xref: /openbmc/linux/kernel/fork.c (revision 151f4e2b)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/anon_inodes.h>
15 #include <linux/slab.h>
16 #include <linux/sched/autogroup.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/seq_file.h>
26 #include <linux/rtmutex.h>
27 #include <linux/init.h>
28 #include <linux/unistd.h>
29 #include <linux/module.h>
30 #include <linux/vmalloc.h>
31 #include <linux/completion.h>
32 #include <linux/personality.h>
33 #include <linux/mempolicy.h>
34 #include <linux/sem.h>
35 #include <linux/file.h>
36 #include <linux/fdtable.h>
37 #include <linux/iocontext.h>
38 #include <linux/key.h>
39 #include <linux/binfmts.h>
40 #include <linux/mman.h>
41 #include <linux/mmu_notifier.h>
42 #include <linux/hmm.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 
97 #include <asm/pgtable.h>
98 #include <asm/pgalloc.h>
99 #include <linux/uaccess.h>
100 #include <asm/mmu_context.h>
101 #include <asm/cacheflush.h>
102 #include <asm/tlbflush.h>
103 
104 #include <trace/events/sched.h>
105 
106 #define CREATE_TRACE_POINTS
107 #include <trace/events/task.h>
108 
109 /*
110  * Minimum number of threads to boot the kernel
111  */
112 #define MIN_THREADS 20
113 
114 /*
115  * Maximum number of threads
116  */
117 #define MAX_THREADS FUTEX_TID_MASK
118 
119 /*
120  * Protected counters by write_lock_irq(&tasklist_lock)
121  */
122 unsigned long total_forks;	/* Handle normal Linux uptimes. */
123 int nr_threads;			/* The idle threads do not count.. */
124 
125 int max_threads;		/* tunable limit on nr_threads */
126 
127 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128 
129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
130 
131 #ifdef CONFIG_PROVE_RCU
132 int lockdep_tasklist_lock_is_held(void)
133 {
134 	return lockdep_is_held(&tasklist_lock);
135 }
136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
137 #endif /* #ifdef CONFIG_PROVE_RCU */
138 
139 int nr_processes(void)
140 {
141 	int cpu;
142 	int total = 0;
143 
144 	for_each_possible_cpu(cpu)
145 		total += per_cpu(process_counts, cpu);
146 
147 	return total;
148 }
149 
150 void __weak arch_release_task_struct(struct task_struct *tsk)
151 {
152 }
153 
154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
155 static struct kmem_cache *task_struct_cachep;
156 
157 static inline struct task_struct *alloc_task_struct_node(int node)
158 {
159 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
160 }
161 
162 static inline void free_task_struct(struct task_struct *tsk)
163 {
164 	kmem_cache_free(task_struct_cachep, tsk);
165 }
166 #endif
167 
168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
169 
170 /*
171  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172  * kmemcache based allocator.
173  */
174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
175 
176 #ifdef CONFIG_VMAP_STACK
177 /*
178  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179  * flush.  Try to minimize the number of calls by caching stacks.
180  */
181 #define NR_CACHED_STACKS 2
182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
183 
184 static int free_vm_stack_cache(unsigned int cpu)
185 {
186 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 	int i;
188 
189 	for (i = 0; i < NR_CACHED_STACKS; i++) {
190 		struct vm_struct *vm_stack = cached_vm_stacks[i];
191 
192 		if (!vm_stack)
193 			continue;
194 
195 		vfree(vm_stack->addr);
196 		cached_vm_stacks[i] = NULL;
197 	}
198 
199 	return 0;
200 }
201 #endif
202 
203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
204 {
205 #ifdef CONFIG_VMAP_STACK
206 	void *stack;
207 	int i;
208 
209 	for (i = 0; i < NR_CACHED_STACKS; i++) {
210 		struct vm_struct *s;
211 
212 		s = this_cpu_xchg(cached_stacks[i], NULL);
213 
214 		if (!s)
215 			continue;
216 
217 		/* Clear stale pointers from reused stack. */
218 		memset(s->addr, 0, THREAD_SIZE);
219 
220 		tsk->stack_vm_area = s;
221 		tsk->stack = s->addr;
222 		return s->addr;
223 	}
224 
225 	/*
226 	 * Allocated stacks are cached and later reused by new threads,
227 	 * so memcg accounting is performed manually on assigning/releasing
228 	 * stacks to tasks. Drop __GFP_ACCOUNT.
229 	 */
230 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 				     VMALLOC_START, VMALLOC_END,
232 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
233 				     PAGE_KERNEL,
234 				     0, node, __builtin_return_address(0));
235 
236 	/*
237 	 * We can't call find_vm_area() in interrupt context, and
238 	 * free_thread_stack() can be called in interrupt context,
239 	 * so cache the vm_struct.
240 	 */
241 	if (stack) {
242 		tsk->stack_vm_area = find_vm_area(stack);
243 		tsk->stack = stack;
244 	}
245 	return stack;
246 #else
247 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
248 					     THREAD_SIZE_ORDER);
249 
250 	return page ? page_address(page) : NULL;
251 #endif
252 }
253 
254 static inline void free_thread_stack(struct task_struct *tsk)
255 {
256 #ifdef CONFIG_VMAP_STACK
257 	struct vm_struct *vm = task_stack_vm_area(tsk);
258 
259 	if (vm) {
260 		int i;
261 
262 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 			mod_memcg_page_state(vm->pages[i],
264 					     MEMCG_KERNEL_STACK_KB,
265 					     -(int)(PAGE_SIZE / 1024));
266 
267 			memcg_kmem_uncharge(vm->pages[i], 0);
268 		}
269 
270 		for (i = 0; i < NR_CACHED_STACKS; i++) {
271 			if (this_cpu_cmpxchg(cached_stacks[i],
272 					NULL, tsk->stack_vm_area) != NULL)
273 				continue;
274 
275 			return;
276 		}
277 
278 		vfree_atomic(tsk->stack);
279 		return;
280 	}
281 #endif
282 
283 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
284 }
285 # else
286 static struct kmem_cache *thread_stack_cache;
287 
288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
289 						  int node)
290 {
291 	unsigned long *stack;
292 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
293 	tsk->stack = stack;
294 	return stack;
295 }
296 
297 static void free_thread_stack(struct task_struct *tsk)
298 {
299 	kmem_cache_free(thread_stack_cache, tsk->stack);
300 }
301 
302 void thread_stack_cache_init(void)
303 {
304 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
305 					THREAD_SIZE, THREAD_SIZE, 0, 0,
306 					THREAD_SIZE, NULL);
307 	BUG_ON(thread_stack_cache == NULL);
308 }
309 # endif
310 #endif
311 
312 /* SLAB cache for signal_struct structures (tsk->signal) */
313 static struct kmem_cache *signal_cachep;
314 
315 /* SLAB cache for sighand_struct structures (tsk->sighand) */
316 struct kmem_cache *sighand_cachep;
317 
318 /* SLAB cache for files_struct structures (tsk->files) */
319 struct kmem_cache *files_cachep;
320 
321 /* SLAB cache for fs_struct structures (tsk->fs) */
322 struct kmem_cache *fs_cachep;
323 
324 /* SLAB cache for vm_area_struct structures */
325 static struct kmem_cache *vm_area_cachep;
326 
327 /* SLAB cache for mm_struct structures (tsk->mm) */
328 static struct kmem_cache *mm_cachep;
329 
330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
331 {
332 	struct vm_area_struct *vma;
333 
334 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
335 	if (vma)
336 		vma_init(vma, mm);
337 	return vma;
338 }
339 
340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
341 {
342 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343 
344 	if (new) {
345 		*new = *orig;
346 		INIT_LIST_HEAD(&new->anon_vma_chain);
347 	}
348 	return new;
349 }
350 
351 void vm_area_free(struct vm_area_struct *vma)
352 {
353 	kmem_cache_free(vm_area_cachep, vma);
354 }
355 
356 static void account_kernel_stack(struct task_struct *tsk, int account)
357 {
358 	void *stack = task_stack_page(tsk);
359 	struct vm_struct *vm = task_stack_vm_area(tsk);
360 
361 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
362 
363 	if (vm) {
364 		int i;
365 
366 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
367 
368 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
369 			mod_zone_page_state(page_zone(vm->pages[i]),
370 					    NR_KERNEL_STACK_KB,
371 					    PAGE_SIZE / 1024 * account);
372 		}
373 	} else {
374 		/*
375 		 * All stack pages are in the same zone and belong to the
376 		 * same memcg.
377 		 */
378 		struct page *first_page = virt_to_page(stack);
379 
380 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
381 				    THREAD_SIZE / 1024 * account);
382 
383 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
384 				     account * (THREAD_SIZE / 1024));
385 	}
386 }
387 
388 static int memcg_charge_kernel_stack(struct task_struct *tsk)
389 {
390 #ifdef CONFIG_VMAP_STACK
391 	struct vm_struct *vm = task_stack_vm_area(tsk);
392 	int ret;
393 
394 	if (vm) {
395 		int i;
396 
397 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
398 			/*
399 			 * If memcg_kmem_charge() fails, page->mem_cgroup
400 			 * pointer is NULL, and both memcg_kmem_uncharge()
401 			 * and mod_memcg_page_state() in free_thread_stack()
402 			 * will ignore this page. So it's safe.
403 			 */
404 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
405 			if (ret)
406 				return ret;
407 
408 			mod_memcg_page_state(vm->pages[i],
409 					     MEMCG_KERNEL_STACK_KB,
410 					     PAGE_SIZE / 1024);
411 		}
412 	}
413 #endif
414 	return 0;
415 }
416 
417 static void release_task_stack(struct task_struct *tsk)
418 {
419 	if (WARN_ON(tsk->state != TASK_DEAD))
420 		return;  /* Better to leak the stack than to free prematurely */
421 
422 	account_kernel_stack(tsk, -1);
423 	free_thread_stack(tsk);
424 	tsk->stack = NULL;
425 #ifdef CONFIG_VMAP_STACK
426 	tsk->stack_vm_area = NULL;
427 #endif
428 }
429 
430 #ifdef CONFIG_THREAD_INFO_IN_TASK
431 void put_task_stack(struct task_struct *tsk)
432 {
433 	if (refcount_dec_and_test(&tsk->stack_refcount))
434 		release_task_stack(tsk);
435 }
436 #endif
437 
438 void free_task(struct task_struct *tsk)
439 {
440 #ifndef CONFIG_THREAD_INFO_IN_TASK
441 	/*
442 	 * The task is finally done with both the stack and thread_info,
443 	 * so free both.
444 	 */
445 	release_task_stack(tsk);
446 #else
447 	/*
448 	 * If the task had a separate stack allocation, it should be gone
449 	 * by now.
450 	 */
451 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
452 #endif
453 	rt_mutex_debug_task_free(tsk);
454 	ftrace_graph_exit_task(tsk);
455 	put_seccomp_filter(tsk);
456 	arch_release_task_struct(tsk);
457 	if (tsk->flags & PF_KTHREAD)
458 		free_kthread_struct(tsk);
459 	free_task_struct(tsk);
460 }
461 EXPORT_SYMBOL(free_task);
462 
463 #ifdef CONFIG_MMU
464 static __latent_entropy int dup_mmap(struct mm_struct *mm,
465 					struct mm_struct *oldmm)
466 {
467 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
468 	struct rb_node **rb_link, *rb_parent;
469 	int retval;
470 	unsigned long charge;
471 	LIST_HEAD(uf);
472 
473 	uprobe_start_dup_mmap();
474 	if (down_write_killable(&oldmm->mmap_sem)) {
475 		retval = -EINTR;
476 		goto fail_uprobe_end;
477 	}
478 	flush_cache_dup_mm(oldmm);
479 	uprobe_dup_mmap(oldmm, mm);
480 	/*
481 	 * Not linked in yet - no deadlock potential:
482 	 */
483 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
484 
485 	/* No ordering required: file already has been exposed. */
486 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
487 
488 	mm->total_vm = oldmm->total_vm;
489 	mm->data_vm = oldmm->data_vm;
490 	mm->exec_vm = oldmm->exec_vm;
491 	mm->stack_vm = oldmm->stack_vm;
492 
493 	rb_link = &mm->mm_rb.rb_node;
494 	rb_parent = NULL;
495 	pprev = &mm->mmap;
496 	retval = ksm_fork(mm, oldmm);
497 	if (retval)
498 		goto out;
499 	retval = khugepaged_fork(mm, oldmm);
500 	if (retval)
501 		goto out;
502 
503 	prev = NULL;
504 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
505 		struct file *file;
506 
507 		if (mpnt->vm_flags & VM_DONTCOPY) {
508 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
509 			continue;
510 		}
511 		charge = 0;
512 		/*
513 		 * Don't duplicate many vmas if we've been oom-killed (for
514 		 * example)
515 		 */
516 		if (fatal_signal_pending(current)) {
517 			retval = -EINTR;
518 			goto out;
519 		}
520 		if (mpnt->vm_flags & VM_ACCOUNT) {
521 			unsigned long len = vma_pages(mpnt);
522 
523 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
524 				goto fail_nomem;
525 			charge = len;
526 		}
527 		tmp = vm_area_dup(mpnt);
528 		if (!tmp)
529 			goto fail_nomem;
530 		retval = vma_dup_policy(mpnt, tmp);
531 		if (retval)
532 			goto fail_nomem_policy;
533 		tmp->vm_mm = mm;
534 		retval = dup_userfaultfd(tmp, &uf);
535 		if (retval)
536 			goto fail_nomem_anon_vma_fork;
537 		if (tmp->vm_flags & VM_WIPEONFORK) {
538 			/* VM_WIPEONFORK gets a clean slate in the child. */
539 			tmp->anon_vma = NULL;
540 			if (anon_vma_prepare(tmp))
541 				goto fail_nomem_anon_vma_fork;
542 		} else if (anon_vma_fork(tmp, mpnt))
543 			goto fail_nomem_anon_vma_fork;
544 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
545 		tmp->vm_next = tmp->vm_prev = NULL;
546 		file = tmp->vm_file;
547 		if (file) {
548 			struct inode *inode = file_inode(file);
549 			struct address_space *mapping = file->f_mapping;
550 
551 			get_file(file);
552 			if (tmp->vm_flags & VM_DENYWRITE)
553 				atomic_dec(&inode->i_writecount);
554 			i_mmap_lock_write(mapping);
555 			if (tmp->vm_flags & VM_SHARED)
556 				atomic_inc(&mapping->i_mmap_writable);
557 			flush_dcache_mmap_lock(mapping);
558 			/* insert tmp into the share list, just after mpnt */
559 			vma_interval_tree_insert_after(tmp, mpnt,
560 					&mapping->i_mmap);
561 			flush_dcache_mmap_unlock(mapping);
562 			i_mmap_unlock_write(mapping);
563 		}
564 
565 		/*
566 		 * Clear hugetlb-related page reserves for children. This only
567 		 * affects MAP_PRIVATE mappings. Faults generated by the child
568 		 * are not guaranteed to succeed, even if read-only
569 		 */
570 		if (is_vm_hugetlb_page(tmp))
571 			reset_vma_resv_huge_pages(tmp);
572 
573 		/*
574 		 * Link in the new vma and copy the page table entries.
575 		 */
576 		*pprev = tmp;
577 		pprev = &tmp->vm_next;
578 		tmp->vm_prev = prev;
579 		prev = tmp;
580 
581 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
582 		rb_link = &tmp->vm_rb.rb_right;
583 		rb_parent = &tmp->vm_rb;
584 
585 		mm->map_count++;
586 		if (!(tmp->vm_flags & VM_WIPEONFORK))
587 			retval = copy_page_range(mm, oldmm, mpnt);
588 
589 		if (tmp->vm_ops && tmp->vm_ops->open)
590 			tmp->vm_ops->open(tmp);
591 
592 		if (retval)
593 			goto out;
594 	}
595 	/* a new mm has just been created */
596 	retval = arch_dup_mmap(oldmm, mm);
597 out:
598 	up_write(&mm->mmap_sem);
599 	flush_tlb_mm(oldmm);
600 	up_write(&oldmm->mmap_sem);
601 	dup_userfaultfd_complete(&uf);
602 fail_uprobe_end:
603 	uprobe_end_dup_mmap();
604 	return retval;
605 fail_nomem_anon_vma_fork:
606 	mpol_put(vma_policy(tmp));
607 fail_nomem_policy:
608 	vm_area_free(tmp);
609 fail_nomem:
610 	retval = -ENOMEM;
611 	vm_unacct_memory(charge);
612 	goto out;
613 }
614 
615 static inline int mm_alloc_pgd(struct mm_struct *mm)
616 {
617 	mm->pgd = pgd_alloc(mm);
618 	if (unlikely(!mm->pgd))
619 		return -ENOMEM;
620 	return 0;
621 }
622 
623 static inline void mm_free_pgd(struct mm_struct *mm)
624 {
625 	pgd_free(mm, mm->pgd);
626 }
627 #else
628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
629 {
630 	down_write(&oldmm->mmap_sem);
631 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
632 	up_write(&oldmm->mmap_sem);
633 	return 0;
634 }
635 #define mm_alloc_pgd(mm)	(0)
636 #define mm_free_pgd(mm)
637 #endif /* CONFIG_MMU */
638 
639 static void check_mm(struct mm_struct *mm)
640 {
641 	int i;
642 
643 	for (i = 0; i < NR_MM_COUNTERS; i++) {
644 		long x = atomic_long_read(&mm->rss_stat.count[i]);
645 
646 		if (unlikely(x))
647 			printk(KERN_ALERT "BUG: Bad rss-counter state "
648 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
649 	}
650 
651 	if (mm_pgtables_bytes(mm))
652 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
653 				mm_pgtables_bytes(mm));
654 
655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
656 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
657 #endif
658 }
659 
660 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
661 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
662 
663 /*
664  * Called when the last reference to the mm
665  * is dropped: either by a lazy thread or by
666  * mmput. Free the page directory and the mm.
667  */
668 void __mmdrop(struct mm_struct *mm)
669 {
670 	BUG_ON(mm == &init_mm);
671 	WARN_ON_ONCE(mm == current->mm);
672 	WARN_ON_ONCE(mm == current->active_mm);
673 	mm_free_pgd(mm);
674 	destroy_context(mm);
675 	hmm_mm_destroy(mm);
676 	mmu_notifier_mm_destroy(mm);
677 	check_mm(mm);
678 	put_user_ns(mm->user_ns);
679 	free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682 
683 static void mmdrop_async_fn(struct work_struct *work)
684 {
685 	struct mm_struct *mm;
686 
687 	mm = container_of(work, struct mm_struct, async_put_work);
688 	__mmdrop(mm);
689 }
690 
691 static void mmdrop_async(struct mm_struct *mm)
692 {
693 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
694 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
695 		schedule_work(&mm->async_put_work);
696 	}
697 }
698 
699 static inline void free_signal_struct(struct signal_struct *sig)
700 {
701 	taskstats_tgid_free(sig);
702 	sched_autogroup_exit(sig);
703 	/*
704 	 * __mmdrop is not safe to call from softirq context on x86 due to
705 	 * pgd_dtor so postpone it to the async context
706 	 */
707 	if (sig->oom_mm)
708 		mmdrop_async(sig->oom_mm);
709 	kmem_cache_free(signal_cachep, sig);
710 }
711 
712 static inline void put_signal_struct(struct signal_struct *sig)
713 {
714 	if (refcount_dec_and_test(&sig->sigcnt))
715 		free_signal_struct(sig);
716 }
717 
718 void __put_task_struct(struct task_struct *tsk)
719 {
720 	WARN_ON(!tsk->exit_state);
721 	WARN_ON(refcount_read(&tsk->usage));
722 	WARN_ON(tsk == current);
723 
724 	cgroup_free(tsk);
725 	task_numa_free(tsk);
726 	security_task_free(tsk);
727 	exit_creds(tsk);
728 	delayacct_tsk_free(tsk);
729 	put_signal_struct(tsk->signal);
730 
731 	if (!profile_handoff_task(tsk))
732 		free_task(tsk);
733 }
734 EXPORT_SYMBOL_GPL(__put_task_struct);
735 
736 void __init __weak arch_task_cache_init(void) { }
737 
738 /*
739  * set_max_threads
740  */
741 static void set_max_threads(unsigned int max_threads_suggested)
742 {
743 	u64 threads;
744 	unsigned long nr_pages = totalram_pages();
745 
746 	/*
747 	 * The number of threads shall be limited such that the thread
748 	 * structures may only consume a small part of the available memory.
749 	 */
750 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
751 		threads = MAX_THREADS;
752 	else
753 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
754 				    (u64) THREAD_SIZE * 8UL);
755 
756 	if (threads > max_threads_suggested)
757 		threads = max_threads_suggested;
758 
759 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
760 }
761 
762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
763 /* Initialized by the architecture: */
764 int arch_task_struct_size __read_mostly;
765 #endif
766 
767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
768 {
769 	/* Fetch thread_struct whitelist for the architecture. */
770 	arch_thread_struct_whitelist(offset, size);
771 
772 	/*
773 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
774 	 * adjust offset to position of thread_struct in task_struct.
775 	 */
776 	if (unlikely(*size == 0))
777 		*offset = 0;
778 	else
779 		*offset += offsetof(struct task_struct, thread);
780 }
781 
782 void __init fork_init(void)
783 {
784 	int i;
785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
786 #ifndef ARCH_MIN_TASKALIGN
787 #define ARCH_MIN_TASKALIGN	0
788 #endif
789 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
790 	unsigned long useroffset, usersize;
791 
792 	/* create a slab on which task_structs can be allocated */
793 	task_struct_whitelist(&useroffset, &usersize);
794 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
795 			arch_task_struct_size, align,
796 			SLAB_PANIC|SLAB_ACCOUNT,
797 			useroffset, usersize, NULL);
798 #endif
799 
800 	/* do the arch specific task caches init */
801 	arch_task_cache_init();
802 
803 	set_max_threads(MAX_THREADS);
804 
805 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
806 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
807 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
808 		init_task.signal->rlim[RLIMIT_NPROC];
809 
810 	for (i = 0; i < UCOUNT_COUNTS; i++) {
811 		init_user_ns.ucount_max[i] = max_threads/2;
812 	}
813 
814 #ifdef CONFIG_VMAP_STACK
815 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
816 			  NULL, free_vm_stack_cache);
817 #endif
818 
819 	lockdep_init_task(&init_task);
820 	uprobes_init();
821 }
822 
823 int __weak arch_dup_task_struct(struct task_struct *dst,
824 					       struct task_struct *src)
825 {
826 	*dst = *src;
827 	return 0;
828 }
829 
830 void set_task_stack_end_magic(struct task_struct *tsk)
831 {
832 	unsigned long *stackend;
833 
834 	stackend = end_of_stack(tsk);
835 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
836 }
837 
838 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
839 {
840 	struct task_struct *tsk;
841 	unsigned long *stack;
842 	struct vm_struct *stack_vm_area __maybe_unused;
843 	int err;
844 
845 	if (node == NUMA_NO_NODE)
846 		node = tsk_fork_get_node(orig);
847 	tsk = alloc_task_struct_node(node);
848 	if (!tsk)
849 		return NULL;
850 
851 	stack = alloc_thread_stack_node(tsk, node);
852 	if (!stack)
853 		goto free_tsk;
854 
855 	if (memcg_charge_kernel_stack(tsk))
856 		goto free_stack;
857 
858 	stack_vm_area = task_stack_vm_area(tsk);
859 
860 	err = arch_dup_task_struct(tsk, orig);
861 
862 	/*
863 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
864 	 * sure they're properly initialized before using any stack-related
865 	 * functions again.
866 	 */
867 	tsk->stack = stack;
868 #ifdef CONFIG_VMAP_STACK
869 	tsk->stack_vm_area = stack_vm_area;
870 #endif
871 #ifdef CONFIG_THREAD_INFO_IN_TASK
872 	refcount_set(&tsk->stack_refcount, 1);
873 #endif
874 
875 	if (err)
876 		goto free_stack;
877 
878 #ifdef CONFIG_SECCOMP
879 	/*
880 	 * We must handle setting up seccomp filters once we're under
881 	 * the sighand lock in case orig has changed between now and
882 	 * then. Until then, filter must be NULL to avoid messing up
883 	 * the usage counts on the error path calling free_task.
884 	 */
885 	tsk->seccomp.filter = NULL;
886 #endif
887 
888 	setup_thread_stack(tsk, orig);
889 	clear_user_return_notifier(tsk);
890 	clear_tsk_need_resched(tsk);
891 	set_task_stack_end_magic(tsk);
892 
893 #ifdef CONFIG_STACKPROTECTOR
894 	tsk->stack_canary = get_random_canary();
895 #endif
896 
897 	/*
898 	 * One for us, one for whoever does the "release_task()" (usually
899 	 * parent)
900 	 */
901 	refcount_set(&tsk->usage, 2);
902 #ifdef CONFIG_BLK_DEV_IO_TRACE
903 	tsk->btrace_seq = 0;
904 #endif
905 	tsk->splice_pipe = NULL;
906 	tsk->task_frag.page = NULL;
907 	tsk->wake_q.next = NULL;
908 
909 	account_kernel_stack(tsk, 1);
910 
911 	kcov_task_init(tsk);
912 
913 #ifdef CONFIG_FAULT_INJECTION
914 	tsk->fail_nth = 0;
915 #endif
916 
917 #ifdef CONFIG_BLK_CGROUP
918 	tsk->throttle_queue = NULL;
919 	tsk->use_memdelay = 0;
920 #endif
921 
922 #ifdef CONFIG_MEMCG
923 	tsk->active_memcg = NULL;
924 #endif
925 	return tsk;
926 
927 free_stack:
928 	free_thread_stack(tsk);
929 free_tsk:
930 	free_task_struct(tsk);
931 	return NULL;
932 }
933 
934 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
935 
936 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
937 
938 static int __init coredump_filter_setup(char *s)
939 {
940 	default_dump_filter =
941 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
942 		MMF_DUMP_FILTER_MASK;
943 	return 1;
944 }
945 
946 __setup("coredump_filter=", coredump_filter_setup);
947 
948 #include <linux/init_task.h>
949 
950 static void mm_init_aio(struct mm_struct *mm)
951 {
952 #ifdef CONFIG_AIO
953 	spin_lock_init(&mm->ioctx_lock);
954 	mm->ioctx_table = NULL;
955 #endif
956 }
957 
958 static __always_inline void mm_clear_owner(struct mm_struct *mm,
959 					   struct task_struct *p)
960 {
961 #ifdef CONFIG_MEMCG
962 	if (mm->owner == p)
963 		WRITE_ONCE(mm->owner, NULL);
964 #endif
965 }
966 
967 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
968 {
969 #ifdef CONFIG_MEMCG
970 	mm->owner = p;
971 #endif
972 }
973 
974 static void mm_init_uprobes_state(struct mm_struct *mm)
975 {
976 #ifdef CONFIG_UPROBES
977 	mm->uprobes_state.xol_area = NULL;
978 #endif
979 }
980 
981 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
982 	struct user_namespace *user_ns)
983 {
984 	mm->mmap = NULL;
985 	mm->mm_rb = RB_ROOT;
986 	mm->vmacache_seqnum = 0;
987 	atomic_set(&mm->mm_users, 1);
988 	atomic_set(&mm->mm_count, 1);
989 	init_rwsem(&mm->mmap_sem);
990 	INIT_LIST_HEAD(&mm->mmlist);
991 	mm->core_state = NULL;
992 	mm_pgtables_bytes_init(mm);
993 	mm->map_count = 0;
994 	mm->locked_vm = 0;
995 	atomic64_set(&mm->pinned_vm, 0);
996 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
997 	spin_lock_init(&mm->page_table_lock);
998 	spin_lock_init(&mm->arg_lock);
999 	mm_init_cpumask(mm);
1000 	mm_init_aio(mm);
1001 	mm_init_owner(mm, p);
1002 	RCU_INIT_POINTER(mm->exe_file, NULL);
1003 	mmu_notifier_mm_init(mm);
1004 	hmm_mm_init(mm);
1005 	init_tlb_flush_pending(mm);
1006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1007 	mm->pmd_huge_pte = NULL;
1008 #endif
1009 	mm_init_uprobes_state(mm);
1010 
1011 	if (current->mm) {
1012 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1013 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1014 	} else {
1015 		mm->flags = default_dump_filter;
1016 		mm->def_flags = 0;
1017 	}
1018 
1019 	if (mm_alloc_pgd(mm))
1020 		goto fail_nopgd;
1021 
1022 	if (init_new_context(p, mm))
1023 		goto fail_nocontext;
1024 
1025 	mm->user_ns = get_user_ns(user_ns);
1026 	return mm;
1027 
1028 fail_nocontext:
1029 	mm_free_pgd(mm);
1030 fail_nopgd:
1031 	free_mm(mm);
1032 	return NULL;
1033 }
1034 
1035 /*
1036  * Allocate and initialize an mm_struct.
1037  */
1038 struct mm_struct *mm_alloc(void)
1039 {
1040 	struct mm_struct *mm;
1041 
1042 	mm = allocate_mm();
1043 	if (!mm)
1044 		return NULL;
1045 
1046 	memset(mm, 0, sizeof(*mm));
1047 	return mm_init(mm, current, current_user_ns());
1048 }
1049 
1050 static inline void __mmput(struct mm_struct *mm)
1051 {
1052 	VM_BUG_ON(atomic_read(&mm->mm_users));
1053 
1054 	uprobe_clear_state(mm);
1055 	exit_aio(mm);
1056 	ksm_exit(mm);
1057 	khugepaged_exit(mm); /* must run before exit_mmap */
1058 	exit_mmap(mm);
1059 	mm_put_huge_zero_page(mm);
1060 	set_mm_exe_file(mm, NULL);
1061 	if (!list_empty(&mm->mmlist)) {
1062 		spin_lock(&mmlist_lock);
1063 		list_del(&mm->mmlist);
1064 		spin_unlock(&mmlist_lock);
1065 	}
1066 	if (mm->binfmt)
1067 		module_put(mm->binfmt->module);
1068 	mmdrop(mm);
1069 }
1070 
1071 /*
1072  * Decrement the use count and release all resources for an mm.
1073  */
1074 void mmput(struct mm_struct *mm)
1075 {
1076 	might_sleep();
1077 
1078 	if (atomic_dec_and_test(&mm->mm_users))
1079 		__mmput(mm);
1080 }
1081 EXPORT_SYMBOL_GPL(mmput);
1082 
1083 #ifdef CONFIG_MMU
1084 static void mmput_async_fn(struct work_struct *work)
1085 {
1086 	struct mm_struct *mm = container_of(work, struct mm_struct,
1087 					    async_put_work);
1088 
1089 	__mmput(mm);
1090 }
1091 
1092 void mmput_async(struct mm_struct *mm)
1093 {
1094 	if (atomic_dec_and_test(&mm->mm_users)) {
1095 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1096 		schedule_work(&mm->async_put_work);
1097 	}
1098 }
1099 #endif
1100 
1101 /**
1102  * set_mm_exe_file - change a reference to the mm's executable file
1103  *
1104  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1105  *
1106  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1107  * invocations: in mmput() nobody alive left, in execve task is single
1108  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1109  * mm->exe_file, but does so without using set_mm_exe_file() in order
1110  * to do avoid the need for any locks.
1111  */
1112 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1113 {
1114 	struct file *old_exe_file;
1115 
1116 	/*
1117 	 * It is safe to dereference the exe_file without RCU as
1118 	 * this function is only called if nobody else can access
1119 	 * this mm -- see comment above for justification.
1120 	 */
1121 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1122 
1123 	if (new_exe_file)
1124 		get_file(new_exe_file);
1125 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1126 	if (old_exe_file)
1127 		fput(old_exe_file);
1128 }
1129 
1130 /**
1131  * get_mm_exe_file - acquire a reference to the mm's executable file
1132  *
1133  * Returns %NULL if mm has no associated executable file.
1134  * User must release file via fput().
1135  */
1136 struct file *get_mm_exe_file(struct mm_struct *mm)
1137 {
1138 	struct file *exe_file;
1139 
1140 	rcu_read_lock();
1141 	exe_file = rcu_dereference(mm->exe_file);
1142 	if (exe_file && !get_file_rcu(exe_file))
1143 		exe_file = NULL;
1144 	rcu_read_unlock();
1145 	return exe_file;
1146 }
1147 EXPORT_SYMBOL(get_mm_exe_file);
1148 
1149 /**
1150  * get_task_exe_file - acquire a reference to the task's executable file
1151  *
1152  * Returns %NULL if task's mm (if any) has no associated executable file or
1153  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1154  * User must release file via fput().
1155  */
1156 struct file *get_task_exe_file(struct task_struct *task)
1157 {
1158 	struct file *exe_file = NULL;
1159 	struct mm_struct *mm;
1160 
1161 	task_lock(task);
1162 	mm = task->mm;
1163 	if (mm) {
1164 		if (!(task->flags & PF_KTHREAD))
1165 			exe_file = get_mm_exe_file(mm);
1166 	}
1167 	task_unlock(task);
1168 	return exe_file;
1169 }
1170 EXPORT_SYMBOL(get_task_exe_file);
1171 
1172 /**
1173  * get_task_mm - acquire a reference to the task's mm
1174  *
1175  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1176  * this kernel workthread has transiently adopted a user mm with use_mm,
1177  * to do its AIO) is not set and if so returns a reference to it, after
1178  * bumping up the use count.  User must release the mm via mmput()
1179  * after use.  Typically used by /proc and ptrace.
1180  */
1181 struct mm_struct *get_task_mm(struct task_struct *task)
1182 {
1183 	struct mm_struct *mm;
1184 
1185 	task_lock(task);
1186 	mm = task->mm;
1187 	if (mm) {
1188 		if (task->flags & PF_KTHREAD)
1189 			mm = NULL;
1190 		else
1191 			mmget(mm);
1192 	}
1193 	task_unlock(task);
1194 	return mm;
1195 }
1196 EXPORT_SYMBOL_GPL(get_task_mm);
1197 
1198 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1199 {
1200 	struct mm_struct *mm;
1201 	int err;
1202 
1203 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1204 	if (err)
1205 		return ERR_PTR(err);
1206 
1207 	mm = get_task_mm(task);
1208 	if (mm && mm != current->mm &&
1209 			!ptrace_may_access(task, mode)) {
1210 		mmput(mm);
1211 		mm = ERR_PTR(-EACCES);
1212 	}
1213 	mutex_unlock(&task->signal->cred_guard_mutex);
1214 
1215 	return mm;
1216 }
1217 
1218 static void complete_vfork_done(struct task_struct *tsk)
1219 {
1220 	struct completion *vfork;
1221 
1222 	task_lock(tsk);
1223 	vfork = tsk->vfork_done;
1224 	if (likely(vfork)) {
1225 		tsk->vfork_done = NULL;
1226 		complete(vfork);
1227 	}
1228 	task_unlock(tsk);
1229 }
1230 
1231 static int wait_for_vfork_done(struct task_struct *child,
1232 				struct completion *vfork)
1233 {
1234 	int killed;
1235 
1236 	freezer_do_not_count();
1237 	cgroup_enter_frozen();
1238 	killed = wait_for_completion_killable(vfork);
1239 	cgroup_leave_frozen(false);
1240 	freezer_count();
1241 
1242 	if (killed) {
1243 		task_lock(child);
1244 		child->vfork_done = NULL;
1245 		task_unlock(child);
1246 	}
1247 
1248 	put_task_struct(child);
1249 	return killed;
1250 }
1251 
1252 /* Please note the differences between mmput and mm_release.
1253  * mmput is called whenever we stop holding onto a mm_struct,
1254  * error success whatever.
1255  *
1256  * mm_release is called after a mm_struct has been removed
1257  * from the current process.
1258  *
1259  * This difference is important for error handling, when we
1260  * only half set up a mm_struct for a new process and need to restore
1261  * the old one.  Because we mmput the new mm_struct before
1262  * restoring the old one. . .
1263  * Eric Biederman 10 January 1998
1264  */
1265 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1266 {
1267 	/* Get rid of any futexes when releasing the mm */
1268 #ifdef CONFIG_FUTEX
1269 	if (unlikely(tsk->robust_list)) {
1270 		exit_robust_list(tsk);
1271 		tsk->robust_list = NULL;
1272 	}
1273 #ifdef CONFIG_COMPAT
1274 	if (unlikely(tsk->compat_robust_list)) {
1275 		compat_exit_robust_list(tsk);
1276 		tsk->compat_robust_list = NULL;
1277 	}
1278 #endif
1279 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1280 		exit_pi_state_list(tsk);
1281 #endif
1282 
1283 	uprobe_free_utask(tsk);
1284 
1285 	/* Get rid of any cached register state */
1286 	deactivate_mm(tsk, mm);
1287 
1288 	/*
1289 	 * Signal userspace if we're not exiting with a core dump
1290 	 * because we want to leave the value intact for debugging
1291 	 * purposes.
1292 	 */
1293 	if (tsk->clear_child_tid) {
1294 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1295 		    atomic_read(&mm->mm_users) > 1) {
1296 			/*
1297 			 * We don't check the error code - if userspace has
1298 			 * not set up a proper pointer then tough luck.
1299 			 */
1300 			put_user(0, tsk->clear_child_tid);
1301 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1302 					1, NULL, NULL, 0, 0);
1303 		}
1304 		tsk->clear_child_tid = NULL;
1305 	}
1306 
1307 	/*
1308 	 * All done, finally we can wake up parent and return this mm to him.
1309 	 * Also kthread_stop() uses this completion for synchronization.
1310 	 */
1311 	if (tsk->vfork_done)
1312 		complete_vfork_done(tsk);
1313 }
1314 
1315 /**
1316  * dup_mm() - duplicates an existing mm structure
1317  * @tsk: the task_struct with which the new mm will be associated.
1318  * @oldmm: the mm to duplicate.
1319  *
1320  * Allocates a new mm structure and duplicates the provided @oldmm structure
1321  * content into it.
1322  *
1323  * Return: the duplicated mm or NULL on failure.
1324  */
1325 static struct mm_struct *dup_mm(struct task_struct *tsk,
1326 				struct mm_struct *oldmm)
1327 {
1328 	struct mm_struct *mm;
1329 	int err;
1330 
1331 	mm = allocate_mm();
1332 	if (!mm)
1333 		goto fail_nomem;
1334 
1335 	memcpy(mm, oldmm, sizeof(*mm));
1336 
1337 	if (!mm_init(mm, tsk, mm->user_ns))
1338 		goto fail_nomem;
1339 
1340 	err = dup_mmap(mm, oldmm);
1341 	if (err)
1342 		goto free_pt;
1343 
1344 	mm->hiwater_rss = get_mm_rss(mm);
1345 	mm->hiwater_vm = mm->total_vm;
1346 
1347 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1348 		goto free_pt;
1349 
1350 	return mm;
1351 
1352 free_pt:
1353 	/* don't put binfmt in mmput, we haven't got module yet */
1354 	mm->binfmt = NULL;
1355 	mm_init_owner(mm, NULL);
1356 	mmput(mm);
1357 
1358 fail_nomem:
1359 	return NULL;
1360 }
1361 
1362 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1363 {
1364 	struct mm_struct *mm, *oldmm;
1365 	int retval;
1366 
1367 	tsk->min_flt = tsk->maj_flt = 0;
1368 	tsk->nvcsw = tsk->nivcsw = 0;
1369 #ifdef CONFIG_DETECT_HUNG_TASK
1370 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1371 	tsk->last_switch_time = 0;
1372 #endif
1373 
1374 	tsk->mm = NULL;
1375 	tsk->active_mm = NULL;
1376 
1377 	/*
1378 	 * Are we cloning a kernel thread?
1379 	 *
1380 	 * We need to steal a active VM for that..
1381 	 */
1382 	oldmm = current->mm;
1383 	if (!oldmm)
1384 		return 0;
1385 
1386 	/* initialize the new vmacache entries */
1387 	vmacache_flush(tsk);
1388 
1389 	if (clone_flags & CLONE_VM) {
1390 		mmget(oldmm);
1391 		mm = oldmm;
1392 		goto good_mm;
1393 	}
1394 
1395 	retval = -ENOMEM;
1396 	mm = dup_mm(tsk, current->mm);
1397 	if (!mm)
1398 		goto fail_nomem;
1399 
1400 good_mm:
1401 	tsk->mm = mm;
1402 	tsk->active_mm = mm;
1403 	return 0;
1404 
1405 fail_nomem:
1406 	return retval;
1407 }
1408 
1409 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1410 {
1411 	struct fs_struct *fs = current->fs;
1412 	if (clone_flags & CLONE_FS) {
1413 		/* tsk->fs is already what we want */
1414 		spin_lock(&fs->lock);
1415 		if (fs->in_exec) {
1416 			spin_unlock(&fs->lock);
1417 			return -EAGAIN;
1418 		}
1419 		fs->users++;
1420 		spin_unlock(&fs->lock);
1421 		return 0;
1422 	}
1423 	tsk->fs = copy_fs_struct(fs);
1424 	if (!tsk->fs)
1425 		return -ENOMEM;
1426 	return 0;
1427 }
1428 
1429 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1430 {
1431 	struct files_struct *oldf, *newf;
1432 	int error = 0;
1433 
1434 	/*
1435 	 * A background process may not have any files ...
1436 	 */
1437 	oldf = current->files;
1438 	if (!oldf)
1439 		goto out;
1440 
1441 	if (clone_flags & CLONE_FILES) {
1442 		atomic_inc(&oldf->count);
1443 		goto out;
1444 	}
1445 
1446 	newf = dup_fd(oldf, &error);
1447 	if (!newf)
1448 		goto out;
1449 
1450 	tsk->files = newf;
1451 	error = 0;
1452 out:
1453 	return error;
1454 }
1455 
1456 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1457 {
1458 #ifdef CONFIG_BLOCK
1459 	struct io_context *ioc = current->io_context;
1460 	struct io_context *new_ioc;
1461 
1462 	if (!ioc)
1463 		return 0;
1464 	/*
1465 	 * Share io context with parent, if CLONE_IO is set
1466 	 */
1467 	if (clone_flags & CLONE_IO) {
1468 		ioc_task_link(ioc);
1469 		tsk->io_context = ioc;
1470 	} else if (ioprio_valid(ioc->ioprio)) {
1471 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1472 		if (unlikely(!new_ioc))
1473 			return -ENOMEM;
1474 
1475 		new_ioc->ioprio = ioc->ioprio;
1476 		put_io_context(new_ioc);
1477 	}
1478 #endif
1479 	return 0;
1480 }
1481 
1482 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1483 {
1484 	struct sighand_struct *sig;
1485 
1486 	if (clone_flags & CLONE_SIGHAND) {
1487 		refcount_inc(&current->sighand->count);
1488 		return 0;
1489 	}
1490 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1491 	rcu_assign_pointer(tsk->sighand, sig);
1492 	if (!sig)
1493 		return -ENOMEM;
1494 
1495 	refcount_set(&sig->count, 1);
1496 	spin_lock_irq(&current->sighand->siglock);
1497 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1498 	spin_unlock_irq(&current->sighand->siglock);
1499 	return 0;
1500 }
1501 
1502 void __cleanup_sighand(struct sighand_struct *sighand)
1503 {
1504 	if (refcount_dec_and_test(&sighand->count)) {
1505 		signalfd_cleanup(sighand);
1506 		/*
1507 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1508 		 * without an RCU grace period, see __lock_task_sighand().
1509 		 */
1510 		kmem_cache_free(sighand_cachep, sighand);
1511 	}
1512 }
1513 
1514 #ifdef CONFIG_POSIX_TIMERS
1515 /*
1516  * Initialize POSIX timer handling for a thread group.
1517  */
1518 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1519 {
1520 	unsigned long cpu_limit;
1521 
1522 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1523 	if (cpu_limit != RLIM_INFINITY) {
1524 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1525 		sig->cputimer.running = true;
1526 	}
1527 
1528 	/* The timer lists. */
1529 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1530 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1531 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1532 }
1533 #else
1534 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1535 #endif
1536 
1537 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1538 {
1539 	struct signal_struct *sig;
1540 
1541 	if (clone_flags & CLONE_THREAD)
1542 		return 0;
1543 
1544 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1545 	tsk->signal = sig;
1546 	if (!sig)
1547 		return -ENOMEM;
1548 
1549 	sig->nr_threads = 1;
1550 	atomic_set(&sig->live, 1);
1551 	refcount_set(&sig->sigcnt, 1);
1552 
1553 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1554 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1555 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1556 
1557 	init_waitqueue_head(&sig->wait_chldexit);
1558 	sig->curr_target = tsk;
1559 	init_sigpending(&sig->shared_pending);
1560 	INIT_HLIST_HEAD(&sig->multiprocess);
1561 	seqlock_init(&sig->stats_lock);
1562 	prev_cputime_init(&sig->prev_cputime);
1563 
1564 #ifdef CONFIG_POSIX_TIMERS
1565 	INIT_LIST_HEAD(&sig->posix_timers);
1566 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1567 	sig->real_timer.function = it_real_fn;
1568 #endif
1569 
1570 	task_lock(current->group_leader);
1571 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1572 	task_unlock(current->group_leader);
1573 
1574 	posix_cpu_timers_init_group(sig);
1575 
1576 	tty_audit_fork(sig);
1577 	sched_autogroup_fork(sig);
1578 
1579 	sig->oom_score_adj = current->signal->oom_score_adj;
1580 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1581 
1582 	mutex_init(&sig->cred_guard_mutex);
1583 
1584 	return 0;
1585 }
1586 
1587 static void copy_seccomp(struct task_struct *p)
1588 {
1589 #ifdef CONFIG_SECCOMP
1590 	/*
1591 	 * Must be called with sighand->lock held, which is common to
1592 	 * all threads in the group. Holding cred_guard_mutex is not
1593 	 * needed because this new task is not yet running and cannot
1594 	 * be racing exec.
1595 	 */
1596 	assert_spin_locked(&current->sighand->siglock);
1597 
1598 	/* Ref-count the new filter user, and assign it. */
1599 	get_seccomp_filter(current);
1600 	p->seccomp = current->seccomp;
1601 
1602 	/*
1603 	 * Explicitly enable no_new_privs here in case it got set
1604 	 * between the task_struct being duplicated and holding the
1605 	 * sighand lock. The seccomp state and nnp must be in sync.
1606 	 */
1607 	if (task_no_new_privs(current))
1608 		task_set_no_new_privs(p);
1609 
1610 	/*
1611 	 * If the parent gained a seccomp mode after copying thread
1612 	 * flags and between before we held the sighand lock, we have
1613 	 * to manually enable the seccomp thread flag here.
1614 	 */
1615 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1616 		set_tsk_thread_flag(p, TIF_SECCOMP);
1617 #endif
1618 }
1619 
1620 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1621 {
1622 	current->clear_child_tid = tidptr;
1623 
1624 	return task_pid_vnr(current);
1625 }
1626 
1627 static void rt_mutex_init_task(struct task_struct *p)
1628 {
1629 	raw_spin_lock_init(&p->pi_lock);
1630 #ifdef CONFIG_RT_MUTEXES
1631 	p->pi_waiters = RB_ROOT_CACHED;
1632 	p->pi_top_task = NULL;
1633 	p->pi_blocked_on = NULL;
1634 #endif
1635 }
1636 
1637 #ifdef CONFIG_POSIX_TIMERS
1638 /*
1639  * Initialize POSIX timer handling for a single task.
1640  */
1641 static void posix_cpu_timers_init(struct task_struct *tsk)
1642 {
1643 	tsk->cputime_expires.prof_exp = 0;
1644 	tsk->cputime_expires.virt_exp = 0;
1645 	tsk->cputime_expires.sched_exp = 0;
1646 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1647 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1648 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1649 }
1650 #else
1651 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1652 #endif
1653 
1654 static inline void init_task_pid_links(struct task_struct *task)
1655 {
1656 	enum pid_type type;
1657 
1658 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1659 		INIT_HLIST_NODE(&task->pid_links[type]);
1660 	}
1661 }
1662 
1663 static inline void
1664 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1665 {
1666 	if (type == PIDTYPE_PID)
1667 		task->thread_pid = pid;
1668 	else
1669 		task->signal->pids[type] = pid;
1670 }
1671 
1672 static inline void rcu_copy_process(struct task_struct *p)
1673 {
1674 #ifdef CONFIG_PREEMPT_RCU
1675 	p->rcu_read_lock_nesting = 0;
1676 	p->rcu_read_unlock_special.s = 0;
1677 	p->rcu_blocked_node = NULL;
1678 	INIT_LIST_HEAD(&p->rcu_node_entry);
1679 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1680 #ifdef CONFIG_TASKS_RCU
1681 	p->rcu_tasks_holdout = false;
1682 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1683 	p->rcu_tasks_idle_cpu = -1;
1684 #endif /* #ifdef CONFIG_TASKS_RCU */
1685 }
1686 
1687 static int pidfd_release(struct inode *inode, struct file *file)
1688 {
1689 	struct pid *pid = file->private_data;
1690 
1691 	file->private_data = NULL;
1692 	put_pid(pid);
1693 	return 0;
1694 }
1695 
1696 #ifdef CONFIG_PROC_FS
1697 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1698 {
1699 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1700 	struct pid *pid = f->private_data;
1701 
1702 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1703 	seq_putc(m, '\n');
1704 }
1705 #endif
1706 
1707 const struct file_operations pidfd_fops = {
1708 	.release = pidfd_release,
1709 #ifdef CONFIG_PROC_FS
1710 	.show_fdinfo = pidfd_show_fdinfo,
1711 #endif
1712 };
1713 
1714 /**
1715  * pidfd_create() - Create a new pid file descriptor.
1716  *
1717  * @pid:  struct pid that the pidfd will reference
1718  *
1719  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1720  *
1721  * Note, that this function can only be called after the fd table has
1722  * been unshared to avoid leaking the pidfd to the new process.
1723  *
1724  * Return: On success, a cloexec pidfd is returned.
1725  *         On error, a negative errno number will be returned.
1726  */
1727 static int pidfd_create(struct pid *pid)
1728 {
1729 	int fd;
1730 
1731 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1732 			      O_RDWR | O_CLOEXEC);
1733 	if (fd < 0)
1734 		put_pid(pid);
1735 
1736 	return fd;
1737 }
1738 
1739 static void __delayed_free_task(struct rcu_head *rhp)
1740 {
1741 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1742 
1743 	free_task(tsk);
1744 }
1745 
1746 static __always_inline void delayed_free_task(struct task_struct *tsk)
1747 {
1748 	if (IS_ENABLED(CONFIG_MEMCG))
1749 		call_rcu(&tsk->rcu, __delayed_free_task);
1750 	else
1751 		free_task(tsk);
1752 }
1753 
1754 /*
1755  * This creates a new process as a copy of the old one,
1756  * but does not actually start it yet.
1757  *
1758  * It copies the registers, and all the appropriate
1759  * parts of the process environment (as per the clone
1760  * flags). The actual kick-off is left to the caller.
1761  */
1762 static __latent_entropy struct task_struct *copy_process(
1763 					unsigned long clone_flags,
1764 					unsigned long stack_start,
1765 					unsigned long stack_size,
1766 					int __user *parent_tidptr,
1767 					int __user *child_tidptr,
1768 					struct pid *pid,
1769 					int trace,
1770 					unsigned long tls,
1771 					int node)
1772 {
1773 	int pidfd = -1, retval;
1774 	struct task_struct *p;
1775 	struct multiprocess_signals delayed;
1776 
1777 	/*
1778 	 * Don't allow sharing the root directory with processes in a different
1779 	 * namespace
1780 	 */
1781 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1782 		return ERR_PTR(-EINVAL);
1783 
1784 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1785 		return ERR_PTR(-EINVAL);
1786 
1787 	/*
1788 	 * Thread groups must share signals as well, and detached threads
1789 	 * can only be started up within the thread group.
1790 	 */
1791 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1792 		return ERR_PTR(-EINVAL);
1793 
1794 	/*
1795 	 * Shared signal handlers imply shared VM. By way of the above,
1796 	 * thread groups also imply shared VM. Blocking this case allows
1797 	 * for various simplifications in other code.
1798 	 */
1799 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1800 		return ERR_PTR(-EINVAL);
1801 
1802 	/*
1803 	 * Siblings of global init remain as zombies on exit since they are
1804 	 * not reaped by their parent (swapper). To solve this and to avoid
1805 	 * multi-rooted process trees, prevent global and container-inits
1806 	 * from creating siblings.
1807 	 */
1808 	if ((clone_flags & CLONE_PARENT) &&
1809 				current->signal->flags & SIGNAL_UNKILLABLE)
1810 		return ERR_PTR(-EINVAL);
1811 
1812 	/*
1813 	 * If the new process will be in a different pid or user namespace
1814 	 * do not allow it to share a thread group with the forking task.
1815 	 */
1816 	if (clone_flags & CLONE_THREAD) {
1817 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1818 		    (task_active_pid_ns(current) !=
1819 				current->nsproxy->pid_ns_for_children))
1820 			return ERR_PTR(-EINVAL);
1821 	}
1822 
1823 	if (clone_flags & CLONE_PIDFD) {
1824 		int reserved;
1825 
1826 		/*
1827 		 * - CLONE_PARENT_SETTID is useless for pidfds and also
1828 		 *   parent_tidptr is used to return pidfds.
1829 		 * - CLONE_DETACHED is blocked so that we can potentially
1830 		 *   reuse it later for CLONE_PIDFD.
1831 		 * - CLONE_THREAD is blocked until someone really needs it.
1832 		 */
1833 		if (clone_flags &
1834 		    (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1835 			return ERR_PTR(-EINVAL);
1836 
1837 		/*
1838 		 * Verify that parent_tidptr is sane so we can potentially
1839 		 * reuse it later.
1840 		 */
1841 		if (get_user(reserved, parent_tidptr))
1842 			return ERR_PTR(-EFAULT);
1843 
1844 		if (reserved != 0)
1845 			return ERR_PTR(-EINVAL);
1846 	}
1847 
1848 	/*
1849 	 * Force any signals received before this point to be delivered
1850 	 * before the fork happens.  Collect up signals sent to multiple
1851 	 * processes that happen during the fork and delay them so that
1852 	 * they appear to happen after the fork.
1853 	 */
1854 	sigemptyset(&delayed.signal);
1855 	INIT_HLIST_NODE(&delayed.node);
1856 
1857 	spin_lock_irq(&current->sighand->siglock);
1858 	if (!(clone_flags & CLONE_THREAD))
1859 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1860 	recalc_sigpending();
1861 	spin_unlock_irq(&current->sighand->siglock);
1862 	retval = -ERESTARTNOINTR;
1863 	if (signal_pending(current))
1864 		goto fork_out;
1865 
1866 	retval = -ENOMEM;
1867 	p = dup_task_struct(current, node);
1868 	if (!p)
1869 		goto fork_out;
1870 
1871 	/*
1872 	 * This _must_ happen before we call free_task(), i.e. before we jump
1873 	 * to any of the bad_fork_* labels. This is to avoid freeing
1874 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1875 	 * kernel threads (PF_KTHREAD).
1876 	 */
1877 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1878 	/*
1879 	 * Clear TID on mm_release()?
1880 	 */
1881 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1882 
1883 	ftrace_graph_init_task(p);
1884 
1885 	rt_mutex_init_task(p);
1886 
1887 #ifdef CONFIG_PROVE_LOCKING
1888 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1889 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1890 #endif
1891 	retval = -EAGAIN;
1892 	if (atomic_read(&p->real_cred->user->processes) >=
1893 			task_rlimit(p, RLIMIT_NPROC)) {
1894 		if (p->real_cred->user != INIT_USER &&
1895 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1896 			goto bad_fork_free;
1897 	}
1898 	current->flags &= ~PF_NPROC_EXCEEDED;
1899 
1900 	retval = copy_creds(p, clone_flags);
1901 	if (retval < 0)
1902 		goto bad_fork_free;
1903 
1904 	/*
1905 	 * If multiple threads are within copy_process(), then this check
1906 	 * triggers too late. This doesn't hurt, the check is only there
1907 	 * to stop root fork bombs.
1908 	 */
1909 	retval = -EAGAIN;
1910 	if (nr_threads >= max_threads)
1911 		goto bad_fork_cleanup_count;
1912 
1913 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1914 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1915 	p->flags |= PF_FORKNOEXEC;
1916 	INIT_LIST_HEAD(&p->children);
1917 	INIT_LIST_HEAD(&p->sibling);
1918 	rcu_copy_process(p);
1919 	p->vfork_done = NULL;
1920 	spin_lock_init(&p->alloc_lock);
1921 
1922 	init_sigpending(&p->pending);
1923 
1924 	p->utime = p->stime = p->gtime = 0;
1925 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1926 	p->utimescaled = p->stimescaled = 0;
1927 #endif
1928 	prev_cputime_init(&p->prev_cputime);
1929 
1930 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1931 	seqcount_init(&p->vtime.seqcount);
1932 	p->vtime.starttime = 0;
1933 	p->vtime.state = VTIME_INACTIVE;
1934 #endif
1935 
1936 #if defined(SPLIT_RSS_COUNTING)
1937 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1938 #endif
1939 
1940 	p->default_timer_slack_ns = current->timer_slack_ns;
1941 
1942 #ifdef CONFIG_PSI
1943 	p->psi_flags = 0;
1944 #endif
1945 
1946 	task_io_accounting_init(&p->ioac);
1947 	acct_clear_integrals(p);
1948 
1949 	posix_cpu_timers_init(p);
1950 
1951 	p->io_context = NULL;
1952 	audit_set_context(p, NULL);
1953 	cgroup_fork(p);
1954 #ifdef CONFIG_NUMA
1955 	p->mempolicy = mpol_dup(p->mempolicy);
1956 	if (IS_ERR(p->mempolicy)) {
1957 		retval = PTR_ERR(p->mempolicy);
1958 		p->mempolicy = NULL;
1959 		goto bad_fork_cleanup_threadgroup_lock;
1960 	}
1961 #endif
1962 #ifdef CONFIG_CPUSETS
1963 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1964 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1965 	seqcount_init(&p->mems_allowed_seq);
1966 #endif
1967 #ifdef CONFIG_TRACE_IRQFLAGS
1968 	p->irq_events = 0;
1969 	p->hardirqs_enabled = 0;
1970 	p->hardirq_enable_ip = 0;
1971 	p->hardirq_enable_event = 0;
1972 	p->hardirq_disable_ip = _THIS_IP_;
1973 	p->hardirq_disable_event = 0;
1974 	p->softirqs_enabled = 1;
1975 	p->softirq_enable_ip = _THIS_IP_;
1976 	p->softirq_enable_event = 0;
1977 	p->softirq_disable_ip = 0;
1978 	p->softirq_disable_event = 0;
1979 	p->hardirq_context = 0;
1980 	p->softirq_context = 0;
1981 #endif
1982 
1983 	p->pagefault_disabled = 0;
1984 
1985 #ifdef CONFIG_LOCKDEP
1986 	p->lockdep_depth = 0; /* no locks held yet */
1987 	p->curr_chain_key = 0;
1988 	p->lockdep_recursion = 0;
1989 	lockdep_init_task(p);
1990 #endif
1991 
1992 #ifdef CONFIG_DEBUG_MUTEXES
1993 	p->blocked_on = NULL; /* not blocked yet */
1994 #endif
1995 #ifdef CONFIG_BCACHE
1996 	p->sequential_io	= 0;
1997 	p->sequential_io_avg	= 0;
1998 #endif
1999 
2000 	/* Perform scheduler related setup. Assign this task to a CPU. */
2001 	retval = sched_fork(clone_flags, p);
2002 	if (retval)
2003 		goto bad_fork_cleanup_policy;
2004 
2005 	retval = perf_event_init_task(p);
2006 	if (retval)
2007 		goto bad_fork_cleanup_policy;
2008 	retval = audit_alloc(p);
2009 	if (retval)
2010 		goto bad_fork_cleanup_perf;
2011 	/* copy all the process information */
2012 	shm_init_task(p);
2013 	retval = security_task_alloc(p, clone_flags);
2014 	if (retval)
2015 		goto bad_fork_cleanup_audit;
2016 	retval = copy_semundo(clone_flags, p);
2017 	if (retval)
2018 		goto bad_fork_cleanup_security;
2019 	retval = copy_files(clone_flags, p);
2020 	if (retval)
2021 		goto bad_fork_cleanup_semundo;
2022 	retval = copy_fs(clone_flags, p);
2023 	if (retval)
2024 		goto bad_fork_cleanup_files;
2025 	retval = copy_sighand(clone_flags, p);
2026 	if (retval)
2027 		goto bad_fork_cleanup_fs;
2028 	retval = copy_signal(clone_flags, p);
2029 	if (retval)
2030 		goto bad_fork_cleanup_sighand;
2031 	retval = copy_mm(clone_flags, p);
2032 	if (retval)
2033 		goto bad_fork_cleanup_signal;
2034 	retval = copy_namespaces(clone_flags, p);
2035 	if (retval)
2036 		goto bad_fork_cleanup_mm;
2037 	retval = copy_io(clone_flags, p);
2038 	if (retval)
2039 		goto bad_fork_cleanup_namespaces;
2040 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2041 	if (retval)
2042 		goto bad_fork_cleanup_io;
2043 
2044 	stackleak_task_init(p);
2045 
2046 	if (pid != &init_struct_pid) {
2047 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2048 		if (IS_ERR(pid)) {
2049 			retval = PTR_ERR(pid);
2050 			goto bad_fork_cleanup_thread;
2051 		}
2052 	}
2053 
2054 	/*
2055 	 * This has to happen after we've potentially unshared the file
2056 	 * descriptor table (so that the pidfd doesn't leak into the child
2057 	 * if the fd table isn't shared).
2058 	 */
2059 	if (clone_flags & CLONE_PIDFD) {
2060 		retval = pidfd_create(pid);
2061 		if (retval < 0)
2062 			goto bad_fork_free_pid;
2063 
2064 		pidfd = retval;
2065 		retval = put_user(pidfd, parent_tidptr);
2066 		if (retval)
2067 			goto bad_fork_put_pidfd;
2068 	}
2069 
2070 #ifdef CONFIG_BLOCK
2071 	p->plug = NULL;
2072 #endif
2073 #ifdef CONFIG_FUTEX
2074 	p->robust_list = NULL;
2075 #ifdef CONFIG_COMPAT
2076 	p->compat_robust_list = NULL;
2077 #endif
2078 	INIT_LIST_HEAD(&p->pi_state_list);
2079 	p->pi_state_cache = NULL;
2080 #endif
2081 	/*
2082 	 * sigaltstack should be cleared when sharing the same VM
2083 	 */
2084 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2085 		sas_ss_reset(p);
2086 
2087 	/*
2088 	 * Syscall tracing and stepping should be turned off in the
2089 	 * child regardless of CLONE_PTRACE.
2090 	 */
2091 	user_disable_single_step(p);
2092 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2093 #ifdef TIF_SYSCALL_EMU
2094 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2095 #endif
2096 	clear_tsk_latency_tracing(p);
2097 
2098 	/* ok, now we should be set up.. */
2099 	p->pid = pid_nr(pid);
2100 	if (clone_flags & CLONE_THREAD) {
2101 		p->exit_signal = -1;
2102 		p->group_leader = current->group_leader;
2103 		p->tgid = current->tgid;
2104 	} else {
2105 		if (clone_flags & CLONE_PARENT)
2106 			p->exit_signal = current->group_leader->exit_signal;
2107 		else
2108 			p->exit_signal = (clone_flags & CSIGNAL);
2109 		p->group_leader = p;
2110 		p->tgid = p->pid;
2111 	}
2112 
2113 	p->nr_dirtied = 0;
2114 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2115 	p->dirty_paused_when = 0;
2116 
2117 	p->pdeath_signal = 0;
2118 	INIT_LIST_HEAD(&p->thread_group);
2119 	p->task_works = NULL;
2120 
2121 	cgroup_threadgroup_change_begin(current);
2122 	/*
2123 	 * Ensure that the cgroup subsystem policies allow the new process to be
2124 	 * forked. It should be noted the the new process's css_set can be changed
2125 	 * between here and cgroup_post_fork() if an organisation operation is in
2126 	 * progress.
2127 	 */
2128 	retval = cgroup_can_fork(p);
2129 	if (retval)
2130 		goto bad_fork_cgroup_threadgroup_change_end;
2131 
2132 	/*
2133 	 * From this point on we must avoid any synchronous user-space
2134 	 * communication until we take the tasklist-lock. In particular, we do
2135 	 * not want user-space to be able to predict the process start-time by
2136 	 * stalling fork(2) after we recorded the start_time but before it is
2137 	 * visible to the system.
2138 	 */
2139 
2140 	p->start_time = ktime_get_ns();
2141 	p->real_start_time = ktime_get_boot_ns();
2142 
2143 	/*
2144 	 * Make it visible to the rest of the system, but dont wake it up yet.
2145 	 * Need tasklist lock for parent etc handling!
2146 	 */
2147 	write_lock_irq(&tasklist_lock);
2148 
2149 	/* CLONE_PARENT re-uses the old parent */
2150 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2151 		p->real_parent = current->real_parent;
2152 		p->parent_exec_id = current->parent_exec_id;
2153 	} else {
2154 		p->real_parent = current;
2155 		p->parent_exec_id = current->self_exec_id;
2156 	}
2157 
2158 	klp_copy_process(p);
2159 
2160 	spin_lock(&current->sighand->siglock);
2161 
2162 	/*
2163 	 * Copy seccomp details explicitly here, in case they were changed
2164 	 * before holding sighand lock.
2165 	 */
2166 	copy_seccomp(p);
2167 
2168 	rseq_fork(p, clone_flags);
2169 
2170 	/* Don't start children in a dying pid namespace */
2171 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2172 		retval = -ENOMEM;
2173 		goto bad_fork_cancel_cgroup;
2174 	}
2175 
2176 	/* Let kill terminate clone/fork in the middle */
2177 	if (fatal_signal_pending(current)) {
2178 		retval = -EINTR;
2179 		goto bad_fork_cancel_cgroup;
2180 	}
2181 
2182 
2183 	init_task_pid_links(p);
2184 	if (likely(p->pid)) {
2185 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2186 
2187 		init_task_pid(p, PIDTYPE_PID, pid);
2188 		if (thread_group_leader(p)) {
2189 			init_task_pid(p, PIDTYPE_TGID, pid);
2190 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2191 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2192 
2193 			if (is_child_reaper(pid)) {
2194 				ns_of_pid(pid)->child_reaper = p;
2195 				p->signal->flags |= SIGNAL_UNKILLABLE;
2196 			}
2197 			p->signal->shared_pending.signal = delayed.signal;
2198 			p->signal->tty = tty_kref_get(current->signal->tty);
2199 			/*
2200 			 * Inherit has_child_subreaper flag under the same
2201 			 * tasklist_lock with adding child to the process tree
2202 			 * for propagate_has_child_subreaper optimization.
2203 			 */
2204 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2205 							 p->real_parent->signal->is_child_subreaper;
2206 			list_add_tail(&p->sibling, &p->real_parent->children);
2207 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2208 			attach_pid(p, PIDTYPE_TGID);
2209 			attach_pid(p, PIDTYPE_PGID);
2210 			attach_pid(p, PIDTYPE_SID);
2211 			__this_cpu_inc(process_counts);
2212 		} else {
2213 			current->signal->nr_threads++;
2214 			atomic_inc(&current->signal->live);
2215 			refcount_inc(&current->signal->sigcnt);
2216 			task_join_group_stop(p);
2217 			list_add_tail_rcu(&p->thread_group,
2218 					  &p->group_leader->thread_group);
2219 			list_add_tail_rcu(&p->thread_node,
2220 					  &p->signal->thread_head);
2221 		}
2222 		attach_pid(p, PIDTYPE_PID);
2223 		nr_threads++;
2224 	}
2225 	total_forks++;
2226 	hlist_del_init(&delayed.node);
2227 	spin_unlock(&current->sighand->siglock);
2228 	syscall_tracepoint_update(p);
2229 	write_unlock_irq(&tasklist_lock);
2230 
2231 	proc_fork_connector(p);
2232 	cgroup_post_fork(p);
2233 	cgroup_threadgroup_change_end(current);
2234 	perf_event_fork(p);
2235 
2236 	trace_task_newtask(p, clone_flags);
2237 	uprobe_copy_process(p, clone_flags);
2238 
2239 	return p;
2240 
2241 bad_fork_cancel_cgroup:
2242 	spin_unlock(&current->sighand->siglock);
2243 	write_unlock_irq(&tasklist_lock);
2244 	cgroup_cancel_fork(p);
2245 bad_fork_cgroup_threadgroup_change_end:
2246 	cgroup_threadgroup_change_end(current);
2247 bad_fork_put_pidfd:
2248 	if (clone_flags & CLONE_PIDFD)
2249 		ksys_close(pidfd);
2250 bad_fork_free_pid:
2251 	if (pid != &init_struct_pid)
2252 		free_pid(pid);
2253 bad_fork_cleanup_thread:
2254 	exit_thread(p);
2255 bad_fork_cleanup_io:
2256 	if (p->io_context)
2257 		exit_io_context(p);
2258 bad_fork_cleanup_namespaces:
2259 	exit_task_namespaces(p);
2260 bad_fork_cleanup_mm:
2261 	if (p->mm) {
2262 		mm_clear_owner(p->mm, p);
2263 		mmput(p->mm);
2264 	}
2265 bad_fork_cleanup_signal:
2266 	if (!(clone_flags & CLONE_THREAD))
2267 		free_signal_struct(p->signal);
2268 bad_fork_cleanup_sighand:
2269 	__cleanup_sighand(p->sighand);
2270 bad_fork_cleanup_fs:
2271 	exit_fs(p); /* blocking */
2272 bad_fork_cleanup_files:
2273 	exit_files(p); /* blocking */
2274 bad_fork_cleanup_semundo:
2275 	exit_sem(p);
2276 bad_fork_cleanup_security:
2277 	security_task_free(p);
2278 bad_fork_cleanup_audit:
2279 	audit_free(p);
2280 bad_fork_cleanup_perf:
2281 	perf_event_free_task(p);
2282 bad_fork_cleanup_policy:
2283 	lockdep_free_task(p);
2284 #ifdef CONFIG_NUMA
2285 	mpol_put(p->mempolicy);
2286 bad_fork_cleanup_threadgroup_lock:
2287 #endif
2288 	delayacct_tsk_free(p);
2289 bad_fork_cleanup_count:
2290 	atomic_dec(&p->cred->user->processes);
2291 	exit_creds(p);
2292 bad_fork_free:
2293 	p->state = TASK_DEAD;
2294 	put_task_stack(p);
2295 	delayed_free_task(p);
2296 fork_out:
2297 	spin_lock_irq(&current->sighand->siglock);
2298 	hlist_del_init(&delayed.node);
2299 	spin_unlock_irq(&current->sighand->siglock);
2300 	return ERR_PTR(retval);
2301 }
2302 
2303 static inline void init_idle_pids(struct task_struct *idle)
2304 {
2305 	enum pid_type type;
2306 
2307 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2308 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2309 		init_task_pid(idle, type, &init_struct_pid);
2310 	}
2311 }
2312 
2313 struct task_struct *fork_idle(int cpu)
2314 {
2315 	struct task_struct *task;
2316 	task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2317 			    cpu_to_node(cpu));
2318 	if (!IS_ERR(task)) {
2319 		init_idle_pids(task);
2320 		init_idle(task, cpu);
2321 	}
2322 
2323 	return task;
2324 }
2325 
2326 struct mm_struct *copy_init_mm(void)
2327 {
2328 	return dup_mm(NULL, &init_mm);
2329 }
2330 
2331 /*
2332  *  Ok, this is the main fork-routine.
2333  *
2334  * It copies the process, and if successful kick-starts
2335  * it and waits for it to finish using the VM if required.
2336  */
2337 long _do_fork(unsigned long clone_flags,
2338 	      unsigned long stack_start,
2339 	      unsigned long stack_size,
2340 	      int __user *parent_tidptr,
2341 	      int __user *child_tidptr,
2342 	      unsigned long tls)
2343 {
2344 	struct completion vfork;
2345 	struct pid *pid;
2346 	struct task_struct *p;
2347 	int trace = 0;
2348 	long nr;
2349 
2350 	/*
2351 	 * Determine whether and which event to report to ptracer.  When
2352 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2353 	 * requested, no event is reported; otherwise, report if the event
2354 	 * for the type of forking is enabled.
2355 	 */
2356 	if (!(clone_flags & CLONE_UNTRACED)) {
2357 		if (clone_flags & CLONE_VFORK)
2358 			trace = PTRACE_EVENT_VFORK;
2359 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2360 			trace = PTRACE_EVENT_CLONE;
2361 		else
2362 			trace = PTRACE_EVENT_FORK;
2363 
2364 		if (likely(!ptrace_event_enabled(current, trace)))
2365 			trace = 0;
2366 	}
2367 
2368 	p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2369 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2370 	add_latent_entropy();
2371 
2372 	if (IS_ERR(p))
2373 		return PTR_ERR(p);
2374 
2375 	/*
2376 	 * Do this prior waking up the new thread - the thread pointer
2377 	 * might get invalid after that point, if the thread exits quickly.
2378 	 */
2379 	trace_sched_process_fork(current, p);
2380 
2381 	pid = get_task_pid(p, PIDTYPE_PID);
2382 	nr = pid_vnr(pid);
2383 
2384 	if (clone_flags & CLONE_PARENT_SETTID)
2385 		put_user(nr, parent_tidptr);
2386 
2387 	if (clone_flags & CLONE_VFORK) {
2388 		p->vfork_done = &vfork;
2389 		init_completion(&vfork);
2390 		get_task_struct(p);
2391 	}
2392 
2393 	wake_up_new_task(p);
2394 
2395 	/* forking complete and child started to run, tell ptracer */
2396 	if (unlikely(trace))
2397 		ptrace_event_pid(trace, pid);
2398 
2399 	if (clone_flags & CLONE_VFORK) {
2400 		if (!wait_for_vfork_done(p, &vfork))
2401 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2402 	}
2403 
2404 	put_pid(pid);
2405 	return nr;
2406 }
2407 
2408 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2409 /* For compatibility with architectures that call do_fork directly rather than
2410  * using the syscall entry points below. */
2411 long do_fork(unsigned long clone_flags,
2412 	      unsigned long stack_start,
2413 	      unsigned long stack_size,
2414 	      int __user *parent_tidptr,
2415 	      int __user *child_tidptr)
2416 {
2417 	return _do_fork(clone_flags, stack_start, stack_size,
2418 			parent_tidptr, child_tidptr, 0);
2419 }
2420 #endif
2421 
2422 /*
2423  * Create a kernel thread.
2424  */
2425 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2426 {
2427 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2428 		(unsigned long)arg, NULL, NULL, 0);
2429 }
2430 
2431 #ifdef __ARCH_WANT_SYS_FORK
2432 SYSCALL_DEFINE0(fork)
2433 {
2434 #ifdef CONFIG_MMU
2435 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2436 #else
2437 	/* can not support in nommu mode */
2438 	return -EINVAL;
2439 #endif
2440 }
2441 #endif
2442 
2443 #ifdef __ARCH_WANT_SYS_VFORK
2444 SYSCALL_DEFINE0(vfork)
2445 {
2446 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2447 			0, NULL, NULL, 0);
2448 }
2449 #endif
2450 
2451 #ifdef __ARCH_WANT_SYS_CLONE
2452 #ifdef CONFIG_CLONE_BACKWARDS
2453 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2454 		 int __user *, parent_tidptr,
2455 		 unsigned long, tls,
2456 		 int __user *, child_tidptr)
2457 #elif defined(CONFIG_CLONE_BACKWARDS2)
2458 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2459 		 int __user *, parent_tidptr,
2460 		 int __user *, child_tidptr,
2461 		 unsigned long, tls)
2462 #elif defined(CONFIG_CLONE_BACKWARDS3)
2463 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2464 		int, stack_size,
2465 		int __user *, parent_tidptr,
2466 		int __user *, child_tidptr,
2467 		unsigned long, tls)
2468 #else
2469 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2470 		 int __user *, parent_tidptr,
2471 		 int __user *, child_tidptr,
2472 		 unsigned long, tls)
2473 #endif
2474 {
2475 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2476 }
2477 #endif
2478 
2479 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2480 {
2481 	struct task_struct *leader, *parent, *child;
2482 	int res;
2483 
2484 	read_lock(&tasklist_lock);
2485 	leader = top = top->group_leader;
2486 down:
2487 	for_each_thread(leader, parent) {
2488 		list_for_each_entry(child, &parent->children, sibling) {
2489 			res = visitor(child, data);
2490 			if (res) {
2491 				if (res < 0)
2492 					goto out;
2493 				leader = child;
2494 				goto down;
2495 			}
2496 up:
2497 			;
2498 		}
2499 	}
2500 
2501 	if (leader != top) {
2502 		child = leader;
2503 		parent = child->real_parent;
2504 		leader = parent->group_leader;
2505 		goto up;
2506 	}
2507 out:
2508 	read_unlock(&tasklist_lock);
2509 }
2510 
2511 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2512 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2513 #endif
2514 
2515 static void sighand_ctor(void *data)
2516 {
2517 	struct sighand_struct *sighand = data;
2518 
2519 	spin_lock_init(&sighand->siglock);
2520 	init_waitqueue_head(&sighand->signalfd_wqh);
2521 }
2522 
2523 void __init proc_caches_init(void)
2524 {
2525 	unsigned int mm_size;
2526 
2527 	sighand_cachep = kmem_cache_create("sighand_cache",
2528 			sizeof(struct sighand_struct), 0,
2529 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2530 			SLAB_ACCOUNT, sighand_ctor);
2531 	signal_cachep = kmem_cache_create("signal_cache",
2532 			sizeof(struct signal_struct), 0,
2533 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2534 			NULL);
2535 	files_cachep = kmem_cache_create("files_cache",
2536 			sizeof(struct files_struct), 0,
2537 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2538 			NULL);
2539 	fs_cachep = kmem_cache_create("fs_cache",
2540 			sizeof(struct fs_struct), 0,
2541 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2542 			NULL);
2543 
2544 	/*
2545 	 * The mm_cpumask is located at the end of mm_struct, and is
2546 	 * dynamically sized based on the maximum CPU number this system
2547 	 * can have, taking hotplug into account (nr_cpu_ids).
2548 	 */
2549 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2550 
2551 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2552 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2553 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2554 			offsetof(struct mm_struct, saved_auxv),
2555 			sizeof_field(struct mm_struct, saved_auxv),
2556 			NULL);
2557 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2558 	mmap_init();
2559 	nsproxy_cache_init();
2560 }
2561 
2562 /*
2563  * Check constraints on flags passed to the unshare system call.
2564  */
2565 static int check_unshare_flags(unsigned long unshare_flags)
2566 {
2567 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2568 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2569 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2570 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2571 		return -EINVAL;
2572 	/*
2573 	 * Not implemented, but pretend it works if there is nothing
2574 	 * to unshare.  Note that unsharing the address space or the
2575 	 * signal handlers also need to unshare the signal queues (aka
2576 	 * CLONE_THREAD).
2577 	 */
2578 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2579 		if (!thread_group_empty(current))
2580 			return -EINVAL;
2581 	}
2582 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2583 		if (refcount_read(&current->sighand->count) > 1)
2584 			return -EINVAL;
2585 	}
2586 	if (unshare_flags & CLONE_VM) {
2587 		if (!current_is_single_threaded())
2588 			return -EINVAL;
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Unshare the filesystem structure if it is being shared
2596  */
2597 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2598 {
2599 	struct fs_struct *fs = current->fs;
2600 
2601 	if (!(unshare_flags & CLONE_FS) || !fs)
2602 		return 0;
2603 
2604 	/* don't need lock here; in the worst case we'll do useless copy */
2605 	if (fs->users == 1)
2606 		return 0;
2607 
2608 	*new_fsp = copy_fs_struct(fs);
2609 	if (!*new_fsp)
2610 		return -ENOMEM;
2611 
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Unshare file descriptor table if it is being shared
2617  */
2618 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2619 {
2620 	struct files_struct *fd = current->files;
2621 	int error = 0;
2622 
2623 	if ((unshare_flags & CLONE_FILES) &&
2624 	    (fd && atomic_read(&fd->count) > 1)) {
2625 		*new_fdp = dup_fd(fd, &error);
2626 		if (!*new_fdp)
2627 			return error;
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 /*
2634  * unshare allows a process to 'unshare' part of the process
2635  * context which was originally shared using clone.  copy_*
2636  * functions used by do_fork() cannot be used here directly
2637  * because they modify an inactive task_struct that is being
2638  * constructed. Here we are modifying the current, active,
2639  * task_struct.
2640  */
2641 int ksys_unshare(unsigned long unshare_flags)
2642 {
2643 	struct fs_struct *fs, *new_fs = NULL;
2644 	struct files_struct *fd, *new_fd = NULL;
2645 	struct cred *new_cred = NULL;
2646 	struct nsproxy *new_nsproxy = NULL;
2647 	int do_sysvsem = 0;
2648 	int err;
2649 
2650 	/*
2651 	 * If unsharing a user namespace must also unshare the thread group
2652 	 * and unshare the filesystem root and working directories.
2653 	 */
2654 	if (unshare_flags & CLONE_NEWUSER)
2655 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2656 	/*
2657 	 * If unsharing vm, must also unshare signal handlers.
2658 	 */
2659 	if (unshare_flags & CLONE_VM)
2660 		unshare_flags |= CLONE_SIGHAND;
2661 	/*
2662 	 * If unsharing a signal handlers, must also unshare the signal queues.
2663 	 */
2664 	if (unshare_flags & CLONE_SIGHAND)
2665 		unshare_flags |= CLONE_THREAD;
2666 	/*
2667 	 * If unsharing namespace, must also unshare filesystem information.
2668 	 */
2669 	if (unshare_flags & CLONE_NEWNS)
2670 		unshare_flags |= CLONE_FS;
2671 
2672 	err = check_unshare_flags(unshare_flags);
2673 	if (err)
2674 		goto bad_unshare_out;
2675 	/*
2676 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2677 	 * to a new ipc namespace, the semaphore arrays from the old
2678 	 * namespace are unreachable.
2679 	 */
2680 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2681 		do_sysvsem = 1;
2682 	err = unshare_fs(unshare_flags, &new_fs);
2683 	if (err)
2684 		goto bad_unshare_out;
2685 	err = unshare_fd(unshare_flags, &new_fd);
2686 	if (err)
2687 		goto bad_unshare_cleanup_fs;
2688 	err = unshare_userns(unshare_flags, &new_cred);
2689 	if (err)
2690 		goto bad_unshare_cleanup_fd;
2691 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2692 					 new_cred, new_fs);
2693 	if (err)
2694 		goto bad_unshare_cleanup_cred;
2695 
2696 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2697 		if (do_sysvsem) {
2698 			/*
2699 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2700 			 */
2701 			exit_sem(current);
2702 		}
2703 		if (unshare_flags & CLONE_NEWIPC) {
2704 			/* Orphan segments in old ns (see sem above). */
2705 			exit_shm(current);
2706 			shm_init_task(current);
2707 		}
2708 
2709 		if (new_nsproxy)
2710 			switch_task_namespaces(current, new_nsproxy);
2711 
2712 		task_lock(current);
2713 
2714 		if (new_fs) {
2715 			fs = current->fs;
2716 			spin_lock(&fs->lock);
2717 			current->fs = new_fs;
2718 			if (--fs->users)
2719 				new_fs = NULL;
2720 			else
2721 				new_fs = fs;
2722 			spin_unlock(&fs->lock);
2723 		}
2724 
2725 		if (new_fd) {
2726 			fd = current->files;
2727 			current->files = new_fd;
2728 			new_fd = fd;
2729 		}
2730 
2731 		task_unlock(current);
2732 
2733 		if (new_cred) {
2734 			/* Install the new user namespace */
2735 			commit_creds(new_cred);
2736 			new_cred = NULL;
2737 		}
2738 	}
2739 
2740 	perf_event_namespaces(current);
2741 
2742 bad_unshare_cleanup_cred:
2743 	if (new_cred)
2744 		put_cred(new_cred);
2745 bad_unshare_cleanup_fd:
2746 	if (new_fd)
2747 		put_files_struct(new_fd);
2748 
2749 bad_unshare_cleanup_fs:
2750 	if (new_fs)
2751 		free_fs_struct(new_fs);
2752 
2753 bad_unshare_out:
2754 	return err;
2755 }
2756 
2757 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2758 {
2759 	return ksys_unshare(unshare_flags);
2760 }
2761 
2762 /*
2763  *	Helper to unshare the files of the current task.
2764  *	We don't want to expose copy_files internals to
2765  *	the exec layer of the kernel.
2766  */
2767 
2768 int unshare_files(struct files_struct **displaced)
2769 {
2770 	struct task_struct *task = current;
2771 	struct files_struct *copy = NULL;
2772 	int error;
2773 
2774 	error = unshare_fd(CLONE_FILES, &copy);
2775 	if (error || !copy) {
2776 		*displaced = NULL;
2777 		return error;
2778 	}
2779 	*displaced = task->files;
2780 	task_lock(task);
2781 	task->files = copy;
2782 	task_unlock(task);
2783 	return 0;
2784 }
2785 
2786 int sysctl_max_threads(struct ctl_table *table, int write,
2787 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2788 {
2789 	struct ctl_table t;
2790 	int ret;
2791 	int threads = max_threads;
2792 	int min = MIN_THREADS;
2793 	int max = MAX_THREADS;
2794 
2795 	t = *table;
2796 	t.data = &threads;
2797 	t.extra1 = &min;
2798 	t.extra2 = &max;
2799 
2800 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2801 	if (ret || !write)
2802 		return ret;
2803 
2804 	set_max_threads(threads);
2805 
2806 	return 0;
2807 }
2808