1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 #include <linux/uprobes.h> 73 #include <linux/aio.h> 74 75 #include <asm/pgtable.h> 76 #include <asm/pgalloc.h> 77 #include <asm/uaccess.h> 78 #include <asm/mmu_context.h> 79 #include <asm/cacheflush.h> 80 #include <asm/tlbflush.h> 81 82 #include <trace/events/sched.h> 83 84 #define CREATE_TRACE_POINTS 85 #include <trace/events/task.h> 86 87 /* 88 * Protected counters by write_lock_irq(&tasklist_lock) 89 */ 90 unsigned long total_forks; /* Handle normal Linux uptimes. */ 91 int nr_threads; /* The idle threads do not count.. */ 92 93 int max_threads; /* tunable limit on nr_threads */ 94 95 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 96 97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 98 99 #ifdef CONFIG_PROVE_RCU 100 int lockdep_tasklist_lock_is_held(void) 101 { 102 return lockdep_is_held(&tasklist_lock); 103 } 104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 105 #endif /* #ifdef CONFIG_PROVE_RCU */ 106 107 int nr_processes(void) 108 { 109 int cpu; 110 int total = 0; 111 112 for_each_possible_cpu(cpu) 113 total += per_cpu(process_counts, cpu); 114 115 return total; 116 } 117 118 void __weak arch_release_task_struct(struct task_struct *tsk) 119 { 120 } 121 122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 123 static struct kmem_cache *task_struct_cachep; 124 125 static inline struct task_struct *alloc_task_struct_node(int node) 126 { 127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 128 } 129 130 static inline void free_task_struct(struct task_struct *tsk) 131 { 132 kmem_cache_free(task_struct_cachep, tsk); 133 } 134 #endif 135 136 void __weak arch_release_thread_info(struct thread_info *ti) 137 { 138 } 139 140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 141 142 /* 143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 144 * kmemcache based allocator. 145 */ 146 # if THREAD_SIZE >= PAGE_SIZE 147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 148 int node) 149 { 150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED, 151 THREAD_SIZE_ORDER); 152 153 return page ? page_address(page) : NULL; 154 } 155 156 static inline void free_thread_info(struct thread_info *ti) 157 { 158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 159 } 160 # else 161 static struct kmem_cache *thread_info_cache; 162 163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 164 int node) 165 { 166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 167 } 168 169 static void free_thread_info(struct thread_info *ti) 170 { 171 kmem_cache_free(thread_info_cache, ti); 172 } 173 174 void thread_info_cache_init(void) 175 { 176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 177 THREAD_SIZE, 0, NULL); 178 BUG_ON(thread_info_cache == NULL); 179 } 180 # endif 181 #endif 182 183 /* SLAB cache for signal_struct structures (tsk->signal) */ 184 static struct kmem_cache *signal_cachep; 185 186 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 187 struct kmem_cache *sighand_cachep; 188 189 /* SLAB cache for files_struct structures (tsk->files) */ 190 struct kmem_cache *files_cachep; 191 192 /* SLAB cache for fs_struct structures (tsk->fs) */ 193 struct kmem_cache *fs_cachep; 194 195 /* SLAB cache for vm_area_struct structures */ 196 struct kmem_cache *vm_area_cachep; 197 198 /* SLAB cache for mm_struct structures (tsk->mm) */ 199 static struct kmem_cache *mm_cachep; 200 201 static void account_kernel_stack(struct thread_info *ti, int account) 202 { 203 struct zone *zone = page_zone(virt_to_page(ti)); 204 205 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 206 } 207 208 void free_task(struct task_struct *tsk) 209 { 210 account_kernel_stack(tsk->stack, -1); 211 arch_release_thread_info(tsk->stack); 212 free_thread_info(tsk->stack); 213 rt_mutex_debug_task_free(tsk); 214 ftrace_graph_exit_task(tsk); 215 put_seccomp_filter(tsk); 216 arch_release_task_struct(tsk); 217 free_task_struct(tsk); 218 } 219 EXPORT_SYMBOL(free_task); 220 221 static inline void free_signal_struct(struct signal_struct *sig) 222 { 223 taskstats_tgid_free(sig); 224 sched_autogroup_exit(sig); 225 kmem_cache_free(signal_cachep, sig); 226 } 227 228 static inline void put_signal_struct(struct signal_struct *sig) 229 { 230 if (atomic_dec_and_test(&sig->sigcnt)) 231 free_signal_struct(sig); 232 } 233 234 void __put_task_struct(struct task_struct *tsk) 235 { 236 WARN_ON(!tsk->exit_state); 237 WARN_ON(atomic_read(&tsk->usage)); 238 WARN_ON(tsk == current); 239 240 security_task_free(tsk); 241 exit_creds(tsk); 242 delayacct_tsk_free(tsk); 243 put_signal_struct(tsk->signal); 244 245 if (!profile_handoff_task(tsk)) 246 free_task(tsk); 247 } 248 EXPORT_SYMBOL_GPL(__put_task_struct); 249 250 void __init __weak arch_task_cache_init(void) { } 251 252 void __init fork_init(unsigned long mempages) 253 { 254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 255 #ifndef ARCH_MIN_TASKALIGN 256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 257 #endif 258 /* create a slab on which task_structs can be allocated */ 259 task_struct_cachep = 260 kmem_cache_create("task_struct", sizeof(struct task_struct), 261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 262 #endif 263 264 /* do the arch specific task caches init */ 265 arch_task_cache_init(); 266 267 /* 268 * The default maximum number of threads is set to a safe 269 * value: the thread structures can take up at most half 270 * of memory. 271 */ 272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 273 274 /* 275 * we need to allow at least 20 threads to boot a system 276 */ 277 if (max_threads < 20) 278 max_threads = 20; 279 280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 282 init_task.signal->rlim[RLIMIT_SIGPENDING] = 283 init_task.signal->rlim[RLIMIT_NPROC]; 284 } 285 286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 287 struct task_struct *src) 288 { 289 *dst = *src; 290 return 0; 291 } 292 293 static struct task_struct *dup_task_struct(struct task_struct *orig) 294 { 295 struct task_struct *tsk; 296 struct thread_info *ti; 297 unsigned long *stackend; 298 int node = tsk_fork_get_node(orig); 299 int err; 300 301 tsk = alloc_task_struct_node(node); 302 if (!tsk) 303 return NULL; 304 305 ti = alloc_thread_info_node(tsk, node); 306 if (!ti) 307 goto free_tsk; 308 309 err = arch_dup_task_struct(tsk, orig); 310 if (err) 311 goto free_ti; 312 313 tsk->stack = ti; 314 315 setup_thread_stack(tsk, orig); 316 clear_user_return_notifier(tsk); 317 clear_tsk_need_resched(tsk); 318 stackend = end_of_stack(tsk); 319 *stackend = STACK_END_MAGIC; /* for overflow detection */ 320 321 #ifdef CONFIG_CC_STACKPROTECTOR 322 tsk->stack_canary = get_random_int(); 323 #endif 324 325 /* 326 * One for us, one for whoever does the "release_task()" (usually 327 * parent) 328 */ 329 atomic_set(&tsk->usage, 2); 330 #ifdef CONFIG_BLK_DEV_IO_TRACE 331 tsk->btrace_seq = 0; 332 #endif 333 tsk->splice_pipe = NULL; 334 tsk->task_frag.page = NULL; 335 336 account_kernel_stack(ti, 1); 337 338 return tsk; 339 340 free_ti: 341 free_thread_info(ti); 342 free_tsk: 343 free_task_struct(tsk); 344 return NULL; 345 } 346 347 #ifdef CONFIG_MMU 348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 349 { 350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 351 struct rb_node **rb_link, *rb_parent; 352 int retval; 353 unsigned long charge; 354 355 uprobe_start_dup_mmap(); 356 down_write(&oldmm->mmap_sem); 357 flush_cache_dup_mm(oldmm); 358 uprobe_dup_mmap(oldmm, mm); 359 /* 360 * Not linked in yet - no deadlock potential: 361 */ 362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 363 364 mm->locked_vm = 0; 365 mm->mmap = NULL; 366 mm->mmap_cache = NULL; 367 mm->map_count = 0; 368 cpumask_clear(mm_cpumask(mm)); 369 mm->mm_rb = RB_ROOT; 370 rb_link = &mm->mm_rb.rb_node; 371 rb_parent = NULL; 372 pprev = &mm->mmap; 373 retval = ksm_fork(mm, oldmm); 374 if (retval) 375 goto out; 376 retval = khugepaged_fork(mm, oldmm); 377 if (retval) 378 goto out; 379 380 prev = NULL; 381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 382 struct file *file; 383 384 if (mpnt->vm_flags & VM_DONTCOPY) { 385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 386 -vma_pages(mpnt)); 387 continue; 388 } 389 charge = 0; 390 if (mpnt->vm_flags & VM_ACCOUNT) { 391 unsigned long len = vma_pages(mpnt); 392 393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 394 goto fail_nomem; 395 charge = len; 396 } 397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 398 if (!tmp) 399 goto fail_nomem; 400 *tmp = *mpnt; 401 INIT_LIST_HEAD(&tmp->anon_vma_chain); 402 retval = vma_dup_policy(mpnt, tmp); 403 if (retval) 404 goto fail_nomem_policy; 405 tmp->vm_mm = mm; 406 if (anon_vma_fork(tmp, mpnt)) 407 goto fail_nomem_anon_vma_fork; 408 tmp->vm_flags &= ~VM_LOCKED; 409 tmp->vm_next = tmp->vm_prev = NULL; 410 file = tmp->vm_file; 411 if (file) { 412 struct inode *inode = file_inode(file); 413 struct address_space *mapping = file->f_mapping; 414 415 get_file(file); 416 if (tmp->vm_flags & VM_DENYWRITE) 417 atomic_dec(&inode->i_writecount); 418 mutex_lock(&mapping->i_mmap_mutex); 419 if (tmp->vm_flags & VM_SHARED) 420 mapping->i_mmap_writable++; 421 flush_dcache_mmap_lock(mapping); 422 /* insert tmp into the share list, just after mpnt */ 423 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 424 vma_nonlinear_insert(tmp, 425 &mapping->i_mmap_nonlinear); 426 else 427 vma_interval_tree_insert_after(tmp, mpnt, 428 &mapping->i_mmap); 429 flush_dcache_mmap_unlock(mapping); 430 mutex_unlock(&mapping->i_mmap_mutex); 431 } 432 433 /* 434 * Clear hugetlb-related page reserves for children. This only 435 * affects MAP_PRIVATE mappings. Faults generated by the child 436 * are not guaranteed to succeed, even if read-only 437 */ 438 if (is_vm_hugetlb_page(tmp)) 439 reset_vma_resv_huge_pages(tmp); 440 441 /* 442 * Link in the new vma and copy the page table entries. 443 */ 444 *pprev = tmp; 445 pprev = &tmp->vm_next; 446 tmp->vm_prev = prev; 447 prev = tmp; 448 449 __vma_link_rb(mm, tmp, rb_link, rb_parent); 450 rb_link = &tmp->vm_rb.rb_right; 451 rb_parent = &tmp->vm_rb; 452 453 mm->map_count++; 454 retval = copy_page_range(mm, oldmm, mpnt); 455 456 if (tmp->vm_ops && tmp->vm_ops->open) 457 tmp->vm_ops->open(tmp); 458 459 if (retval) 460 goto out; 461 } 462 /* a new mm has just been created */ 463 arch_dup_mmap(oldmm, mm); 464 retval = 0; 465 out: 466 up_write(&mm->mmap_sem); 467 flush_tlb_mm(oldmm); 468 up_write(&oldmm->mmap_sem); 469 uprobe_end_dup_mmap(); 470 return retval; 471 fail_nomem_anon_vma_fork: 472 mpol_put(vma_policy(tmp)); 473 fail_nomem_policy: 474 kmem_cache_free(vm_area_cachep, tmp); 475 fail_nomem: 476 retval = -ENOMEM; 477 vm_unacct_memory(charge); 478 goto out; 479 } 480 481 static inline int mm_alloc_pgd(struct mm_struct *mm) 482 { 483 mm->pgd = pgd_alloc(mm); 484 if (unlikely(!mm->pgd)) 485 return -ENOMEM; 486 return 0; 487 } 488 489 static inline void mm_free_pgd(struct mm_struct *mm) 490 { 491 pgd_free(mm, mm->pgd); 492 } 493 #else 494 #define dup_mmap(mm, oldmm) (0) 495 #define mm_alloc_pgd(mm) (0) 496 #define mm_free_pgd(mm) 497 #endif /* CONFIG_MMU */ 498 499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 500 501 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 502 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 503 504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 505 506 static int __init coredump_filter_setup(char *s) 507 { 508 default_dump_filter = 509 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 510 MMF_DUMP_FILTER_MASK; 511 return 1; 512 } 513 514 __setup("coredump_filter=", coredump_filter_setup); 515 516 #include <linux/init_task.h> 517 518 static void mm_init_aio(struct mm_struct *mm) 519 { 520 #ifdef CONFIG_AIO 521 spin_lock_init(&mm->ioctx_lock); 522 mm->ioctx_table = NULL; 523 #endif 524 } 525 526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 527 { 528 atomic_set(&mm->mm_users, 1); 529 atomic_set(&mm->mm_count, 1); 530 init_rwsem(&mm->mmap_sem); 531 INIT_LIST_HEAD(&mm->mmlist); 532 mm->flags = (current->mm) ? 533 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 534 mm->core_state = NULL; 535 mm->nr_ptes = 0; 536 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 537 spin_lock_init(&mm->page_table_lock); 538 mm_init_aio(mm); 539 mm_init_owner(mm, p); 540 541 if (likely(!mm_alloc_pgd(mm))) { 542 mm->def_flags = 0; 543 mmu_notifier_mm_init(mm); 544 return mm; 545 } 546 547 free_mm(mm); 548 return NULL; 549 } 550 551 static void check_mm(struct mm_struct *mm) 552 { 553 int i; 554 555 for (i = 0; i < NR_MM_COUNTERS; i++) { 556 long x = atomic_long_read(&mm->rss_stat.count[i]); 557 558 if (unlikely(x)) 559 printk(KERN_ALERT "BUG: Bad rss-counter state " 560 "mm:%p idx:%d val:%ld\n", mm, i, x); 561 } 562 563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 564 VM_BUG_ON(mm->pmd_huge_pte); 565 #endif 566 } 567 568 /* 569 * Allocate and initialize an mm_struct. 570 */ 571 struct mm_struct *mm_alloc(void) 572 { 573 struct mm_struct *mm; 574 575 mm = allocate_mm(); 576 if (!mm) 577 return NULL; 578 579 memset(mm, 0, sizeof(*mm)); 580 mm_init_cpumask(mm); 581 return mm_init(mm, current); 582 } 583 584 /* 585 * Called when the last reference to the mm 586 * is dropped: either by a lazy thread or by 587 * mmput. Free the page directory and the mm. 588 */ 589 void __mmdrop(struct mm_struct *mm) 590 { 591 BUG_ON(mm == &init_mm); 592 mm_free_pgd(mm); 593 destroy_context(mm); 594 mmu_notifier_mm_destroy(mm); 595 check_mm(mm); 596 free_mm(mm); 597 } 598 EXPORT_SYMBOL_GPL(__mmdrop); 599 600 /* 601 * Decrement the use count and release all resources for an mm. 602 */ 603 void mmput(struct mm_struct *mm) 604 { 605 might_sleep(); 606 607 if (atomic_dec_and_test(&mm->mm_users)) { 608 uprobe_clear_state(mm); 609 exit_aio(mm); 610 ksm_exit(mm); 611 khugepaged_exit(mm); /* must run before exit_mmap */ 612 exit_mmap(mm); 613 set_mm_exe_file(mm, NULL); 614 if (!list_empty(&mm->mmlist)) { 615 spin_lock(&mmlist_lock); 616 list_del(&mm->mmlist); 617 spin_unlock(&mmlist_lock); 618 } 619 if (mm->binfmt) 620 module_put(mm->binfmt->module); 621 mmdrop(mm); 622 } 623 } 624 EXPORT_SYMBOL_GPL(mmput); 625 626 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 627 { 628 if (new_exe_file) 629 get_file(new_exe_file); 630 if (mm->exe_file) 631 fput(mm->exe_file); 632 mm->exe_file = new_exe_file; 633 } 634 635 struct file *get_mm_exe_file(struct mm_struct *mm) 636 { 637 struct file *exe_file; 638 639 /* We need mmap_sem to protect against races with removal of exe_file */ 640 down_read(&mm->mmap_sem); 641 exe_file = mm->exe_file; 642 if (exe_file) 643 get_file(exe_file); 644 up_read(&mm->mmap_sem); 645 return exe_file; 646 } 647 648 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 649 { 650 /* It's safe to write the exe_file pointer without exe_file_lock because 651 * this is called during fork when the task is not yet in /proc */ 652 newmm->exe_file = get_mm_exe_file(oldmm); 653 } 654 655 /** 656 * get_task_mm - acquire a reference to the task's mm 657 * 658 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 659 * this kernel workthread has transiently adopted a user mm with use_mm, 660 * to do its AIO) is not set and if so returns a reference to it, after 661 * bumping up the use count. User must release the mm via mmput() 662 * after use. Typically used by /proc and ptrace. 663 */ 664 struct mm_struct *get_task_mm(struct task_struct *task) 665 { 666 struct mm_struct *mm; 667 668 task_lock(task); 669 mm = task->mm; 670 if (mm) { 671 if (task->flags & PF_KTHREAD) 672 mm = NULL; 673 else 674 atomic_inc(&mm->mm_users); 675 } 676 task_unlock(task); 677 return mm; 678 } 679 EXPORT_SYMBOL_GPL(get_task_mm); 680 681 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 682 { 683 struct mm_struct *mm; 684 int err; 685 686 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 687 if (err) 688 return ERR_PTR(err); 689 690 mm = get_task_mm(task); 691 if (mm && mm != current->mm && 692 !ptrace_may_access(task, mode)) { 693 mmput(mm); 694 mm = ERR_PTR(-EACCES); 695 } 696 mutex_unlock(&task->signal->cred_guard_mutex); 697 698 return mm; 699 } 700 701 static void complete_vfork_done(struct task_struct *tsk) 702 { 703 struct completion *vfork; 704 705 task_lock(tsk); 706 vfork = tsk->vfork_done; 707 if (likely(vfork)) { 708 tsk->vfork_done = NULL; 709 complete(vfork); 710 } 711 task_unlock(tsk); 712 } 713 714 static int wait_for_vfork_done(struct task_struct *child, 715 struct completion *vfork) 716 { 717 int killed; 718 719 freezer_do_not_count(); 720 killed = wait_for_completion_killable(vfork); 721 freezer_count(); 722 723 if (killed) { 724 task_lock(child); 725 child->vfork_done = NULL; 726 task_unlock(child); 727 } 728 729 put_task_struct(child); 730 return killed; 731 } 732 733 /* Please note the differences between mmput and mm_release. 734 * mmput is called whenever we stop holding onto a mm_struct, 735 * error success whatever. 736 * 737 * mm_release is called after a mm_struct has been removed 738 * from the current process. 739 * 740 * This difference is important for error handling, when we 741 * only half set up a mm_struct for a new process and need to restore 742 * the old one. Because we mmput the new mm_struct before 743 * restoring the old one. . . 744 * Eric Biederman 10 January 1998 745 */ 746 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 747 { 748 /* Get rid of any futexes when releasing the mm */ 749 #ifdef CONFIG_FUTEX 750 if (unlikely(tsk->robust_list)) { 751 exit_robust_list(tsk); 752 tsk->robust_list = NULL; 753 } 754 #ifdef CONFIG_COMPAT 755 if (unlikely(tsk->compat_robust_list)) { 756 compat_exit_robust_list(tsk); 757 tsk->compat_robust_list = NULL; 758 } 759 #endif 760 if (unlikely(!list_empty(&tsk->pi_state_list))) 761 exit_pi_state_list(tsk); 762 #endif 763 764 uprobe_free_utask(tsk); 765 766 /* Get rid of any cached register state */ 767 deactivate_mm(tsk, mm); 768 769 /* 770 * If we're exiting normally, clear a user-space tid field if 771 * requested. We leave this alone when dying by signal, to leave 772 * the value intact in a core dump, and to save the unnecessary 773 * trouble, say, a killed vfork parent shouldn't touch this mm. 774 * Userland only wants this done for a sys_exit. 775 */ 776 if (tsk->clear_child_tid) { 777 if (!(tsk->flags & PF_SIGNALED) && 778 atomic_read(&mm->mm_users) > 1) { 779 /* 780 * We don't check the error code - if userspace has 781 * not set up a proper pointer then tough luck. 782 */ 783 put_user(0, tsk->clear_child_tid); 784 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 785 1, NULL, NULL, 0); 786 } 787 tsk->clear_child_tid = NULL; 788 } 789 790 /* 791 * All done, finally we can wake up parent and return this mm to him. 792 * Also kthread_stop() uses this completion for synchronization. 793 */ 794 if (tsk->vfork_done) 795 complete_vfork_done(tsk); 796 } 797 798 /* 799 * Allocate a new mm structure and copy contents from the 800 * mm structure of the passed in task structure. 801 */ 802 struct mm_struct *dup_mm(struct task_struct *tsk) 803 { 804 struct mm_struct *mm, *oldmm = current->mm; 805 int err; 806 807 if (!oldmm) 808 return NULL; 809 810 mm = allocate_mm(); 811 if (!mm) 812 goto fail_nomem; 813 814 memcpy(mm, oldmm, sizeof(*mm)); 815 mm_init_cpumask(mm); 816 817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 818 mm->pmd_huge_pte = NULL; 819 #endif 820 if (!mm_init(mm, tsk)) 821 goto fail_nomem; 822 823 if (init_new_context(tsk, mm)) 824 goto fail_nocontext; 825 826 dup_mm_exe_file(oldmm, mm); 827 828 err = dup_mmap(mm, oldmm); 829 if (err) 830 goto free_pt; 831 832 mm->hiwater_rss = get_mm_rss(mm); 833 mm->hiwater_vm = mm->total_vm; 834 835 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 836 goto free_pt; 837 838 return mm; 839 840 free_pt: 841 /* don't put binfmt in mmput, we haven't got module yet */ 842 mm->binfmt = NULL; 843 mmput(mm); 844 845 fail_nomem: 846 return NULL; 847 848 fail_nocontext: 849 /* 850 * If init_new_context() failed, we cannot use mmput() to free the mm 851 * because it calls destroy_context() 852 */ 853 mm_free_pgd(mm); 854 free_mm(mm); 855 return NULL; 856 } 857 858 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 859 { 860 struct mm_struct *mm, *oldmm; 861 int retval; 862 863 tsk->min_flt = tsk->maj_flt = 0; 864 tsk->nvcsw = tsk->nivcsw = 0; 865 #ifdef CONFIG_DETECT_HUNG_TASK 866 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 867 #endif 868 869 tsk->mm = NULL; 870 tsk->active_mm = NULL; 871 872 /* 873 * Are we cloning a kernel thread? 874 * 875 * We need to steal a active VM for that.. 876 */ 877 oldmm = current->mm; 878 if (!oldmm) 879 return 0; 880 881 if (clone_flags & CLONE_VM) { 882 atomic_inc(&oldmm->mm_users); 883 mm = oldmm; 884 goto good_mm; 885 } 886 887 retval = -ENOMEM; 888 mm = dup_mm(tsk); 889 if (!mm) 890 goto fail_nomem; 891 892 good_mm: 893 tsk->mm = mm; 894 tsk->active_mm = mm; 895 return 0; 896 897 fail_nomem: 898 return retval; 899 } 900 901 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 902 { 903 struct fs_struct *fs = current->fs; 904 if (clone_flags & CLONE_FS) { 905 /* tsk->fs is already what we want */ 906 spin_lock(&fs->lock); 907 if (fs->in_exec) { 908 spin_unlock(&fs->lock); 909 return -EAGAIN; 910 } 911 fs->users++; 912 spin_unlock(&fs->lock); 913 return 0; 914 } 915 tsk->fs = copy_fs_struct(fs); 916 if (!tsk->fs) 917 return -ENOMEM; 918 return 0; 919 } 920 921 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 922 { 923 struct files_struct *oldf, *newf; 924 int error = 0; 925 926 /* 927 * A background process may not have any files ... 928 */ 929 oldf = current->files; 930 if (!oldf) 931 goto out; 932 933 if (clone_flags & CLONE_FILES) { 934 atomic_inc(&oldf->count); 935 goto out; 936 } 937 938 newf = dup_fd(oldf, &error); 939 if (!newf) 940 goto out; 941 942 tsk->files = newf; 943 error = 0; 944 out: 945 return error; 946 } 947 948 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 949 { 950 #ifdef CONFIG_BLOCK 951 struct io_context *ioc = current->io_context; 952 struct io_context *new_ioc; 953 954 if (!ioc) 955 return 0; 956 /* 957 * Share io context with parent, if CLONE_IO is set 958 */ 959 if (clone_flags & CLONE_IO) { 960 ioc_task_link(ioc); 961 tsk->io_context = ioc; 962 } else if (ioprio_valid(ioc->ioprio)) { 963 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 964 if (unlikely(!new_ioc)) 965 return -ENOMEM; 966 967 new_ioc->ioprio = ioc->ioprio; 968 put_io_context(new_ioc); 969 } 970 #endif 971 return 0; 972 } 973 974 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 975 { 976 struct sighand_struct *sig; 977 978 if (clone_flags & CLONE_SIGHAND) { 979 atomic_inc(¤t->sighand->count); 980 return 0; 981 } 982 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 983 rcu_assign_pointer(tsk->sighand, sig); 984 if (!sig) 985 return -ENOMEM; 986 atomic_set(&sig->count, 1); 987 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 988 return 0; 989 } 990 991 void __cleanup_sighand(struct sighand_struct *sighand) 992 { 993 if (atomic_dec_and_test(&sighand->count)) { 994 signalfd_cleanup(sighand); 995 kmem_cache_free(sighand_cachep, sighand); 996 } 997 } 998 999 1000 /* 1001 * Initialize POSIX timer handling for a thread group. 1002 */ 1003 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1004 { 1005 unsigned long cpu_limit; 1006 1007 /* Thread group counters. */ 1008 thread_group_cputime_init(sig); 1009 1010 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1011 if (cpu_limit != RLIM_INFINITY) { 1012 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1013 sig->cputimer.running = 1; 1014 } 1015 1016 /* The timer lists. */ 1017 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1018 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1019 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1020 } 1021 1022 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1023 { 1024 struct signal_struct *sig; 1025 1026 if (clone_flags & CLONE_THREAD) 1027 return 0; 1028 1029 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1030 tsk->signal = sig; 1031 if (!sig) 1032 return -ENOMEM; 1033 1034 sig->nr_threads = 1; 1035 atomic_set(&sig->live, 1); 1036 atomic_set(&sig->sigcnt, 1); 1037 init_waitqueue_head(&sig->wait_chldexit); 1038 sig->curr_target = tsk; 1039 init_sigpending(&sig->shared_pending); 1040 INIT_LIST_HEAD(&sig->posix_timers); 1041 1042 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1043 sig->real_timer.function = it_real_fn; 1044 1045 task_lock(current->group_leader); 1046 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1047 task_unlock(current->group_leader); 1048 1049 posix_cpu_timers_init_group(sig); 1050 1051 tty_audit_fork(sig); 1052 sched_autogroup_fork(sig); 1053 1054 #ifdef CONFIG_CGROUPS 1055 init_rwsem(&sig->group_rwsem); 1056 #endif 1057 1058 sig->oom_score_adj = current->signal->oom_score_adj; 1059 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1060 1061 sig->has_child_subreaper = current->signal->has_child_subreaper || 1062 current->signal->is_child_subreaper; 1063 1064 mutex_init(&sig->cred_guard_mutex); 1065 1066 return 0; 1067 } 1068 1069 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1070 { 1071 unsigned long new_flags = p->flags; 1072 1073 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1074 new_flags |= PF_FORKNOEXEC; 1075 p->flags = new_flags; 1076 } 1077 1078 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1079 { 1080 current->clear_child_tid = tidptr; 1081 1082 return task_pid_vnr(current); 1083 } 1084 1085 static void rt_mutex_init_task(struct task_struct *p) 1086 { 1087 raw_spin_lock_init(&p->pi_lock); 1088 #ifdef CONFIG_RT_MUTEXES 1089 plist_head_init(&p->pi_waiters); 1090 p->pi_blocked_on = NULL; 1091 #endif 1092 } 1093 1094 #ifdef CONFIG_MM_OWNER 1095 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1096 { 1097 mm->owner = p; 1098 } 1099 #endif /* CONFIG_MM_OWNER */ 1100 1101 /* 1102 * Initialize POSIX timer handling for a single task. 1103 */ 1104 static void posix_cpu_timers_init(struct task_struct *tsk) 1105 { 1106 tsk->cputime_expires.prof_exp = 0; 1107 tsk->cputime_expires.virt_exp = 0; 1108 tsk->cputime_expires.sched_exp = 0; 1109 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1110 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1111 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1112 } 1113 1114 static inline void 1115 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1116 { 1117 task->pids[type].pid = pid; 1118 } 1119 1120 /* 1121 * This creates a new process as a copy of the old one, 1122 * but does not actually start it yet. 1123 * 1124 * It copies the registers, and all the appropriate 1125 * parts of the process environment (as per the clone 1126 * flags). The actual kick-off is left to the caller. 1127 */ 1128 static struct task_struct *copy_process(unsigned long clone_flags, 1129 unsigned long stack_start, 1130 unsigned long stack_size, 1131 int __user *child_tidptr, 1132 struct pid *pid, 1133 int trace) 1134 { 1135 int retval; 1136 struct task_struct *p; 1137 1138 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1139 return ERR_PTR(-EINVAL); 1140 1141 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1142 return ERR_PTR(-EINVAL); 1143 1144 /* 1145 * Thread groups must share signals as well, and detached threads 1146 * can only be started up within the thread group. 1147 */ 1148 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1149 return ERR_PTR(-EINVAL); 1150 1151 /* 1152 * Shared signal handlers imply shared VM. By way of the above, 1153 * thread groups also imply shared VM. Blocking this case allows 1154 * for various simplifications in other code. 1155 */ 1156 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1157 return ERR_PTR(-EINVAL); 1158 1159 /* 1160 * Siblings of global init remain as zombies on exit since they are 1161 * not reaped by their parent (swapper). To solve this and to avoid 1162 * multi-rooted process trees, prevent global and container-inits 1163 * from creating siblings. 1164 */ 1165 if ((clone_flags & CLONE_PARENT) && 1166 current->signal->flags & SIGNAL_UNKILLABLE) 1167 return ERR_PTR(-EINVAL); 1168 1169 /* 1170 * If the new process will be in a different pid or user namespace 1171 * do not allow it to share a thread group or signal handlers or 1172 * parent with the forking task. 1173 */ 1174 if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) { 1175 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1176 (task_active_pid_ns(current) != 1177 current->nsproxy->pid_ns_for_children)) 1178 return ERR_PTR(-EINVAL); 1179 } 1180 1181 retval = security_task_create(clone_flags); 1182 if (retval) 1183 goto fork_out; 1184 1185 retval = -ENOMEM; 1186 p = dup_task_struct(current); 1187 if (!p) 1188 goto fork_out; 1189 1190 ftrace_graph_init_task(p); 1191 get_seccomp_filter(p); 1192 1193 rt_mutex_init_task(p); 1194 1195 #ifdef CONFIG_PROVE_LOCKING 1196 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1197 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1198 #endif 1199 retval = -EAGAIN; 1200 if (atomic_read(&p->real_cred->user->processes) >= 1201 task_rlimit(p, RLIMIT_NPROC)) { 1202 if (p->real_cred->user != INIT_USER && 1203 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1204 goto bad_fork_free; 1205 } 1206 current->flags &= ~PF_NPROC_EXCEEDED; 1207 1208 retval = copy_creds(p, clone_flags); 1209 if (retval < 0) 1210 goto bad_fork_free; 1211 1212 /* 1213 * If multiple threads are within copy_process(), then this check 1214 * triggers too late. This doesn't hurt, the check is only there 1215 * to stop root fork bombs. 1216 */ 1217 retval = -EAGAIN; 1218 if (nr_threads >= max_threads) 1219 goto bad_fork_cleanup_count; 1220 1221 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1222 goto bad_fork_cleanup_count; 1223 1224 p->did_exec = 0; 1225 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1226 copy_flags(clone_flags, p); 1227 INIT_LIST_HEAD(&p->children); 1228 INIT_LIST_HEAD(&p->sibling); 1229 rcu_copy_process(p); 1230 p->vfork_done = NULL; 1231 spin_lock_init(&p->alloc_lock); 1232 1233 init_sigpending(&p->pending); 1234 1235 p->utime = p->stime = p->gtime = 0; 1236 p->utimescaled = p->stimescaled = 0; 1237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1238 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1239 #endif 1240 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1241 seqlock_init(&p->vtime_seqlock); 1242 p->vtime_snap = 0; 1243 p->vtime_snap_whence = VTIME_SLEEPING; 1244 #endif 1245 1246 #if defined(SPLIT_RSS_COUNTING) 1247 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1248 #endif 1249 1250 p->default_timer_slack_ns = current->timer_slack_ns; 1251 1252 task_io_accounting_init(&p->ioac); 1253 acct_clear_integrals(p); 1254 1255 posix_cpu_timers_init(p); 1256 1257 do_posix_clock_monotonic_gettime(&p->start_time); 1258 p->real_start_time = p->start_time; 1259 monotonic_to_bootbased(&p->real_start_time); 1260 p->io_context = NULL; 1261 p->audit_context = NULL; 1262 if (clone_flags & CLONE_THREAD) 1263 threadgroup_change_begin(current); 1264 cgroup_fork(p); 1265 #ifdef CONFIG_NUMA 1266 p->mempolicy = mpol_dup(p->mempolicy); 1267 if (IS_ERR(p->mempolicy)) { 1268 retval = PTR_ERR(p->mempolicy); 1269 p->mempolicy = NULL; 1270 goto bad_fork_cleanup_cgroup; 1271 } 1272 mpol_fix_fork_child_flag(p); 1273 #endif 1274 #ifdef CONFIG_CPUSETS 1275 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1276 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1277 seqcount_init(&p->mems_allowed_seq); 1278 #endif 1279 #ifdef CONFIG_TRACE_IRQFLAGS 1280 p->irq_events = 0; 1281 p->hardirqs_enabled = 0; 1282 p->hardirq_enable_ip = 0; 1283 p->hardirq_enable_event = 0; 1284 p->hardirq_disable_ip = _THIS_IP_; 1285 p->hardirq_disable_event = 0; 1286 p->softirqs_enabled = 1; 1287 p->softirq_enable_ip = _THIS_IP_; 1288 p->softirq_enable_event = 0; 1289 p->softirq_disable_ip = 0; 1290 p->softirq_disable_event = 0; 1291 p->hardirq_context = 0; 1292 p->softirq_context = 0; 1293 #endif 1294 #ifdef CONFIG_LOCKDEP 1295 p->lockdep_depth = 0; /* no locks held yet */ 1296 p->curr_chain_key = 0; 1297 p->lockdep_recursion = 0; 1298 #endif 1299 1300 #ifdef CONFIG_DEBUG_MUTEXES 1301 p->blocked_on = NULL; /* not blocked yet */ 1302 #endif 1303 #ifdef CONFIG_MEMCG 1304 p->memcg_batch.do_batch = 0; 1305 p->memcg_batch.memcg = NULL; 1306 #endif 1307 #ifdef CONFIG_BCACHE 1308 p->sequential_io = 0; 1309 p->sequential_io_avg = 0; 1310 #endif 1311 1312 /* Perform scheduler related setup. Assign this task to a CPU. */ 1313 sched_fork(clone_flags, p); 1314 1315 retval = perf_event_init_task(p); 1316 if (retval) 1317 goto bad_fork_cleanup_policy; 1318 retval = audit_alloc(p); 1319 if (retval) 1320 goto bad_fork_cleanup_policy; 1321 /* copy all the process information */ 1322 retval = copy_semundo(clone_flags, p); 1323 if (retval) 1324 goto bad_fork_cleanup_audit; 1325 retval = copy_files(clone_flags, p); 1326 if (retval) 1327 goto bad_fork_cleanup_semundo; 1328 retval = copy_fs(clone_flags, p); 1329 if (retval) 1330 goto bad_fork_cleanup_files; 1331 retval = copy_sighand(clone_flags, p); 1332 if (retval) 1333 goto bad_fork_cleanup_fs; 1334 retval = copy_signal(clone_flags, p); 1335 if (retval) 1336 goto bad_fork_cleanup_sighand; 1337 retval = copy_mm(clone_flags, p); 1338 if (retval) 1339 goto bad_fork_cleanup_signal; 1340 retval = copy_namespaces(clone_flags, p); 1341 if (retval) 1342 goto bad_fork_cleanup_mm; 1343 retval = copy_io(clone_flags, p); 1344 if (retval) 1345 goto bad_fork_cleanup_namespaces; 1346 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1347 if (retval) 1348 goto bad_fork_cleanup_io; 1349 1350 if (pid != &init_struct_pid) { 1351 retval = -ENOMEM; 1352 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1353 if (!pid) 1354 goto bad_fork_cleanup_io; 1355 } 1356 1357 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1358 /* 1359 * Clear TID on mm_release()? 1360 */ 1361 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1362 #ifdef CONFIG_BLOCK 1363 p->plug = NULL; 1364 #endif 1365 #ifdef CONFIG_FUTEX 1366 p->robust_list = NULL; 1367 #ifdef CONFIG_COMPAT 1368 p->compat_robust_list = NULL; 1369 #endif 1370 INIT_LIST_HEAD(&p->pi_state_list); 1371 p->pi_state_cache = NULL; 1372 #endif 1373 /* 1374 * sigaltstack should be cleared when sharing the same VM 1375 */ 1376 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1377 p->sas_ss_sp = p->sas_ss_size = 0; 1378 1379 /* 1380 * Syscall tracing and stepping should be turned off in the 1381 * child regardless of CLONE_PTRACE. 1382 */ 1383 user_disable_single_step(p); 1384 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1385 #ifdef TIF_SYSCALL_EMU 1386 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1387 #endif 1388 clear_all_latency_tracing(p); 1389 1390 /* ok, now we should be set up.. */ 1391 p->pid = pid_nr(pid); 1392 if (clone_flags & CLONE_THREAD) { 1393 p->exit_signal = -1; 1394 p->group_leader = current->group_leader; 1395 p->tgid = current->tgid; 1396 } else { 1397 if (clone_flags & CLONE_PARENT) 1398 p->exit_signal = current->group_leader->exit_signal; 1399 else 1400 p->exit_signal = (clone_flags & CSIGNAL); 1401 p->group_leader = p; 1402 p->tgid = p->pid; 1403 } 1404 1405 p->pdeath_signal = 0; 1406 p->exit_state = 0; 1407 1408 p->nr_dirtied = 0; 1409 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1410 p->dirty_paused_when = 0; 1411 1412 INIT_LIST_HEAD(&p->thread_group); 1413 p->task_works = NULL; 1414 1415 /* 1416 * Make it visible to the rest of the system, but dont wake it up yet. 1417 * Need tasklist lock for parent etc handling! 1418 */ 1419 write_lock_irq(&tasklist_lock); 1420 1421 /* CLONE_PARENT re-uses the old parent */ 1422 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1423 p->real_parent = current->real_parent; 1424 p->parent_exec_id = current->parent_exec_id; 1425 } else { 1426 p->real_parent = current; 1427 p->parent_exec_id = current->self_exec_id; 1428 } 1429 1430 spin_lock(¤t->sighand->siglock); 1431 1432 /* 1433 * Process group and session signals need to be delivered to just the 1434 * parent before the fork or both the parent and the child after the 1435 * fork. Restart if a signal comes in before we add the new process to 1436 * it's process group. 1437 * A fatal signal pending means that current will exit, so the new 1438 * thread can't slip out of an OOM kill (or normal SIGKILL). 1439 */ 1440 recalc_sigpending(); 1441 if (signal_pending(current)) { 1442 spin_unlock(¤t->sighand->siglock); 1443 write_unlock_irq(&tasklist_lock); 1444 retval = -ERESTARTNOINTR; 1445 goto bad_fork_free_pid; 1446 } 1447 1448 if (likely(p->pid)) { 1449 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1450 1451 init_task_pid(p, PIDTYPE_PID, pid); 1452 if (thread_group_leader(p)) { 1453 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1454 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1455 1456 if (is_child_reaper(pid)) { 1457 ns_of_pid(pid)->child_reaper = p; 1458 p->signal->flags |= SIGNAL_UNKILLABLE; 1459 } 1460 1461 p->signal->leader_pid = pid; 1462 p->signal->tty = tty_kref_get(current->signal->tty); 1463 list_add_tail(&p->sibling, &p->real_parent->children); 1464 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1465 attach_pid(p, PIDTYPE_PGID); 1466 attach_pid(p, PIDTYPE_SID); 1467 __this_cpu_inc(process_counts); 1468 } else { 1469 current->signal->nr_threads++; 1470 atomic_inc(¤t->signal->live); 1471 atomic_inc(¤t->signal->sigcnt); 1472 list_add_tail_rcu(&p->thread_group, 1473 &p->group_leader->thread_group); 1474 } 1475 attach_pid(p, PIDTYPE_PID); 1476 nr_threads++; 1477 } 1478 1479 total_forks++; 1480 spin_unlock(¤t->sighand->siglock); 1481 write_unlock_irq(&tasklist_lock); 1482 proc_fork_connector(p); 1483 cgroup_post_fork(p); 1484 if (clone_flags & CLONE_THREAD) 1485 threadgroup_change_end(current); 1486 perf_event_fork(p); 1487 1488 trace_task_newtask(p, clone_flags); 1489 uprobe_copy_process(p, clone_flags); 1490 1491 return p; 1492 1493 bad_fork_free_pid: 1494 if (pid != &init_struct_pid) 1495 free_pid(pid); 1496 bad_fork_cleanup_io: 1497 if (p->io_context) 1498 exit_io_context(p); 1499 bad_fork_cleanup_namespaces: 1500 exit_task_namespaces(p); 1501 bad_fork_cleanup_mm: 1502 if (p->mm) 1503 mmput(p->mm); 1504 bad_fork_cleanup_signal: 1505 if (!(clone_flags & CLONE_THREAD)) 1506 free_signal_struct(p->signal); 1507 bad_fork_cleanup_sighand: 1508 __cleanup_sighand(p->sighand); 1509 bad_fork_cleanup_fs: 1510 exit_fs(p); /* blocking */ 1511 bad_fork_cleanup_files: 1512 exit_files(p); /* blocking */ 1513 bad_fork_cleanup_semundo: 1514 exit_sem(p); 1515 bad_fork_cleanup_audit: 1516 audit_free(p); 1517 bad_fork_cleanup_policy: 1518 perf_event_free_task(p); 1519 #ifdef CONFIG_NUMA 1520 mpol_put(p->mempolicy); 1521 bad_fork_cleanup_cgroup: 1522 #endif 1523 if (clone_flags & CLONE_THREAD) 1524 threadgroup_change_end(current); 1525 cgroup_exit(p, 0); 1526 delayacct_tsk_free(p); 1527 module_put(task_thread_info(p)->exec_domain->module); 1528 bad_fork_cleanup_count: 1529 atomic_dec(&p->cred->user->processes); 1530 exit_creds(p); 1531 bad_fork_free: 1532 free_task(p); 1533 fork_out: 1534 return ERR_PTR(retval); 1535 } 1536 1537 static inline void init_idle_pids(struct pid_link *links) 1538 { 1539 enum pid_type type; 1540 1541 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1542 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1543 links[type].pid = &init_struct_pid; 1544 } 1545 } 1546 1547 struct task_struct *fork_idle(int cpu) 1548 { 1549 struct task_struct *task; 1550 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1551 if (!IS_ERR(task)) { 1552 init_idle_pids(task->pids); 1553 init_idle(task, cpu); 1554 } 1555 1556 return task; 1557 } 1558 1559 /* 1560 * Ok, this is the main fork-routine. 1561 * 1562 * It copies the process, and if successful kick-starts 1563 * it and waits for it to finish using the VM if required. 1564 */ 1565 long do_fork(unsigned long clone_flags, 1566 unsigned long stack_start, 1567 unsigned long stack_size, 1568 int __user *parent_tidptr, 1569 int __user *child_tidptr) 1570 { 1571 struct task_struct *p; 1572 int trace = 0; 1573 long nr; 1574 1575 /* 1576 * Determine whether and which event to report to ptracer. When 1577 * called from kernel_thread or CLONE_UNTRACED is explicitly 1578 * requested, no event is reported; otherwise, report if the event 1579 * for the type of forking is enabled. 1580 */ 1581 if (!(clone_flags & CLONE_UNTRACED)) { 1582 if (clone_flags & CLONE_VFORK) 1583 trace = PTRACE_EVENT_VFORK; 1584 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1585 trace = PTRACE_EVENT_CLONE; 1586 else 1587 trace = PTRACE_EVENT_FORK; 1588 1589 if (likely(!ptrace_event_enabled(current, trace))) 1590 trace = 0; 1591 } 1592 1593 p = copy_process(clone_flags, stack_start, stack_size, 1594 child_tidptr, NULL, trace); 1595 /* 1596 * Do this prior waking up the new thread - the thread pointer 1597 * might get invalid after that point, if the thread exits quickly. 1598 */ 1599 if (!IS_ERR(p)) { 1600 struct completion vfork; 1601 1602 trace_sched_process_fork(current, p); 1603 1604 nr = task_pid_vnr(p); 1605 1606 if (clone_flags & CLONE_PARENT_SETTID) 1607 put_user(nr, parent_tidptr); 1608 1609 if (clone_flags & CLONE_VFORK) { 1610 p->vfork_done = &vfork; 1611 init_completion(&vfork); 1612 get_task_struct(p); 1613 } 1614 1615 wake_up_new_task(p); 1616 1617 /* forking complete and child started to run, tell ptracer */ 1618 if (unlikely(trace)) 1619 ptrace_event(trace, nr); 1620 1621 if (clone_flags & CLONE_VFORK) { 1622 if (!wait_for_vfork_done(p, &vfork)) 1623 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1624 } 1625 } else { 1626 nr = PTR_ERR(p); 1627 } 1628 return nr; 1629 } 1630 1631 /* 1632 * Create a kernel thread. 1633 */ 1634 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1635 { 1636 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1637 (unsigned long)arg, NULL, NULL); 1638 } 1639 1640 #ifdef __ARCH_WANT_SYS_FORK 1641 SYSCALL_DEFINE0(fork) 1642 { 1643 #ifdef CONFIG_MMU 1644 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1645 #else 1646 /* can not support in nommu mode */ 1647 return(-EINVAL); 1648 #endif 1649 } 1650 #endif 1651 1652 #ifdef __ARCH_WANT_SYS_VFORK 1653 SYSCALL_DEFINE0(vfork) 1654 { 1655 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1656 0, NULL, NULL); 1657 } 1658 #endif 1659 1660 #ifdef __ARCH_WANT_SYS_CLONE 1661 #ifdef CONFIG_CLONE_BACKWARDS 1662 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1663 int __user *, parent_tidptr, 1664 int, tls_val, 1665 int __user *, child_tidptr) 1666 #elif defined(CONFIG_CLONE_BACKWARDS2) 1667 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1668 int __user *, parent_tidptr, 1669 int __user *, child_tidptr, 1670 int, tls_val) 1671 #elif defined(CONFIG_CLONE_BACKWARDS3) 1672 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1673 int, stack_size, 1674 int __user *, parent_tidptr, 1675 int __user *, child_tidptr, 1676 int, tls_val) 1677 #else 1678 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1679 int __user *, parent_tidptr, 1680 int __user *, child_tidptr, 1681 int, tls_val) 1682 #endif 1683 { 1684 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1685 } 1686 #endif 1687 1688 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1689 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1690 #endif 1691 1692 static void sighand_ctor(void *data) 1693 { 1694 struct sighand_struct *sighand = data; 1695 1696 spin_lock_init(&sighand->siglock); 1697 init_waitqueue_head(&sighand->signalfd_wqh); 1698 } 1699 1700 void __init proc_caches_init(void) 1701 { 1702 sighand_cachep = kmem_cache_create("sighand_cache", 1703 sizeof(struct sighand_struct), 0, 1704 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1705 SLAB_NOTRACK, sighand_ctor); 1706 signal_cachep = kmem_cache_create("signal_cache", 1707 sizeof(struct signal_struct), 0, 1708 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1709 files_cachep = kmem_cache_create("files_cache", 1710 sizeof(struct files_struct), 0, 1711 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1712 fs_cachep = kmem_cache_create("fs_cache", 1713 sizeof(struct fs_struct), 0, 1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1715 /* 1716 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1717 * whole struct cpumask for the OFFSTACK case. We could change 1718 * this to *only* allocate as much of it as required by the 1719 * maximum number of CPU's we can ever have. The cpumask_allocation 1720 * is at the end of the structure, exactly for that reason. 1721 */ 1722 mm_cachep = kmem_cache_create("mm_struct", 1723 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1724 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1725 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1726 mmap_init(); 1727 nsproxy_cache_init(); 1728 } 1729 1730 /* 1731 * Check constraints on flags passed to the unshare system call. 1732 */ 1733 static int check_unshare_flags(unsigned long unshare_flags) 1734 { 1735 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1736 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1737 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1738 CLONE_NEWUSER|CLONE_NEWPID)) 1739 return -EINVAL; 1740 /* 1741 * Not implemented, but pretend it works if there is nothing to 1742 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1743 * needs to unshare vm. 1744 */ 1745 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1746 /* FIXME: get_task_mm() increments ->mm_users */ 1747 if (atomic_read(¤t->mm->mm_users) > 1) 1748 return -EINVAL; 1749 } 1750 1751 return 0; 1752 } 1753 1754 /* 1755 * Unshare the filesystem structure if it is being shared 1756 */ 1757 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1758 { 1759 struct fs_struct *fs = current->fs; 1760 1761 if (!(unshare_flags & CLONE_FS) || !fs) 1762 return 0; 1763 1764 /* don't need lock here; in the worst case we'll do useless copy */ 1765 if (fs->users == 1) 1766 return 0; 1767 1768 *new_fsp = copy_fs_struct(fs); 1769 if (!*new_fsp) 1770 return -ENOMEM; 1771 1772 return 0; 1773 } 1774 1775 /* 1776 * Unshare file descriptor table if it is being shared 1777 */ 1778 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1779 { 1780 struct files_struct *fd = current->files; 1781 int error = 0; 1782 1783 if ((unshare_flags & CLONE_FILES) && 1784 (fd && atomic_read(&fd->count) > 1)) { 1785 *new_fdp = dup_fd(fd, &error); 1786 if (!*new_fdp) 1787 return error; 1788 } 1789 1790 return 0; 1791 } 1792 1793 /* 1794 * unshare allows a process to 'unshare' part of the process 1795 * context which was originally shared using clone. copy_* 1796 * functions used by do_fork() cannot be used here directly 1797 * because they modify an inactive task_struct that is being 1798 * constructed. Here we are modifying the current, active, 1799 * task_struct. 1800 */ 1801 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1802 { 1803 struct fs_struct *fs, *new_fs = NULL; 1804 struct files_struct *fd, *new_fd = NULL; 1805 struct cred *new_cred = NULL; 1806 struct nsproxy *new_nsproxy = NULL; 1807 int do_sysvsem = 0; 1808 int err; 1809 1810 /* 1811 * If unsharing a user namespace must also unshare the thread. 1812 */ 1813 if (unshare_flags & CLONE_NEWUSER) 1814 unshare_flags |= CLONE_THREAD | CLONE_FS; 1815 /* 1816 * If unsharing a thread from a thread group, must also unshare vm. 1817 */ 1818 if (unshare_flags & CLONE_THREAD) 1819 unshare_flags |= CLONE_VM; 1820 /* 1821 * If unsharing vm, must also unshare signal handlers. 1822 */ 1823 if (unshare_flags & CLONE_VM) 1824 unshare_flags |= CLONE_SIGHAND; 1825 /* 1826 * If unsharing namespace, must also unshare filesystem information. 1827 */ 1828 if (unshare_flags & CLONE_NEWNS) 1829 unshare_flags |= CLONE_FS; 1830 1831 err = check_unshare_flags(unshare_flags); 1832 if (err) 1833 goto bad_unshare_out; 1834 /* 1835 * CLONE_NEWIPC must also detach from the undolist: after switching 1836 * to a new ipc namespace, the semaphore arrays from the old 1837 * namespace are unreachable. 1838 */ 1839 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1840 do_sysvsem = 1; 1841 err = unshare_fs(unshare_flags, &new_fs); 1842 if (err) 1843 goto bad_unshare_out; 1844 err = unshare_fd(unshare_flags, &new_fd); 1845 if (err) 1846 goto bad_unshare_cleanup_fs; 1847 err = unshare_userns(unshare_flags, &new_cred); 1848 if (err) 1849 goto bad_unshare_cleanup_fd; 1850 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1851 new_cred, new_fs); 1852 if (err) 1853 goto bad_unshare_cleanup_cred; 1854 1855 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1856 if (do_sysvsem) { 1857 /* 1858 * CLONE_SYSVSEM is equivalent to sys_exit(). 1859 */ 1860 exit_sem(current); 1861 } 1862 1863 if (new_nsproxy) 1864 switch_task_namespaces(current, new_nsproxy); 1865 1866 task_lock(current); 1867 1868 if (new_fs) { 1869 fs = current->fs; 1870 spin_lock(&fs->lock); 1871 current->fs = new_fs; 1872 if (--fs->users) 1873 new_fs = NULL; 1874 else 1875 new_fs = fs; 1876 spin_unlock(&fs->lock); 1877 } 1878 1879 if (new_fd) { 1880 fd = current->files; 1881 current->files = new_fd; 1882 new_fd = fd; 1883 } 1884 1885 task_unlock(current); 1886 1887 if (new_cred) { 1888 /* Install the new user namespace */ 1889 commit_creds(new_cred); 1890 new_cred = NULL; 1891 } 1892 } 1893 1894 bad_unshare_cleanup_cred: 1895 if (new_cred) 1896 put_cred(new_cred); 1897 bad_unshare_cleanup_fd: 1898 if (new_fd) 1899 put_files_struct(new_fd); 1900 1901 bad_unshare_cleanup_fs: 1902 if (new_fs) 1903 free_fs_struct(new_fs); 1904 1905 bad_unshare_out: 1906 return err; 1907 } 1908 1909 /* 1910 * Helper to unshare the files of the current task. 1911 * We don't want to expose copy_files internals to 1912 * the exec layer of the kernel. 1913 */ 1914 1915 int unshare_files(struct files_struct **displaced) 1916 { 1917 struct task_struct *task = current; 1918 struct files_struct *copy = NULL; 1919 int error; 1920 1921 error = unshare_fd(CLONE_FILES, ©); 1922 if (error || !copy) { 1923 *displaced = NULL; 1924 return error; 1925 } 1926 *displaced = task->files; 1927 task_lock(task); 1928 task->files = copy; 1929 task_unlock(task); 1930 return 0; 1931 } 1932