xref: /openbmc/linux/kernel/fork.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 			mod_memcg_page_state(vm->pages[i],
281 					     MEMCG_KERNEL_STACK_KB,
282 					     -(int)(PAGE_SIZE / 1024));
283 
284 			memcg_kmem_uncharge_page(vm->pages[i], 0);
285 		}
286 
287 		for (i = 0; i < NR_CACHED_STACKS; i++) {
288 			if (this_cpu_cmpxchg(cached_stacks[i],
289 					NULL, tsk->stack_vm_area) != NULL)
290 				continue;
291 
292 			return;
293 		}
294 
295 		vfree_atomic(tsk->stack);
296 		return;
297 	}
298 #endif
299 
300 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304 
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 						  int node)
307 {
308 	unsigned long *stack;
309 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 	tsk->stack = stack;
311 	return stack;
312 }
313 
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 	kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318 
319 void thread_stack_cache_init(void)
320 {
321 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 					THREAD_SIZE, THREAD_SIZE, 0, 0,
323 					THREAD_SIZE, NULL);
324 	BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328 
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331 
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334 
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337 
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340 
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343 
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346 
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 	struct vm_area_struct *vma;
350 
351 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 	if (vma)
353 		vma_init(vma, mm);
354 	return vma;
355 }
356 
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 
361 	if (new) {
362 		*new = *orig;
363 		INIT_LIST_HEAD(&new->anon_vma_chain);
364 		new->vm_next = new->vm_prev = NULL;
365 	}
366 	return new;
367 }
368 
369 void vm_area_free(struct vm_area_struct *vma)
370 {
371 	kmem_cache_free(vm_area_cachep, vma);
372 }
373 
374 static void account_kernel_stack(struct task_struct *tsk, int account)
375 {
376 	void *stack = task_stack_page(tsk);
377 	struct vm_struct *vm = task_stack_vm_area(tsk);
378 
379 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
380 
381 	if (vm) {
382 		int i;
383 
384 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
385 
386 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
387 			mod_zone_page_state(page_zone(vm->pages[i]),
388 					    NR_KERNEL_STACK_KB,
389 					    PAGE_SIZE / 1024 * account);
390 		}
391 	} else {
392 		/*
393 		 * All stack pages are in the same zone and belong to the
394 		 * same memcg.
395 		 */
396 		struct page *first_page = virt_to_page(stack);
397 
398 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
399 				    THREAD_SIZE / 1024 * account);
400 
401 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
402 				    account * (THREAD_SIZE / 1024));
403 	}
404 }
405 
406 static int memcg_charge_kernel_stack(struct task_struct *tsk)
407 {
408 #ifdef CONFIG_VMAP_STACK
409 	struct vm_struct *vm = task_stack_vm_area(tsk);
410 	int ret;
411 
412 	if (vm) {
413 		int i;
414 
415 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
416 			/*
417 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
418 			 * pointer is NULL, and both memcg_kmem_uncharge_page()
419 			 * and mod_memcg_page_state() in free_thread_stack()
420 			 * will ignore this page. So it's safe.
421 			 */
422 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
423 						     0);
424 			if (ret)
425 				return ret;
426 
427 			mod_memcg_page_state(vm->pages[i],
428 					     MEMCG_KERNEL_STACK_KB,
429 					     PAGE_SIZE / 1024);
430 		}
431 	}
432 #endif
433 	return 0;
434 }
435 
436 static void release_task_stack(struct task_struct *tsk)
437 {
438 	if (WARN_ON(tsk->state != TASK_DEAD))
439 		return;  /* Better to leak the stack than to free prematurely */
440 
441 	account_kernel_stack(tsk, -1);
442 	free_thread_stack(tsk);
443 	tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445 	tsk->stack_vm_area = NULL;
446 #endif
447 }
448 
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452 	if (refcount_dec_and_test(&tsk->stack_refcount))
453 		release_task_stack(tsk);
454 }
455 #endif
456 
457 void free_task(struct task_struct *tsk)
458 {
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460 	/*
461 	 * The task is finally done with both the stack and thread_info,
462 	 * so free both.
463 	 */
464 	release_task_stack(tsk);
465 #else
466 	/*
467 	 * If the task had a separate stack allocation, it should be gone
468 	 * by now.
469 	 */
470 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472 	rt_mutex_debug_task_free(tsk);
473 	ftrace_graph_exit_task(tsk);
474 	put_seccomp_filter(tsk);
475 	arch_release_task_struct(tsk);
476 	if (tsk->flags & PF_KTHREAD)
477 		free_kthread_struct(tsk);
478 	free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481 
482 #ifdef CONFIG_MMU
483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 					struct mm_struct *oldmm)
485 {
486 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 	struct rb_node **rb_link, *rb_parent;
488 	int retval;
489 	unsigned long charge;
490 	LIST_HEAD(uf);
491 
492 	uprobe_start_dup_mmap();
493 	if (down_write_killable(&oldmm->mmap_sem)) {
494 		retval = -EINTR;
495 		goto fail_uprobe_end;
496 	}
497 	flush_cache_dup_mm(oldmm);
498 	uprobe_dup_mmap(oldmm, mm);
499 	/*
500 	 * Not linked in yet - no deadlock potential:
501 	 */
502 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503 
504 	/* No ordering required: file already has been exposed. */
505 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506 
507 	mm->total_vm = oldmm->total_vm;
508 	mm->data_vm = oldmm->data_vm;
509 	mm->exec_vm = oldmm->exec_vm;
510 	mm->stack_vm = oldmm->stack_vm;
511 
512 	rb_link = &mm->mm_rb.rb_node;
513 	rb_parent = NULL;
514 	pprev = &mm->mmap;
515 	retval = ksm_fork(mm, oldmm);
516 	if (retval)
517 		goto out;
518 	retval = khugepaged_fork(mm, oldmm);
519 	if (retval)
520 		goto out;
521 
522 	prev = NULL;
523 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 		struct file *file;
525 
526 		if (mpnt->vm_flags & VM_DONTCOPY) {
527 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 			continue;
529 		}
530 		charge = 0;
531 		/*
532 		 * Don't duplicate many vmas if we've been oom-killed (for
533 		 * example)
534 		 */
535 		if (fatal_signal_pending(current)) {
536 			retval = -EINTR;
537 			goto out;
538 		}
539 		if (mpnt->vm_flags & VM_ACCOUNT) {
540 			unsigned long len = vma_pages(mpnt);
541 
542 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 				goto fail_nomem;
544 			charge = len;
545 		}
546 		tmp = vm_area_dup(mpnt);
547 		if (!tmp)
548 			goto fail_nomem;
549 		retval = vma_dup_policy(mpnt, tmp);
550 		if (retval)
551 			goto fail_nomem_policy;
552 		tmp->vm_mm = mm;
553 		retval = dup_userfaultfd(tmp, &uf);
554 		if (retval)
555 			goto fail_nomem_anon_vma_fork;
556 		if (tmp->vm_flags & VM_WIPEONFORK) {
557 			/*
558 			 * VM_WIPEONFORK gets a clean slate in the child.
559 			 * Don't prepare anon_vma until fault since we don't
560 			 * copy page for current vma.
561 			 */
562 			tmp->anon_vma = NULL;
563 		} else if (anon_vma_fork(tmp, mpnt))
564 			goto fail_nomem_anon_vma_fork;
565 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
566 		file = tmp->vm_file;
567 		if (file) {
568 			struct inode *inode = file_inode(file);
569 			struct address_space *mapping = file->f_mapping;
570 
571 			get_file(file);
572 			if (tmp->vm_flags & VM_DENYWRITE)
573 				atomic_dec(&inode->i_writecount);
574 			i_mmap_lock_write(mapping);
575 			if (tmp->vm_flags & VM_SHARED)
576 				atomic_inc(&mapping->i_mmap_writable);
577 			flush_dcache_mmap_lock(mapping);
578 			/* insert tmp into the share list, just after mpnt */
579 			vma_interval_tree_insert_after(tmp, mpnt,
580 					&mapping->i_mmap);
581 			flush_dcache_mmap_unlock(mapping);
582 			i_mmap_unlock_write(mapping);
583 		}
584 
585 		/*
586 		 * Clear hugetlb-related page reserves for children. This only
587 		 * affects MAP_PRIVATE mappings. Faults generated by the child
588 		 * are not guaranteed to succeed, even if read-only
589 		 */
590 		if (is_vm_hugetlb_page(tmp))
591 			reset_vma_resv_huge_pages(tmp);
592 
593 		/*
594 		 * Link in the new vma and copy the page table entries.
595 		 */
596 		*pprev = tmp;
597 		pprev = &tmp->vm_next;
598 		tmp->vm_prev = prev;
599 		prev = tmp;
600 
601 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
602 		rb_link = &tmp->vm_rb.rb_right;
603 		rb_parent = &tmp->vm_rb;
604 
605 		mm->map_count++;
606 		if (!(tmp->vm_flags & VM_WIPEONFORK))
607 			retval = copy_page_range(mm, oldmm, mpnt);
608 
609 		if (tmp->vm_ops && tmp->vm_ops->open)
610 			tmp->vm_ops->open(tmp);
611 
612 		if (retval)
613 			goto out;
614 	}
615 	/* a new mm has just been created */
616 	retval = arch_dup_mmap(oldmm, mm);
617 out:
618 	up_write(&mm->mmap_sem);
619 	flush_tlb_mm(oldmm);
620 	up_write(&oldmm->mmap_sem);
621 	dup_userfaultfd_complete(&uf);
622 fail_uprobe_end:
623 	uprobe_end_dup_mmap();
624 	return retval;
625 fail_nomem_anon_vma_fork:
626 	mpol_put(vma_policy(tmp));
627 fail_nomem_policy:
628 	vm_area_free(tmp);
629 fail_nomem:
630 	retval = -ENOMEM;
631 	vm_unacct_memory(charge);
632 	goto out;
633 }
634 
635 static inline int mm_alloc_pgd(struct mm_struct *mm)
636 {
637 	mm->pgd = pgd_alloc(mm);
638 	if (unlikely(!mm->pgd))
639 		return -ENOMEM;
640 	return 0;
641 }
642 
643 static inline void mm_free_pgd(struct mm_struct *mm)
644 {
645 	pgd_free(mm, mm->pgd);
646 }
647 #else
648 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
649 {
650 	down_write(&oldmm->mmap_sem);
651 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652 	up_write(&oldmm->mmap_sem);
653 	return 0;
654 }
655 #define mm_alloc_pgd(mm)	(0)
656 #define mm_free_pgd(mm)
657 #endif /* CONFIG_MMU */
658 
659 static void check_mm(struct mm_struct *mm)
660 {
661 	int i;
662 
663 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
664 			 "Please make sure 'struct resident_page_types[]' is updated as well");
665 
666 	for (i = 0; i < NR_MM_COUNTERS; i++) {
667 		long x = atomic_long_read(&mm->rss_stat.count[i]);
668 
669 		if (unlikely(x))
670 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
671 				 mm, resident_page_types[i], x);
672 	}
673 
674 	if (mm_pgtables_bytes(mm))
675 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
676 				mm_pgtables_bytes(mm));
677 
678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
679 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
680 #endif
681 }
682 
683 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
684 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
685 
686 /*
687  * Called when the last reference to the mm
688  * is dropped: either by a lazy thread or by
689  * mmput. Free the page directory and the mm.
690  */
691 void __mmdrop(struct mm_struct *mm)
692 {
693 	BUG_ON(mm == &init_mm);
694 	WARN_ON_ONCE(mm == current->mm);
695 	WARN_ON_ONCE(mm == current->active_mm);
696 	mm_free_pgd(mm);
697 	destroy_context(mm);
698 	mmu_notifier_subscriptions_destroy(mm);
699 	check_mm(mm);
700 	put_user_ns(mm->user_ns);
701 	free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704 
705 static void mmdrop_async_fn(struct work_struct *work)
706 {
707 	struct mm_struct *mm;
708 
709 	mm = container_of(work, struct mm_struct, async_put_work);
710 	__mmdrop(mm);
711 }
712 
713 static void mmdrop_async(struct mm_struct *mm)
714 {
715 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
716 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
717 		schedule_work(&mm->async_put_work);
718 	}
719 }
720 
721 static inline void free_signal_struct(struct signal_struct *sig)
722 {
723 	taskstats_tgid_free(sig);
724 	sched_autogroup_exit(sig);
725 	/*
726 	 * __mmdrop is not safe to call from softirq context on x86 due to
727 	 * pgd_dtor so postpone it to the async context
728 	 */
729 	if (sig->oom_mm)
730 		mmdrop_async(sig->oom_mm);
731 	kmem_cache_free(signal_cachep, sig);
732 }
733 
734 static inline void put_signal_struct(struct signal_struct *sig)
735 {
736 	if (refcount_dec_and_test(&sig->sigcnt))
737 		free_signal_struct(sig);
738 }
739 
740 void __put_task_struct(struct task_struct *tsk)
741 {
742 	WARN_ON(!tsk->exit_state);
743 	WARN_ON(refcount_read(&tsk->usage));
744 	WARN_ON(tsk == current);
745 
746 	cgroup_free(tsk);
747 	task_numa_free(tsk, true);
748 	security_task_free(tsk);
749 	exit_creds(tsk);
750 	delayacct_tsk_free(tsk);
751 	put_signal_struct(tsk->signal);
752 
753 	if (!profile_handoff_task(tsk))
754 		free_task(tsk);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct);
757 
758 void __init __weak arch_task_cache_init(void) { }
759 
760 /*
761  * set_max_threads
762  */
763 static void set_max_threads(unsigned int max_threads_suggested)
764 {
765 	u64 threads;
766 	unsigned long nr_pages = totalram_pages();
767 
768 	/*
769 	 * The number of threads shall be limited such that the thread
770 	 * structures may only consume a small part of the available memory.
771 	 */
772 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
773 		threads = MAX_THREADS;
774 	else
775 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
776 				    (u64) THREAD_SIZE * 8UL);
777 
778 	if (threads > max_threads_suggested)
779 		threads = max_threads_suggested;
780 
781 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
782 }
783 
784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785 /* Initialized by the architecture: */
786 int arch_task_struct_size __read_mostly;
787 #endif
788 
789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
790 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792 	/* Fetch thread_struct whitelist for the architecture. */
793 	arch_thread_struct_whitelist(offset, size);
794 
795 	/*
796 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 	 * adjust offset to position of thread_struct in task_struct.
798 	 */
799 	if (unlikely(*size == 0))
800 		*offset = 0;
801 	else
802 		*offset += offsetof(struct task_struct, thread);
803 }
804 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
805 
806 void __init fork_init(void)
807 {
808 	int i;
809 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
810 #ifndef ARCH_MIN_TASKALIGN
811 #define ARCH_MIN_TASKALIGN	0
812 #endif
813 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
814 	unsigned long useroffset, usersize;
815 
816 	/* create a slab on which task_structs can be allocated */
817 	task_struct_whitelist(&useroffset, &usersize);
818 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
819 			arch_task_struct_size, align,
820 			SLAB_PANIC|SLAB_ACCOUNT,
821 			useroffset, usersize, NULL);
822 #endif
823 
824 	/* do the arch specific task caches init */
825 	arch_task_cache_init();
826 
827 	set_max_threads(MAX_THREADS);
828 
829 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
830 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
831 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
832 		init_task.signal->rlim[RLIMIT_NPROC];
833 
834 	for (i = 0; i < UCOUNT_COUNTS; i++) {
835 		init_user_ns.ucount_max[i] = max_threads/2;
836 	}
837 
838 #ifdef CONFIG_VMAP_STACK
839 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840 			  NULL, free_vm_stack_cache);
841 #endif
842 
843 	lockdep_init_task(&init_task);
844 	uprobes_init();
845 }
846 
847 int __weak arch_dup_task_struct(struct task_struct *dst,
848 					       struct task_struct *src)
849 {
850 	*dst = *src;
851 	return 0;
852 }
853 
854 void set_task_stack_end_magic(struct task_struct *tsk)
855 {
856 	unsigned long *stackend;
857 
858 	stackend = end_of_stack(tsk);
859 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
860 }
861 
862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
863 {
864 	struct task_struct *tsk;
865 	unsigned long *stack;
866 	struct vm_struct *stack_vm_area __maybe_unused;
867 	int err;
868 
869 	if (node == NUMA_NO_NODE)
870 		node = tsk_fork_get_node(orig);
871 	tsk = alloc_task_struct_node(node);
872 	if (!tsk)
873 		return NULL;
874 
875 	stack = alloc_thread_stack_node(tsk, node);
876 	if (!stack)
877 		goto free_tsk;
878 
879 	if (memcg_charge_kernel_stack(tsk))
880 		goto free_stack;
881 
882 	stack_vm_area = task_stack_vm_area(tsk);
883 
884 	err = arch_dup_task_struct(tsk, orig);
885 
886 	/*
887 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
888 	 * sure they're properly initialized before using any stack-related
889 	 * functions again.
890 	 */
891 	tsk->stack = stack;
892 #ifdef CONFIG_VMAP_STACK
893 	tsk->stack_vm_area = stack_vm_area;
894 #endif
895 #ifdef CONFIG_THREAD_INFO_IN_TASK
896 	refcount_set(&tsk->stack_refcount, 1);
897 #endif
898 
899 	if (err)
900 		goto free_stack;
901 
902 #ifdef CONFIG_SECCOMP
903 	/*
904 	 * We must handle setting up seccomp filters once we're under
905 	 * the sighand lock in case orig has changed between now and
906 	 * then. Until then, filter must be NULL to avoid messing up
907 	 * the usage counts on the error path calling free_task.
908 	 */
909 	tsk->seccomp.filter = NULL;
910 #endif
911 
912 	setup_thread_stack(tsk, orig);
913 	clear_user_return_notifier(tsk);
914 	clear_tsk_need_resched(tsk);
915 	set_task_stack_end_magic(tsk);
916 
917 #ifdef CONFIG_STACKPROTECTOR
918 	tsk->stack_canary = get_random_canary();
919 #endif
920 	if (orig->cpus_ptr == &orig->cpus_mask)
921 		tsk->cpus_ptr = &tsk->cpus_mask;
922 
923 	/*
924 	 * One for the user space visible state that goes away when reaped.
925 	 * One for the scheduler.
926 	 */
927 	refcount_set(&tsk->rcu_users, 2);
928 	/* One for the rcu users */
929 	refcount_set(&tsk->usage, 1);
930 #ifdef CONFIG_BLK_DEV_IO_TRACE
931 	tsk->btrace_seq = 0;
932 #endif
933 	tsk->splice_pipe = NULL;
934 	tsk->task_frag.page = NULL;
935 	tsk->wake_q.next = NULL;
936 
937 	account_kernel_stack(tsk, 1);
938 
939 	kcov_task_init(tsk);
940 
941 #ifdef CONFIG_FAULT_INJECTION
942 	tsk->fail_nth = 0;
943 #endif
944 
945 #ifdef CONFIG_BLK_CGROUP
946 	tsk->throttle_queue = NULL;
947 	tsk->use_memdelay = 0;
948 #endif
949 
950 #ifdef CONFIG_MEMCG
951 	tsk->active_memcg = NULL;
952 #endif
953 	return tsk;
954 
955 free_stack:
956 	free_thread_stack(tsk);
957 free_tsk:
958 	free_task_struct(tsk);
959 	return NULL;
960 }
961 
962 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
963 
964 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965 
966 static int __init coredump_filter_setup(char *s)
967 {
968 	default_dump_filter =
969 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970 		MMF_DUMP_FILTER_MASK;
971 	return 1;
972 }
973 
974 __setup("coredump_filter=", coredump_filter_setup);
975 
976 #include <linux/init_task.h>
977 
978 static void mm_init_aio(struct mm_struct *mm)
979 {
980 #ifdef CONFIG_AIO
981 	spin_lock_init(&mm->ioctx_lock);
982 	mm->ioctx_table = NULL;
983 #endif
984 }
985 
986 static __always_inline void mm_clear_owner(struct mm_struct *mm,
987 					   struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990 	if (mm->owner == p)
991 		WRITE_ONCE(mm->owner, NULL);
992 #endif
993 }
994 
995 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 	mm->owner = p;
999 #endif
1000 }
1001 
1002 static void mm_init_uprobes_state(struct mm_struct *mm)
1003 {
1004 #ifdef CONFIG_UPROBES
1005 	mm->uprobes_state.xol_area = NULL;
1006 #endif
1007 }
1008 
1009 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010 	struct user_namespace *user_ns)
1011 {
1012 	mm->mmap = NULL;
1013 	mm->mm_rb = RB_ROOT;
1014 	mm->vmacache_seqnum = 0;
1015 	atomic_set(&mm->mm_users, 1);
1016 	atomic_set(&mm->mm_count, 1);
1017 	init_rwsem(&mm->mmap_sem);
1018 	INIT_LIST_HEAD(&mm->mmlist);
1019 	mm->core_state = NULL;
1020 	mm_pgtables_bytes_init(mm);
1021 	mm->map_count = 0;
1022 	mm->locked_vm = 0;
1023 	atomic64_set(&mm->pinned_vm, 0);
1024 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1025 	spin_lock_init(&mm->page_table_lock);
1026 	spin_lock_init(&mm->arg_lock);
1027 	mm_init_cpumask(mm);
1028 	mm_init_aio(mm);
1029 	mm_init_owner(mm, p);
1030 	RCU_INIT_POINTER(mm->exe_file, NULL);
1031 	mmu_notifier_subscriptions_init(mm);
1032 	init_tlb_flush_pending(mm);
1033 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1034 	mm->pmd_huge_pte = NULL;
1035 #endif
1036 	mm_init_uprobes_state(mm);
1037 
1038 	if (current->mm) {
1039 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1040 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1041 	} else {
1042 		mm->flags = default_dump_filter;
1043 		mm->def_flags = 0;
1044 	}
1045 
1046 	if (mm_alloc_pgd(mm))
1047 		goto fail_nopgd;
1048 
1049 	if (init_new_context(p, mm))
1050 		goto fail_nocontext;
1051 
1052 	mm->user_ns = get_user_ns(user_ns);
1053 	return mm;
1054 
1055 fail_nocontext:
1056 	mm_free_pgd(mm);
1057 fail_nopgd:
1058 	free_mm(mm);
1059 	return NULL;
1060 }
1061 
1062 /*
1063  * Allocate and initialize an mm_struct.
1064  */
1065 struct mm_struct *mm_alloc(void)
1066 {
1067 	struct mm_struct *mm;
1068 
1069 	mm = allocate_mm();
1070 	if (!mm)
1071 		return NULL;
1072 
1073 	memset(mm, 0, sizeof(*mm));
1074 	return mm_init(mm, current, current_user_ns());
1075 }
1076 
1077 static inline void __mmput(struct mm_struct *mm)
1078 {
1079 	VM_BUG_ON(atomic_read(&mm->mm_users));
1080 
1081 	uprobe_clear_state(mm);
1082 	exit_aio(mm);
1083 	ksm_exit(mm);
1084 	khugepaged_exit(mm); /* must run before exit_mmap */
1085 	exit_mmap(mm);
1086 	mm_put_huge_zero_page(mm);
1087 	set_mm_exe_file(mm, NULL);
1088 	if (!list_empty(&mm->mmlist)) {
1089 		spin_lock(&mmlist_lock);
1090 		list_del(&mm->mmlist);
1091 		spin_unlock(&mmlist_lock);
1092 	}
1093 	if (mm->binfmt)
1094 		module_put(mm->binfmt->module);
1095 	mmdrop(mm);
1096 }
1097 
1098 /*
1099  * Decrement the use count and release all resources for an mm.
1100  */
1101 void mmput(struct mm_struct *mm)
1102 {
1103 	might_sleep();
1104 
1105 	if (atomic_dec_and_test(&mm->mm_users))
1106 		__mmput(mm);
1107 }
1108 EXPORT_SYMBOL_GPL(mmput);
1109 
1110 #ifdef CONFIG_MMU
1111 static void mmput_async_fn(struct work_struct *work)
1112 {
1113 	struct mm_struct *mm = container_of(work, struct mm_struct,
1114 					    async_put_work);
1115 
1116 	__mmput(mm);
1117 }
1118 
1119 void mmput_async(struct mm_struct *mm)
1120 {
1121 	if (atomic_dec_and_test(&mm->mm_users)) {
1122 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1123 		schedule_work(&mm->async_put_work);
1124 	}
1125 }
1126 #endif
1127 
1128 /**
1129  * set_mm_exe_file - change a reference to the mm's executable file
1130  *
1131  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1132  *
1133  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1134  * invocations: in mmput() nobody alive left, in execve task is single
1135  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1136  * mm->exe_file, but does so without using set_mm_exe_file() in order
1137  * to do avoid the need for any locks.
1138  */
1139 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1140 {
1141 	struct file *old_exe_file;
1142 
1143 	/*
1144 	 * It is safe to dereference the exe_file without RCU as
1145 	 * this function is only called if nobody else can access
1146 	 * this mm -- see comment above for justification.
1147 	 */
1148 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1149 
1150 	if (new_exe_file)
1151 		get_file(new_exe_file);
1152 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1153 	if (old_exe_file)
1154 		fput(old_exe_file);
1155 }
1156 
1157 /**
1158  * get_mm_exe_file - acquire a reference to the mm's executable file
1159  *
1160  * Returns %NULL if mm has no associated executable file.
1161  * User must release file via fput().
1162  */
1163 struct file *get_mm_exe_file(struct mm_struct *mm)
1164 {
1165 	struct file *exe_file;
1166 
1167 	rcu_read_lock();
1168 	exe_file = rcu_dereference(mm->exe_file);
1169 	if (exe_file && !get_file_rcu(exe_file))
1170 		exe_file = NULL;
1171 	rcu_read_unlock();
1172 	return exe_file;
1173 }
1174 EXPORT_SYMBOL(get_mm_exe_file);
1175 
1176 /**
1177  * get_task_exe_file - acquire a reference to the task's executable file
1178  *
1179  * Returns %NULL if task's mm (if any) has no associated executable file or
1180  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1181  * User must release file via fput().
1182  */
1183 struct file *get_task_exe_file(struct task_struct *task)
1184 {
1185 	struct file *exe_file = NULL;
1186 	struct mm_struct *mm;
1187 
1188 	task_lock(task);
1189 	mm = task->mm;
1190 	if (mm) {
1191 		if (!(task->flags & PF_KTHREAD))
1192 			exe_file = get_mm_exe_file(mm);
1193 	}
1194 	task_unlock(task);
1195 	return exe_file;
1196 }
1197 EXPORT_SYMBOL(get_task_exe_file);
1198 
1199 /**
1200  * get_task_mm - acquire a reference to the task's mm
1201  *
1202  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1203  * this kernel workthread has transiently adopted a user mm with use_mm,
1204  * to do its AIO) is not set and if so returns a reference to it, after
1205  * bumping up the use count.  User must release the mm via mmput()
1206  * after use.  Typically used by /proc and ptrace.
1207  */
1208 struct mm_struct *get_task_mm(struct task_struct *task)
1209 {
1210 	struct mm_struct *mm;
1211 
1212 	task_lock(task);
1213 	mm = task->mm;
1214 	if (mm) {
1215 		if (task->flags & PF_KTHREAD)
1216 			mm = NULL;
1217 		else
1218 			mmget(mm);
1219 	}
1220 	task_unlock(task);
1221 	return mm;
1222 }
1223 EXPORT_SYMBOL_GPL(get_task_mm);
1224 
1225 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1226 {
1227 	struct mm_struct *mm;
1228 	int err;
1229 
1230 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1231 	if (err)
1232 		return ERR_PTR(err);
1233 
1234 	mm = get_task_mm(task);
1235 	if (mm && mm != current->mm &&
1236 			!ptrace_may_access(task, mode)) {
1237 		mmput(mm);
1238 		mm = ERR_PTR(-EACCES);
1239 	}
1240 	mutex_unlock(&task->signal->exec_update_mutex);
1241 
1242 	return mm;
1243 }
1244 
1245 static void complete_vfork_done(struct task_struct *tsk)
1246 {
1247 	struct completion *vfork;
1248 
1249 	task_lock(tsk);
1250 	vfork = tsk->vfork_done;
1251 	if (likely(vfork)) {
1252 		tsk->vfork_done = NULL;
1253 		complete(vfork);
1254 	}
1255 	task_unlock(tsk);
1256 }
1257 
1258 static int wait_for_vfork_done(struct task_struct *child,
1259 				struct completion *vfork)
1260 {
1261 	int killed;
1262 
1263 	freezer_do_not_count();
1264 	cgroup_enter_frozen();
1265 	killed = wait_for_completion_killable(vfork);
1266 	cgroup_leave_frozen(false);
1267 	freezer_count();
1268 
1269 	if (killed) {
1270 		task_lock(child);
1271 		child->vfork_done = NULL;
1272 		task_unlock(child);
1273 	}
1274 
1275 	put_task_struct(child);
1276 	return killed;
1277 }
1278 
1279 /* Please note the differences between mmput and mm_release.
1280  * mmput is called whenever we stop holding onto a mm_struct,
1281  * error success whatever.
1282  *
1283  * mm_release is called after a mm_struct has been removed
1284  * from the current process.
1285  *
1286  * This difference is important for error handling, when we
1287  * only half set up a mm_struct for a new process and need to restore
1288  * the old one.  Because we mmput the new mm_struct before
1289  * restoring the old one. . .
1290  * Eric Biederman 10 January 1998
1291  */
1292 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1293 {
1294 	uprobe_free_utask(tsk);
1295 
1296 	/* Get rid of any cached register state */
1297 	deactivate_mm(tsk, mm);
1298 
1299 	/*
1300 	 * Signal userspace if we're not exiting with a core dump
1301 	 * because we want to leave the value intact for debugging
1302 	 * purposes.
1303 	 */
1304 	if (tsk->clear_child_tid) {
1305 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1306 		    atomic_read(&mm->mm_users) > 1) {
1307 			/*
1308 			 * We don't check the error code - if userspace has
1309 			 * not set up a proper pointer then tough luck.
1310 			 */
1311 			put_user(0, tsk->clear_child_tid);
1312 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1313 					1, NULL, NULL, 0, 0);
1314 		}
1315 		tsk->clear_child_tid = NULL;
1316 	}
1317 
1318 	/*
1319 	 * All done, finally we can wake up parent and return this mm to him.
1320 	 * Also kthread_stop() uses this completion for synchronization.
1321 	 */
1322 	if (tsk->vfork_done)
1323 		complete_vfork_done(tsk);
1324 }
1325 
1326 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 	futex_exit_release(tsk);
1329 	mm_release(tsk, mm);
1330 }
1331 
1332 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334 	futex_exec_release(tsk);
1335 	mm_release(tsk, mm);
1336 }
1337 
1338 /**
1339  * dup_mm() - duplicates an existing mm structure
1340  * @tsk: the task_struct with which the new mm will be associated.
1341  * @oldmm: the mm to duplicate.
1342  *
1343  * Allocates a new mm structure and duplicates the provided @oldmm structure
1344  * content into it.
1345  *
1346  * Return: the duplicated mm or NULL on failure.
1347  */
1348 static struct mm_struct *dup_mm(struct task_struct *tsk,
1349 				struct mm_struct *oldmm)
1350 {
1351 	struct mm_struct *mm;
1352 	int err;
1353 
1354 	mm = allocate_mm();
1355 	if (!mm)
1356 		goto fail_nomem;
1357 
1358 	memcpy(mm, oldmm, sizeof(*mm));
1359 
1360 	if (!mm_init(mm, tsk, mm->user_ns))
1361 		goto fail_nomem;
1362 
1363 	err = dup_mmap(mm, oldmm);
1364 	if (err)
1365 		goto free_pt;
1366 
1367 	mm->hiwater_rss = get_mm_rss(mm);
1368 	mm->hiwater_vm = mm->total_vm;
1369 
1370 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371 		goto free_pt;
1372 
1373 	return mm;
1374 
1375 free_pt:
1376 	/* don't put binfmt in mmput, we haven't got module yet */
1377 	mm->binfmt = NULL;
1378 	mm_init_owner(mm, NULL);
1379 	mmput(mm);
1380 
1381 fail_nomem:
1382 	return NULL;
1383 }
1384 
1385 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1386 {
1387 	struct mm_struct *mm, *oldmm;
1388 	int retval;
1389 
1390 	tsk->min_flt = tsk->maj_flt = 0;
1391 	tsk->nvcsw = tsk->nivcsw = 0;
1392 #ifdef CONFIG_DETECT_HUNG_TASK
1393 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1394 	tsk->last_switch_time = 0;
1395 #endif
1396 
1397 	tsk->mm = NULL;
1398 	tsk->active_mm = NULL;
1399 
1400 	/*
1401 	 * Are we cloning a kernel thread?
1402 	 *
1403 	 * We need to steal a active VM for that..
1404 	 */
1405 	oldmm = current->mm;
1406 	if (!oldmm)
1407 		return 0;
1408 
1409 	/* initialize the new vmacache entries */
1410 	vmacache_flush(tsk);
1411 
1412 	if (clone_flags & CLONE_VM) {
1413 		mmget(oldmm);
1414 		mm = oldmm;
1415 		goto good_mm;
1416 	}
1417 
1418 	retval = -ENOMEM;
1419 	mm = dup_mm(tsk, current->mm);
1420 	if (!mm)
1421 		goto fail_nomem;
1422 
1423 good_mm:
1424 	tsk->mm = mm;
1425 	tsk->active_mm = mm;
1426 	return 0;
1427 
1428 fail_nomem:
1429 	return retval;
1430 }
1431 
1432 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 	struct fs_struct *fs = current->fs;
1435 	if (clone_flags & CLONE_FS) {
1436 		/* tsk->fs is already what we want */
1437 		spin_lock(&fs->lock);
1438 		if (fs->in_exec) {
1439 			spin_unlock(&fs->lock);
1440 			return -EAGAIN;
1441 		}
1442 		fs->users++;
1443 		spin_unlock(&fs->lock);
1444 		return 0;
1445 	}
1446 	tsk->fs = copy_fs_struct(fs);
1447 	if (!tsk->fs)
1448 		return -ENOMEM;
1449 	return 0;
1450 }
1451 
1452 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1453 {
1454 	struct files_struct *oldf, *newf;
1455 	int error = 0;
1456 
1457 	/*
1458 	 * A background process may not have any files ...
1459 	 */
1460 	oldf = current->files;
1461 	if (!oldf)
1462 		goto out;
1463 
1464 	if (clone_flags & CLONE_FILES) {
1465 		atomic_inc(&oldf->count);
1466 		goto out;
1467 	}
1468 
1469 	newf = dup_fd(oldf, &error);
1470 	if (!newf)
1471 		goto out;
1472 
1473 	tsk->files = newf;
1474 	error = 0;
1475 out:
1476 	return error;
1477 }
1478 
1479 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1480 {
1481 #ifdef CONFIG_BLOCK
1482 	struct io_context *ioc = current->io_context;
1483 	struct io_context *new_ioc;
1484 
1485 	if (!ioc)
1486 		return 0;
1487 	/*
1488 	 * Share io context with parent, if CLONE_IO is set
1489 	 */
1490 	if (clone_flags & CLONE_IO) {
1491 		ioc_task_link(ioc);
1492 		tsk->io_context = ioc;
1493 	} else if (ioprio_valid(ioc->ioprio)) {
1494 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1495 		if (unlikely(!new_ioc))
1496 			return -ENOMEM;
1497 
1498 		new_ioc->ioprio = ioc->ioprio;
1499 		put_io_context(new_ioc);
1500 	}
1501 #endif
1502 	return 0;
1503 }
1504 
1505 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1506 {
1507 	struct sighand_struct *sig;
1508 
1509 	if (clone_flags & CLONE_SIGHAND) {
1510 		refcount_inc(&current->sighand->count);
1511 		return 0;
1512 	}
1513 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1514 	RCU_INIT_POINTER(tsk->sighand, sig);
1515 	if (!sig)
1516 		return -ENOMEM;
1517 
1518 	refcount_set(&sig->count, 1);
1519 	spin_lock_irq(&current->sighand->siglock);
1520 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1521 	spin_unlock_irq(&current->sighand->siglock);
1522 
1523 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1524 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1525 		flush_signal_handlers(tsk, 0);
1526 
1527 	return 0;
1528 }
1529 
1530 void __cleanup_sighand(struct sighand_struct *sighand)
1531 {
1532 	if (refcount_dec_and_test(&sighand->count)) {
1533 		signalfd_cleanup(sighand);
1534 		/*
1535 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1536 		 * without an RCU grace period, see __lock_task_sighand().
1537 		 */
1538 		kmem_cache_free(sighand_cachep, sighand);
1539 	}
1540 }
1541 
1542 /*
1543  * Initialize POSIX timer handling for a thread group.
1544  */
1545 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1546 {
1547 	struct posix_cputimers *pct = &sig->posix_cputimers;
1548 	unsigned long cpu_limit;
1549 
1550 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1551 	posix_cputimers_group_init(pct, cpu_limit);
1552 }
1553 
1554 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1555 {
1556 	struct signal_struct *sig;
1557 
1558 	if (clone_flags & CLONE_THREAD)
1559 		return 0;
1560 
1561 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1562 	tsk->signal = sig;
1563 	if (!sig)
1564 		return -ENOMEM;
1565 
1566 	sig->nr_threads = 1;
1567 	atomic_set(&sig->live, 1);
1568 	refcount_set(&sig->sigcnt, 1);
1569 
1570 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1571 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1572 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1573 
1574 	init_waitqueue_head(&sig->wait_chldexit);
1575 	sig->curr_target = tsk;
1576 	init_sigpending(&sig->shared_pending);
1577 	INIT_HLIST_HEAD(&sig->multiprocess);
1578 	seqlock_init(&sig->stats_lock);
1579 	prev_cputime_init(&sig->prev_cputime);
1580 
1581 #ifdef CONFIG_POSIX_TIMERS
1582 	INIT_LIST_HEAD(&sig->posix_timers);
1583 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1584 	sig->real_timer.function = it_real_fn;
1585 #endif
1586 
1587 	task_lock(current->group_leader);
1588 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1589 	task_unlock(current->group_leader);
1590 
1591 	posix_cpu_timers_init_group(sig);
1592 
1593 	tty_audit_fork(sig);
1594 	sched_autogroup_fork(sig);
1595 
1596 	sig->oom_score_adj = current->signal->oom_score_adj;
1597 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1598 
1599 	mutex_init(&sig->cred_guard_mutex);
1600 	mutex_init(&sig->exec_update_mutex);
1601 
1602 	return 0;
1603 }
1604 
1605 static void copy_seccomp(struct task_struct *p)
1606 {
1607 #ifdef CONFIG_SECCOMP
1608 	/*
1609 	 * Must be called with sighand->lock held, which is common to
1610 	 * all threads in the group. Holding cred_guard_mutex is not
1611 	 * needed because this new task is not yet running and cannot
1612 	 * be racing exec.
1613 	 */
1614 	assert_spin_locked(&current->sighand->siglock);
1615 
1616 	/* Ref-count the new filter user, and assign it. */
1617 	get_seccomp_filter(current);
1618 	p->seccomp = current->seccomp;
1619 
1620 	/*
1621 	 * Explicitly enable no_new_privs here in case it got set
1622 	 * between the task_struct being duplicated and holding the
1623 	 * sighand lock. The seccomp state and nnp must be in sync.
1624 	 */
1625 	if (task_no_new_privs(current))
1626 		task_set_no_new_privs(p);
1627 
1628 	/*
1629 	 * If the parent gained a seccomp mode after copying thread
1630 	 * flags and between before we held the sighand lock, we have
1631 	 * to manually enable the seccomp thread flag here.
1632 	 */
1633 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1634 		set_tsk_thread_flag(p, TIF_SECCOMP);
1635 #endif
1636 }
1637 
1638 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1639 {
1640 	current->clear_child_tid = tidptr;
1641 
1642 	return task_pid_vnr(current);
1643 }
1644 
1645 static void rt_mutex_init_task(struct task_struct *p)
1646 {
1647 	raw_spin_lock_init(&p->pi_lock);
1648 #ifdef CONFIG_RT_MUTEXES
1649 	p->pi_waiters = RB_ROOT_CACHED;
1650 	p->pi_top_task = NULL;
1651 	p->pi_blocked_on = NULL;
1652 #endif
1653 }
1654 
1655 static inline void init_task_pid_links(struct task_struct *task)
1656 {
1657 	enum pid_type type;
1658 
1659 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 		INIT_HLIST_NODE(&task->pid_links[type]);
1661 	}
1662 }
1663 
1664 static inline void
1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666 {
1667 	if (type == PIDTYPE_PID)
1668 		task->thread_pid = pid;
1669 	else
1670 		task->signal->pids[type] = pid;
1671 }
1672 
1673 static inline void rcu_copy_process(struct task_struct *p)
1674 {
1675 #ifdef CONFIG_PREEMPT_RCU
1676 	p->rcu_read_lock_nesting = 0;
1677 	p->rcu_read_unlock_special.s = 0;
1678 	p->rcu_blocked_node = NULL;
1679 	INIT_LIST_HEAD(&p->rcu_node_entry);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682 	p->rcu_tasks_holdout = false;
1683 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 	p->rcu_tasks_idle_cpu = -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1686 }
1687 
1688 struct pid *pidfd_pid(const struct file *file)
1689 {
1690 	if (file->f_op == &pidfd_fops)
1691 		return file->private_data;
1692 
1693 	return ERR_PTR(-EBADF);
1694 }
1695 
1696 static int pidfd_release(struct inode *inode, struct file *file)
1697 {
1698 	struct pid *pid = file->private_data;
1699 
1700 	file->private_data = NULL;
1701 	put_pid(pid);
1702 	return 0;
1703 }
1704 
1705 #ifdef CONFIG_PROC_FS
1706 /**
1707  * pidfd_show_fdinfo - print information about a pidfd
1708  * @m: proc fdinfo file
1709  * @f: file referencing a pidfd
1710  *
1711  * Pid:
1712  * This function will print the pid that a given pidfd refers to in the
1713  * pid namespace of the procfs instance.
1714  * If the pid namespace of the process is not a descendant of the pid
1715  * namespace of the procfs instance 0 will be shown as its pid. This is
1716  * similar to calling getppid() on a process whose parent is outside of
1717  * its pid namespace.
1718  *
1719  * NSpid:
1720  * If pid namespaces are supported then this function will also print
1721  * the pid of a given pidfd refers to for all descendant pid namespaces
1722  * starting from the current pid namespace of the instance, i.e. the
1723  * Pid field and the first entry in the NSpid field will be identical.
1724  * If the pid namespace of the process is not a descendant of the pid
1725  * namespace of the procfs instance 0 will be shown as its first NSpid
1726  * entry and no others will be shown.
1727  * Note that this differs from the Pid and NSpid fields in
1728  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1729  * the  pid namespace of the procfs instance. The difference becomes
1730  * obvious when sending around a pidfd between pid namespaces from a
1731  * different branch of the tree, i.e. where no ancestoral relation is
1732  * present between the pid namespaces:
1733  * - create two new pid namespaces ns1 and ns2 in the initial pid
1734  *   namespace (also take care to create new mount namespaces in the
1735  *   new pid namespace and mount procfs)
1736  * - create a process with a pidfd in ns1
1737  * - send pidfd from ns1 to ns2
1738  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1739  *   have exactly one entry, which is 0
1740  */
1741 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1742 {
1743 	struct pid *pid = f->private_data;
1744 	struct pid_namespace *ns;
1745 	pid_t nr = -1;
1746 
1747 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1748 		ns = proc_pid_ns(file_inode(m->file));
1749 		nr = pid_nr_ns(pid, ns);
1750 	}
1751 
1752 	seq_put_decimal_ll(m, "Pid:\t", nr);
1753 
1754 #ifdef CONFIG_PID_NS
1755 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1756 	if (nr > 0) {
1757 		int i;
1758 
1759 		/* If nr is non-zero it means that 'pid' is valid and that
1760 		 * ns, i.e. the pid namespace associated with the procfs
1761 		 * instance, is in the pid namespace hierarchy of pid.
1762 		 * Start at one below the already printed level.
1763 		 */
1764 		for (i = ns->level + 1; i <= pid->level; i++)
1765 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1766 	}
1767 #endif
1768 	seq_putc(m, '\n');
1769 }
1770 #endif
1771 
1772 /*
1773  * Poll support for process exit notification.
1774  */
1775 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1776 {
1777 	struct task_struct *task;
1778 	struct pid *pid = file->private_data;
1779 	__poll_t poll_flags = 0;
1780 
1781 	poll_wait(file, &pid->wait_pidfd, pts);
1782 
1783 	rcu_read_lock();
1784 	task = pid_task(pid, PIDTYPE_PID);
1785 	/*
1786 	 * Inform pollers only when the whole thread group exits.
1787 	 * If the thread group leader exits before all other threads in the
1788 	 * group, then poll(2) should block, similar to the wait(2) family.
1789 	 */
1790 	if (!task || (task->exit_state && thread_group_empty(task)))
1791 		poll_flags = EPOLLIN | EPOLLRDNORM;
1792 	rcu_read_unlock();
1793 
1794 	return poll_flags;
1795 }
1796 
1797 const struct file_operations pidfd_fops = {
1798 	.release = pidfd_release,
1799 	.poll = pidfd_poll,
1800 #ifdef CONFIG_PROC_FS
1801 	.show_fdinfo = pidfd_show_fdinfo,
1802 #endif
1803 };
1804 
1805 static void __delayed_free_task(struct rcu_head *rhp)
1806 {
1807 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1808 
1809 	free_task(tsk);
1810 }
1811 
1812 static __always_inline void delayed_free_task(struct task_struct *tsk)
1813 {
1814 	if (IS_ENABLED(CONFIG_MEMCG))
1815 		call_rcu(&tsk->rcu, __delayed_free_task);
1816 	else
1817 		free_task(tsk);
1818 }
1819 
1820 /*
1821  * This creates a new process as a copy of the old one,
1822  * but does not actually start it yet.
1823  *
1824  * It copies the registers, and all the appropriate
1825  * parts of the process environment (as per the clone
1826  * flags). The actual kick-off is left to the caller.
1827  */
1828 static __latent_entropy struct task_struct *copy_process(
1829 					struct pid *pid,
1830 					int trace,
1831 					int node,
1832 					struct kernel_clone_args *args)
1833 {
1834 	int pidfd = -1, retval;
1835 	struct task_struct *p;
1836 	struct multiprocess_signals delayed;
1837 	struct file *pidfile = NULL;
1838 	u64 clone_flags = args->flags;
1839 	struct nsproxy *nsp = current->nsproxy;
1840 
1841 	/*
1842 	 * Don't allow sharing the root directory with processes in a different
1843 	 * namespace
1844 	 */
1845 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1846 		return ERR_PTR(-EINVAL);
1847 
1848 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1849 		return ERR_PTR(-EINVAL);
1850 
1851 	/*
1852 	 * Thread groups must share signals as well, and detached threads
1853 	 * can only be started up within the thread group.
1854 	 */
1855 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1856 		return ERR_PTR(-EINVAL);
1857 
1858 	/*
1859 	 * Shared signal handlers imply shared VM. By way of the above,
1860 	 * thread groups also imply shared VM. Blocking this case allows
1861 	 * for various simplifications in other code.
1862 	 */
1863 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1864 		return ERR_PTR(-EINVAL);
1865 
1866 	/*
1867 	 * Siblings of global init remain as zombies on exit since they are
1868 	 * not reaped by their parent (swapper). To solve this and to avoid
1869 	 * multi-rooted process trees, prevent global and container-inits
1870 	 * from creating siblings.
1871 	 */
1872 	if ((clone_flags & CLONE_PARENT) &&
1873 				current->signal->flags & SIGNAL_UNKILLABLE)
1874 		return ERR_PTR(-EINVAL);
1875 
1876 	/*
1877 	 * If the new process will be in a different pid or user namespace
1878 	 * do not allow it to share a thread group with the forking task.
1879 	 */
1880 	if (clone_flags & CLONE_THREAD) {
1881 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1882 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1883 			return ERR_PTR(-EINVAL);
1884 	}
1885 
1886 	/*
1887 	 * If the new process will be in a different time namespace
1888 	 * do not allow it to share VM or a thread group with the forking task.
1889 	 */
1890 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1891 		if (nsp->time_ns != nsp->time_ns_for_children)
1892 			return ERR_PTR(-EINVAL);
1893 	}
1894 
1895 	if (clone_flags & CLONE_PIDFD) {
1896 		/*
1897 		 * - CLONE_DETACHED is blocked so that we can potentially
1898 		 *   reuse it later for CLONE_PIDFD.
1899 		 * - CLONE_THREAD is blocked until someone really needs it.
1900 		 */
1901 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1902 			return ERR_PTR(-EINVAL);
1903 	}
1904 
1905 	/*
1906 	 * Force any signals received before this point to be delivered
1907 	 * before the fork happens.  Collect up signals sent to multiple
1908 	 * processes that happen during the fork and delay them so that
1909 	 * they appear to happen after the fork.
1910 	 */
1911 	sigemptyset(&delayed.signal);
1912 	INIT_HLIST_NODE(&delayed.node);
1913 
1914 	spin_lock_irq(&current->sighand->siglock);
1915 	if (!(clone_flags & CLONE_THREAD))
1916 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1917 	recalc_sigpending();
1918 	spin_unlock_irq(&current->sighand->siglock);
1919 	retval = -ERESTARTNOINTR;
1920 	if (signal_pending(current))
1921 		goto fork_out;
1922 
1923 	retval = -ENOMEM;
1924 	p = dup_task_struct(current, node);
1925 	if (!p)
1926 		goto fork_out;
1927 
1928 	/*
1929 	 * This _must_ happen before we call free_task(), i.e. before we jump
1930 	 * to any of the bad_fork_* labels. This is to avoid freeing
1931 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1932 	 * kernel threads (PF_KTHREAD).
1933 	 */
1934 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1935 	/*
1936 	 * Clear TID on mm_release()?
1937 	 */
1938 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1939 
1940 	ftrace_graph_init_task(p);
1941 
1942 	rt_mutex_init_task(p);
1943 
1944 #ifdef CONFIG_PROVE_LOCKING
1945 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1946 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1947 #endif
1948 	retval = -EAGAIN;
1949 	if (atomic_read(&p->real_cred->user->processes) >=
1950 			task_rlimit(p, RLIMIT_NPROC)) {
1951 		if (p->real_cred->user != INIT_USER &&
1952 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1953 			goto bad_fork_free;
1954 	}
1955 	current->flags &= ~PF_NPROC_EXCEEDED;
1956 
1957 	retval = copy_creds(p, clone_flags);
1958 	if (retval < 0)
1959 		goto bad_fork_free;
1960 
1961 	/*
1962 	 * If multiple threads are within copy_process(), then this check
1963 	 * triggers too late. This doesn't hurt, the check is only there
1964 	 * to stop root fork bombs.
1965 	 */
1966 	retval = -EAGAIN;
1967 	if (nr_threads >= max_threads)
1968 		goto bad_fork_cleanup_count;
1969 
1970 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1971 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1972 	p->flags |= PF_FORKNOEXEC;
1973 	INIT_LIST_HEAD(&p->children);
1974 	INIT_LIST_HEAD(&p->sibling);
1975 	rcu_copy_process(p);
1976 	p->vfork_done = NULL;
1977 	spin_lock_init(&p->alloc_lock);
1978 
1979 	init_sigpending(&p->pending);
1980 
1981 	p->utime = p->stime = p->gtime = 0;
1982 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1983 	p->utimescaled = p->stimescaled = 0;
1984 #endif
1985 	prev_cputime_init(&p->prev_cputime);
1986 
1987 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1988 	seqcount_init(&p->vtime.seqcount);
1989 	p->vtime.starttime = 0;
1990 	p->vtime.state = VTIME_INACTIVE;
1991 #endif
1992 
1993 #if defined(SPLIT_RSS_COUNTING)
1994 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1995 #endif
1996 
1997 	p->default_timer_slack_ns = current->timer_slack_ns;
1998 
1999 #ifdef CONFIG_PSI
2000 	p->psi_flags = 0;
2001 #endif
2002 
2003 	task_io_accounting_init(&p->ioac);
2004 	acct_clear_integrals(p);
2005 
2006 	posix_cputimers_init(&p->posix_cputimers);
2007 
2008 	p->io_context = NULL;
2009 	audit_set_context(p, NULL);
2010 	cgroup_fork(p);
2011 #ifdef CONFIG_NUMA
2012 	p->mempolicy = mpol_dup(p->mempolicy);
2013 	if (IS_ERR(p->mempolicy)) {
2014 		retval = PTR_ERR(p->mempolicy);
2015 		p->mempolicy = NULL;
2016 		goto bad_fork_cleanup_threadgroup_lock;
2017 	}
2018 #endif
2019 #ifdef CONFIG_CPUSETS
2020 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2021 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2022 	seqcount_init(&p->mems_allowed_seq);
2023 #endif
2024 #ifdef CONFIG_TRACE_IRQFLAGS
2025 	p->irq_events = 0;
2026 	p->hardirqs_enabled = 0;
2027 	p->hardirq_enable_ip = 0;
2028 	p->hardirq_enable_event = 0;
2029 	p->hardirq_disable_ip = _THIS_IP_;
2030 	p->hardirq_disable_event = 0;
2031 	p->softirqs_enabled = 1;
2032 	p->softirq_enable_ip = _THIS_IP_;
2033 	p->softirq_enable_event = 0;
2034 	p->softirq_disable_ip = 0;
2035 	p->softirq_disable_event = 0;
2036 	p->hardirq_context = 0;
2037 	p->softirq_context = 0;
2038 #endif
2039 
2040 	p->pagefault_disabled = 0;
2041 
2042 #ifdef CONFIG_LOCKDEP
2043 	lockdep_init_task(p);
2044 #endif
2045 
2046 #ifdef CONFIG_DEBUG_MUTEXES
2047 	p->blocked_on = NULL; /* not blocked yet */
2048 #endif
2049 #ifdef CONFIG_BCACHE
2050 	p->sequential_io	= 0;
2051 	p->sequential_io_avg	= 0;
2052 #endif
2053 
2054 	/* Perform scheduler related setup. Assign this task to a CPU. */
2055 	retval = sched_fork(clone_flags, p);
2056 	if (retval)
2057 		goto bad_fork_cleanup_policy;
2058 
2059 	retval = perf_event_init_task(p);
2060 	if (retval)
2061 		goto bad_fork_cleanup_policy;
2062 	retval = audit_alloc(p);
2063 	if (retval)
2064 		goto bad_fork_cleanup_perf;
2065 	/* copy all the process information */
2066 	shm_init_task(p);
2067 	retval = security_task_alloc(p, clone_flags);
2068 	if (retval)
2069 		goto bad_fork_cleanup_audit;
2070 	retval = copy_semundo(clone_flags, p);
2071 	if (retval)
2072 		goto bad_fork_cleanup_security;
2073 	retval = copy_files(clone_flags, p);
2074 	if (retval)
2075 		goto bad_fork_cleanup_semundo;
2076 	retval = copy_fs(clone_flags, p);
2077 	if (retval)
2078 		goto bad_fork_cleanup_files;
2079 	retval = copy_sighand(clone_flags, p);
2080 	if (retval)
2081 		goto bad_fork_cleanup_fs;
2082 	retval = copy_signal(clone_flags, p);
2083 	if (retval)
2084 		goto bad_fork_cleanup_sighand;
2085 	retval = copy_mm(clone_flags, p);
2086 	if (retval)
2087 		goto bad_fork_cleanup_signal;
2088 	retval = copy_namespaces(clone_flags, p);
2089 	if (retval)
2090 		goto bad_fork_cleanup_mm;
2091 	retval = copy_io(clone_flags, p);
2092 	if (retval)
2093 		goto bad_fork_cleanup_namespaces;
2094 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2095 				 args->tls);
2096 	if (retval)
2097 		goto bad_fork_cleanup_io;
2098 
2099 	stackleak_task_init(p);
2100 
2101 	if (pid != &init_struct_pid) {
2102 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2103 				args->set_tid_size);
2104 		if (IS_ERR(pid)) {
2105 			retval = PTR_ERR(pid);
2106 			goto bad_fork_cleanup_thread;
2107 		}
2108 	}
2109 
2110 	/*
2111 	 * This has to happen after we've potentially unshared the file
2112 	 * descriptor table (so that the pidfd doesn't leak into the child
2113 	 * if the fd table isn't shared).
2114 	 */
2115 	if (clone_flags & CLONE_PIDFD) {
2116 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2117 		if (retval < 0)
2118 			goto bad_fork_free_pid;
2119 
2120 		pidfd = retval;
2121 
2122 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2123 					      O_RDWR | O_CLOEXEC);
2124 		if (IS_ERR(pidfile)) {
2125 			put_unused_fd(pidfd);
2126 			retval = PTR_ERR(pidfile);
2127 			goto bad_fork_free_pid;
2128 		}
2129 		get_pid(pid);	/* held by pidfile now */
2130 
2131 		retval = put_user(pidfd, args->pidfd);
2132 		if (retval)
2133 			goto bad_fork_put_pidfd;
2134 	}
2135 
2136 #ifdef CONFIG_BLOCK
2137 	p->plug = NULL;
2138 #endif
2139 	futex_init_task(p);
2140 
2141 	/*
2142 	 * sigaltstack should be cleared when sharing the same VM
2143 	 */
2144 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2145 		sas_ss_reset(p);
2146 
2147 	/*
2148 	 * Syscall tracing and stepping should be turned off in the
2149 	 * child regardless of CLONE_PTRACE.
2150 	 */
2151 	user_disable_single_step(p);
2152 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2153 #ifdef TIF_SYSCALL_EMU
2154 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2155 #endif
2156 	clear_tsk_latency_tracing(p);
2157 
2158 	/* ok, now we should be set up.. */
2159 	p->pid = pid_nr(pid);
2160 	if (clone_flags & CLONE_THREAD) {
2161 		p->exit_signal = -1;
2162 		p->group_leader = current->group_leader;
2163 		p->tgid = current->tgid;
2164 	} else {
2165 		if (clone_flags & CLONE_PARENT)
2166 			p->exit_signal = current->group_leader->exit_signal;
2167 		else
2168 			p->exit_signal = args->exit_signal;
2169 		p->group_leader = p;
2170 		p->tgid = p->pid;
2171 	}
2172 
2173 	p->nr_dirtied = 0;
2174 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2175 	p->dirty_paused_when = 0;
2176 
2177 	p->pdeath_signal = 0;
2178 	INIT_LIST_HEAD(&p->thread_group);
2179 	p->task_works = NULL;
2180 
2181 	/*
2182 	 * Ensure that the cgroup subsystem policies allow the new process to be
2183 	 * forked. It should be noted the the new process's css_set can be changed
2184 	 * between here and cgroup_post_fork() if an organisation operation is in
2185 	 * progress.
2186 	 */
2187 	retval = cgroup_can_fork(p, args);
2188 	if (retval)
2189 		goto bad_fork_put_pidfd;
2190 
2191 	/*
2192 	 * From this point on we must avoid any synchronous user-space
2193 	 * communication until we take the tasklist-lock. In particular, we do
2194 	 * not want user-space to be able to predict the process start-time by
2195 	 * stalling fork(2) after we recorded the start_time but before it is
2196 	 * visible to the system.
2197 	 */
2198 
2199 	p->start_time = ktime_get_ns();
2200 	p->start_boottime = ktime_get_boottime_ns();
2201 
2202 	/*
2203 	 * Make it visible to the rest of the system, but dont wake it up yet.
2204 	 * Need tasklist lock for parent etc handling!
2205 	 */
2206 	write_lock_irq(&tasklist_lock);
2207 
2208 	/* CLONE_PARENT re-uses the old parent */
2209 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2210 		p->real_parent = current->real_parent;
2211 		p->parent_exec_id = current->parent_exec_id;
2212 	} else {
2213 		p->real_parent = current;
2214 		p->parent_exec_id = current->self_exec_id;
2215 	}
2216 
2217 	klp_copy_process(p);
2218 
2219 	spin_lock(&current->sighand->siglock);
2220 
2221 	/*
2222 	 * Copy seccomp details explicitly here, in case they were changed
2223 	 * before holding sighand lock.
2224 	 */
2225 	copy_seccomp(p);
2226 
2227 	rseq_fork(p, clone_flags);
2228 
2229 	/* Don't start children in a dying pid namespace */
2230 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2231 		retval = -ENOMEM;
2232 		goto bad_fork_cancel_cgroup;
2233 	}
2234 
2235 	/* Let kill terminate clone/fork in the middle */
2236 	if (fatal_signal_pending(current)) {
2237 		retval = -EINTR;
2238 		goto bad_fork_cancel_cgroup;
2239 	}
2240 
2241 	/* past the last point of failure */
2242 	if (pidfile)
2243 		fd_install(pidfd, pidfile);
2244 
2245 	init_task_pid_links(p);
2246 	if (likely(p->pid)) {
2247 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2248 
2249 		init_task_pid(p, PIDTYPE_PID, pid);
2250 		if (thread_group_leader(p)) {
2251 			init_task_pid(p, PIDTYPE_TGID, pid);
2252 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2253 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2254 
2255 			if (is_child_reaper(pid)) {
2256 				ns_of_pid(pid)->child_reaper = p;
2257 				p->signal->flags |= SIGNAL_UNKILLABLE;
2258 			}
2259 			p->signal->shared_pending.signal = delayed.signal;
2260 			p->signal->tty = tty_kref_get(current->signal->tty);
2261 			/*
2262 			 * Inherit has_child_subreaper flag under the same
2263 			 * tasklist_lock with adding child to the process tree
2264 			 * for propagate_has_child_subreaper optimization.
2265 			 */
2266 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2267 							 p->real_parent->signal->is_child_subreaper;
2268 			list_add_tail(&p->sibling, &p->real_parent->children);
2269 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2270 			attach_pid(p, PIDTYPE_TGID);
2271 			attach_pid(p, PIDTYPE_PGID);
2272 			attach_pid(p, PIDTYPE_SID);
2273 			__this_cpu_inc(process_counts);
2274 		} else {
2275 			current->signal->nr_threads++;
2276 			atomic_inc(&current->signal->live);
2277 			refcount_inc(&current->signal->sigcnt);
2278 			task_join_group_stop(p);
2279 			list_add_tail_rcu(&p->thread_group,
2280 					  &p->group_leader->thread_group);
2281 			list_add_tail_rcu(&p->thread_node,
2282 					  &p->signal->thread_head);
2283 		}
2284 		attach_pid(p, PIDTYPE_PID);
2285 		nr_threads++;
2286 	}
2287 	total_forks++;
2288 	hlist_del_init(&delayed.node);
2289 	spin_unlock(&current->sighand->siglock);
2290 	syscall_tracepoint_update(p);
2291 	write_unlock_irq(&tasklist_lock);
2292 
2293 	proc_fork_connector(p);
2294 	cgroup_post_fork(p, args);
2295 	perf_event_fork(p);
2296 
2297 	trace_task_newtask(p, clone_flags);
2298 	uprobe_copy_process(p, clone_flags);
2299 
2300 	return p;
2301 
2302 bad_fork_cancel_cgroup:
2303 	spin_unlock(&current->sighand->siglock);
2304 	write_unlock_irq(&tasklist_lock);
2305 	cgroup_cancel_fork(p, args);
2306 bad_fork_put_pidfd:
2307 	if (clone_flags & CLONE_PIDFD) {
2308 		fput(pidfile);
2309 		put_unused_fd(pidfd);
2310 	}
2311 bad_fork_free_pid:
2312 	if (pid != &init_struct_pid)
2313 		free_pid(pid);
2314 bad_fork_cleanup_thread:
2315 	exit_thread(p);
2316 bad_fork_cleanup_io:
2317 	if (p->io_context)
2318 		exit_io_context(p);
2319 bad_fork_cleanup_namespaces:
2320 	exit_task_namespaces(p);
2321 bad_fork_cleanup_mm:
2322 	if (p->mm) {
2323 		mm_clear_owner(p->mm, p);
2324 		mmput(p->mm);
2325 	}
2326 bad_fork_cleanup_signal:
2327 	if (!(clone_flags & CLONE_THREAD))
2328 		free_signal_struct(p->signal);
2329 bad_fork_cleanup_sighand:
2330 	__cleanup_sighand(p->sighand);
2331 bad_fork_cleanup_fs:
2332 	exit_fs(p); /* blocking */
2333 bad_fork_cleanup_files:
2334 	exit_files(p); /* blocking */
2335 bad_fork_cleanup_semundo:
2336 	exit_sem(p);
2337 bad_fork_cleanup_security:
2338 	security_task_free(p);
2339 bad_fork_cleanup_audit:
2340 	audit_free(p);
2341 bad_fork_cleanup_perf:
2342 	perf_event_free_task(p);
2343 bad_fork_cleanup_policy:
2344 	lockdep_free_task(p);
2345 #ifdef CONFIG_NUMA
2346 	mpol_put(p->mempolicy);
2347 bad_fork_cleanup_threadgroup_lock:
2348 #endif
2349 	delayacct_tsk_free(p);
2350 bad_fork_cleanup_count:
2351 	atomic_dec(&p->cred->user->processes);
2352 	exit_creds(p);
2353 bad_fork_free:
2354 	p->state = TASK_DEAD;
2355 	put_task_stack(p);
2356 	delayed_free_task(p);
2357 fork_out:
2358 	spin_lock_irq(&current->sighand->siglock);
2359 	hlist_del_init(&delayed.node);
2360 	spin_unlock_irq(&current->sighand->siglock);
2361 	return ERR_PTR(retval);
2362 }
2363 
2364 static inline void init_idle_pids(struct task_struct *idle)
2365 {
2366 	enum pid_type type;
2367 
2368 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2369 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2370 		init_task_pid(idle, type, &init_struct_pid);
2371 	}
2372 }
2373 
2374 struct task_struct *fork_idle(int cpu)
2375 {
2376 	struct task_struct *task;
2377 	struct kernel_clone_args args = {
2378 		.flags = CLONE_VM,
2379 	};
2380 
2381 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2382 	if (!IS_ERR(task)) {
2383 		init_idle_pids(task);
2384 		init_idle(task, cpu);
2385 	}
2386 
2387 	return task;
2388 }
2389 
2390 struct mm_struct *copy_init_mm(void)
2391 {
2392 	return dup_mm(NULL, &init_mm);
2393 }
2394 
2395 /*
2396  *  Ok, this is the main fork-routine.
2397  *
2398  * It copies the process, and if successful kick-starts
2399  * it and waits for it to finish using the VM if required.
2400  *
2401  * args->exit_signal is expected to be checked for sanity by the caller.
2402  */
2403 long _do_fork(struct kernel_clone_args *args)
2404 {
2405 	u64 clone_flags = args->flags;
2406 	struct completion vfork;
2407 	struct pid *pid;
2408 	struct task_struct *p;
2409 	int trace = 0;
2410 	long nr;
2411 
2412 	/*
2413 	 * Determine whether and which event to report to ptracer.  When
2414 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2415 	 * requested, no event is reported; otherwise, report if the event
2416 	 * for the type of forking is enabled.
2417 	 */
2418 	if (!(clone_flags & CLONE_UNTRACED)) {
2419 		if (clone_flags & CLONE_VFORK)
2420 			trace = PTRACE_EVENT_VFORK;
2421 		else if (args->exit_signal != SIGCHLD)
2422 			trace = PTRACE_EVENT_CLONE;
2423 		else
2424 			trace = PTRACE_EVENT_FORK;
2425 
2426 		if (likely(!ptrace_event_enabled(current, trace)))
2427 			trace = 0;
2428 	}
2429 
2430 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2431 	add_latent_entropy();
2432 
2433 	if (IS_ERR(p))
2434 		return PTR_ERR(p);
2435 
2436 	/*
2437 	 * Do this prior waking up the new thread - the thread pointer
2438 	 * might get invalid after that point, if the thread exits quickly.
2439 	 */
2440 	trace_sched_process_fork(current, p);
2441 
2442 	pid = get_task_pid(p, PIDTYPE_PID);
2443 	nr = pid_vnr(pid);
2444 
2445 	if (clone_flags & CLONE_PARENT_SETTID)
2446 		put_user(nr, args->parent_tid);
2447 
2448 	if (clone_flags & CLONE_VFORK) {
2449 		p->vfork_done = &vfork;
2450 		init_completion(&vfork);
2451 		get_task_struct(p);
2452 	}
2453 
2454 	wake_up_new_task(p);
2455 
2456 	/* forking complete and child started to run, tell ptracer */
2457 	if (unlikely(trace))
2458 		ptrace_event_pid(trace, pid);
2459 
2460 	if (clone_flags & CLONE_VFORK) {
2461 		if (!wait_for_vfork_done(p, &vfork))
2462 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2463 	}
2464 
2465 	put_pid(pid);
2466 	return nr;
2467 }
2468 
2469 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2470 {
2471 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2472 	if ((kargs->flags & CLONE_PIDFD) &&
2473 	    (kargs->flags & CLONE_PARENT_SETTID))
2474 		return false;
2475 
2476 	return true;
2477 }
2478 
2479 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2480 /* For compatibility with architectures that call do_fork directly rather than
2481  * using the syscall entry points below. */
2482 long do_fork(unsigned long clone_flags,
2483 	      unsigned long stack_start,
2484 	      unsigned long stack_size,
2485 	      int __user *parent_tidptr,
2486 	      int __user *child_tidptr)
2487 {
2488 	struct kernel_clone_args args = {
2489 		.flags		= (clone_flags & ~CSIGNAL),
2490 		.pidfd		= parent_tidptr,
2491 		.child_tid	= child_tidptr,
2492 		.parent_tid	= parent_tidptr,
2493 		.exit_signal	= (clone_flags & CSIGNAL),
2494 		.stack		= stack_start,
2495 		.stack_size	= stack_size,
2496 	};
2497 
2498 	if (!legacy_clone_args_valid(&args))
2499 		return -EINVAL;
2500 
2501 	return _do_fork(&args);
2502 }
2503 #endif
2504 
2505 /*
2506  * Create a kernel thread.
2507  */
2508 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2509 {
2510 	struct kernel_clone_args args = {
2511 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2512 		.exit_signal	= (flags & CSIGNAL),
2513 		.stack		= (unsigned long)fn,
2514 		.stack_size	= (unsigned long)arg,
2515 	};
2516 
2517 	return _do_fork(&args);
2518 }
2519 
2520 #ifdef __ARCH_WANT_SYS_FORK
2521 SYSCALL_DEFINE0(fork)
2522 {
2523 #ifdef CONFIG_MMU
2524 	struct kernel_clone_args args = {
2525 		.exit_signal = SIGCHLD,
2526 	};
2527 
2528 	return _do_fork(&args);
2529 #else
2530 	/* can not support in nommu mode */
2531 	return -EINVAL;
2532 #endif
2533 }
2534 #endif
2535 
2536 #ifdef __ARCH_WANT_SYS_VFORK
2537 SYSCALL_DEFINE0(vfork)
2538 {
2539 	struct kernel_clone_args args = {
2540 		.flags		= CLONE_VFORK | CLONE_VM,
2541 		.exit_signal	= SIGCHLD,
2542 	};
2543 
2544 	return _do_fork(&args);
2545 }
2546 #endif
2547 
2548 #ifdef __ARCH_WANT_SYS_CLONE
2549 #ifdef CONFIG_CLONE_BACKWARDS
2550 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2551 		 int __user *, parent_tidptr,
2552 		 unsigned long, tls,
2553 		 int __user *, child_tidptr)
2554 #elif defined(CONFIG_CLONE_BACKWARDS2)
2555 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2556 		 int __user *, parent_tidptr,
2557 		 int __user *, child_tidptr,
2558 		 unsigned long, tls)
2559 #elif defined(CONFIG_CLONE_BACKWARDS3)
2560 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2561 		int, stack_size,
2562 		int __user *, parent_tidptr,
2563 		int __user *, child_tidptr,
2564 		unsigned long, tls)
2565 #else
2566 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2567 		 int __user *, parent_tidptr,
2568 		 int __user *, child_tidptr,
2569 		 unsigned long, tls)
2570 #endif
2571 {
2572 	struct kernel_clone_args args = {
2573 		.flags		= (clone_flags & ~CSIGNAL),
2574 		.pidfd		= parent_tidptr,
2575 		.child_tid	= child_tidptr,
2576 		.parent_tid	= parent_tidptr,
2577 		.exit_signal	= (clone_flags & CSIGNAL),
2578 		.stack		= newsp,
2579 		.tls		= tls,
2580 	};
2581 
2582 	if (!legacy_clone_args_valid(&args))
2583 		return -EINVAL;
2584 
2585 	return _do_fork(&args);
2586 }
2587 #endif
2588 
2589 #ifdef __ARCH_WANT_SYS_CLONE3
2590 
2591 /*
2592  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2593  * the registers containing the syscall arguments for clone. This doesn't work
2594  * with clone3 since the TLS value is passed in clone_args instead.
2595  */
2596 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2597 #error clone3 requires copy_thread_tls support in arch
2598 #endif
2599 
2600 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2601 					      struct clone_args __user *uargs,
2602 					      size_t usize)
2603 {
2604 	int err;
2605 	struct clone_args args;
2606 	pid_t *kset_tid = kargs->set_tid;
2607 
2608 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2609 		     CLONE_ARGS_SIZE_VER0);
2610 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2611 		     CLONE_ARGS_SIZE_VER1);
2612 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2613 		     CLONE_ARGS_SIZE_VER2);
2614 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2615 
2616 	if (unlikely(usize > PAGE_SIZE))
2617 		return -E2BIG;
2618 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2619 		return -EINVAL;
2620 
2621 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2622 	if (err)
2623 		return err;
2624 
2625 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2626 		return -EINVAL;
2627 
2628 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2629 		return -EINVAL;
2630 
2631 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2632 		return -EINVAL;
2633 
2634 	/*
2635 	 * Verify that higher 32bits of exit_signal are unset and that
2636 	 * it is a valid signal
2637 	 */
2638 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2639 		     !valid_signal(args.exit_signal)))
2640 		return -EINVAL;
2641 
2642 	if ((args.flags & CLONE_INTO_CGROUP) &&
2643 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2644 		return -EINVAL;
2645 
2646 	*kargs = (struct kernel_clone_args){
2647 		.flags		= args.flags,
2648 		.pidfd		= u64_to_user_ptr(args.pidfd),
2649 		.child_tid	= u64_to_user_ptr(args.child_tid),
2650 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2651 		.exit_signal	= args.exit_signal,
2652 		.stack		= args.stack,
2653 		.stack_size	= args.stack_size,
2654 		.tls		= args.tls,
2655 		.set_tid_size	= args.set_tid_size,
2656 		.cgroup		= args.cgroup,
2657 	};
2658 
2659 	if (args.set_tid &&
2660 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2661 			(kargs->set_tid_size * sizeof(pid_t))))
2662 		return -EFAULT;
2663 
2664 	kargs->set_tid = kset_tid;
2665 
2666 	return 0;
2667 }
2668 
2669 /**
2670  * clone3_stack_valid - check and prepare stack
2671  * @kargs: kernel clone args
2672  *
2673  * Verify that the stack arguments userspace gave us are sane.
2674  * In addition, set the stack direction for userspace since it's easy for us to
2675  * determine.
2676  */
2677 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2678 {
2679 	if (kargs->stack == 0) {
2680 		if (kargs->stack_size > 0)
2681 			return false;
2682 	} else {
2683 		if (kargs->stack_size == 0)
2684 			return false;
2685 
2686 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2687 			return false;
2688 
2689 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2690 		kargs->stack += kargs->stack_size;
2691 #endif
2692 	}
2693 
2694 	return true;
2695 }
2696 
2697 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2698 {
2699 	/* Verify that no unknown flags are passed along. */
2700 	if (kargs->flags &
2701 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2702 		return false;
2703 
2704 	/*
2705 	 * - make the CLONE_DETACHED bit reuseable for clone3
2706 	 * - make the CSIGNAL bits reuseable for clone3
2707 	 */
2708 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2709 		return false;
2710 
2711 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2712 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2713 		return false;
2714 
2715 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2716 	    kargs->exit_signal)
2717 		return false;
2718 
2719 	if (!clone3_stack_valid(kargs))
2720 		return false;
2721 
2722 	return true;
2723 }
2724 
2725 /**
2726  * clone3 - create a new process with specific properties
2727  * @uargs: argument structure
2728  * @size:  size of @uargs
2729  *
2730  * clone3() is the extensible successor to clone()/clone2().
2731  * It takes a struct as argument that is versioned by its size.
2732  *
2733  * Return: On success, a positive PID for the child process.
2734  *         On error, a negative errno number.
2735  */
2736 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2737 {
2738 	int err;
2739 
2740 	struct kernel_clone_args kargs;
2741 	pid_t set_tid[MAX_PID_NS_LEVEL];
2742 
2743 	kargs.set_tid = set_tid;
2744 
2745 	err = copy_clone_args_from_user(&kargs, uargs, size);
2746 	if (err)
2747 		return err;
2748 
2749 	if (!clone3_args_valid(&kargs))
2750 		return -EINVAL;
2751 
2752 	return _do_fork(&kargs);
2753 }
2754 #endif
2755 
2756 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2757 {
2758 	struct task_struct *leader, *parent, *child;
2759 	int res;
2760 
2761 	read_lock(&tasklist_lock);
2762 	leader = top = top->group_leader;
2763 down:
2764 	for_each_thread(leader, parent) {
2765 		list_for_each_entry(child, &parent->children, sibling) {
2766 			res = visitor(child, data);
2767 			if (res) {
2768 				if (res < 0)
2769 					goto out;
2770 				leader = child;
2771 				goto down;
2772 			}
2773 up:
2774 			;
2775 		}
2776 	}
2777 
2778 	if (leader != top) {
2779 		child = leader;
2780 		parent = child->real_parent;
2781 		leader = parent->group_leader;
2782 		goto up;
2783 	}
2784 out:
2785 	read_unlock(&tasklist_lock);
2786 }
2787 
2788 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2789 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2790 #endif
2791 
2792 static void sighand_ctor(void *data)
2793 {
2794 	struct sighand_struct *sighand = data;
2795 
2796 	spin_lock_init(&sighand->siglock);
2797 	init_waitqueue_head(&sighand->signalfd_wqh);
2798 }
2799 
2800 void __init proc_caches_init(void)
2801 {
2802 	unsigned int mm_size;
2803 
2804 	sighand_cachep = kmem_cache_create("sighand_cache",
2805 			sizeof(struct sighand_struct), 0,
2806 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2807 			SLAB_ACCOUNT, sighand_ctor);
2808 	signal_cachep = kmem_cache_create("signal_cache",
2809 			sizeof(struct signal_struct), 0,
2810 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2811 			NULL);
2812 	files_cachep = kmem_cache_create("files_cache",
2813 			sizeof(struct files_struct), 0,
2814 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2815 			NULL);
2816 	fs_cachep = kmem_cache_create("fs_cache",
2817 			sizeof(struct fs_struct), 0,
2818 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2819 			NULL);
2820 
2821 	/*
2822 	 * The mm_cpumask is located at the end of mm_struct, and is
2823 	 * dynamically sized based on the maximum CPU number this system
2824 	 * can have, taking hotplug into account (nr_cpu_ids).
2825 	 */
2826 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2827 
2828 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2829 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2830 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2831 			offsetof(struct mm_struct, saved_auxv),
2832 			sizeof_field(struct mm_struct, saved_auxv),
2833 			NULL);
2834 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2835 	mmap_init();
2836 	nsproxy_cache_init();
2837 }
2838 
2839 /*
2840  * Check constraints on flags passed to the unshare system call.
2841  */
2842 static int check_unshare_flags(unsigned long unshare_flags)
2843 {
2844 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2845 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2846 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2847 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2848 				CLONE_NEWTIME))
2849 		return -EINVAL;
2850 	/*
2851 	 * Not implemented, but pretend it works if there is nothing
2852 	 * to unshare.  Note that unsharing the address space or the
2853 	 * signal handlers also need to unshare the signal queues (aka
2854 	 * CLONE_THREAD).
2855 	 */
2856 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2857 		if (!thread_group_empty(current))
2858 			return -EINVAL;
2859 	}
2860 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2861 		if (refcount_read(&current->sighand->count) > 1)
2862 			return -EINVAL;
2863 	}
2864 	if (unshare_flags & CLONE_VM) {
2865 		if (!current_is_single_threaded())
2866 			return -EINVAL;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 /*
2873  * Unshare the filesystem structure if it is being shared
2874  */
2875 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2876 {
2877 	struct fs_struct *fs = current->fs;
2878 
2879 	if (!(unshare_flags & CLONE_FS) || !fs)
2880 		return 0;
2881 
2882 	/* don't need lock here; in the worst case we'll do useless copy */
2883 	if (fs->users == 1)
2884 		return 0;
2885 
2886 	*new_fsp = copy_fs_struct(fs);
2887 	if (!*new_fsp)
2888 		return -ENOMEM;
2889 
2890 	return 0;
2891 }
2892 
2893 /*
2894  * Unshare file descriptor table if it is being shared
2895  */
2896 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2897 {
2898 	struct files_struct *fd = current->files;
2899 	int error = 0;
2900 
2901 	if ((unshare_flags & CLONE_FILES) &&
2902 	    (fd && atomic_read(&fd->count) > 1)) {
2903 		*new_fdp = dup_fd(fd, &error);
2904 		if (!*new_fdp)
2905 			return error;
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 /*
2912  * unshare allows a process to 'unshare' part of the process
2913  * context which was originally shared using clone.  copy_*
2914  * functions used by do_fork() cannot be used here directly
2915  * because they modify an inactive task_struct that is being
2916  * constructed. Here we are modifying the current, active,
2917  * task_struct.
2918  */
2919 int ksys_unshare(unsigned long unshare_flags)
2920 {
2921 	struct fs_struct *fs, *new_fs = NULL;
2922 	struct files_struct *fd, *new_fd = NULL;
2923 	struct cred *new_cred = NULL;
2924 	struct nsproxy *new_nsproxy = NULL;
2925 	int do_sysvsem = 0;
2926 	int err;
2927 
2928 	/*
2929 	 * If unsharing a user namespace must also unshare the thread group
2930 	 * and unshare the filesystem root and working directories.
2931 	 */
2932 	if (unshare_flags & CLONE_NEWUSER)
2933 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2934 	/*
2935 	 * If unsharing vm, must also unshare signal handlers.
2936 	 */
2937 	if (unshare_flags & CLONE_VM)
2938 		unshare_flags |= CLONE_SIGHAND;
2939 	/*
2940 	 * If unsharing a signal handlers, must also unshare the signal queues.
2941 	 */
2942 	if (unshare_flags & CLONE_SIGHAND)
2943 		unshare_flags |= CLONE_THREAD;
2944 	/*
2945 	 * If unsharing namespace, must also unshare filesystem information.
2946 	 */
2947 	if (unshare_flags & CLONE_NEWNS)
2948 		unshare_flags |= CLONE_FS;
2949 
2950 	err = check_unshare_flags(unshare_flags);
2951 	if (err)
2952 		goto bad_unshare_out;
2953 	/*
2954 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2955 	 * to a new ipc namespace, the semaphore arrays from the old
2956 	 * namespace are unreachable.
2957 	 */
2958 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2959 		do_sysvsem = 1;
2960 	err = unshare_fs(unshare_flags, &new_fs);
2961 	if (err)
2962 		goto bad_unshare_out;
2963 	err = unshare_fd(unshare_flags, &new_fd);
2964 	if (err)
2965 		goto bad_unshare_cleanup_fs;
2966 	err = unshare_userns(unshare_flags, &new_cred);
2967 	if (err)
2968 		goto bad_unshare_cleanup_fd;
2969 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2970 					 new_cred, new_fs);
2971 	if (err)
2972 		goto bad_unshare_cleanup_cred;
2973 
2974 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2975 		if (do_sysvsem) {
2976 			/*
2977 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2978 			 */
2979 			exit_sem(current);
2980 		}
2981 		if (unshare_flags & CLONE_NEWIPC) {
2982 			/* Orphan segments in old ns (see sem above). */
2983 			exit_shm(current);
2984 			shm_init_task(current);
2985 		}
2986 
2987 		if (new_nsproxy)
2988 			switch_task_namespaces(current, new_nsproxy);
2989 
2990 		task_lock(current);
2991 
2992 		if (new_fs) {
2993 			fs = current->fs;
2994 			spin_lock(&fs->lock);
2995 			current->fs = new_fs;
2996 			if (--fs->users)
2997 				new_fs = NULL;
2998 			else
2999 				new_fs = fs;
3000 			spin_unlock(&fs->lock);
3001 		}
3002 
3003 		if (new_fd) {
3004 			fd = current->files;
3005 			current->files = new_fd;
3006 			new_fd = fd;
3007 		}
3008 
3009 		task_unlock(current);
3010 
3011 		if (new_cred) {
3012 			/* Install the new user namespace */
3013 			commit_creds(new_cred);
3014 			new_cred = NULL;
3015 		}
3016 	}
3017 
3018 	perf_event_namespaces(current);
3019 
3020 bad_unshare_cleanup_cred:
3021 	if (new_cred)
3022 		put_cred(new_cred);
3023 bad_unshare_cleanup_fd:
3024 	if (new_fd)
3025 		put_files_struct(new_fd);
3026 
3027 bad_unshare_cleanup_fs:
3028 	if (new_fs)
3029 		free_fs_struct(new_fs);
3030 
3031 bad_unshare_out:
3032 	return err;
3033 }
3034 
3035 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3036 {
3037 	return ksys_unshare(unshare_flags);
3038 }
3039 
3040 /*
3041  *	Helper to unshare the files of the current task.
3042  *	We don't want to expose copy_files internals to
3043  *	the exec layer of the kernel.
3044  */
3045 
3046 int unshare_files(struct files_struct **displaced)
3047 {
3048 	struct task_struct *task = current;
3049 	struct files_struct *copy = NULL;
3050 	int error;
3051 
3052 	error = unshare_fd(CLONE_FILES, &copy);
3053 	if (error || !copy) {
3054 		*displaced = NULL;
3055 		return error;
3056 	}
3057 	*displaced = task->files;
3058 	task_lock(task);
3059 	task->files = copy;
3060 	task_unlock(task);
3061 	return 0;
3062 }
3063 
3064 int sysctl_max_threads(struct ctl_table *table, int write,
3065 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3066 {
3067 	struct ctl_table t;
3068 	int ret;
3069 	int threads = max_threads;
3070 	int min = 1;
3071 	int max = MAX_THREADS;
3072 
3073 	t = *table;
3074 	t.data = &threads;
3075 	t.extra1 = &min;
3076 	t.extra2 = &max;
3077 
3078 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3079 	if (ret || !write)
3080 		return ret;
3081 
3082 	max_threads = threads;
3083 
3084 	return 0;
3085 }
3086