xref: /openbmc/linux/kernel/fork.c (revision 15ec3997)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 
163 #ifdef CONFIG_VMAP_STACK
164 /*
165  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166  * flush.  Try to minimize the number of calls by caching stacks.
167  */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171 
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 	void *stack;
176 	int i;
177 
178 	local_irq_disable();
179 	for (i = 0; i < NR_CACHED_STACKS; i++) {
180 		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181 
182 		if (!s)
183 			continue;
184 		this_cpu_write(cached_stacks[i], NULL);
185 
186 		tsk->stack_vm_area = s;
187 		local_irq_enable();
188 		return s->addr;
189 	}
190 	local_irq_enable();
191 
192 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 				     VMALLOC_START, VMALLOC_END,
194 				     THREADINFO_GFP | __GFP_HIGHMEM,
195 				     PAGE_KERNEL,
196 				     0, node, __builtin_return_address(0));
197 
198 	/*
199 	 * We can't call find_vm_area() in interrupt context, and
200 	 * free_thread_stack() can be called in interrupt context,
201 	 * so cache the vm_struct.
202 	 */
203 	if (stack)
204 		tsk->stack_vm_area = find_vm_area(stack);
205 	return stack;
206 #else
207 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 					     THREAD_SIZE_ORDER);
209 
210 	return page ? page_address(page) : NULL;
211 #endif
212 }
213 
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	if (task_stack_vm_area(tsk)) {
218 		unsigned long flags;
219 		int i;
220 
221 		local_irq_save(flags);
222 		for (i = 0; i < NR_CACHED_STACKS; i++) {
223 			if (this_cpu_read(cached_stacks[i]))
224 				continue;
225 
226 			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 			local_irq_restore(flags);
228 			return;
229 		}
230 		local_irq_restore(flags);
231 
232 		vfree(tsk->stack);
233 		return;
234 	}
235 #endif
236 
237 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241 
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 						  int node)
244 {
245 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247 
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 	kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252 
253 void thread_stack_cache_init(void)
254 {
255 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 					      THREAD_SIZE, 0, NULL);
257 	BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261 
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264 
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267 
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270 
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273 
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276 
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279 
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 	void *stack = task_stack_page(tsk);
283 	struct vm_struct *vm = task_stack_vm_area(tsk);
284 
285 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286 
287 	if (vm) {
288 		int i;
289 
290 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291 
292 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 			mod_zone_page_state(page_zone(vm->pages[i]),
294 					    NR_KERNEL_STACK_KB,
295 					    PAGE_SIZE / 1024 * account);
296 		}
297 
298 		/* All stack pages belong to the same memcg. */
299 		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 					    account * (THREAD_SIZE / 1024));
301 	} else {
302 		/*
303 		 * All stack pages are in the same zone and belong to the
304 		 * same memcg.
305 		 */
306 		struct page *first_page = virt_to_page(stack);
307 
308 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 				    THREAD_SIZE / 1024 * account);
310 
311 		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 					    account * (THREAD_SIZE / 1024));
313 	}
314 }
315 
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 	if (WARN_ON(tsk->state != TASK_DEAD))
319 		return;  /* Better to leak the stack than to free prematurely */
320 
321 	account_kernel_stack(tsk, -1);
322 	arch_release_thread_stack(tsk->stack);
323 	free_thread_stack(tsk);
324 	tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 	tsk->stack_vm_area = NULL;
327 #endif
328 }
329 
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 	if (atomic_dec_and_test(&tsk->stack_refcount))
334 		release_task_stack(tsk);
335 }
336 #endif
337 
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 	/*
342 	 * The task is finally done with both the stack and thread_info,
343 	 * so free both.
344 	 */
345 	release_task_stack(tsk);
346 #else
347 	/*
348 	 * If the task had a separate stack allocation, it should be gone
349 	 * by now.
350 	 */
351 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 	rt_mutex_debug_task_free(tsk);
354 	ftrace_graph_exit_task(tsk);
355 	put_seccomp_filter(tsk);
356 	arch_release_task_struct(tsk);
357 	free_task_struct(tsk);
358 }
359 EXPORT_SYMBOL(free_task);
360 
361 static inline void free_signal_struct(struct signal_struct *sig)
362 {
363 	taskstats_tgid_free(sig);
364 	sched_autogroup_exit(sig);
365 	/*
366 	 * __mmdrop is not safe to call from softirq context on x86 due to
367 	 * pgd_dtor so postpone it to the async context
368 	 */
369 	if (sig->oom_mm)
370 		mmdrop_async(sig->oom_mm);
371 	kmem_cache_free(signal_cachep, sig);
372 }
373 
374 static inline void put_signal_struct(struct signal_struct *sig)
375 {
376 	if (atomic_dec_and_test(&sig->sigcnt))
377 		free_signal_struct(sig);
378 }
379 
380 void __put_task_struct(struct task_struct *tsk)
381 {
382 	WARN_ON(!tsk->exit_state);
383 	WARN_ON(atomic_read(&tsk->usage));
384 	WARN_ON(tsk == current);
385 
386 	cgroup_free(tsk);
387 	task_numa_free(tsk);
388 	security_task_free(tsk);
389 	exit_creds(tsk);
390 	delayacct_tsk_free(tsk);
391 	put_signal_struct(tsk->signal);
392 
393 	if (!profile_handoff_task(tsk))
394 		free_task(tsk);
395 }
396 EXPORT_SYMBOL_GPL(__put_task_struct);
397 
398 void __init __weak arch_task_cache_init(void) { }
399 
400 /*
401  * set_max_threads
402  */
403 static void set_max_threads(unsigned int max_threads_suggested)
404 {
405 	u64 threads;
406 
407 	/*
408 	 * The number of threads shall be limited such that the thread
409 	 * structures may only consume a small part of the available memory.
410 	 */
411 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
412 		threads = MAX_THREADS;
413 	else
414 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
415 				    (u64) THREAD_SIZE * 8UL);
416 
417 	if (threads > max_threads_suggested)
418 		threads = max_threads_suggested;
419 
420 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
421 }
422 
423 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
424 /* Initialized by the architecture: */
425 int arch_task_struct_size __read_mostly;
426 #endif
427 
428 void __init fork_init(void)
429 {
430 	int i;
431 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
432 #ifndef ARCH_MIN_TASKALIGN
433 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
434 #endif
435 	/* create a slab on which task_structs can be allocated */
436 	task_struct_cachep = kmem_cache_create("task_struct",
437 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
438 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
439 #endif
440 
441 	/* do the arch specific task caches init */
442 	arch_task_cache_init();
443 
444 	set_max_threads(MAX_THREADS);
445 
446 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
447 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
448 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
449 		init_task.signal->rlim[RLIMIT_NPROC];
450 
451 	for (i = 0; i < UCOUNT_COUNTS; i++) {
452 		init_user_ns.ucount_max[i] = max_threads/2;
453 	}
454 }
455 
456 int __weak arch_dup_task_struct(struct task_struct *dst,
457 					       struct task_struct *src)
458 {
459 	*dst = *src;
460 	return 0;
461 }
462 
463 void set_task_stack_end_magic(struct task_struct *tsk)
464 {
465 	unsigned long *stackend;
466 
467 	stackend = end_of_stack(tsk);
468 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
469 }
470 
471 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
472 {
473 	struct task_struct *tsk;
474 	unsigned long *stack;
475 	struct vm_struct *stack_vm_area;
476 	int err;
477 
478 	if (node == NUMA_NO_NODE)
479 		node = tsk_fork_get_node(orig);
480 	tsk = alloc_task_struct_node(node);
481 	if (!tsk)
482 		return NULL;
483 
484 	stack = alloc_thread_stack_node(tsk, node);
485 	if (!stack)
486 		goto free_tsk;
487 
488 	stack_vm_area = task_stack_vm_area(tsk);
489 
490 	err = arch_dup_task_struct(tsk, orig);
491 
492 	/*
493 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
494 	 * sure they're properly initialized before using any stack-related
495 	 * functions again.
496 	 */
497 	tsk->stack = stack;
498 #ifdef CONFIG_VMAP_STACK
499 	tsk->stack_vm_area = stack_vm_area;
500 #endif
501 #ifdef CONFIG_THREAD_INFO_IN_TASK
502 	atomic_set(&tsk->stack_refcount, 1);
503 #endif
504 
505 	if (err)
506 		goto free_stack;
507 
508 #ifdef CONFIG_SECCOMP
509 	/*
510 	 * We must handle setting up seccomp filters once we're under
511 	 * the sighand lock in case orig has changed between now and
512 	 * then. Until then, filter must be NULL to avoid messing up
513 	 * the usage counts on the error path calling free_task.
514 	 */
515 	tsk->seccomp.filter = NULL;
516 #endif
517 
518 	setup_thread_stack(tsk, orig);
519 	clear_user_return_notifier(tsk);
520 	clear_tsk_need_resched(tsk);
521 	set_task_stack_end_magic(tsk);
522 
523 #ifdef CONFIG_CC_STACKPROTECTOR
524 	tsk->stack_canary = get_random_int();
525 #endif
526 
527 	/*
528 	 * One for us, one for whoever does the "release_task()" (usually
529 	 * parent)
530 	 */
531 	atomic_set(&tsk->usage, 2);
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 	tsk->btrace_seq = 0;
534 #endif
535 	tsk->splice_pipe = NULL;
536 	tsk->task_frag.page = NULL;
537 	tsk->wake_q.next = NULL;
538 
539 	account_kernel_stack(tsk, 1);
540 
541 	kcov_task_init(tsk);
542 
543 	return tsk;
544 
545 free_stack:
546 	free_thread_stack(tsk);
547 free_tsk:
548 	free_task_struct(tsk);
549 	return NULL;
550 }
551 
552 #ifdef CONFIG_MMU
553 static __latent_entropy int dup_mmap(struct mm_struct *mm,
554 					struct mm_struct *oldmm)
555 {
556 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
557 	struct rb_node **rb_link, *rb_parent;
558 	int retval;
559 	unsigned long charge;
560 
561 	uprobe_start_dup_mmap();
562 	if (down_write_killable(&oldmm->mmap_sem)) {
563 		retval = -EINTR;
564 		goto fail_uprobe_end;
565 	}
566 	flush_cache_dup_mm(oldmm);
567 	uprobe_dup_mmap(oldmm, mm);
568 	/*
569 	 * Not linked in yet - no deadlock potential:
570 	 */
571 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
572 
573 	/* No ordering required: file already has been exposed. */
574 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
575 
576 	mm->total_vm = oldmm->total_vm;
577 	mm->data_vm = oldmm->data_vm;
578 	mm->exec_vm = oldmm->exec_vm;
579 	mm->stack_vm = oldmm->stack_vm;
580 
581 	rb_link = &mm->mm_rb.rb_node;
582 	rb_parent = NULL;
583 	pprev = &mm->mmap;
584 	retval = ksm_fork(mm, oldmm);
585 	if (retval)
586 		goto out;
587 	retval = khugepaged_fork(mm, oldmm);
588 	if (retval)
589 		goto out;
590 
591 	prev = NULL;
592 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
593 		struct file *file;
594 
595 		if (mpnt->vm_flags & VM_DONTCOPY) {
596 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
597 			continue;
598 		}
599 		charge = 0;
600 		if (mpnt->vm_flags & VM_ACCOUNT) {
601 			unsigned long len = vma_pages(mpnt);
602 
603 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
604 				goto fail_nomem;
605 			charge = len;
606 		}
607 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
608 		if (!tmp)
609 			goto fail_nomem;
610 		*tmp = *mpnt;
611 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
612 		retval = vma_dup_policy(mpnt, tmp);
613 		if (retval)
614 			goto fail_nomem_policy;
615 		tmp->vm_mm = mm;
616 		if (anon_vma_fork(tmp, mpnt))
617 			goto fail_nomem_anon_vma_fork;
618 		tmp->vm_flags &=
619 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
620 		tmp->vm_next = tmp->vm_prev = NULL;
621 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622 		file = tmp->vm_file;
623 		if (file) {
624 			struct inode *inode = file_inode(file);
625 			struct address_space *mapping = file->f_mapping;
626 
627 			get_file(file);
628 			if (tmp->vm_flags & VM_DENYWRITE)
629 				atomic_dec(&inode->i_writecount);
630 			i_mmap_lock_write(mapping);
631 			if (tmp->vm_flags & VM_SHARED)
632 				atomic_inc(&mapping->i_mmap_writable);
633 			flush_dcache_mmap_lock(mapping);
634 			/* insert tmp into the share list, just after mpnt */
635 			vma_interval_tree_insert_after(tmp, mpnt,
636 					&mapping->i_mmap);
637 			flush_dcache_mmap_unlock(mapping);
638 			i_mmap_unlock_write(mapping);
639 		}
640 
641 		/*
642 		 * Clear hugetlb-related page reserves for children. This only
643 		 * affects MAP_PRIVATE mappings. Faults generated by the child
644 		 * are not guaranteed to succeed, even if read-only
645 		 */
646 		if (is_vm_hugetlb_page(tmp))
647 			reset_vma_resv_huge_pages(tmp);
648 
649 		/*
650 		 * Link in the new vma and copy the page table entries.
651 		 */
652 		*pprev = tmp;
653 		pprev = &tmp->vm_next;
654 		tmp->vm_prev = prev;
655 		prev = tmp;
656 
657 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
658 		rb_link = &tmp->vm_rb.rb_right;
659 		rb_parent = &tmp->vm_rb;
660 
661 		mm->map_count++;
662 		retval = copy_page_range(mm, oldmm, mpnt);
663 
664 		if (tmp->vm_ops && tmp->vm_ops->open)
665 			tmp->vm_ops->open(tmp);
666 
667 		if (retval)
668 			goto out;
669 	}
670 	/* a new mm has just been created */
671 	arch_dup_mmap(oldmm, mm);
672 	retval = 0;
673 out:
674 	up_write(&mm->mmap_sem);
675 	flush_tlb_mm(oldmm);
676 	up_write(&oldmm->mmap_sem);
677 fail_uprobe_end:
678 	uprobe_end_dup_mmap();
679 	return retval;
680 fail_nomem_anon_vma_fork:
681 	mpol_put(vma_policy(tmp));
682 fail_nomem_policy:
683 	kmem_cache_free(vm_area_cachep, tmp);
684 fail_nomem:
685 	retval = -ENOMEM;
686 	vm_unacct_memory(charge);
687 	goto out;
688 }
689 
690 static inline int mm_alloc_pgd(struct mm_struct *mm)
691 {
692 	mm->pgd = pgd_alloc(mm);
693 	if (unlikely(!mm->pgd))
694 		return -ENOMEM;
695 	return 0;
696 }
697 
698 static inline void mm_free_pgd(struct mm_struct *mm)
699 {
700 	pgd_free(mm, mm->pgd);
701 }
702 #else
703 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
704 {
705 	down_write(&oldmm->mmap_sem);
706 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
707 	up_write(&oldmm->mmap_sem);
708 	return 0;
709 }
710 #define mm_alloc_pgd(mm)	(0)
711 #define mm_free_pgd(mm)
712 #endif /* CONFIG_MMU */
713 
714 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
715 
716 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
717 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
718 
719 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
720 
721 static int __init coredump_filter_setup(char *s)
722 {
723 	default_dump_filter =
724 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
725 		MMF_DUMP_FILTER_MASK;
726 	return 1;
727 }
728 
729 __setup("coredump_filter=", coredump_filter_setup);
730 
731 #include <linux/init_task.h>
732 
733 static void mm_init_aio(struct mm_struct *mm)
734 {
735 #ifdef CONFIG_AIO
736 	spin_lock_init(&mm->ioctx_lock);
737 	mm->ioctx_table = NULL;
738 #endif
739 }
740 
741 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
742 {
743 #ifdef CONFIG_MEMCG
744 	mm->owner = p;
745 #endif
746 }
747 
748 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
749 {
750 	mm->mmap = NULL;
751 	mm->mm_rb = RB_ROOT;
752 	mm->vmacache_seqnum = 0;
753 	atomic_set(&mm->mm_users, 1);
754 	atomic_set(&mm->mm_count, 1);
755 	init_rwsem(&mm->mmap_sem);
756 	INIT_LIST_HEAD(&mm->mmlist);
757 	mm->core_state = NULL;
758 	atomic_long_set(&mm->nr_ptes, 0);
759 	mm_nr_pmds_init(mm);
760 	mm->map_count = 0;
761 	mm->locked_vm = 0;
762 	mm->pinned_vm = 0;
763 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
764 	spin_lock_init(&mm->page_table_lock);
765 	mm_init_cpumask(mm);
766 	mm_init_aio(mm);
767 	mm_init_owner(mm, p);
768 	mmu_notifier_mm_init(mm);
769 	clear_tlb_flush_pending(mm);
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 	mm->pmd_huge_pte = NULL;
772 #endif
773 
774 	if (current->mm) {
775 		mm->flags = current->mm->flags & MMF_INIT_MASK;
776 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
777 	} else {
778 		mm->flags = default_dump_filter;
779 		mm->def_flags = 0;
780 	}
781 
782 	if (mm_alloc_pgd(mm))
783 		goto fail_nopgd;
784 
785 	if (init_new_context(p, mm))
786 		goto fail_nocontext;
787 
788 	return mm;
789 
790 fail_nocontext:
791 	mm_free_pgd(mm);
792 fail_nopgd:
793 	free_mm(mm);
794 	return NULL;
795 }
796 
797 static void check_mm(struct mm_struct *mm)
798 {
799 	int i;
800 
801 	for (i = 0; i < NR_MM_COUNTERS; i++) {
802 		long x = atomic_long_read(&mm->rss_stat.count[i]);
803 
804 		if (unlikely(x))
805 			printk(KERN_ALERT "BUG: Bad rss-counter state "
806 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
807 	}
808 
809 	if (atomic_long_read(&mm->nr_ptes))
810 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
811 				atomic_long_read(&mm->nr_ptes));
812 	if (mm_nr_pmds(mm))
813 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
814 				mm_nr_pmds(mm));
815 
816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
817 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
818 #endif
819 }
820 
821 /*
822  * Allocate and initialize an mm_struct.
823  */
824 struct mm_struct *mm_alloc(void)
825 {
826 	struct mm_struct *mm;
827 
828 	mm = allocate_mm();
829 	if (!mm)
830 		return NULL;
831 
832 	memset(mm, 0, sizeof(*mm));
833 	return mm_init(mm, current);
834 }
835 
836 /*
837  * Called when the last reference to the mm
838  * is dropped: either by a lazy thread or by
839  * mmput. Free the page directory and the mm.
840  */
841 void __mmdrop(struct mm_struct *mm)
842 {
843 	BUG_ON(mm == &init_mm);
844 	mm_free_pgd(mm);
845 	destroy_context(mm);
846 	mmu_notifier_mm_destroy(mm);
847 	check_mm(mm);
848 	free_mm(mm);
849 }
850 EXPORT_SYMBOL_GPL(__mmdrop);
851 
852 static inline void __mmput(struct mm_struct *mm)
853 {
854 	VM_BUG_ON(atomic_read(&mm->mm_users));
855 
856 	uprobe_clear_state(mm);
857 	exit_aio(mm);
858 	ksm_exit(mm);
859 	khugepaged_exit(mm); /* must run before exit_mmap */
860 	exit_mmap(mm);
861 	mm_put_huge_zero_page(mm);
862 	set_mm_exe_file(mm, NULL);
863 	if (!list_empty(&mm->mmlist)) {
864 		spin_lock(&mmlist_lock);
865 		list_del(&mm->mmlist);
866 		spin_unlock(&mmlist_lock);
867 	}
868 	if (mm->binfmt)
869 		module_put(mm->binfmt->module);
870 	set_bit(MMF_OOM_SKIP, &mm->flags);
871 	mmdrop(mm);
872 }
873 
874 /*
875  * Decrement the use count and release all resources for an mm.
876  */
877 void mmput(struct mm_struct *mm)
878 {
879 	might_sleep();
880 
881 	if (atomic_dec_and_test(&mm->mm_users))
882 		__mmput(mm);
883 }
884 EXPORT_SYMBOL_GPL(mmput);
885 
886 #ifdef CONFIG_MMU
887 static void mmput_async_fn(struct work_struct *work)
888 {
889 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
890 	__mmput(mm);
891 }
892 
893 void mmput_async(struct mm_struct *mm)
894 {
895 	if (atomic_dec_and_test(&mm->mm_users)) {
896 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
897 		schedule_work(&mm->async_put_work);
898 	}
899 }
900 #endif
901 
902 /**
903  * set_mm_exe_file - change a reference to the mm's executable file
904  *
905  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
906  *
907  * Main users are mmput() and sys_execve(). Callers prevent concurrent
908  * invocations: in mmput() nobody alive left, in execve task is single
909  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
910  * mm->exe_file, but does so without using set_mm_exe_file() in order
911  * to do avoid the need for any locks.
912  */
913 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
914 {
915 	struct file *old_exe_file;
916 
917 	/*
918 	 * It is safe to dereference the exe_file without RCU as
919 	 * this function is only called if nobody else can access
920 	 * this mm -- see comment above for justification.
921 	 */
922 	old_exe_file = rcu_dereference_raw(mm->exe_file);
923 
924 	if (new_exe_file)
925 		get_file(new_exe_file);
926 	rcu_assign_pointer(mm->exe_file, new_exe_file);
927 	if (old_exe_file)
928 		fput(old_exe_file);
929 }
930 
931 /**
932  * get_mm_exe_file - acquire a reference to the mm's executable file
933  *
934  * Returns %NULL if mm has no associated executable file.
935  * User must release file via fput().
936  */
937 struct file *get_mm_exe_file(struct mm_struct *mm)
938 {
939 	struct file *exe_file;
940 
941 	rcu_read_lock();
942 	exe_file = rcu_dereference(mm->exe_file);
943 	if (exe_file && !get_file_rcu(exe_file))
944 		exe_file = NULL;
945 	rcu_read_unlock();
946 	return exe_file;
947 }
948 EXPORT_SYMBOL(get_mm_exe_file);
949 
950 /**
951  * get_task_exe_file - acquire a reference to the task's executable file
952  *
953  * Returns %NULL if task's mm (if any) has no associated executable file or
954  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
955  * User must release file via fput().
956  */
957 struct file *get_task_exe_file(struct task_struct *task)
958 {
959 	struct file *exe_file = NULL;
960 	struct mm_struct *mm;
961 
962 	task_lock(task);
963 	mm = task->mm;
964 	if (mm) {
965 		if (!(task->flags & PF_KTHREAD))
966 			exe_file = get_mm_exe_file(mm);
967 	}
968 	task_unlock(task);
969 	return exe_file;
970 }
971 EXPORT_SYMBOL(get_task_exe_file);
972 
973 /**
974  * get_task_mm - acquire a reference to the task's mm
975  *
976  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
977  * this kernel workthread has transiently adopted a user mm with use_mm,
978  * to do its AIO) is not set and if so returns a reference to it, after
979  * bumping up the use count.  User must release the mm via mmput()
980  * after use.  Typically used by /proc and ptrace.
981  */
982 struct mm_struct *get_task_mm(struct task_struct *task)
983 {
984 	struct mm_struct *mm;
985 
986 	task_lock(task);
987 	mm = task->mm;
988 	if (mm) {
989 		if (task->flags & PF_KTHREAD)
990 			mm = NULL;
991 		else
992 			atomic_inc(&mm->mm_users);
993 	}
994 	task_unlock(task);
995 	return mm;
996 }
997 EXPORT_SYMBOL_GPL(get_task_mm);
998 
999 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1000 {
1001 	struct mm_struct *mm;
1002 	int err;
1003 
1004 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1005 	if (err)
1006 		return ERR_PTR(err);
1007 
1008 	mm = get_task_mm(task);
1009 	if (mm && mm != current->mm &&
1010 			!ptrace_may_access(task, mode)) {
1011 		mmput(mm);
1012 		mm = ERR_PTR(-EACCES);
1013 	}
1014 	mutex_unlock(&task->signal->cred_guard_mutex);
1015 
1016 	return mm;
1017 }
1018 
1019 static void complete_vfork_done(struct task_struct *tsk)
1020 {
1021 	struct completion *vfork;
1022 
1023 	task_lock(tsk);
1024 	vfork = tsk->vfork_done;
1025 	if (likely(vfork)) {
1026 		tsk->vfork_done = NULL;
1027 		complete(vfork);
1028 	}
1029 	task_unlock(tsk);
1030 }
1031 
1032 static int wait_for_vfork_done(struct task_struct *child,
1033 				struct completion *vfork)
1034 {
1035 	int killed;
1036 
1037 	freezer_do_not_count();
1038 	killed = wait_for_completion_killable(vfork);
1039 	freezer_count();
1040 
1041 	if (killed) {
1042 		task_lock(child);
1043 		child->vfork_done = NULL;
1044 		task_unlock(child);
1045 	}
1046 
1047 	put_task_struct(child);
1048 	return killed;
1049 }
1050 
1051 /* Please note the differences between mmput and mm_release.
1052  * mmput is called whenever we stop holding onto a mm_struct,
1053  * error success whatever.
1054  *
1055  * mm_release is called after a mm_struct has been removed
1056  * from the current process.
1057  *
1058  * This difference is important for error handling, when we
1059  * only half set up a mm_struct for a new process and need to restore
1060  * the old one.  Because we mmput the new mm_struct before
1061  * restoring the old one. . .
1062  * Eric Biederman 10 January 1998
1063  */
1064 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1065 {
1066 	/* Get rid of any futexes when releasing the mm */
1067 #ifdef CONFIG_FUTEX
1068 	if (unlikely(tsk->robust_list)) {
1069 		exit_robust_list(tsk);
1070 		tsk->robust_list = NULL;
1071 	}
1072 #ifdef CONFIG_COMPAT
1073 	if (unlikely(tsk->compat_robust_list)) {
1074 		compat_exit_robust_list(tsk);
1075 		tsk->compat_robust_list = NULL;
1076 	}
1077 #endif
1078 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1079 		exit_pi_state_list(tsk);
1080 #endif
1081 
1082 	uprobe_free_utask(tsk);
1083 
1084 	/* Get rid of any cached register state */
1085 	deactivate_mm(tsk, mm);
1086 
1087 	/*
1088 	 * Signal userspace if we're not exiting with a core dump
1089 	 * because we want to leave the value intact for debugging
1090 	 * purposes.
1091 	 */
1092 	if (tsk->clear_child_tid) {
1093 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1094 		    atomic_read(&mm->mm_users) > 1) {
1095 			/*
1096 			 * We don't check the error code - if userspace has
1097 			 * not set up a proper pointer then tough luck.
1098 			 */
1099 			put_user(0, tsk->clear_child_tid);
1100 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1101 					1, NULL, NULL, 0);
1102 		}
1103 		tsk->clear_child_tid = NULL;
1104 	}
1105 
1106 	/*
1107 	 * All done, finally we can wake up parent and return this mm to him.
1108 	 * Also kthread_stop() uses this completion for synchronization.
1109 	 */
1110 	if (tsk->vfork_done)
1111 		complete_vfork_done(tsk);
1112 }
1113 
1114 /*
1115  * Allocate a new mm structure and copy contents from the
1116  * mm structure of the passed in task structure.
1117  */
1118 static struct mm_struct *dup_mm(struct task_struct *tsk)
1119 {
1120 	struct mm_struct *mm, *oldmm = current->mm;
1121 	int err;
1122 
1123 	mm = allocate_mm();
1124 	if (!mm)
1125 		goto fail_nomem;
1126 
1127 	memcpy(mm, oldmm, sizeof(*mm));
1128 
1129 	if (!mm_init(mm, tsk))
1130 		goto fail_nomem;
1131 
1132 	err = dup_mmap(mm, oldmm);
1133 	if (err)
1134 		goto free_pt;
1135 
1136 	mm->hiwater_rss = get_mm_rss(mm);
1137 	mm->hiwater_vm = mm->total_vm;
1138 
1139 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1140 		goto free_pt;
1141 
1142 	return mm;
1143 
1144 free_pt:
1145 	/* don't put binfmt in mmput, we haven't got module yet */
1146 	mm->binfmt = NULL;
1147 	mmput(mm);
1148 
1149 fail_nomem:
1150 	return NULL;
1151 }
1152 
1153 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1154 {
1155 	struct mm_struct *mm, *oldmm;
1156 	int retval;
1157 
1158 	tsk->min_flt = tsk->maj_flt = 0;
1159 	tsk->nvcsw = tsk->nivcsw = 0;
1160 #ifdef CONFIG_DETECT_HUNG_TASK
1161 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1162 #endif
1163 
1164 	tsk->mm = NULL;
1165 	tsk->active_mm = NULL;
1166 
1167 	/*
1168 	 * Are we cloning a kernel thread?
1169 	 *
1170 	 * We need to steal a active VM for that..
1171 	 */
1172 	oldmm = current->mm;
1173 	if (!oldmm)
1174 		return 0;
1175 
1176 	/* initialize the new vmacache entries */
1177 	vmacache_flush(tsk);
1178 
1179 	if (clone_flags & CLONE_VM) {
1180 		atomic_inc(&oldmm->mm_users);
1181 		mm = oldmm;
1182 		goto good_mm;
1183 	}
1184 
1185 	retval = -ENOMEM;
1186 	mm = dup_mm(tsk);
1187 	if (!mm)
1188 		goto fail_nomem;
1189 
1190 good_mm:
1191 	tsk->mm = mm;
1192 	tsk->active_mm = mm;
1193 	return 0;
1194 
1195 fail_nomem:
1196 	return retval;
1197 }
1198 
1199 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1200 {
1201 	struct fs_struct *fs = current->fs;
1202 	if (clone_flags & CLONE_FS) {
1203 		/* tsk->fs is already what we want */
1204 		spin_lock(&fs->lock);
1205 		if (fs->in_exec) {
1206 			spin_unlock(&fs->lock);
1207 			return -EAGAIN;
1208 		}
1209 		fs->users++;
1210 		spin_unlock(&fs->lock);
1211 		return 0;
1212 	}
1213 	tsk->fs = copy_fs_struct(fs);
1214 	if (!tsk->fs)
1215 		return -ENOMEM;
1216 	return 0;
1217 }
1218 
1219 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1220 {
1221 	struct files_struct *oldf, *newf;
1222 	int error = 0;
1223 
1224 	/*
1225 	 * A background process may not have any files ...
1226 	 */
1227 	oldf = current->files;
1228 	if (!oldf)
1229 		goto out;
1230 
1231 	if (clone_flags & CLONE_FILES) {
1232 		atomic_inc(&oldf->count);
1233 		goto out;
1234 	}
1235 
1236 	newf = dup_fd(oldf, &error);
1237 	if (!newf)
1238 		goto out;
1239 
1240 	tsk->files = newf;
1241 	error = 0;
1242 out:
1243 	return error;
1244 }
1245 
1246 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1247 {
1248 #ifdef CONFIG_BLOCK
1249 	struct io_context *ioc = current->io_context;
1250 	struct io_context *new_ioc;
1251 
1252 	if (!ioc)
1253 		return 0;
1254 	/*
1255 	 * Share io context with parent, if CLONE_IO is set
1256 	 */
1257 	if (clone_flags & CLONE_IO) {
1258 		ioc_task_link(ioc);
1259 		tsk->io_context = ioc;
1260 	} else if (ioprio_valid(ioc->ioprio)) {
1261 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1262 		if (unlikely(!new_ioc))
1263 			return -ENOMEM;
1264 
1265 		new_ioc->ioprio = ioc->ioprio;
1266 		put_io_context(new_ioc);
1267 	}
1268 #endif
1269 	return 0;
1270 }
1271 
1272 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1273 {
1274 	struct sighand_struct *sig;
1275 
1276 	if (clone_flags & CLONE_SIGHAND) {
1277 		atomic_inc(&current->sighand->count);
1278 		return 0;
1279 	}
1280 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1281 	rcu_assign_pointer(tsk->sighand, sig);
1282 	if (!sig)
1283 		return -ENOMEM;
1284 
1285 	atomic_set(&sig->count, 1);
1286 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1287 	return 0;
1288 }
1289 
1290 void __cleanup_sighand(struct sighand_struct *sighand)
1291 {
1292 	if (atomic_dec_and_test(&sighand->count)) {
1293 		signalfd_cleanup(sighand);
1294 		/*
1295 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1296 		 * without an RCU grace period, see __lock_task_sighand().
1297 		 */
1298 		kmem_cache_free(sighand_cachep, sighand);
1299 	}
1300 }
1301 
1302 /*
1303  * Initialize POSIX timer handling for a thread group.
1304  */
1305 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1306 {
1307 	unsigned long cpu_limit;
1308 
1309 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1310 	if (cpu_limit != RLIM_INFINITY) {
1311 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1312 		sig->cputimer.running = true;
1313 	}
1314 
1315 	/* The timer lists. */
1316 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1317 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1318 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1319 }
1320 
1321 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1322 {
1323 	struct signal_struct *sig;
1324 
1325 	if (clone_flags & CLONE_THREAD)
1326 		return 0;
1327 
1328 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1329 	tsk->signal = sig;
1330 	if (!sig)
1331 		return -ENOMEM;
1332 
1333 	sig->nr_threads = 1;
1334 	atomic_set(&sig->live, 1);
1335 	atomic_set(&sig->sigcnt, 1);
1336 
1337 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1338 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1339 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1340 
1341 	init_waitqueue_head(&sig->wait_chldexit);
1342 	sig->curr_target = tsk;
1343 	init_sigpending(&sig->shared_pending);
1344 	INIT_LIST_HEAD(&sig->posix_timers);
1345 	seqlock_init(&sig->stats_lock);
1346 	prev_cputime_init(&sig->prev_cputime);
1347 
1348 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1349 	sig->real_timer.function = it_real_fn;
1350 
1351 	task_lock(current->group_leader);
1352 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1353 	task_unlock(current->group_leader);
1354 
1355 	posix_cpu_timers_init_group(sig);
1356 
1357 	tty_audit_fork(sig);
1358 	sched_autogroup_fork(sig);
1359 
1360 	sig->oom_score_adj = current->signal->oom_score_adj;
1361 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1362 
1363 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1364 				   current->signal->is_child_subreaper;
1365 
1366 	mutex_init(&sig->cred_guard_mutex);
1367 
1368 	return 0;
1369 }
1370 
1371 static void copy_seccomp(struct task_struct *p)
1372 {
1373 #ifdef CONFIG_SECCOMP
1374 	/*
1375 	 * Must be called with sighand->lock held, which is common to
1376 	 * all threads in the group. Holding cred_guard_mutex is not
1377 	 * needed because this new task is not yet running and cannot
1378 	 * be racing exec.
1379 	 */
1380 	assert_spin_locked(&current->sighand->siglock);
1381 
1382 	/* Ref-count the new filter user, and assign it. */
1383 	get_seccomp_filter(current);
1384 	p->seccomp = current->seccomp;
1385 
1386 	/*
1387 	 * Explicitly enable no_new_privs here in case it got set
1388 	 * between the task_struct being duplicated and holding the
1389 	 * sighand lock. The seccomp state and nnp must be in sync.
1390 	 */
1391 	if (task_no_new_privs(current))
1392 		task_set_no_new_privs(p);
1393 
1394 	/*
1395 	 * If the parent gained a seccomp mode after copying thread
1396 	 * flags and between before we held the sighand lock, we have
1397 	 * to manually enable the seccomp thread flag here.
1398 	 */
1399 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1400 		set_tsk_thread_flag(p, TIF_SECCOMP);
1401 #endif
1402 }
1403 
1404 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1405 {
1406 	current->clear_child_tid = tidptr;
1407 
1408 	return task_pid_vnr(current);
1409 }
1410 
1411 static void rt_mutex_init_task(struct task_struct *p)
1412 {
1413 	raw_spin_lock_init(&p->pi_lock);
1414 #ifdef CONFIG_RT_MUTEXES
1415 	p->pi_waiters = RB_ROOT;
1416 	p->pi_waiters_leftmost = NULL;
1417 	p->pi_blocked_on = NULL;
1418 #endif
1419 }
1420 
1421 /*
1422  * Initialize POSIX timer handling for a single task.
1423  */
1424 static void posix_cpu_timers_init(struct task_struct *tsk)
1425 {
1426 	tsk->cputime_expires.prof_exp = 0;
1427 	tsk->cputime_expires.virt_exp = 0;
1428 	tsk->cputime_expires.sched_exp = 0;
1429 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1430 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1431 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1432 }
1433 
1434 static inline void
1435 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1436 {
1437 	 task->pids[type].pid = pid;
1438 }
1439 
1440 /*
1441  * This creates a new process as a copy of the old one,
1442  * but does not actually start it yet.
1443  *
1444  * It copies the registers, and all the appropriate
1445  * parts of the process environment (as per the clone
1446  * flags). The actual kick-off is left to the caller.
1447  */
1448 static __latent_entropy struct task_struct *copy_process(
1449 					unsigned long clone_flags,
1450 					unsigned long stack_start,
1451 					unsigned long stack_size,
1452 					int __user *child_tidptr,
1453 					struct pid *pid,
1454 					int trace,
1455 					unsigned long tls,
1456 					int node)
1457 {
1458 	int retval;
1459 	struct task_struct *p;
1460 
1461 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1462 		return ERR_PTR(-EINVAL);
1463 
1464 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1465 		return ERR_PTR(-EINVAL);
1466 
1467 	/*
1468 	 * Thread groups must share signals as well, and detached threads
1469 	 * can only be started up within the thread group.
1470 	 */
1471 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1472 		return ERR_PTR(-EINVAL);
1473 
1474 	/*
1475 	 * Shared signal handlers imply shared VM. By way of the above,
1476 	 * thread groups also imply shared VM. Blocking this case allows
1477 	 * for various simplifications in other code.
1478 	 */
1479 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1480 		return ERR_PTR(-EINVAL);
1481 
1482 	/*
1483 	 * Siblings of global init remain as zombies on exit since they are
1484 	 * not reaped by their parent (swapper). To solve this and to avoid
1485 	 * multi-rooted process trees, prevent global and container-inits
1486 	 * from creating siblings.
1487 	 */
1488 	if ((clone_flags & CLONE_PARENT) &&
1489 				current->signal->flags & SIGNAL_UNKILLABLE)
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	/*
1493 	 * If the new process will be in a different pid or user namespace
1494 	 * do not allow it to share a thread group with the forking task.
1495 	 */
1496 	if (clone_flags & CLONE_THREAD) {
1497 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1498 		    (task_active_pid_ns(current) !=
1499 				current->nsproxy->pid_ns_for_children))
1500 			return ERR_PTR(-EINVAL);
1501 	}
1502 
1503 	retval = security_task_create(clone_flags);
1504 	if (retval)
1505 		goto fork_out;
1506 
1507 	retval = -ENOMEM;
1508 	p = dup_task_struct(current, node);
1509 	if (!p)
1510 		goto fork_out;
1511 
1512 	ftrace_graph_init_task(p);
1513 
1514 	rt_mutex_init_task(p);
1515 
1516 #ifdef CONFIG_PROVE_LOCKING
1517 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1518 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1519 #endif
1520 	retval = -EAGAIN;
1521 	if (atomic_read(&p->real_cred->user->processes) >=
1522 			task_rlimit(p, RLIMIT_NPROC)) {
1523 		if (p->real_cred->user != INIT_USER &&
1524 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1525 			goto bad_fork_free;
1526 	}
1527 	current->flags &= ~PF_NPROC_EXCEEDED;
1528 
1529 	retval = copy_creds(p, clone_flags);
1530 	if (retval < 0)
1531 		goto bad_fork_free;
1532 
1533 	/*
1534 	 * If multiple threads are within copy_process(), then this check
1535 	 * triggers too late. This doesn't hurt, the check is only there
1536 	 * to stop root fork bombs.
1537 	 */
1538 	retval = -EAGAIN;
1539 	if (nr_threads >= max_threads)
1540 		goto bad_fork_cleanup_count;
1541 
1542 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1543 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1544 	p->flags |= PF_FORKNOEXEC;
1545 	INIT_LIST_HEAD(&p->children);
1546 	INIT_LIST_HEAD(&p->sibling);
1547 	rcu_copy_process(p);
1548 	p->vfork_done = NULL;
1549 	spin_lock_init(&p->alloc_lock);
1550 
1551 	init_sigpending(&p->pending);
1552 
1553 	p->utime = p->stime = p->gtime = 0;
1554 	p->utimescaled = p->stimescaled = 0;
1555 	prev_cputime_init(&p->prev_cputime);
1556 
1557 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1558 	seqcount_init(&p->vtime_seqcount);
1559 	p->vtime_snap = 0;
1560 	p->vtime_snap_whence = VTIME_INACTIVE;
1561 #endif
1562 
1563 #if defined(SPLIT_RSS_COUNTING)
1564 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1565 #endif
1566 
1567 	p->default_timer_slack_ns = current->timer_slack_ns;
1568 
1569 	task_io_accounting_init(&p->ioac);
1570 	acct_clear_integrals(p);
1571 
1572 	posix_cpu_timers_init(p);
1573 
1574 	p->start_time = ktime_get_ns();
1575 	p->real_start_time = ktime_get_boot_ns();
1576 	p->io_context = NULL;
1577 	p->audit_context = NULL;
1578 	cgroup_fork(p);
1579 #ifdef CONFIG_NUMA
1580 	p->mempolicy = mpol_dup(p->mempolicy);
1581 	if (IS_ERR(p->mempolicy)) {
1582 		retval = PTR_ERR(p->mempolicy);
1583 		p->mempolicy = NULL;
1584 		goto bad_fork_cleanup_threadgroup_lock;
1585 	}
1586 #endif
1587 #ifdef CONFIG_CPUSETS
1588 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1589 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1590 	seqcount_init(&p->mems_allowed_seq);
1591 #endif
1592 #ifdef CONFIG_TRACE_IRQFLAGS
1593 	p->irq_events = 0;
1594 	p->hardirqs_enabled = 0;
1595 	p->hardirq_enable_ip = 0;
1596 	p->hardirq_enable_event = 0;
1597 	p->hardirq_disable_ip = _THIS_IP_;
1598 	p->hardirq_disable_event = 0;
1599 	p->softirqs_enabled = 1;
1600 	p->softirq_enable_ip = _THIS_IP_;
1601 	p->softirq_enable_event = 0;
1602 	p->softirq_disable_ip = 0;
1603 	p->softirq_disable_event = 0;
1604 	p->hardirq_context = 0;
1605 	p->softirq_context = 0;
1606 #endif
1607 
1608 	p->pagefault_disabled = 0;
1609 
1610 #ifdef CONFIG_LOCKDEP
1611 	p->lockdep_depth = 0; /* no locks held yet */
1612 	p->curr_chain_key = 0;
1613 	p->lockdep_recursion = 0;
1614 #endif
1615 
1616 #ifdef CONFIG_DEBUG_MUTEXES
1617 	p->blocked_on = NULL; /* not blocked yet */
1618 #endif
1619 #ifdef CONFIG_BCACHE
1620 	p->sequential_io	= 0;
1621 	p->sequential_io_avg	= 0;
1622 #endif
1623 
1624 	/* Perform scheduler related setup. Assign this task to a CPU. */
1625 	retval = sched_fork(clone_flags, p);
1626 	if (retval)
1627 		goto bad_fork_cleanup_policy;
1628 
1629 	retval = perf_event_init_task(p);
1630 	if (retval)
1631 		goto bad_fork_cleanup_policy;
1632 	retval = audit_alloc(p);
1633 	if (retval)
1634 		goto bad_fork_cleanup_perf;
1635 	/* copy all the process information */
1636 	shm_init_task(p);
1637 	retval = copy_semundo(clone_flags, p);
1638 	if (retval)
1639 		goto bad_fork_cleanup_audit;
1640 	retval = copy_files(clone_flags, p);
1641 	if (retval)
1642 		goto bad_fork_cleanup_semundo;
1643 	retval = copy_fs(clone_flags, p);
1644 	if (retval)
1645 		goto bad_fork_cleanup_files;
1646 	retval = copy_sighand(clone_flags, p);
1647 	if (retval)
1648 		goto bad_fork_cleanup_fs;
1649 	retval = copy_signal(clone_flags, p);
1650 	if (retval)
1651 		goto bad_fork_cleanup_sighand;
1652 	retval = copy_mm(clone_flags, p);
1653 	if (retval)
1654 		goto bad_fork_cleanup_signal;
1655 	retval = copy_namespaces(clone_flags, p);
1656 	if (retval)
1657 		goto bad_fork_cleanup_mm;
1658 	retval = copy_io(clone_flags, p);
1659 	if (retval)
1660 		goto bad_fork_cleanup_namespaces;
1661 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1662 	if (retval)
1663 		goto bad_fork_cleanup_io;
1664 
1665 	if (pid != &init_struct_pid) {
1666 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1667 		if (IS_ERR(pid)) {
1668 			retval = PTR_ERR(pid);
1669 			goto bad_fork_cleanup_thread;
1670 		}
1671 	}
1672 
1673 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1674 	/*
1675 	 * Clear TID on mm_release()?
1676 	 */
1677 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1678 #ifdef CONFIG_BLOCK
1679 	p->plug = NULL;
1680 #endif
1681 #ifdef CONFIG_FUTEX
1682 	p->robust_list = NULL;
1683 #ifdef CONFIG_COMPAT
1684 	p->compat_robust_list = NULL;
1685 #endif
1686 	INIT_LIST_HEAD(&p->pi_state_list);
1687 	p->pi_state_cache = NULL;
1688 #endif
1689 	/*
1690 	 * sigaltstack should be cleared when sharing the same VM
1691 	 */
1692 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1693 		sas_ss_reset(p);
1694 
1695 	/*
1696 	 * Syscall tracing and stepping should be turned off in the
1697 	 * child regardless of CLONE_PTRACE.
1698 	 */
1699 	user_disable_single_step(p);
1700 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1701 #ifdef TIF_SYSCALL_EMU
1702 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1703 #endif
1704 	clear_all_latency_tracing(p);
1705 
1706 	/* ok, now we should be set up.. */
1707 	p->pid = pid_nr(pid);
1708 	if (clone_flags & CLONE_THREAD) {
1709 		p->exit_signal = -1;
1710 		p->group_leader = current->group_leader;
1711 		p->tgid = current->tgid;
1712 	} else {
1713 		if (clone_flags & CLONE_PARENT)
1714 			p->exit_signal = current->group_leader->exit_signal;
1715 		else
1716 			p->exit_signal = (clone_flags & CSIGNAL);
1717 		p->group_leader = p;
1718 		p->tgid = p->pid;
1719 	}
1720 
1721 	p->nr_dirtied = 0;
1722 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1723 	p->dirty_paused_when = 0;
1724 
1725 	p->pdeath_signal = 0;
1726 	INIT_LIST_HEAD(&p->thread_group);
1727 	p->task_works = NULL;
1728 
1729 	threadgroup_change_begin(current);
1730 	/*
1731 	 * Ensure that the cgroup subsystem policies allow the new process to be
1732 	 * forked. It should be noted the the new process's css_set can be changed
1733 	 * between here and cgroup_post_fork() if an organisation operation is in
1734 	 * progress.
1735 	 */
1736 	retval = cgroup_can_fork(p);
1737 	if (retval)
1738 		goto bad_fork_free_pid;
1739 
1740 	/*
1741 	 * Make it visible to the rest of the system, but dont wake it up yet.
1742 	 * Need tasklist lock for parent etc handling!
1743 	 */
1744 	write_lock_irq(&tasklist_lock);
1745 
1746 	/* CLONE_PARENT re-uses the old parent */
1747 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1748 		p->real_parent = current->real_parent;
1749 		p->parent_exec_id = current->parent_exec_id;
1750 	} else {
1751 		p->real_parent = current;
1752 		p->parent_exec_id = current->self_exec_id;
1753 	}
1754 
1755 	spin_lock(&current->sighand->siglock);
1756 
1757 	/*
1758 	 * Copy seccomp details explicitly here, in case they were changed
1759 	 * before holding sighand lock.
1760 	 */
1761 	copy_seccomp(p);
1762 
1763 	/*
1764 	 * Process group and session signals need to be delivered to just the
1765 	 * parent before the fork or both the parent and the child after the
1766 	 * fork. Restart if a signal comes in before we add the new process to
1767 	 * it's process group.
1768 	 * A fatal signal pending means that current will exit, so the new
1769 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1770 	*/
1771 	recalc_sigpending();
1772 	if (signal_pending(current)) {
1773 		spin_unlock(&current->sighand->siglock);
1774 		write_unlock_irq(&tasklist_lock);
1775 		retval = -ERESTARTNOINTR;
1776 		goto bad_fork_cancel_cgroup;
1777 	}
1778 
1779 	if (likely(p->pid)) {
1780 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1781 
1782 		init_task_pid(p, PIDTYPE_PID, pid);
1783 		if (thread_group_leader(p)) {
1784 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1785 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1786 
1787 			if (is_child_reaper(pid)) {
1788 				ns_of_pid(pid)->child_reaper = p;
1789 				p->signal->flags |= SIGNAL_UNKILLABLE;
1790 			}
1791 
1792 			p->signal->leader_pid = pid;
1793 			p->signal->tty = tty_kref_get(current->signal->tty);
1794 			list_add_tail(&p->sibling, &p->real_parent->children);
1795 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1796 			attach_pid(p, PIDTYPE_PGID);
1797 			attach_pid(p, PIDTYPE_SID);
1798 			__this_cpu_inc(process_counts);
1799 		} else {
1800 			current->signal->nr_threads++;
1801 			atomic_inc(&current->signal->live);
1802 			atomic_inc(&current->signal->sigcnt);
1803 			list_add_tail_rcu(&p->thread_group,
1804 					  &p->group_leader->thread_group);
1805 			list_add_tail_rcu(&p->thread_node,
1806 					  &p->signal->thread_head);
1807 		}
1808 		attach_pid(p, PIDTYPE_PID);
1809 		nr_threads++;
1810 	}
1811 
1812 	total_forks++;
1813 	spin_unlock(&current->sighand->siglock);
1814 	syscall_tracepoint_update(p);
1815 	write_unlock_irq(&tasklist_lock);
1816 
1817 	proc_fork_connector(p);
1818 	cgroup_post_fork(p);
1819 	threadgroup_change_end(current);
1820 	perf_event_fork(p);
1821 
1822 	trace_task_newtask(p, clone_flags);
1823 	uprobe_copy_process(p, clone_flags);
1824 
1825 	return p;
1826 
1827 bad_fork_cancel_cgroup:
1828 	cgroup_cancel_fork(p);
1829 bad_fork_free_pid:
1830 	threadgroup_change_end(current);
1831 	if (pid != &init_struct_pid)
1832 		free_pid(pid);
1833 bad_fork_cleanup_thread:
1834 	exit_thread(p);
1835 bad_fork_cleanup_io:
1836 	if (p->io_context)
1837 		exit_io_context(p);
1838 bad_fork_cleanup_namespaces:
1839 	exit_task_namespaces(p);
1840 bad_fork_cleanup_mm:
1841 	if (p->mm)
1842 		mmput(p->mm);
1843 bad_fork_cleanup_signal:
1844 	if (!(clone_flags & CLONE_THREAD))
1845 		free_signal_struct(p->signal);
1846 bad_fork_cleanup_sighand:
1847 	__cleanup_sighand(p->sighand);
1848 bad_fork_cleanup_fs:
1849 	exit_fs(p); /* blocking */
1850 bad_fork_cleanup_files:
1851 	exit_files(p); /* blocking */
1852 bad_fork_cleanup_semundo:
1853 	exit_sem(p);
1854 bad_fork_cleanup_audit:
1855 	audit_free(p);
1856 bad_fork_cleanup_perf:
1857 	perf_event_free_task(p);
1858 bad_fork_cleanup_policy:
1859 #ifdef CONFIG_NUMA
1860 	mpol_put(p->mempolicy);
1861 bad_fork_cleanup_threadgroup_lock:
1862 #endif
1863 	delayacct_tsk_free(p);
1864 bad_fork_cleanup_count:
1865 	atomic_dec(&p->cred->user->processes);
1866 	exit_creds(p);
1867 bad_fork_free:
1868 	p->state = TASK_DEAD;
1869 	put_task_stack(p);
1870 	free_task(p);
1871 fork_out:
1872 	return ERR_PTR(retval);
1873 }
1874 
1875 static inline void init_idle_pids(struct pid_link *links)
1876 {
1877 	enum pid_type type;
1878 
1879 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1880 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1881 		links[type].pid = &init_struct_pid;
1882 	}
1883 }
1884 
1885 struct task_struct *fork_idle(int cpu)
1886 {
1887 	struct task_struct *task;
1888 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1889 			    cpu_to_node(cpu));
1890 	if (!IS_ERR(task)) {
1891 		init_idle_pids(task->pids);
1892 		init_idle(task, cpu);
1893 	}
1894 
1895 	return task;
1896 }
1897 
1898 /*
1899  *  Ok, this is the main fork-routine.
1900  *
1901  * It copies the process, and if successful kick-starts
1902  * it and waits for it to finish using the VM if required.
1903  */
1904 long _do_fork(unsigned long clone_flags,
1905 	      unsigned long stack_start,
1906 	      unsigned long stack_size,
1907 	      int __user *parent_tidptr,
1908 	      int __user *child_tidptr,
1909 	      unsigned long tls)
1910 {
1911 	struct task_struct *p;
1912 	int trace = 0;
1913 	long nr;
1914 
1915 	/*
1916 	 * Determine whether and which event to report to ptracer.  When
1917 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1918 	 * requested, no event is reported; otherwise, report if the event
1919 	 * for the type of forking is enabled.
1920 	 */
1921 	if (!(clone_flags & CLONE_UNTRACED)) {
1922 		if (clone_flags & CLONE_VFORK)
1923 			trace = PTRACE_EVENT_VFORK;
1924 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1925 			trace = PTRACE_EVENT_CLONE;
1926 		else
1927 			trace = PTRACE_EVENT_FORK;
1928 
1929 		if (likely(!ptrace_event_enabled(current, trace)))
1930 			trace = 0;
1931 	}
1932 
1933 	p = copy_process(clone_flags, stack_start, stack_size,
1934 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1935 	add_latent_entropy();
1936 	/*
1937 	 * Do this prior waking up the new thread - the thread pointer
1938 	 * might get invalid after that point, if the thread exits quickly.
1939 	 */
1940 	if (!IS_ERR(p)) {
1941 		struct completion vfork;
1942 		struct pid *pid;
1943 
1944 		trace_sched_process_fork(current, p);
1945 
1946 		pid = get_task_pid(p, PIDTYPE_PID);
1947 		nr = pid_vnr(pid);
1948 
1949 		if (clone_flags & CLONE_PARENT_SETTID)
1950 			put_user(nr, parent_tidptr);
1951 
1952 		if (clone_flags & CLONE_VFORK) {
1953 			p->vfork_done = &vfork;
1954 			init_completion(&vfork);
1955 			get_task_struct(p);
1956 		}
1957 
1958 		wake_up_new_task(p);
1959 
1960 		/* forking complete and child started to run, tell ptracer */
1961 		if (unlikely(trace))
1962 			ptrace_event_pid(trace, pid);
1963 
1964 		if (clone_flags & CLONE_VFORK) {
1965 			if (!wait_for_vfork_done(p, &vfork))
1966 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1967 		}
1968 
1969 		put_pid(pid);
1970 	} else {
1971 		nr = PTR_ERR(p);
1972 	}
1973 	return nr;
1974 }
1975 
1976 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1977 /* For compatibility with architectures that call do_fork directly rather than
1978  * using the syscall entry points below. */
1979 long do_fork(unsigned long clone_flags,
1980 	      unsigned long stack_start,
1981 	      unsigned long stack_size,
1982 	      int __user *parent_tidptr,
1983 	      int __user *child_tidptr)
1984 {
1985 	return _do_fork(clone_flags, stack_start, stack_size,
1986 			parent_tidptr, child_tidptr, 0);
1987 }
1988 #endif
1989 
1990 /*
1991  * Create a kernel thread.
1992  */
1993 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1994 {
1995 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1996 		(unsigned long)arg, NULL, NULL, 0);
1997 }
1998 
1999 #ifdef __ARCH_WANT_SYS_FORK
2000 SYSCALL_DEFINE0(fork)
2001 {
2002 #ifdef CONFIG_MMU
2003 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2004 #else
2005 	/* can not support in nommu mode */
2006 	return -EINVAL;
2007 #endif
2008 }
2009 #endif
2010 
2011 #ifdef __ARCH_WANT_SYS_VFORK
2012 SYSCALL_DEFINE0(vfork)
2013 {
2014 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2015 			0, NULL, NULL, 0);
2016 }
2017 #endif
2018 
2019 #ifdef __ARCH_WANT_SYS_CLONE
2020 #ifdef CONFIG_CLONE_BACKWARDS
2021 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2022 		 int __user *, parent_tidptr,
2023 		 unsigned long, tls,
2024 		 int __user *, child_tidptr)
2025 #elif defined(CONFIG_CLONE_BACKWARDS2)
2026 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2027 		 int __user *, parent_tidptr,
2028 		 int __user *, child_tidptr,
2029 		 unsigned long, tls)
2030 #elif defined(CONFIG_CLONE_BACKWARDS3)
2031 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2032 		int, stack_size,
2033 		int __user *, parent_tidptr,
2034 		int __user *, child_tidptr,
2035 		unsigned long, tls)
2036 #else
2037 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2038 		 int __user *, parent_tidptr,
2039 		 int __user *, child_tidptr,
2040 		 unsigned long, tls)
2041 #endif
2042 {
2043 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2044 }
2045 #endif
2046 
2047 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2048 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2049 #endif
2050 
2051 static void sighand_ctor(void *data)
2052 {
2053 	struct sighand_struct *sighand = data;
2054 
2055 	spin_lock_init(&sighand->siglock);
2056 	init_waitqueue_head(&sighand->signalfd_wqh);
2057 }
2058 
2059 void __init proc_caches_init(void)
2060 {
2061 	sighand_cachep = kmem_cache_create("sighand_cache",
2062 			sizeof(struct sighand_struct), 0,
2063 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2064 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2065 	signal_cachep = kmem_cache_create("signal_cache",
2066 			sizeof(struct signal_struct), 0,
2067 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068 			NULL);
2069 	files_cachep = kmem_cache_create("files_cache",
2070 			sizeof(struct files_struct), 0,
2071 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 			NULL);
2073 	fs_cachep = kmem_cache_create("fs_cache",
2074 			sizeof(struct fs_struct), 0,
2075 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2076 			NULL);
2077 	/*
2078 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2079 	 * whole struct cpumask for the OFFSTACK case. We could change
2080 	 * this to *only* allocate as much of it as required by the
2081 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2082 	 * is at the end of the structure, exactly for that reason.
2083 	 */
2084 	mm_cachep = kmem_cache_create("mm_struct",
2085 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2086 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2087 			NULL);
2088 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2089 	mmap_init();
2090 	nsproxy_cache_init();
2091 }
2092 
2093 /*
2094  * Check constraints on flags passed to the unshare system call.
2095  */
2096 static int check_unshare_flags(unsigned long unshare_flags)
2097 {
2098 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2099 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2100 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2101 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2102 		return -EINVAL;
2103 	/*
2104 	 * Not implemented, but pretend it works if there is nothing
2105 	 * to unshare.  Note that unsharing the address space or the
2106 	 * signal handlers also need to unshare the signal queues (aka
2107 	 * CLONE_THREAD).
2108 	 */
2109 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2110 		if (!thread_group_empty(current))
2111 			return -EINVAL;
2112 	}
2113 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2114 		if (atomic_read(&current->sighand->count) > 1)
2115 			return -EINVAL;
2116 	}
2117 	if (unshare_flags & CLONE_VM) {
2118 		if (!current_is_single_threaded())
2119 			return -EINVAL;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 /*
2126  * Unshare the filesystem structure if it is being shared
2127  */
2128 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2129 {
2130 	struct fs_struct *fs = current->fs;
2131 
2132 	if (!(unshare_flags & CLONE_FS) || !fs)
2133 		return 0;
2134 
2135 	/* don't need lock here; in the worst case we'll do useless copy */
2136 	if (fs->users == 1)
2137 		return 0;
2138 
2139 	*new_fsp = copy_fs_struct(fs);
2140 	if (!*new_fsp)
2141 		return -ENOMEM;
2142 
2143 	return 0;
2144 }
2145 
2146 /*
2147  * Unshare file descriptor table if it is being shared
2148  */
2149 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2150 {
2151 	struct files_struct *fd = current->files;
2152 	int error = 0;
2153 
2154 	if ((unshare_flags & CLONE_FILES) &&
2155 	    (fd && atomic_read(&fd->count) > 1)) {
2156 		*new_fdp = dup_fd(fd, &error);
2157 		if (!*new_fdp)
2158 			return error;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * unshare allows a process to 'unshare' part of the process
2166  * context which was originally shared using clone.  copy_*
2167  * functions used by do_fork() cannot be used here directly
2168  * because they modify an inactive task_struct that is being
2169  * constructed. Here we are modifying the current, active,
2170  * task_struct.
2171  */
2172 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2173 {
2174 	struct fs_struct *fs, *new_fs = NULL;
2175 	struct files_struct *fd, *new_fd = NULL;
2176 	struct cred *new_cred = NULL;
2177 	struct nsproxy *new_nsproxy = NULL;
2178 	int do_sysvsem = 0;
2179 	int err;
2180 
2181 	/*
2182 	 * If unsharing a user namespace must also unshare the thread group
2183 	 * and unshare the filesystem root and working directories.
2184 	 */
2185 	if (unshare_flags & CLONE_NEWUSER)
2186 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2187 	/*
2188 	 * If unsharing vm, must also unshare signal handlers.
2189 	 */
2190 	if (unshare_flags & CLONE_VM)
2191 		unshare_flags |= CLONE_SIGHAND;
2192 	/*
2193 	 * If unsharing a signal handlers, must also unshare the signal queues.
2194 	 */
2195 	if (unshare_flags & CLONE_SIGHAND)
2196 		unshare_flags |= CLONE_THREAD;
2197 	/*
2198 	 * If unsharing namespace, must also unshare filesystem information.
2199 	 */
2200 	if (unshare_flags & CLONE_NEWNS)
2201 		unshare_flags |= CLONE_FS;
2202 
2203 	err = check_unshare_flags(unshare_flags);
2204 	if (err)
2205 		goto bad_unshare_out;
2206 	/*
2207 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2208 	 * to a new ipc namespace, the semaphore arrays from the old
2209 	 * namespace are unreachable.
2210 	 */
2211 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2212 		do_sysvsem = 1;
2213 	err = unshare_fs(unshare_flags, &new_fs);
2214 	if (err)
2215 		goto bad_unshare_out;
2216 	err = unshare_fd(unshare_flags, &new_fd);
2217 	if (err)
2218 		goto bad_unshare_cleanup_fs;
2219 	err = unshare_userns(unshare_flags, &new_cred);
2220 	if (err)
2221 		goto bad_unshare_cleanup_fd;
2222 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2223 					 new_cred, new_fs);
2224 	if (err)
2225 		goto bad_unshare_cleanup_cred;
2226 
2227 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2228 		if (do_sysvsem) {
2229 			/*
2230 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2231 			 */
2232 			exit_sem(current);
2233 		}
2234 		if (unshare_flags & CLONE_NEWIPC) {
2235 			/* Orphan segments in old ns (see sem above). */
2236 			exit_shm(current);
2237 			shm_init_task(current);
2238 		}
2239 
2240 		if (new_nsproxy)
2241 			switch_task_namespaces(current, new_nsproxy);
2242 
2243 		task_lock(current);
2244 
2245 		if (new_fs) {
2246 			fs = current->fs;
2247 			spin_lock(&fs->lock);
2248 			current->fs = new_fs;
2249 			if (--fs->users)
2250 				new_fs = NULL;
2251 			else
2252 				new_fs = fs;
2253 			spin_unlock(&fs->lock);
2254 		}
2255 
2256 		if (new_fd) {
2257 			fd = current->files;
2258 			current->files = new_fd;
2259 			new_fd = fd;
2260 		}
2261 
2262 		task_unlock(current);
2263 
2264 		if (new_cred) {
2265 			/* Install the new user namespace */
2266 			commit_creds(new_cred);
2267 			new_cred = NULL;
2268 		}
2269 	}
2270 
2271 bad_unshare_cleanup_cred:
2272 	if (new_cred)
2273 		put_cred(new_cred);
2274 bad_unshare_cleanup_fd:
2275 	if (new_fd)
2276 		put_files_struct(new_fd);
2277 
2278 bad_unshare_cleanup_fs:
2279 	if (new_fs)
2280 		free_fs_struct(new_fs);
2281 
2282 bad_unshare_out:
2283 	return err;
2284 }
2285 
2286 /*
2287  *	Helper to unshare the files of the current task.
2288  *	We don't want to expose copy_files internals to
2289  *	the exec layer of the kernel.
2290  */
2291 
2292 int unshare_files(struct files_struct **displaced)
2293 {
2294 	struct task_struct *task = current;
2295 	struct files_struct *copy = NULL;
2296 	int error;
2297 
2298 	error = unshare_fd(CLONE_FILES, &copy);
2299 	if (error || !copy) {
2300 		*displaced = NULL;
2301 		return error;
2302 	}
2303 	*displaced = task->files;
2304 	task_lock(task);
2305 	task->files = copy;
2306 	task_unlock(task);
2307 	return 0;
2308 }
2309 
2310 int sysctl_max_threads(struct ctl_table *table, int write,
2311 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2312 {
2313 	struct ctl_table t;
2314 	int ret;
2315 	int threads = max_threads;
2316 	int min = MIN_THREADS;
2317 	int max = MAX_THREADS;
2318 
2319 	t = *table;
2320 	t.data = &threads;
2321 	t.extra1 = &min;
2322 	t.extra2 = &max;
2323 
2324 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 	if (ret || !write)
2326 		return ret;
2327 
2328 	set_max_threads(threads);
2329 
2330 	return 0;
2331 }
2332