struct(new_fd);
2033 
2034 bad_unshare_cleanup_fs:
2035 	if (new_fs)
2036 		free_fs_struct(new_fs);
2037 
2038 bad_unshare_out:
2039 	return err;
2040 }
2041 
2042 /*
2043  *	Helper to unshare the files of the current task.
2044  *	We don't want to expose copy_files internals to
2045  *	the exec layer of the kernel.
2046  */
2047 
2048 int unshare_files(struct files_struct **displaced)
2049 {
2050 	struct task_struct *task = current;
2051 	struct files_struct *copy = NULL;
2052 	int error;
2053 
2054 	error = unshare_fd(CLONE_FILES, &copy);
2055 	if (error || !copy) {
2056 		*displaced = NULL;
2057 		return error;
2058 	}
2059 	*displaced = task->files;
2060 	task_lock(task);
2061 	task->files = copy;
2062 	task_unlock(task);
2063 	return 0;
2064 }
2065 
2066 int sysctl_max_threads(struct ctl_table *table, int write,
2067 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2068 {
2069 	struct ctl_table t;
2070 	int ret;
2071 	int threads = max_threads;
2072 	int min = MIN_THREADS;
2073 	int max = MAX_THREADS;
2074 
2075 	t = *table;
2076 	t.data = &threads;
2077 	t.extra1 = &min;
2078 	t.extra2 = &max;
2079 
2080 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2081 	if (ret || !write)
2082 		return ret;
2083 
2084 	set_max_threads(threads);
2085 
2086 	return 0;
2087 }
2088