xref: /openbmc/linux/kernel/fork.c (revision 171f1bc7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76 
77 #include <trace/events/sched.h>
78 
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;	/* Handle normal Linux uptimes. */
83 int nr_threads;			/* The idle threads do not count.. */
84 
85 int max_threads;		/* tunable limit on nr_threads */
86 
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90 
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 	return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98 
99 int nr_processes(void)
100 {
101 	int cpu;
102 	int total = 0;
103 
104 	for_each_possible_cpu(cpu)
105 		total += per_cpu(process_counts, cpu);
106 
107 	return total;
108 }
109 
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node)		\
112 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk)			\
114 		kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117 
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 						  int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 	gfp_t mask = GFP_KERNEL;
126 #endif
127 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128 
129 	return page ? page_address(page) : NULL;
130 }
131 
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137 
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140 
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143 
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146 
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149 
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152 
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155 
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 	struct zone *zone = page_zone(virt_to_page(ti));
159 
160 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162 
163 void free_task(struct task_struct *tsk)
164 {
165 	prop_local_destroy_single(&tsk->dirties);
166 	account_kernel_stack(tsk->stack, -1);
167 	free_thread_info(tsk->stack);
168 	rt_mutex_debug_task_free(tsk);
169 	ftrace_graph_exit_task(tsk);
170 	free_task_struct(tsk);
171 }
172 EXPORT_SYMBOL(free_task);
173 
174 static inline void free_signal_struct(struct signal_struct *sig)
175 {
176 	taskstats_tgid_free(sig);
177 	sched_autogroup_exit(sig);
178 	kmem_cache_free(signal_cachep, sig);
179 }
180 
181 static inline void put_signal_struct(struct signal_struct *sig)
182 {
183 	if (atomic_dec_and_test(&sig->sigcnt))
184 		free_signal_struct(sig);
185 }
186 
187 void __put_task_struct(struct task_struct *tsk)
188 {
189 	WARN_ON(!tsk->exit_state);
190 	WARN_ON(atomic_read(&tsk->usage));
191 	WARN_ON(tsk == current);
192 
193 	exit_creds(tsk);
194 	delayacct_tsk_free(tsk);
195 	put_signal_struct(tsk->signal);
196 
197 	if (!profile_handoff_task(tsk))
198 		free_task(tsk);
199 }
200 EXPORT_SYMBOL_GPL(__put_task_struct);
201 
202 /*
203  * macro override instead of weak attribute alias, to workaround
204  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205  */
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
209 
210 void __init fork_init(unsigned long mempages)
211 {
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
215 #endif
216 	/* create a slab on which task_structs can be allocated */
217 	task_struct_cachep =
218 		kmem_cache_create("task_struct", sizeof(struct task_struct),
219 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
221 
222 	/* do the arch specific task caches init */
223 	arch_task_cache_init();
224 
225 	/*
226 	 * The default maximum number of threads is set to a safe
227 	 * value: the thread structures can take up at most half
228 	 * of memory.
229 	 */
230 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
231 
232 	/*
233 	 * we need to allow at least 20 threads to boot a system
234 	 */
235 	if (max_threads < 20)
236 		max_threads = 20;
237 
238 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 		init_task.signal->rlim[RLIMIT_NPROC];
242 }
243 
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 					       struct task_struct *src)
246 {
247 	*dst = *src;
248 	return 0;
249 }
250 
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
252 {
253 	struct task_struct *tsk;
254 	struct thread_info *ti;
255 	unsigned long *stackend;
256 	int node = tsk_fork_get_node(orig);
257 	int err;
258 
259 	prepare_to_copy(orig);
260 
261 	tsk = alloc_task_struct_node(node);
262 	if (!tsk)
263 		return NULL;
264 
265 	ti = alloc_thread_info_node(tsk, node);
266 	if (!ti) {
267 		free_task_struct(tsk);
268 		return NULL;
269 	}
270 
271 	err = arch_dup_task_struct(tsk, orig);
272 	if (err)
273 		goto out;
274 
275 	tsk->stack = ti;
276 
277 	err = prop_local_init_single(&tsk->dirties);
278 	if (err)
279 		goto out;
280 
281 	setup_thread_stack(tsk, orig);
282 	clear_user_return_notifier(tsk);
283 	clear_tsk_need_resched(tsk);
284 	stackend = end_of_stack(tsk);
285 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
286 
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 	tsk->stack_canary = get_random_int();
289 #endif
290 
291 	/*
292 	 * One for us, one for whoever does the "release_task()" (usually
293 	 * parent)
294 	 */
295 	atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 	tsk->btrace_seq = 0;
298 #endif
299 	tsk->splice_pipe = NULL;
300 
301 	account_kernel_stack(ti, 1);
302 
303 	return tsk;
304 
305 out:
306 	free_thread_info(ti);
307 	free_task_struct(tsk);
308 	return NULL;
309 }
310 
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 	struct rb_node **rb_link, *rb_parent;
316 	int retval;
317 	unsigned long charge;
318 	struct mempolicy *pol;
319 
320 	down_write(&oldmm->mmap_sem);
321 	flush_cache_dup_mm(oldmm);
322 	/*
323 	 * Not linked in yet - no deadlock potential:
324 	 */
325 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326 
327 	mm->locked_vm = 0;
328 	mm->mmap = NULL;
329 	mm->mmap_cache = NULL;
330 	mm->free_area_cache = oldmm->mmap_base;
331 	mm->cached_hole_size = ~0UL;
332 	mm->map_count = 0;
333 	cpumask_clear(mm_cpumask(mm));
334 	mm->mm_rb = RB_ROOT;
335 	rb_link = &mm->mm_rb.rb_node;
336 	rb_parent = NULL;
337 	pprev = &mm->mmap;
338 	retval = ksm_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 	retval = khugepaged_fork(mm, oldmm);
342 	if (retval)
343 		goto out;
344 
345 	prev = NULL;
346 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 		struct file *file;
348 
349 		if (mpnt->vm_flags & VM_DONTCOPY) {
350 			long pages = vma_pages(mpnt);
351 			mm->total_vm -= pages;
352 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 								-pages);
354 			continue;
355 		}
356 		charge = 0;
357 		if (mpnt->vm_flags & VM_ACCOUNT) {
358 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 			if (security_vm_enough_memory(len))
360 				goto fail_nomem;
361 			charge = len;
362 		}
363 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 		if (!tmp)
365 			goto fail_nomem;
366 		*tmp = *mpnt;
367 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 		pol = mpol_dup(vma_policy(mpnt));
369 		retval = PTR_ERR(pol);
370 		if (IS_ERR(pol))
371 			goto fail_nomem_policy;
372 		vma_set_policy(tmp, pol);
373 		tmp->vm_mm = mm;
374 		if (anon_vma_fork(tmp, mpnt))
375 			goto fail_nomem_anon_vma_fork;
376 		tmp->vm_flags &= ~VM_LOCKED;
377 		tmp->vm_next = tmp->vm_prev = NULL;
378 		file = tmp->vm_file;
379 		if (file) {
380 			struct inode *inode = file->f_path.dentry->d_inode;
381 			struct address_space *mapping = file->f_mapping;
382 
383 			get_file(file);
384 			if (tmp->vm_flags & VM_DENYWRITE)
385 				atomic_dec(&inode->i_writecount);
386 			mutex_lock(&mapping->i_mmap_mutex);
387 			if (tmp->vm_flags & VM_SHARED)
388 				mapping->i_mmap_writable++;
389 			flush_dcache_mmap_lock(mapping);
390 			/* insert tmp into the share list, just after mpnt */
391 			vma_prio_tree_add(tmp, mpnt);
392 			flush_dcache_mmap_unlock(mapping);
393 			mutex_unlock(&mapping->i_mmap_mutex);
394 		}
395 
396 		/*
397 		 * Clear hugetlb-related page reserves for children. This only
398 		 * affects MAP_PRIVATE mappings. Faults generated by the child
399 		 * are not guaranteed to succeed, even if read-only
400 		 */
401 		if (is_vm_hugetlb_page(tmp))
402 			reset_vma_resv_huge_pages(tmp);
403 
404 		/*
405 		 * Link in the new vma and copy the page table entries.
406 		 */
407 		*pprev = tmp;
408 		pprev = &tmp->vm_next;
409 		tmp->vm_prev = prev;
410 		prev = tmp;
411 
412 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
413 		rb_link = &tmp->vm_rb.rb_right;
414 		rb_parent = &tmp->vm_rb;
415 
416 		mm->map_count++;
417 		retval = copy_page_range(mm, oldmm, mpnt);
418 
419 		if (tmp->vm_ops && tmp->vm_ops->open)
420 			tmp->vm_ops->open(tmp);
421 
422 		if (retval)
423 			goto out;
424 	}
425 	/* a new mm has just been created */
426 	arch_dup_mmap(oldmm, mm);
427 	retval = 0;
428 out:
429 	up_write(&mm->mmap_sem);
430 	flush_tlb_mm(oldmm);
431 	up_write(&oldmm->mmap_sem);
432 	return retval;
433 fail_nomem_anon_vma_fork:
434 	mpol_put(pol);
435 fail_nomem_policy:
436 	kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 	retval = -ENOMEM;
439 	vm_unacct_memory(charge);
440 	goto out;
441 }
442 
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 	mm->pgd = pgd_alloc(mm);
446 	if (unlikely(!mm->pgd))
447 		return -ENOMEM;
448 	return 0;
449 }
450 
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 	pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm)	(0)
457 #define mm_alloc_pgd(mm)	(0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460 
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462 
463 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
465 
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467 
468 static int __init coredump_filter_setup(char *s)
469 {
470 	default_dump_filter =
471 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 		MMF_DUMP_FILTER_MASK;
473 	return 1;
474 }
475 
476 __setup("coredump_filter=", coredump_filter_setup);
477 
478 #include <linux/init_task.h>
479 
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 	spin_lock_init(&mm->ioctx_lock);
484 	INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487 
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 	atomic_set(&mm->mm_users, 1);
491 	atomic_set(&mm->mm_count, 1);
492 	init_rwsem(&mm->mmap_sem);
493 	INIT_LIST_HEAD(&mm->mmlist);
494 	mm->flags = (current->mm) ?
495 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 	mm->core_state = NULL;
497 	mm->nr_ptes = 0;
498 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 	spin_lock_init(&mm->page_table_lock);
500 	mm->free_area_cache = TASK_UNMAPPED_BASE;
501 	mm->cached_hole_size = ~0UL;
502 	mm_init_aio(mm);
503 	mm_init_owner(mm, p);
504 
505 	if (likely(!mm_alloc_pgd(mm))) {
506 		mm->def_flags = 0;
507 		mmu_notifier_mm_init(mm);
508 		return mm;
509 	}
510 
511 	free_mm(mm);
512 	return NULL;
513 }
514 
515 /*
516  * Allocate and initialize an mm_struct.
517  */
518 struct mm_struct *mm_alloc(void)
519 {
520 	struct mm_struct *mm;
521 
522 	mm = allocate_mm();
523 	if (!mm)
524 		return NULL;
525 
526 	memset(mm, 0, sizeof(*mm));
527 	mm_init_cpumask(mm);
528 	return mm_init(mm, current);
529 }
530 
531 /*
532  * Called when the last reference to the mm
533  * is dropped: either by a lazy thread or by
534  * mmput. Free the page directory and the mm.
535  */
536 void __mmdrop(struct mm_struct *mm)
537 {
538 	BUG_ON(mm == &init_mm);
539 	mm_free_pgd(mm);
540 	destroy_context(mm);
541 	mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 	VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 	free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548 
549 /*
550  * Decrement the use count and release all resources for an mm.
551  */
552 void mmput(struct mm_struct *mm)
553 {
554 	might_sleep();
555 
556 	if (atomic_dec_and_test(&mm->mm_users)) {
557 		exit_aio(mm);
558 		ksm_exit(mm);
559 		khugepaged_exit(mm); /* must run before exit_mmap */
560 		exit_mmap(mm);
561 		set_mm_exe_file(mm, NULL);
562 		if (!list_empty(&mm->mmlist)) {
563 			spin_lock(&mmlist_lock);
564 			list_del(&mm->mmlist);
565 			spin_unlock(&mmlist_lock);
566 		}
567 		put_swap_token(mm);
568 		if (mm->binfmt)
569 			module_put(mm->binfmt->module);
570 		mmdrop(mm);
571 	}
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574 
575 /*
576  * We added or removed a vma mapping the executable. The vmas are only mapped
577  * during exec and are not mapped with the mmap system call.
578  * Callers must hold down_write() on the mm's mmap_sem for these
579  */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582 	mm->num_exe_file_vmas++;
583 }
584 
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587 	mm->num_exe_file_vmas--;
588 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
589 		fput(mm->exe_file);
590 		mm->exe_file = NULL;
591 	}
592 
593 }
594 
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597 	if (new_exe_file)
598 		get_file(new_exe_file);
599 	if (mm->exe_file)
600 		fput(mm->exe_file);
601 	mm->exe_file = new_exe_file;
602 	mm->num_exe_file_vmas = 0;
603 }
604 
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607 	struct file *exe_file;
608 
609 	/* We need mmap_sem to protect against races with removal of
610 	 * VM_EXECUTABLE vmas */
611 	down_read(&mm->mmap_sem);
612 	exe_file = mm->exe_file;
613 	if (exe_file)
614 		get_file(exe_file);
615 	up_read(&mm->mmap_sem);
616 	return exe_file;
617 }
618 
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621 	/* It's safe to write the exe_file pointer without exe_file_lock because
622 	 * this is called during fork when the task is not yet in /proc */
623 	newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625 
626 /**
627  * get_task_mm - acquire a reference to the task's mm
628  *
629  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
630  * this kernel workthread has transiently adopted a user mm with use_mm,
631  * to do its AIO) is not set and if so returns a reference to it, after
632  * bumping up the use count.  User must release the mm via mmput()
633  * after use.  Typically used by /proc and ptrace.
634  */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637 	struct mm_struct *mm;
638 
639 	task_lock(task);
640 	mm = task->mm;
641 	if (mm) {
642 		if (task->flags & PF_KTHREAD)
643 			mm = NULL;
644 		else
645 			atomic_inc(&mm->mm_users);
646 	}
647 	task_unlock(task);
648 	return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651 
652 /* Please note the differences between mmput and mm_release.
653  * mmput is called whenever we stop holding onto a mm_struct,
654  * error success whatever.
655  *
656  * mm_release is called after a mm_struct has been removed
657  * from the current process.
658  *
659  * This difference is important for error handling, when we
660  * only half set up a mm_struct for a new process and need to restore
661  * the old one.  Because we mmput the new mm_struct before
662  * restoring the old one. . .
663  * Eric Biederman 10 January 1998
664  */
665 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666 {
667 	struct completion *vfork_done = tsk->vfork_done;
668 
669 	/* Get rid of any futexes when releasing the mm */
670 #ifdef CONFIG_FUTEX
671 	if (unlikely(tsk->robust_list)) {
672 		exit_robust_list(tsk);
673 		tsk->robust_list = NULL;
674 	}
675 #ifdef CONFIG_COMPAT
676 	if (unlikely(tsk->compat_robust_list)) {
677 		compat_exit_robust_list(tsk);
678 		tsk->compat_robust_list = NULL;
679 	}
680 #endif
681 	if (unlikely(!list_empty(&tsk->pi_state_list)))
682 		exit_pi_state_list(tsk);
683 #endif
684 
685 	/* Get rid of any cached register state */
686 	deactivate_mm(tsk, mm);
687 
688 	/* notify parent sleeping on vfork() */
689 	if (vfork_done) {
690 		tsk->vfork_done = NULL;
691 		complete(vfork_done);
692 	}
693 
694 	/*
695 	 * If we're exiting normally, clear a user-space tid field if
696 	 * requested.  We leave this alone when dying by signal, to leave
697 	 * the value intact in a core dump, and to save the unnecessary
698 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
699 	 */
700 	if (tsk->clear_child_tid) {
701 		if (!(tsk->flags & PF_SIGNALED) &&
702 		    atomic_read(&mm->mm_users) > 1) {
703 			/*
704 			 * We don't check the error code - if userspace has
705 			 * not set up a proper pointer then tough luck.
706 			 */
707 			put_user(0, tsk->clear_child_tid);
708 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
709 					1, NULL, NULL, 0);
710 		}
711 		tsk->clear_child_tid = NULL;
712 	}
713 }
714 
715 /*
716  * Allocate a new mm structure and copy contents from the
717  * mm structure of the passed in task structure.
718  */
719 struct mm_struct *dup_mm(struct task_struct *tsk)
720 {
721 	struct mm_struct *mm, *oldmm = current->mm;
722 	int err;
723 
724 	if (!oldmm)
725 		return NULL;
726 
727 	mm = allocate_mm();
728 	if (!mm)
729 		goto fail_nomem;
730 
731 	memcpy(mm, oldmm, sizeof(*mm));
732 	mm_init_cpumask(mm);
733 
734 	/* Initializing for Swap token stuff */
735 	mm->token_priority = 0;
736 	mm->last_interval = 0;
737 
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 	mm->pmd_huge_pte = NULL;
740 #endif
741 
742 	if (!mm_init(mm, tsk))
743 		goto fail_nomem;
744 
745 	if (init_new_context(tsk, mm))
746 		goto fail_nocontext;
747 
748 	dup_mm_exe_file(oldmm, mm);
749 
750 	err = dup_mmap(mm, oldmm);
751 	if (err)
752 		goto free_pt;
753 
754 	mm->hiwater_rss = get_mm_rss(mm);
755 	mm->hiwater_vm = mm->total_vm;
756 
757 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
758 		goto free_pt;
759 
760 	return mm;
761 
762 free_pt:
763 	/* don't put binfmt in mmput, we haven't got module yet */
764 	mm->binfmt = NULL;
765 	mmput(mm);
766 
767 fail_nomem:
768 	return NULL;
769 
770 fail_nocontext:
771 	/*
772 	 * If init_new_context() failed, we cannot use mmput() to free the mm
773 	 * because it calls destroy_context()
774 	 */
775 	mm_free_pgd(mm);
776 	free_mm(mm);
777 	return NULL;
778 }
779 
780 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
781 {
782 	struct mm_struct *mm, *oldmm;
783 	int retval;
784 
785 	tsk->min_flt = tsk->maj_flt = 0;
786 	tsk->nvcsw = tsk->nivcsw = 0;
787 #ifdef CONFIG_DETECT_HUNG_TASK
788 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
789 #endif
790 
791 	tsk->mm = NULL;
792 	tsk->active_mm = NULL;
793 
794 	/*
795 	 * Are we cloning a kernel thread?
796 	 *
797 	 * We need to steal a active VM for that..
798 	 */
799 	oldmm = current->mm;
800 	if (!oldmm)
801 		return 0;
802 
803 	if (clone_flags & CLONE_VM) {
804 		atomic_inc(&oldmm->mm_users);
805 		mm = oldmm;
806 		goto good_mm;
807 	}
808 
809 	retval = -ENOMEM;
810 	mm = dup_mm(tsk);
811 	if (!mm)
812 		goto fail_nomem;
813 
814 good_mm:
815 	/* Initializing for Swap token stuff */
816 	mm->token_priority = 0;
817 	mm->last_interval = 0;
818 
819 	tsk->mm = mm;
820 	tsk->active_mm = mm;
821 	return 0;
822 
823 fail_nomem:
824 	return retval;
825 }
826 
827 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
828 {
829 	struct fs_struct *fs = current->fs;
830 	if (clone_flags & CLONE_FS) {
831 		/* tsk->fs is already what we want */
832 		spin_lock(&fs->lock);
833 		if (fs->in_exec) {
834 			spin_unlock(&fs->lock);
835 			return -EAGAIN;
836 		}
837 		fs->users++;
838 		spin_unlock(&fs->lock);
839 		return 0;
840 	}
841 	tsk->fs = copy_fs_struct(fs);
842 	if (!tsk->fs)
843 		return -ENOMEM;
844 	return 0;
845 }
846 
847 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
848 {
849 	struct files_struct *oldf, *newf;
850 	int error = 0;
851 
852 	/*
853 	 * A background process may not have any files ...
854 	 */
855 	oldf = current->files;
856 	if (!oldf)
857 		goto out;
858 
859 	if (clone_flags & CLONE_FILES) {
860 		atomic_inc(&oldf->count);
861 		goto out;
862 	}
863 
864 	newf = dup_fd(oldf, &error);
865 	if (!newf)
866 		goto out;
867 
868 	tsk->files = newf;
869 	error = 0;
870 out:
871 	return error;
872 }
873 
874 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
875 {
876 #ifdef CONFIG_BLOCK
877 	struct io_context *ioc = current->io_context;
878 
879 	if (!ioc)
880 		return 0;
881 	/*
882 	 * Share io context with parent, if CLONE_IO is set
883 	 */
884 	if (clone_flags & CLONE_IO) {
885 		tsk->io_context = ioc_task_link(ioc);
886 		if (unlikely(!tsk->io_context))
887 			return -ENOMEM;
888 	} else if (ioprio_valid(ioc->ioprio)) {
889 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
890 		if (unlikely(!tsk->io_context))
891 			return -ENOMEM;
892 
893 		tsk->io_context->ioprio = ioc->ioprio;
894 	}
895 #endif
896 	return 0;
897 }
898 
899 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
900 {
901 	struct sighand_struct *sig;
902 
903 	if (clone_flags & CLONE_SIGHAND) {
904 		atomic_inc(&current->sighand->count);
905 		return 0;
906 	}
907 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
908 	rcu_assign_pointer(tsk->sighand, sig);
909 	if (!sig)
910 		return -ENOMEM;
911 	atomic_set(&sig->count, 1);
912 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
913 	return 0;
914 }
915 
916 void __cleanup_sighand(struct sighand_struct *sighand)
917 {
918 	if (atomic_dec_and_test(&sighand->count))
919 		kmem_cache_free(sighand_cachep, sighand);
920 }
921 
922 
923 /*
924  * Initialize POSIX timer handling for a thread group.
925  */
926 static void posix_cpu_timers_init_group(struct signal_struct *sig)
927 {
928 	unsigned long cpu_limit;
929 
930 	/* Thread group counters. */
931 	thread_group_cputime_init(sig);
932 
933 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
934 	if (cpu_limit != RLIM_INFINITY) {
935 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
936 		sig->cputimer.running = 1;
937 	}
938 
939 	/* The timer lists. */
940 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
941 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
942 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
943 }
944 
945 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 	struct signal_struct *sig;
948 
949 	if (clone_flags & CLONE_THREAD)
950 		return 0;
951 
952 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
953 	tsk->signal = sig;
954 	if (!sig)
955 		return -ENOMEM;
956 
957 	sig->nr_threads = 1;
958 	atomic_set(&sig->live, 1);
959 	atomic_set(&sig->sigcnt, 1);
960 	init_waitqueue_head(&sig->wait_chldexit);
961 	if (clone_flags & CLONE_NEWPID)
962 		sig->flags |= SIGNAL_UNKILLABLE;
963 	sig->curr_target = tsk;
964 	init_sigpending(&sig->shared_pending);
965 	INIT_LIST_HEAD(&sig->posix_timers);
966 
967 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
968 	sig->real_timer.function = it_real_fn;
969 
970 	task_lock(current->group_leader);
971 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
972 	task_unlock(current->group_leader);
973 
974 	posix_cpu_timers_init_group(sig);
975 
976 	tty_audit_fork(sig);
977 	sched_autogroup_fork(sig);
978 
979 #ifdef CONFIG_CGROUPS
980 	init_rwsem(&sig->threadgroup_fork_lock);
981 #endif
982 
983 	sig->oom_adj = current->signal->oom_adj;
984 	sig->oom_score_adj = current->signal->oom_score_adj;
985 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
986 
987 	mutex_init(&sig->cred_guard_mutex);
988 
989 	return 0;
990 }
991 
992 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
993 {
994 	unsigned long new_flags = p->flags;
995 
996 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
997 	new_flags |= PF_FORKNOEXEC;
998 	new_flags |= PF_STARTING;
999 	p->flags = new_flags;
1000 	clear_freeze_flag(p);
1001 }
1002 
1003 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1004 {
1005 	current->clear_child_tid = tidptr;
1006 
1007 	return task_pid_vnr(current);
1008 }
1009 
1010 static void rt_mutex_init_task(struct task_struct *p)
1011 {
1012 	raw_spin_lock_init(&p->pi_lock);
1013 #ifdef CONFIG_RT_MUTEXES
1014 	plist_head_init(&p->pi_waiters);
1015 	p->pi_blocked_on = NULL;
1016 #endif
1017 }
1018 
1019 #ifdef CONFIG_MM_OWNER
1020 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1021 {
1022 	mm->owner = p;
1023 }
1024 #endif /* CONFIG_MM_OWNER */
1025 
1026 /*
1027  * Initialize POSIX timer handling for a single task.
1028  */
1029 static void posix_cpu_timers_init(struct task_struct *tsk)
1030 {
1031 	tsk->cputime_expires.prof_exp = cputime_zero;
1032 	tsk->cputime_expires.virt_exp = cputime_zero;
1033 	tsk->cputime_expires.sched_exp = 0;
1034 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1035 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1036 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1037 }
1038 
1039 /*
1040  * This creates a new process as a copy of the old one,
1041  * but does not actually start it yet.
1042  *
1043  * It copies the registers, and all the appropriate
1044  * parts of the process environment (as per the clone
1045  * flags). The actual kick-off is left to the caller.
1046  */
1047 static struct task_struct *copy_process(unsigned long clone_flags,
1048 					unsigned long stack_start,
1049 					struct pt_regs *regs,
1050 					unsigned long stack_size,
1051 					int __user *child_tidptr,
1052 					struct pid *pid,
1053 					int trace)
1054 {
1055 	int retval;
1056 	struct task_struct *p;
1057 	int cgroup_callbacks_done = 0;
1058 
1059 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1060 		return ERR_PTR(-EINVAL);
1061 
1062 	/*
1063 	 * Thread groups must share signals as well, and detached threads
1064 	 * can only be started up within the thread group.
1065 	 */
1066 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1067 		return ERR_PTR(-EINVAL);
1068 
1069 	/*
1070 	 * Shared signal handlers imply shared VM. By way of the above,
1071 	 * thread groups also imply shared VM. Blocking this case allows
1072 	 * for various simplifications in other code.
1073 	 */
1074 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1075 		return ERR_PTR(-EINVAL);
1076 
1077 	/*
1078 	 * Siblings of global init remain as zombies on exit since they are
1079 	 * not reaped by their parent (swapper). To solve this and to avoid
1080 	 * multi-rooted process trees, prevent global and container-inits
1081 	 * from creating siblings.
1082 	 */
1083 	if ((clone_flags & CLONE_PARENT) &&
1084 				current->signal->flags & SIGNAL_UNKILLABLE)
1085 		return ERR_PTR(-EINVAL);
1086 
1087 	retval = security_task_create(clone_flags);
1088 	if (retval)
1089 		goto fork_out;
1090 
1091 	retval = -ENOMEM;
1092 	p = dup_task_struct(current);
1093 	if (!p)
1094 		goto fork_out;
1095 
1096 	ftrace_graph_init_task(p);
1097 
1098 	rt_mutex_init_task(p);
1099 
1100 #ifdef CONFIG_PROVE_LOCKING
1101 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1102 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1103 #endif
1104 	retval = -EAGAIN;
1105 	if (atomic_read(&p->real_cred->user->processes) >=
1106 			task_rlimit(p, RLIMIT_NPROC)) {
1107 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1108 		    p->real_cred->user != INIT_USER)
1109 			goto bad_fork_free;
1110 	}
1111 	current->flags &= ~PF_NPROC_EXCEEDED;
1112 
1113 	retval = copy_creds(p, clone_flags);
1114 	if (retval < 0)
1115 		goto bad_fork_free;
1116 
1117 	/*
1118 	 * If multiple threads are within copy_process(), then this check
1119 	 * triggers too late. This doesn't hurt, the check is only there
1120 	 * to stop root fork bombs.
1121 	 */
1122 	retval = -EAGAIN;
1123 	if (nr_threads >= max_threads)
1124 		goto bad_fork_cleanup_count;
1125 
1126 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1127 		goto bad_fork_cleanup_count;
1128 
1129 	p->did_exec = 0;
1130 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1131 	copy_flags(clone_flags, p);
1132 	INIT_LIST_HEAD(&p->children);
1133 	INIT_LIST_HEAD(&p->sibling);
1134 	rcu_copy_process(p);
1135 	p->vfork_done = NULL;
1136 	spin_lock_init(&p->alloc_lock);
1137 
1138 	init_sigpending(&p->pending);
1139 
1140 	p->utime = cputime_zero;
1141 	p->stime = cputime_zero;
1142 	p->gtime = cputime_zero;
1143 	p->utimescaled = cputime_zero;
1144 	p->stimescaled = cputime_zero;
1145 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1146 	p->prev_utime = cputime_zero;
1147 	p->prev_stime = cputime_zero;
1148 #endif
1149 #if defined(SPLIT_RSS_COUNTING)
1150 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1151 #endif
1152 
1153 	p->default_timer_slack_ns = current->timer_slack_ns;
1154 
1155 	task_io_accounting_init(&p->ioac);
1156 	acct_clear_integrals(p);
1157 
1158 	posix_cpu_timers_init(p);
1159 
1160 	do_posix_clock_monotonic_gettime(&p->start_time);
1161 	p->real_start_time = p->start_time;
1162 	monotonic_to_bootbased(&p->real_start_time);
1163 	p->io_context = NULL;
1164 	p->audit_context = NULL;
1165 	if (clone_flags & CLONE_THREAD)
1166 		threadgroup_fork_read_lock(current);
1167 	cgroup_fork(p);
1168 #ifdef CONFIG_NUMA
1169 	p->mempolicy = mpol_dup(p->mempolicy);
1170 	if (IS_ERR(p->mempolicy)) {
1171 		retval = PTR_ERR(p->mempolicy);
1172 		p->mempolicy = NULL;
1173 		goto bad_fork_cleanup_cgroup;
1174 	}
1175 	mpol_fix_fork_child_flag(p);
1176 #endif
1177 #ifdef CONFIG_CPUSETS
1178 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1179 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1180 #endif
1181 #ifdef CONFIG_TRACE_IRQFLAGS
1182 	p->irq_events = 0;
1183 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1184 	p->hardirqs_enabled = 1;
1185 #else
1186 	p->hardirqs_enabled = 0;
1187 #endif
1188 	p->hardirq_enable_ip = 0;
1189 	p->hardirq_enable_event = 0;
1190 	p->hardirq_disable_ip = _THIS_IP_;
1191 	p->hardirq_disable_event = 0;
1192 	p->softirqs_enabled = 1;
1193 	p->softirq_enable_ip = _THIS_IP_;
1194 	p->softirq_enable_event = 0;
1195 	p->softirq_disable_ip = 0;
1196 	p->softirq_disable_event = 0;
1197 	p->hardirq_context = 0;
1198 	p->softirq_context = 0;
1199 #endif
1200 #ifdef CONFIG_LOCKDEP
1201 	p->lockdep_depth = 0; /* no locks held yet */
1202 	p->curr_chain_key = 0;
1203 	p->lockdep_recursion = 0;
1204 #endif
1205 
1206 #ifdef CONFIG_DEBUG_MUTEXES
1207 	p->blocked_on = NULL; /* not blocked yet */
1208 #endif
1209 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1210 	p->memcg_batch.do_batch = 0;
1211 	p->memcg_batch.memcg = NULL;
1212 #endif
1213 
1214 	/* Perform scheduler related setup. Assign this task to a CPU. */
1215 	sched_fork(p);
1216 
1217 	retval = perf_event_init_task(p);
1218 	if (retval)
1219 		goto bad_fork_cleanup_policy;
1220 	retval = audit_alloc(p);
1221 	if (retval)
1222 		goto bad_fork_cleanup_policy;
1223 	/* copy all the process information */
1224 	retval = copy_semundo(clone_flags, p);
1225 	if (retval)
1226 		goto bad_fork_cleanup_audit;
1227 	retval = copy_files(clone_flags, p);
1228 	if (retval)
1229 		goto bad_fork_cleanup_semundo;
1230 	retval = copy_fs(clone_flags, p);
1231 	if (retval)
1232 		goto bad_fork_cleanup_files;
1233 	retval = copy_sighand(clone_flags, p);
1234 	if (retval)
1235 		goto bad_fork_cleanup_fs;
1236 	retval = copy_signal(clone_flags, p);
1237 	if (retval)
1238 		goto bad_fork_cleanup_sighand;
1239 	retval = copy_mm(clone_flags, p);
1240 	if (retval)
1241 		goto bad_fork_cleanup_signal;
1242 	retval = copy_namespaces(clone_flags, p);
1243 	if (retval)
1244 		goto bad_fork_cleanup_mm;
1245 	retval = copy_io(clone_flags, p);
1246 	if (retval)
1247 		goto bad_fork_cleanup_namespaces;
1248 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1249 	if (retval)
1250 		goto bad_fork_cleanup_io;
1251 
1252 	if (pid != &init_struct_pid) {
1253 		retval = -ENOMEM;
1254 		pid = alloc_pid(p->nsproxy->pid_ns);
1255 		if (!pid)
1256 			goto bad_fork_cleanup_io;
1257 	}
1258 
1259 	p->pid = pid_nr(pid);
1260 	p->tgid = p->pid;
1261 	if (clone_flags & CLONE_THREAD)
1262 		p->tgid = current->tgid;
1263 
1264 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1265 	/*
1266 	 * Clear TID on mm_release()?
1267 	 */
1268 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1269 #ifdef CONFIG_BLOCK
1270 	p->plug = NULL;
1271 #endif
1272 #ifdef CONFIG_FUTEX
1273 	p->robust_list = NULL;
1274 #ifdef CONFIG_COMPAT
1275 	p->compat_robust_list = NULL;
1276 #endif
1277 	INIT_LIST_HEAD(&p->pi_state_list);
1278 	p->pi_state_cache = NULL;
1279 #endif
1280 	/*
1281 	 * sigaltstack should be cleared when sharing the same VM
1282 	 */
1283 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1284 		p->sas_ss_sp = p->sas_ss_size = 0;
1285 
1286 	/*
1287 	 * Syscall tracing and stepping should be turned off in the
1288 	 * child regardless of CLONE_PTRACE.
1289 	 */
1290 	user_disable_single_step(p);
1291 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1292 #ifdef TIF_SYSCALL_EMU
1293 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1294 #endif
1295 	clear_all_latency_tracing(p);
1296 
1297 	/* ok, now we should be set up.. */
1298 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1299 	p->pdeath_signal = 0;
1300 	p->exit_state = 0;
1301 
1302 	p->nr_dirtied = 0;
1303 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1304 
1305 	/*
1306 	 * Ok, make it visible to the rest of the system.
1307 	 * We dont wake it up yet.
1308 	 */
1309 	p->group_leader = p;
1310 	INIT_LIST_HEAD(&p->thread_group);
1311 
1312 	/* Now that the task is set up, run cgroup callbacks if
1313 	 * necessary. We need to run them before the task is visible
1314 	 * on the tasklist. */
1315 	cgroup_fork_callbacks(p);
1316 	cgroup_callbacks_done = 1;
1317 
1318 	/* Need tasklist lock for parent etc handling! */
1319 	write_lock_irq(&tasklist_lock);
1320 
1321 	/* CLONE_PARENT re-uses the old parent */
1322 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1323 		p->real_parent = current->real_parent;
1324 		p->parent_exec_id = current->parent_exec_id;
1325 	} else {
1326 		p->real_parent = current;
1327 		p->parent_exec_id = current->self_exec_id;
1328 	}
1329 
1330 	spin_lock(&current->sighand->siglock);
1331 
1332 	/*
1333 	 * Process group and session signals need to be delivered to just the
1334 	 * parent before the fork or both the parent and the child after the
1335 	 * fork. Restart if a signal comes in before we add the new process to
1336 	 * it's process group.
1337 	 * A fatal signal pending means that current will exit, so the new
1338 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339 	*/
1340 	recalc_sigpending();
1341 	if (signal_pending(current)) {
1342 		spin_unlock(&current->sighand->siglock);
1343 		write_unlock_irq(&tasklist_lock);
1344 		retval = -ERESTARTNOINTR;
1345 		goto bad_fork_free_pid;
1346 	}
1347 
1348 	if (clone_flags & CLONE_THREAD) {
1349 		current->signal->nr_threads++;
1350 		atomic_inc(&current->signal->live);
1351 		atomic_inc(&current->signal->sigcnt);
1352 		p->group_leader = current->group_leader;
1353 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1354 	}
1355 
1356 	if (likely(p->pid)) {
1357 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358 
1359 		if (thread_group_leader(p)) {
1360 			if (is_child_reaper(pid))
1361 				p->nsproxy->pid_ns->child_reaper = p;
1362 
1363 			p->signal->leader_pid = pid;
1364 			p->signal->tty = tty_kref_get(current->signal->tty);
1365 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1366 			attach_pid(p, PIDTYPE_SID, task_session(current));
1367 			list_add_tail(&p->sibling, &p->real_parent->children);
1368 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1369 			__this_cpu_inc(process_counts);
1370 		}
1371 		attach_pid(p, PIDTYPE_PID, pid);
1372 		nr_threads++;
1373 	}
1374 
1375 	total_forks++;
1376 	spin_unlock(&current->sighand->siglock);
1377 	write_unlock_irq(&tasklist_lock);
1378 	proc_fork_connector(p);
1379 	cgroup_post_fork(p);
1380 	if (clone_flags & CLONE_THREAD)
1381 		threadgroup_fork_read_unlock(current);
1382 	perf_event_fork(p);
1383 	return p;
1384 
1385 bad_fork_free_pid:
1386 	if (pid != &init_struct_pid)
1387 		free_pid(pid);
1388 bad_fork_cleanup_io:
1389 	if (p->io_context)
1390 		exit_io_context(p);
1391 bad_fork_cleanup_namespaces:
1392 	exit_task_namespaces(p);
1393 bad_fork_cleanup_mm:
1394 	if (p->mm)
1395 		mmput(p->mm);
1396 bad_fork_cleanup_signal:
1397 	if (!(clone_flags & CLONE_THREAD))
1398 		free_signal_struct(p->signal);
1399 bad_fork_cleanup_sighand:
1400 	__cleanup_sighand(p->sighand);
1401 bad_fork_cleanup_fs:
1402 	exit_fs(p); /* blocking */
1403 bad_fork_cleanup_files:
1404 	exit_files(p); /* blocking */
1405 bad_fork_cleanup_semundo:
1406 	exit_sem(p);
1407 bad_fork_cleanup_audit:
1408 	audit_free(p);
1409 bad_fork_cleanup_policy:
1410 	perf_event_free_task(p);
1411 #ifdef CONFIG_NUMA
1412 	mpol_put(p->mempolicy);
1413 bad_fork_cleanup_cgroup:
1414 #endif
1415 	if (clone_flags & CLONE_THREAD)
1416 		threadgroup_fork_read_unlock(current);
1417 	cgroup_exit(p, cgroup_callbacks_done);
1418 	delayacct_tsk_free(p);
1419 	module_put(task_thread_info(p)->exec_domain->module);
1420 bad_fork_cleanup_count:
1421 	atomic_dec(&p->cred->user->processes);
1422 	exit_creds(p);
1423 bad_fork_free:
1424 	free_task(p);
1425 fork_out:
1426 	return ERR_PTR(retval);
1427 }
1428 
1429 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1430 {
1431 	memset(regs, 0, sizeof(struct pt_regs));
1432 	return regs;
1433 }
1434 
1435 static inline void init_idle_pids(struct pid_link *links)
1436 {
1437 	enum pid_type type;
1438 
1439 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1440 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1441 		links[type].pid = &init_struct_pid;
1442 	}
1443 }
1444 
1445 struct task_struct * __cpuinit fork_idle(int cpu)
1446 {
1447 	struct task_struct *task;
1448 	struct pt_regs regs;
1449 
1450 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1451 			    &init_struct_pid, 0);
1452 	if (!IS_ERR(task)) {
1453 		init_idle_pids(task->pids);
1454 		init_idle(task, cpu);
1455 	}
1456 
1457 	return task;
1458 }
1459 
1460 /*
1461  *  Ok, this is the main fork-routine.
1462  *
1463  * It copies the process, and if successful kick-starts
1464  * it and waits for it to finish using the VM if required.
1465  */
1466 long do_fork(unsigned long clone_flags,
1467 	      unsigned long stack_start,
1468 	      struct pt_regs *regs,
1469 	      unsigned long stack_size,
1470 	      int __user *parent_tidptr,
1471 	      int __user *child_tidptr)
1472 {
1473 	struct task_struct *p;
1474 	int trace = 0;
1475 	long nr;
1476 
1477 	/*
1478 	 * Do some preliminary argument and permissions checking before we
1479 	 * actually start allocating stuff
1480 	 */
1481 	if (clone_flags & CLONE_NEWUSER) {
1482 		if (clone_flags & CLONE_THREAD)
1483 			return -EINVAL;
1484 		/* hopefully this check will go away when userns support is
1485 		 * complete
1486 		 */
1487 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1488 				!capable(CAP_SETGID))
1489 			return -EPERM;
1490 	}
1491 
1492 	/*
1493 	 * Determine whether and which event to report to ptracer.  When
1494 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1495 	 * requested, no event is reported; otherwise, report if the event
1496 	 * for the type of forking is enabled.
1497 	 */
1498 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1499 		if (clone_flags & CLONE_VFORK)
1500 			trace = PTRACE_EVENT_VFORK;
1501 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1502 			trace = PTRACE_EVENT_CLONE;
1503 		else
1504 			trace = PTRACE_EVENT_FORK;
1505 
1506 		if (likely(!ptrace_event_enabled(current, trace)))
1507 			trace = 0;
1508 	}
1509 
1510 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1511 			 child_tidptr, NULL, trace);
1512 	/*
1513 	 * Do this prior waking up the new thread - the thread pointer
1514 	 * might get invalid after that point, if the thread exits quickly.
1515 	 */
1516 	if (!IS_ERR(p)) {
1517 		struct completion vfork;
1518 
1519 		trace_sched_process_fork(current, p);
1520 
1521 		nr = task_pid_vnr(p);
1522 
1523 		if (clone_flags & CLONE_PARENT_SETTID)
1524 			put_user(nr, parent_tidptr);
1525 
1526 		if (clone_flags & CLONE_VFORK) {
1527 			p->vfork_done = &vfork;
1528 			init_completion(&vfork);
1529 		}
1530 
1531 		audit_finish_fork(p);
1532 
1533 		/*
1534 		 * We set PF_STARTING at creation in case tracing wants to
1535 		 * use this to distinguish a fully live task from one that
1536 		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1537 		 * and set the child going.
1538 		 */
1539 		p->flags &= ~PF_STARTING;
1540 
1541 		wake_up_new_task(p);
1542 
1543 		/* forking complete and child started to run, tell ptracer */
1544 		if (unlikely(trace))
1545 			ptrace_event(trace, nr);
1546 
1547 		if (clone_flags & CLONE_VFORK) {
1548 			freezer_do_not_count();
1549 			wait_for_completion(&vfork);
1550 			freezer_count();
1551 			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1552 		}
1553 	} else {
1554 		nr = PTR_ERR(p);
1555 	}
1556 	return nr;
1557 }
1558 
1559 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1560 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1561 #endif
1562 
1563 static void sighand_ctor(void *data)
1564 {
1565 	struct sighand_struct *sighand = data;
1566 
1567 	spin_lock_init(&sighand->siglock);
1568 	init_waitqueue_head(&sighand->signalfd_wqh);
1569 }
1570 
1571 void __init proc_caches_init(void)
1572 {
1573 	sighand_cachep = kmem_cache_create("sighand_cache",
1574 			sizeof(struct sighand_struct), 0,
1575 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1576 			SLAB_NOTRACK, sighand_ctor);
1577 	signal_cachep = kmem_cache_create("signal_cache",
1578 			sizeof(struct signal_struct), 0,
1579 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1580 	files_cachep = kmem_cache_create("files_cache",
1581 			sizeof(struct files_struct), 0,
1582 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1583 	fs_cachep = kmem_cache_create("fs_cache",
1584 			sizeof(struct fs_struct), 0,
1585 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1586 	/*
1587 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1588 	 * whole struct cpumask for the OFFSTACK case. We could change
1589 	 * this to *only* allocate as much of it as required by the
1590 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1591 	 * is at the end of the structure, exactly for that reason.
1592 	 */
1593 	mm_cachep = kmem_cache_create("mm_struct",
1594 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1595 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1596 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1597 	mmap_init();
1598 	nsproxy_cache_init();
1599 }
1600 
1601 /*
1602  * Check constraints on flags passed to the unshare system call.
1603  */
1604 static int check_unshare_flags(unsigned long unshare_flags)
1605 {
1606 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1607 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1608 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1609 		return -EINVAL;
1610 	/*
1611 	 * Not implemented, but pretend it works if there is nothing to
1612 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1613 	 * needs to unshare vm.
1614 	 */
1615 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1616 		/* FIXME: get_task_mm() increments ->mm_users */
1617 		if (atomic_read(&current->mm->mm_users) > 1)
1618 			return -EINVAL;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Unshare the filesystem structure if it is being shared
1626  */
1627 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1628 {
1629 	struct fs_struct *fs = current->fs;
1630 
1631 	if (!(unshare_flags & CLONE_FS) || !fs)
1632 		return 0;
1633 
1634 	/* don't need lock here; in the worst case we'll do useless copy */
1635 	if (fs->users == 1)
1636 		return 0;
1637 
1638 	*new_fsp = copy_fs_struct(fs);
1639 	if (!*new_fsp)
1640 		return -ENOMEM;
1641 
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Unshare file descriptor table if it is being shared
1647  */
1648 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1649 {
1650 	struct files_struct *fd = current->files;
1651 	int error = 0;
1652 
1653 	if ((unshare_flags & CLONE_FILES) &&
1654 	    (fd && atomic_read(&fd->count) > 1)) {
1655 		*new_fdp = dup_fd(fd, &error);
1656 		if (!*new_fdp)
1657 			return error;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  * unshare allows a process to 'unshare' part of the process
1665  * context which was originally shared using clone.  copy_*
1666  * functions used by do_fork() cannot be used here directly
1667  * because they modify an inactive task_struct that is being
1668  * constructed. Here we are modifying the current, active,
1669  * task_struct.
1670  */
1671 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1672 {
1673 	struct fs_struct *fs, *new_fs = NULL;
1674 	struct files_struct *fd, *new_fd = NULL;
1675 	struct nsproxy *new_nsproxy = NULL;
1676 	int do_sysvsem = 0;
1677 	int err;
1678 
1679 	err = check_unshare_flags(unshare_flags);
1680 	if (err)
1681 		goto bad_unshare_out;
1682 
1683 	/*
1684 	 * If unsharing namespace, must also unshare filesystem information.
1685 	 */
1686 	if (unshare_flags & CLONE_NEWNS)
1687 		unshare_flags |= CLONE_FS;
1688 	/*
1689 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1690 	 * to a new ipc namespace, the semaphore arrays from the old
1691 	 * namespace are unreachable.
1692 	 */
1693 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1694 		do_sysvsem = 1;
1695 	err = unshare_fs(unshare_flags, &new_fs);
1696 	if (err)
1697 		goto bad_unshare_out;
1698 	err = unshare_fd(unshare_flags, &new_fd);
1699 	if (err)
1700 		goto bad_unshare_cleanup_fs;
1701 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1702 	if (err)
1703 		goto bad_unshare_cleanup_fd;
1704 
1705 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1706 		if (do_sysvsem) {
1707 			/*
1708 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1709 			 */
1710 			exit_sem(current);
1711 		}
1712 
1713 		if (new_nsproxy) {
1714 			switch_task_namespaces(current, new_nsproxy);
1715 			new_nsproxy = NULL;
1716 		}
1717 
1718 		task_lock(current);
1719 
1720 		if (new_fs) {
1721 			fs = current->fs;
1722 			spin_lock(&fs->lock);
1723 			current->fs = new_fs;
1724 			if (--fs->users)
1725 				new_fs = NULL;
1726 			else
1727 				new_fs = fs;
1728 			spin_unlock(&fs->lock);
1729 		}
1730 
1731 		if (new_fd) {
1732 			fd = current->files;
1733 			current->files = new_fd;
1734 			new_fd = fd;
1735 		}
1736 
1737 		task_unlock(current);
1738 	}
1739 
1740 	if (new_nsproxy)
1741 		put_nsproxy(new_nsproxy);
1742 
1743 bad_unshare_cleanup_fd:
1744 	if (new_fd)
1745 		put_files_struct(new_fd);
1746 
1747 bad_unshare_cleanup_fs:
1748 	if (new_fs)
1749 		free_fs_struct(new_fs);
1750 
1751 bad_unshare_out:
1752 	return err;
1753 }
1754 
1755 /*
1756  *	Helper to unshare the files of the current task.
1757  *	We don't want to expose copy_files internals to
1758  *	the exec layer of the kernel.
1759  */
1760 
1761 int unshare_files(struct files_struct **displaced)
1762 {
1763 	struct task_struct *task = current;
1764 	struct files_struct *copy = NULL;
1765 	int error;
1766 
1767 	error = unshare_fd(CLONE_FILES, &copy);
1768 	if (error || !copy) {
1769 		*displaced = NULL;
1770 		return error;
1771 	}
1772 	*displaced = task->files;
1773 	task_lock(task);
1774 	task->files = copy;
1775 	task_unlock(task);
1776 	return 0;
1777 }
1778