1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/anon_inodes.h> 15 #include <linux/slab.h> 16 #include <linux/sched/autogroup.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/seq_file.h> 26 #include <linux/rtmutex.h> 27 #include <linux/init.h> 28 #include <linux/unistd.h> 29 #include <linux/module.h> 30 #include <linux/vmalloc.h> 31 #include <linux/completion.h> 32 #include <linux/personality.h> 33 #include <linux/mempolicy.h> 34 #include <linux/sem.h> 35 #include <linux/file.h> 36 #include <linux/fdtable.h> 37 #include <linux/iocontext.h> 38 #include <linux/key.h> 39 #include <linux/binfmts.h> 40 #include <linux/mman.h> 41 #include <linux/mmu_notifier.h> 42 #include <linux/hmm.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 97 #include <asm/pgtable.h> 98 #include <asm/pgalloc.h> 99 #include <linux/uaccess.h> 100 #include <asm/mmu_context.h> 101 #include <asm/cacheflush.h> 102 #include <asm/tlbflush.h> 103 104 #include <trace/events/sched.h> 105 106 #define CREATE_TRACE_POINTS 107 #include <trace/events/task.h> 108 109 /* 110 * Minimum number of threads to boot the kernel 111 */ 112 #define MIN_THREADS 20 113 114 /* 115 * Maximum number of threads 116 */ 117 #define MAX_THREADS FUTEX_TID_MASK 118 119 /* 120 * Protected counters by write_lock_irq(&tasklist_lock) 121 */ 122 unsigned long total_forks; /* Handle normal Linux uptimes. */ 123 int nr_threads; /* The idle threads do not count.. */ 124 125 int max_threads; /* tunable limit on nr_threads */ 126 127 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 128 129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 130 131 #ifdef CONFIG_PROVE_RCU 132 int lockdep_tasklist_lock_is_held(void) 133 { 134 return lockdep_is_held(&tasklist_lock); 135 } 136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 137 #endif /* #ifdef CONFIG_PROVE_RCU */ 138 139 int nr_processes(void) 140 { 141 int cpu; 142 int total = 0; 143 144 for_each_possible_cpu(cpu) 145 total += per_cpu(process_counts, cpu); 146 147 return total; 148 } 149 150 void __weak arch_release_task_struct(struct task_struct *tsk) 151 { 152 } 153 154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 155 static struct kmem_cache *task_struct_cachep; 156 157 static inline struct task_struct *alloc_task_struct_node(int node) 158 { 159 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 160 } 161 162 static inline void free_task_struct(struct task_struct *tsk) 163 { 164 kmem_cache_free(task_struct_cachep, tsk); 165 } 166 #endif 167 168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 169 170 /* 171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 172 * kmemcache based allocator. 173 */ 174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 175 176 #ifdef CONFIG_VMAP_STACK 177 /* 178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 179 * flush. Try to minimize the number of calls by caching stacks. 180 */ 181 #define NR_CACHED_STACKS 2 182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 183 184 static int free_vm_stack_cache(unsigned int cpu) 185 { 186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 187 int i; 188 189 for (i = 0; i < NR_CACHED_STACKS; i++) { 190 struct vm_struct *vm_stack = cached_vm_stacks[i]; 191 192 if (!vm_stack) 193 continue; 194 195 vfree(vm_stack->addr); 196 cached_vm_stacks[i] = NULL; 197 } 198 199 return 0; 200 } 201 #endif 202 203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 204 { 205 #ifdef CONFIG_VMAP_STACK 206 void *stack; 207 int i; 208 209 for (i = 0; i < NR_CACHED_STACKS; i++) { 210 struct vm_struct *s; 211 212 s = this_cpu_xchg(cached_stacks[i], NULL); 213 214 if (!s) 215 continue; 216 217 /* Clear stale pointers from reused stack. */ 218 memset(s->addr, 0, THREAD_SIZE); 219 220 tsk->stack_vm_area = s; 221 tsk->stack = s->addr; 222 return s->addr; 223 } 224 225 /* 226 * Allocated stacks are cached and later reused by new threads, 227 * so memcg accounting is performed manually on assigning/releasing 228 * stacks to tasks. Drop __GFP_ACCOUNT. 229 */ 230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 231 VMALLOC_START, VMALLOC_END, 232 THREADINFO_GFP & ~__GFP_ACCOUNT, 233 PAGE_KERNEL, 234 0, node, __builtin_return_address(0)); 235 236 /* 237 * We can't call find_vm_area() in interrupt context, and 238 * free_thread_stack() can be called in interrupt context, 239 * so cache the vm_struct. 240 */ 241 if (stack) { 242 tsk->stack_vm_area = find_vm_area(stack); 243 tsk->stack = stack; 244 } 245 return stack; 246 #else 247 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 248 THREAD_SIZE_ORDER); 249 250 return page ? page_address(page) : NULL; 251 #endif 252 } 253 254 static inline void free_thread_stack(struct task_struct *tsk) 255 { 256 #ifdef CONFIG_VMAP_STACK 257 struct vm_struct *vm = task_stack_vm_area(tsk); 258 259 if (vm) { 260 int i; 261 262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 263 mod_memcg_page_state(vm->pages[i], 264 MEMCG_KERNEL_STACK_KB, 265 -(int)(PAGE_SIZE / 1024)); 266 267 memcg_kmem_uncharge(vm->pages[i], 0); 268 } 269 270 for (i = 0; i < NR_CACHED_STACKS; i++) { 271 if (this_cpu_cmpxchg(cached_stacks[i], 272 NULL, tsk->stack_vm_area) != NULL) 273 continue; 274 275 return; 276 } 277 278 vfree_atomic(tsk->stack); 279 return; 280 } 281 #endif 282 283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 284 } 285 # else 286 static struct kmem_cache *thread_stack_cache; 287 288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 289 int node) 290 { 291 unsigned long *stack; 292 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 293 tsk->stack = stack; 294 return stack; 295 } 296 297 static void free_thread_stack(struct task_struct *tsk) 298 { 299 kmem_cache_free(thread_stack_cache, tsk->stack); 300 } 301 302 void thread_stack_cache_init(void) 303 { 304 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 305 THREAD_SIZE, THREAD_SIZE, 0, 0, 306 THREAD_SIZE, NULL); 307 BUG_ON(thread_stack_cache == NULL); 308 } 309 # endif 310 #endif 311 312 /* SLAB cache for signal_struct structures (tsk->signal) */ 313 static struct kmem_cache *signal_cachep; 314 315 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 316 struct kmem_cache *sighand_cachep; 317 318 /* SLAB cache for files_struct structures (tsk->files) */ 319 struct kmem_cache *files_cachep; 320 321 /* SLAB cache for fs_struct structures (tsk->fs) */ 322 struct kmem_cache *fs_cachep; 323 324 /* SLAB cache for vm_area_struct structures */ 325 static struct kmem_cache *vm_area_cachep; 326 327 /* SLAB cache for mm_struct structures (tsk->mm) */ 328 static struct kmem_cache *mm_cachep; 329 330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 331 { 332 struct vm_area_struct *vma; 333 334 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 335 if (vma) 336 vma_init(vma, mm); 337 return vma; 338 } 339 340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 341 { 342 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 343 344 if (new) { 345 *new = *orig; 346 INIT_LIST_HEAD(&new->anon_vma_chain); 347 } 348 return new; 349 } 350 351 void vm_area_free(struct vm_area_struct *vma) 352 { 353 kmem_cache_free(vm_area_cachep, vma); 354 } 355 356 static void account_kernel_stack(struct task_struct *tsk, int account) 357 { 358 void *stack = task_stack_page(tsk); 359 struct vm_struct *vm = task_stack_vm_area(tsk); 360 361 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 362 363 if (vm) { 364 int i; 365 366 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 367 368 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 369 mod_zone_page_state(page_zone(vm->pages[i]), 370 NR_KERNEL_STACK_KB, 371 PAGE_SIZE / 1024 * account); 372 } 373 } else { 374 /* 375 * All stack pages are in the same zone and belong to the 376 * same memcg. 377 */ 378 struct page *first_page = virt_to_page(stack); 379 380 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 381 THREAD_SIZE / 1024 * account); 382 383 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 384 account * (THREAD_SIZE / 1024)); 385 } 386 } 387 388 static int memcg_charge_kernel_stack(struct task_struct *tsk) 389 { 390 #ifdef CONFIG_VMAP_STACK 391 struct vm_struct *vm = task_stack_vm_area(tsk); 392 int ret; 393 394 if (vm) { 395 int i; 396 397 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 398 /* 399 * If memcg_kmem_charge() fails, page->mem_cgroup 400 * pointer is NULL, and both memcg_kmem_uncharge() 401 * and mod_memcg_page_state() in free_thread_stack() 402 * will ignore this page. So it's safe. 403 */ 404 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 405 if (ret) 406 return ret; 407 408 mod_memcg_page_state(vm->pages[i], 409 MEMCG_KERNEL_STACK_KB, 410 PAGE_SIZE / 1024); 411 } 412 } 413 #endif 414 return 0; 415 } 416 417 static void release_task_stack(struct task_struct *tsk) 418 { 419 if (WARN_ON(tsk->state != TASK_DEAD)) 420 return; /* Better to leak the stack than to free prematurely */ 421 422 account_kernel_stack(tsk, -1); 423 free_thread_stack(tsk); 424 tsk->stack = NULL; 425 #ifdef CONFIG_VMAP_STACK 426 tsk->stack_vm_area = NULL; 427 #endif 428 } 429 430 #ifdef CONFIG_THREAD_INFO_IN_TASK 431 void put_task_stack(struct task_struct *tsk) 432 { 433 if (refcount_dec_and_test(&tsk->stack_refcount)) 434 release_task_stack(tsk); 435 } 436 #endif 437 438 void free_task(struct task_struct *tsk) 439 { 440 #ifndef CONFIG_THREAD_INFO_IN_TASK 441 /* 442 * The task is finally done with both the stack and thread_info, 443 * so free both. 444 */ 445 release_task_stack(tsk); 446 #else 447 /* 448 * If the task had a separate stack allocation, it should be gone 449 * by now. 450 */ 451 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 452 #endif 453 rt_mutex_debug_task_free(tsk); 454 ftrace_graph_exit_task(tsk); 455 put_seccomp_filter(tsk); 456 arch_release_task_struct(tsk); 457 if (tsk->flags & PF_KTHREAD) 458 free_kthread_struct(tsk); 459 free_task_struct(tsk); 460 } 461 EXPORT_SYMBOL(free_task); 462 463 #ifdef CONFIG_MMU 464 static __latent_entropy int dup_mmap(struct mm_struct *mm, 465 struct mm_struct *oldmm) 466 { 467 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 468 struct rb_node **rb_link, *rb_parent; 469 int retval; 470 unsigned long charge; 471 LIST_HEAD(uf); 472 473 uprobe_start_dup_mmap(); 474 if (down_write_killable(&oldmm->mmap_sem)) { 475 retval = -EINTR; 476 goto fail_uprobe_end; 477 } 478 flush_cache_dup_mm(oldmm); 479 uprobe_dup_mmap(oldmm, mm); 480 /* 481 * Not linked in yet - no deadlock potential: 482 */ 483 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 484 485 /* No ordering required: file already has been exposed. */ 486 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 487 488 mm->total_vm = oldmm->total_vm; 489 mm->data_vm = oldmm->data_vm; 490 mm->exec_vm = oldmm->exec_vm; 491 mm->stack_vm = oldmm->stack_vm; 492 493 rb_link = &mm->mm_rb.rb_node; 494 rb_parent = NULL; 495 pprev = &mm->mmap; 496 retval = ksm_fork(mm, oldmm); 497 if (retval) 498 goto out; 499 retval = khugepaged_fork(mm, oldmm); 500 if (retval) 501 goto out; 502 503 prev = NULL; 504 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 505 struct file *file; 506 507 if (mpnt->vm_flags & VM_DONTCOPY) { 508 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 509 continue; 510 } 511 charge = 0; 512 /* 513 * Don't duplicate many vmas if we've been oom-killed (for 514 * example) 515 */ 516 if (fatal_signal_pending(current)) { 517 retval = -EINTR; 518 goto out; 519 } 520 if (mpnt->vm_flags & VM_ACCOUNT) { 521 unsigned long len = vma_pages(mpnt); 522 523 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 524 goto fail_nomem; 525 charge = len; 526 } 527 tmp = vm_area_dup(mpnt); 528 if (!tmp) 529 goto fail_nomem; 530 retval = vma_dup_policy(mpnt, tmp); 531 if (retval) 532 goto fail_nomem_policy; 533 tmp->vm_mm = mm; 534 retval = dup_userfaultfd(tmp, &uf); 535 if (retval) 536 goto fail_nomem_anon_vma_fork; 537 if (tmp->vm_flags & VM_WIPEONFORK) { 538 /* VM_WIPEONFORK gets a clean slate in the child. */ 539 tmp->anon_vma = NULL; 540 if (anon_vma_prepare(tmp)) 541 goto fail_nomem_anon_vma_fork; 542 } else if (anon_vma_fork(tmp, mpnt)) 543 goto fail_nomem_anon_vma_fork; 544 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 545 tmp->vm_next = tmp->vm_prev = NULL; 546 file = tmp->vm_file; 547 if (file) { 548 struct inode *inode = file_inode(file); 549 struct address_space *mapping = file->f_mapping; 550 551 get_file(file); 552 if (tmp->vm_flags & VM_DENYWRITE) 553 atomic_dec(&inode->i_writecount); 554 i_mmap_lock_write(mapping); 555 if (tmp->vm_flags & VM_SHARED) 556 atomic_inc(&mapping->i_mmap_writable); 557 flush_dcache_mmap_lock(mapping); 558 /* insert tmp into the share list, just after mpnt */ 559 vma_interval_tree_insert_after(tmp, mpnt, 560 &mapping->i_mmap); 561 flush_dcache_mmap_unlock(mapping); 562 i_mmap_unlock_write(mapping); 563 } 564 565 /* 566 * Clear hugetlb-related page reserves for children. This only 567 * affects MAP_PRIVATE mappings. Faults generated by the child 568 * are not guaranteed to succeed, even if read-only 569 */ 570 if (is_vm_hugetlb_page(tmp)) 571 reset_vma_resv_huge_pages(tmp); 572 573 /* 574 * Link in the new vma and copy the page table entries. 575 */ 576 *pprev = tmp; 577 pprev = &tmp->vm_next; 578 tmp->vm_prev = prev; 579 prev = tmp; 580 581 __vma_link_rb(mm, tmp, rb_link, rb_parent); 582 rb_link = &tmp->vm_rb.rb_right; 583 rb_parent = &tmp->vm_rb; 584 585 mm->map_count++; 586 if (!(tmp->vm_flags & VM_WIPEONFORK)) 587 retval = copy_page_range(mm, oldmm, mpnt); 588 589 if (tmp->vm_ops && tmp->vm_ops->open) 590 tmp->vm_ops->open(tmp); 591 592 if (retval) 593 goto out; 594 } 595 /* a new mm has just been created */ 596 retval = arch_dup_mmap(oldmm, mm); 597 out: 598 up_write(&mm->mmap_sem); 599 flush_tlb_mm(oldmm); 600 up_write(&oldmm->mmap_sem); 601 dup_userfaultfd_complete(&uf); 602 fail_uprobe_end: 603 uprobe_end_dup_mmap(); 604 return retval; 605 fail_nomem_anon_vma_fork: 606 mpol_put(vma_policy(tmp)); 607 fail_nomem_policy: 608 vm_area_free(tmp); 609 fail_nomem: 610 retval = -ENOMEM; 611 vm_unacct_memory(charge); 612 goto out; 613 } 614 615 static inline int mm_alloc_pgd(struct mm_struct *mm) 616 { 617 mm->pgd = pgd_alloc(mm); 618 if (unlikely(!mm->pgd)) 619 return -ENOMEM; 620 return 0; 621 } 622 623 static inline void mm_free_pgd(struct mm_struct *mm) 624 { 625 pgd_free(mm, mm->pgd); 626 } 627 #else 628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 629 { 630 down_write(&oldmm->mmap_sem); 631 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 632 up_write(&oldmm->mmap_sem); 633 return 0; 634 } 635 #define mm_alloc_pgd(mm) (0) 636 #define mm_free_pgd(mm) 637 #endif /* CONFIG_MMU */ 638 639 static void check_mm(struct mm_struct *mm) 640 { 641 int i; 642 643 for (i = 0; i < NR_MM_COUNTERS; i++) { 644 long x = atomic_long_read(&mm->rss_stat.count[i]); 645 646 if (unlikely(x)) 647 printk(KERN_ALERT "BUG: Bad rss-counter state " 648 "mm:%p idx:%d val:%ld\n", mm, i, x); 649 } 650 651 if (mm_pgtables_bytes(mm)) 652 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 653 mm_pgtables_bytes(mm)); 654 655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 656 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 657 #endif 658 } 659 660 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 661 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 662 663 /* 664 * Called when the last reference to the mm 665 * is dropped: either by a lazy thread or by 666 * mmput. Free the page directory and the mm. 667 */ 668 void __mmdrop(struct mm_struct *mm) 669 { 670 BUG_ON(mm == &init_mm); 671 WARN_ON_ONCE(mm == current->mm); 672 WARN_ON_ONCE(mm == current->active_mm); 673 mm_free_pgd(mm); 674 destroy_context(mm); 675 hmm_mm_destroy(mm); 676 mmu_notifier_mm_destroy(mm); 677 check_mm(mm); 678 put_user_ns(mm->user_ns); 679 free_mm(mm); 680 } 681 EXPORT_SYMBOL_GPL(__mmdrop); 682 683 static void mmdrop_async_fn(struct work_struct *work) 684 { 685 struct mm_struct *mm; 686 687 mm = container_of(work, struct mm_struct, async_put_work); 688 __mmdrop(mm); 689 } 690 691 static void mmdrop_async(struct mm_struct *mm) 692 { 693 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 694 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 695 schedule_work(&mm->async_put_work); 696 } 697 } 698 699 static inline void free_signal_struct(struct signal_struct *sig) 700 { 701 taskstats_tgid_free(sig); 702 sched_autogroup_exit(sig); 703 /* 704 * __mmdrop is not safe to call from softirq context on x86 due to 705 * pgd_dtor so postpone it to the async context 706 */ 707 if (sig->oom_mm) 708 mmdrop_async(sig->oom_mm); 709 kmem_cache_free(signal_cachep, sig); 710 } 711 712 static inline void put_signal_struct(struct signal_struct *sig) 713 { 714 if (refcount_dec_and_test(&sig->sigcnt)) 715 free_signal_struct(sig); 716 } 717 718 void __put_task_struct(struct task_struct *tsk) 719 { 720 WARN_ON(!tsk->exit_state); 721 WARN_ON(refcount_read(&tsk->usage)); 722 WARN_ON(tsk == current); 723 724 cgroup_free(tsk); 725 task_numa_free(tsk); 726 security_task_free(tsk); 727 exit_creds(tsk); 728 delayacct_tsk_free(tsk); 729 put_signal_struct(tsk->signal); 730 731 if (!profile_handoff_task(tsk)) 732 free_task(tsk); 733 } 734 EXPORT_SYMBOL_GPL(__put_task_struct); 735 736 void __init __weak arch_task_cache_init(void) { } 737 738 /* 739 * set_max_threads 740 */ 741 static void set_max_threads(unsigned int max_threads_suggested) 742 { 743 u64 threads; 744 unsigned long nr_pages = totalram_pages(); 745 746 /* 747 * The number of threads shall be limited such that the thread 748 * structures may only consume a small part of the available memory. 749 */ 750 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 751 threads = MAX_THREADS; 752 else 753 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 754 (u64) THREAD_SIZE * 8UL); 755 756 if (threads > max_threads_suggested) 757 threads = max_threads_suggested; 758 759 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 760 } 761 762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 763 /* Initialized by the architecture: */ 764 int arch_task_struct_size __read_mostly; 765 #endif 766 767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 768 { 769 /* Fetch thread_struct whitelist for the architecture. */ 770 arch_thread_struct_whitelist(offset, size); 771 772 /* 773 * Handle zero-sized whitelist or empty thread_struct, otherwise 774 * adjust offset to position of thread_struct in task_struct. 775 */ 776 if (unlikely(*size == 0)) 777 *offset = 0; 778 else 779 *offset += offsetof(struct task_struct, thread); 780 } 781 782 void __init fork_init(void) 783 { 784 int i; 785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 786 #ifndef ARCH_MIN_TASKALIGN 787 #define ARCH_MIN_TASKALIGN 0 788 #endif 789 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 790 unsigned long useroffset, usersize; 791 792 /* create a slab on which task_structs can be allocated */ 793 task_struct_whitelist(&useroffset, &usersize); 794 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 795 arch_task_struct_size, align, 796 SLAB_PANIC|SLAB_ACCOUNT, 797 useroffset, usersize, NULL); 798 #endif 799 800 /* do the arch specific task caches init */ 801 arch_task_cache_init(); 802 803 set_max_threads(MAX_THREADS); 804 805 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 806 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 807 init_task.signal->rlim[RLIMIT_SIGPENDING] = 808 init_task.signal->rlim[RLIMIT_NPROC]; 809 810 for (i = 0; i < UCOUNT_COUNTS; i++) { 811 init_user_ns.ucount_max[i] = max_threads/2; 812 } 813 814 #ifdef CONFIG_VMAP_STACK 815 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 816 NULL, free_vm_stack_cache); 817 #endif 818 819 lockdep_init_task(&init_task); 820 uprobes_init(); 821 } 822 823 int __weak arch_dup_task_struct(struct task_struct *dst, 824 struct task_struct *src) 825 { 826 *dst = *src; 827 return 0; 828 } 829 830 void set_task_stack_end_magic(struct task_struct *tsk) 831 { 832 unsigned long *stackend; 833 834 stackend = end_of_stack(tsk); 835 *stackend = STACK_END_MAGIC; /* for overflow detection */ 836 } 837 838 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 839 { 840 struct task_struct *tsk; 841 unsigned long *stack; 842 struct vm_struct *stack_vm_area __maybe_unused; 843 int err; 844 845 if (node == NUMA_NO_NODE) 846 node = tsk_fork_get_node(orig); 847 tsk = alloc_task_struct_node(node); 848 if (!tsk) 849 return NULL; 850 851 stack = alloc_thread_stack_node(tsk, node); 852 if (!stack) 853 goto free_tsk; 854 855 if (memcg_charge_kernel_stack(tsk)) 856 goto free_stack; 857 858 stack_vm_area = task_stack_vm_area(tsk); 859 860 err = arch_dup_task_struct(tsk, orig); 861 862 /* 863 * arch_dup_task_struct() clobbers the stack-related fields. Make 864 * sure they're properly initialized before using any stack-related 865 * functions again. 866 */ 867 tsk->stack = stack; 868 #ifdef CONFIG_VMAP_STACK 869 tsk->stack_vm_area = stack_vm_area; 870 #endif 871 #ifdef CONFIG_THREAD_INFO_IN_TASK 872 refcount_set(&tsk->stack_refcount, 1); 873 #endif 874 875 if (err) 876 goto free_stack; 877 878 #ifdef CONFIG_SECCOMP 879 /* 880 * We must handle setting up seccomp filters once we're under 881 * the sighand lock in case orig has changed between now and 882 * then. Until then, filter must be NULL to avoid messing up 883 * the usage counts on the error path calling free_task. 884 */ 885 tsk->seccomp.filter = NULL; 886 #endif 887 888 setup_thread_stack(tsk, orig); 889 clear_user_return_notifier(tsk); 890 clear_tsk_need_resched(tsk); 891 set_task_stack_end_magic(tsk); 892 893 #ifdef CONFIG_STACKPROTECTOR 894 tsk->stack_canary = get_random_canary(); 895 #endif 896 897 /* 898 * One for us, one for whoever does the "release_task()" (usually 899 * parent) 900 */ 901 refcount_set(&tsk->usage, 2); 902 #ifdef CONFIG_BLK_DEV_IO_TRACE 903 tsk->btrace_seq = 0; 904 #endif 905 tsk->splice_pipe = NULL; 906 tsk->task_frag.page = NULL; 907 tsk->wake_q.next = NULL; 908 909 account_kernel_stack(tsk, 1); 910 911 kcov_task_init(tsk); 912 913 #ifdef CONFIG_FAULT_INJECTION 914 tsk->fail_nth = 0; 915 #endif 916 917 #ifdef CONFIG_BLK_CGROUP 918 tsk->throttle_queue = NULL; 919 tsk->use_memdelay = 0; 920 #endif 921 922 #ifdef CONFIG_MEMCG 923 tsk->active_memcg = NULL; 924 #endif 925 return tsk; 926 927 free_stack: 928 free_thread_stack(tsk); 929 free_tsk: 930 free_task_struct(tsk); 931 return NULL; 932 } 933 934 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 935 936 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 937 938 static int __init coredump_filter_setup(char *s) 939 { 940 default_dump_filter = 941 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 942 MMF_DUMP_FILTER_MASK; 943 return 1; 944 } 945 946 __setup("coredump_filter=", coredump_filter_setup); 947 948 #include <linux/init_task.h> 949 950 static void mm_init_aio(struct mm_struct *mm) 951 { 952 #ifdef CONFIG_AIO 953 spin_lock_init(&mm->ioctx_lock); 954 mm->ioctx_table = NULL; 955 #endif 956 } 957 958 static __always_inline void mm_clear_owner(struct mm_struct *mm, 959 struct task_struct *p) 960 { 961 #ifdef CONFIG_MEMCG 962 if (mm->owner == p) 963 WRITE_ONCE(mm->owner, NULL); 964 #endif 965 } 966 967 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 968 { 969 #ifdef CONFIG_MEMCG 970 mm->owner = p; 971 #endif 972 } 973 974 static void mm_init_uprobes_state(struct mm_struct *mm) 975 { 976 #ifdef CONFIG_UPROBES 977 mm->uprobes_state.xol_area = NULL; 978 #endif 979 } 980 981 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 982 struct user_namespace *user_ns) 983 { 984 mm->mmap = NULL; 985 mm->mm_rb = RB_ROOT; 986 mm->vmacache_seqnum = 0; 987 atomic_set(&mm->mm_users, 1); 988 atomic_set(&mm->mm_count, 1); 989 init_rwsem(&mm->mmap_sem); 990 INIT_LIST_HEAD(&mm->mmlist); 991 mm->core_state = NULL; 992 mm_pgtables_bytes_init(mm); 993 mm->map_count = 0; 994 mm->locked_vm = 0; 995 atomic64_set(&mm->pinned_vm, 0); 996 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 997 spin_lock_init(&mm->page_table_lock); 998 spin_lock_init(&mm->arg_lock); 999 mm_init_cpumask(mm); 1000 mm_init_aio(mm); 1001 mm_init_owner(mm, p); 1002 RCU_INIT_POINTER(mm->exe_file, NULL); 1003 mmu_notifier_mm_init(mm); 1004 hmm_mm_init(mm); 1005 init_tlb_flush_pending(mm); 1006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1007 mm->pmd_huge_pte = NULL; 1008 #endif 1009 mm_init_uprobes_state(mm); 1010 1011 if (current->mm) { 1012 mm->flags = current->mm->flags & MMF_INIT_MASK; 1013 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1014 } else { 1015 mm->flags = default_dump_filter; 1016 mm->def_flags = 0; 1017 } 1018 1019 if (mm_alloc_pgd(mm)) 1020 goto fail_nopgd; 1021 1022 if (init_new_context(p, mm)) 1023 goto fail_nocontext; 1024 1025 mm->user_ns = get_user_ns(user_ns); 1026 return mm; 1027 1028 fail_nocontext: 1029 mm_free_pgd(mm); 1030 fail_nopgd: 1031 free_mm(mm); 1032 return NULL; 1033 } 1034 1035 /* 1036 * Allocate and initialize an mm_struct. 1037 */ 1038 struct mm_struct *mm_alloc(void) 1039 { 1040 struct mm_struct *mm; 1041 1042 mm = allocate_mm(); 1043 if (!mm) 1044 return NULL; 1045 1046 memset(mm, 0, sizeof(*mm)); 1047 return mm_init(mm, current, current_user_ns()); 1048 } 1049 1050 static inline void __mmput(struct mm_struct *mm) 1051 { 1052 VM_BUG_ON(atomic_read(&mm->mm_users)); 1053 1054 uprobe_clear_state(mm); 1055 exit_aio(mm); 1056 ksm_exit(mm); 1057 khugepaged_exit(mm); /* must run before exit_mmap */ 1058 exit_mmap(mm); 1059 mm_put_huge_zero_page(mm); 1060 set_mm_exe_file(mm, NULL); 1061 if (!list_empty(&mm->mmlist)) { 1062 spin_lock(&mmlist_lock); 1063 list_del(&mm->mmlist); 1064 spin_unlock(&mmlist_lock); 1065 } 1066 if (mm->binfmt) 1067 module_put(mm->binfmt->module); 1068 mmdrop(mm); 1069 } 1070 1071 /* 1072 * Decrement the use count and release all resources for an mm. 1073 */ 1074 void mmput(struct mm_struct *mm) 1075 { 1076 might_sleep(); 1077 1078 if (atomic_dec_and_test(&mm->mm_users)) 1079 __mmput(mm); 1080 } 1081 EXPORT_SYMBOL_GPL(mmput); 1082 1083 #ifdef CONFIG_MMU 1084 static void mmput_async_fn(struct work_struct *work) 1085 { 1086 struct mm_struct *mm = container_of(work, struct mm_struct, 1087 async_put_work); 1088 1089 __mmput(mm); 1090 } 1091 1092 void mmput_async(struct mm_struct *mm) 1093 { 1094 if (atomic_dec_and_test(&mm->mm_users)) { 1095 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1096 schedule_work(&mm->async_put_work); 1097 } 1098 } 1099 #endif 1100 1101 /** 1102 * set_mm_exe_file - change a reference to the mm's executable file 1103 * 1104 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1105 * 1106 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1107 * invocations: in mmput() nobody alive left, in execve task is single 1108 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1109 * mm->exe_file, but does so without using set_mm_exe_file() in order 1110 * to do avoid the need for any locks. 1111 */ 1112 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1113 { 1114 struct file *old_exe_file; 1115 1116 /* 1117 * It is safe to dereference the exe_file without RCU as 1118 * this function is only called if nobody else can access 1119 * this mm -- see comment above for justification. 1120 */ 1121 old_exe_file = rcu_dereference_raw(mm->exe_file); 1122 1123 if (new_exe_file) 1124 get_file(new_exe_file); 1125 rcu_assign_pointer(mm->exe_file, new_exe_file); 1126 if (old_exe_file) 1127 fput(old_exe_file); 1128 } 1129 1130 /** 1131 * get_mm_exe_file - acquire a reference to the mm's executable file 1132 * 1133 * Returns %NULL if mm has no associated executable file. 1134 * User must release file via fput(). 1135 */ 1136 struct file *get_mm_exe_file(struct mm_struct *mm) 1137 { 1138 struct file *exe_file; 1139 1140 rcu_read_lock(); 1141 exe_file = rcu_dereference(mm->exe_file); 1142 if (exe_file && !get_file_rcu(exe_file)) 1143 exe_file = NULL; 1144 rcu_read_unlock(); 1145 return exe_file; 1146 } 1147 EXPORT_SYMBOL(get_mm_exe_file); 1148 1149 /** 1150 * get_task_exe_file - acquire a reference to the task's executable file 1151 * 1152 * Returns %NULL if task's mm (if any) has no associated executable file or 1153 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1154 * User must release file via fput(). 1155 */ 1156 struct file *get_task_exe_file(struct task_struct *task) 1157 { 1158 struct file *exe_file = NULL; 1159 struct mm_struct *mm; 1160 1161 task_lock(task); 1162 mm = task->mm; 1163 if (mm) { 1164 if (!(task->flags & PF_KTHREAD)) 1165 exe_file = get_mm_exe_file(mm); 1166 } 1167 task_unlock(task); 1168 return exe_file; 1169 } 1170 EXPORT_SYMBOL(get_task_exe_file); 1171 1172 /** 1173 * get_task_mm - acquire a reference to the task's mm 1174 * 1175 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1176 * this kernel workthread has transiently adopted a user mm with use_mm, 1177 * to do its AIO) is not set and if so returns a reference to it, after 1178 * bumping up the use count. User must release the mm via mmput() 1179 * after use. Typically used by /proc and ptrace. 1180 */ 1181 struct mm_struct *get_task_mm(struct task_struct *task) 1182 { 1183 struct mm_struct *mm; 1184 1185 task_lock(task); 1186 mm = task->mm; 1187 if (mm) { 1188 if (task->flags & PF_KTHREAD) 1189 mm = NULL; 1190 else 1191 mmget(mm); 1192 } 1193 task_unlock(task); 1194 return mm; 1195 } 1196 EXPORT_SYMBOL_GPL(get_task_mm); 1197 1198 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1199 { 1200 struct mm_struct *mm; 1201 int err; 1202 1203 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1204 if (err) 1205 return ERR_PTR(err); 1206 1207 mm = get_task_mm(task); 1208 if (mm && mm != current->mm && 1209 !ptrace_may_access(task, mode)) { 1210 mmput(mm); 1211 mm = ERR_PTR(-EACCES); 1212 } 1213 mutex_unlock(&task->signal->cred_guard_mutex); 1214 1215 return mm; 1216 } 1217 1218 static void complete_vfork_done(struct task_struct *tsk) 1219 { 1220 struct completion *vfork; 1221 1222 task_lock(tsk); 1223 vfork = tsk->vfork_done; 1224 if (likely(vfork)) { 1225 tsk->vfork_done = NULL; 1226 complete(vfork); 1227 } 1228 task_unlock(tsk); 1229 } 1230 1231 static int wait_for_vfork_done(struct task_struct *child, 1232 struct completion *vfork) 1233 { 1234 int killed; 1235 1236 freezer_do_not_count(); 1237 cgroup_enter_frozen(); 1238 killed = wait_for_completion_killable(vfork); 1239 cgroup_leave_frozen(false); 1240 freezer_count(); 1241 1242 if (killed) { 1243 task_lock(child); 1244 child->vfork_done = NULL; 1245 task_unlock(child); 1246 } 1247 1248 put_task_struct(child); 1249 return killed; 1250 } 1251 1252 /* Please note the differences between mmput and mm_release. 1253 * mmput is called whenever we stop holding onto a mm_struct, 1254 * error success whatever. 1255 * 1256 * mm_release is called after a mm_struct has been removed 1257 * from the current process. 1258 * 1259 * This difference is important for error handling, when we 1260 * only half set up a mm_struct for a new process and need to restore 1261 * the old one. Because we mmput the new mm_struct before 1262 * restoring the old one. . . 1263 * Eric Biederman 10 January 1998 1264 */ 1265 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1266 { 1267 /* Get rid of any futexes when releasing the mm */ 1268 #ifdef CONFIG_FUTEX 1269 if (unlikely(tsk->robust_list)) { 1270 exit_robust_list(tsk); 1271 tsk->robust_list = NULL; 1272 } 1273 #ifdef CONFIG_COMPAT 1274 if (unlikely(tsk->compat_robust_list)) { 1275 compat_exit_robust_list(tsk); 1276 tsk->compat_robust_list = NULL; 1277 } 1278 #endif 1279 if (unlikely(!list_empty(&tsk->pi_state_list))) 1280 exit_pi_state_list(tsk); 1281 #endif 1282 1283 uprobe_free_utask(tsk); 1284 1285 /* Get rid of any cached register state */ 1286 deactivate_mm(tsk, mm); 1287 1288 /* 1289 * Signal userspace if we're not exiting with a core dump 1290 * because we want to leave the value intact for debugging 1291 * purposes. 1292 */ 1293 if (tsk->clear_child_tid) { 1294 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1295 atomic_read(&mm->mm_users) > 1) { 1296 /* 1297 * We don't check the error code - if userspace has 1298 * not set up a proper pointer then tough luck. 1299 */ 1300 put_user(0, tsk->clear_child_tid); 1301 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1302 1, NULL, NULL, 0, 0); 1303 } 1304 tsk->clear_child_tid = NULL; 1305 } 1306 1307 /* 1308 * All done, finally we can wake up parent and return this mm to him. 1309 * Also kthread_stop() uses this completion for synchronization. 1310 */ 1311 if (tsk->vfork_done) 1312 complete_vfork_done(tsk); 1313 } 1314 1315 /** 1316 * dup_mm() - duplicates an existing mm structure 1317 * @tsk: the task_struct with which the new mm will be associated. 1318 * @oldmm: the mm to duplicate. 1319 * 1320 * Allocates a new mm structure and duplicates the provided @oldmm structure 1321 * content into it. 1322 * 1323 * Return: the duplicated mm or NULL on failure. 1324 */ 1325 static struct mm_struct *dup_mm(struct task_struct *tsk, 1326 struct mm_struct *oldmm) 1327 { 1328 struct mm_struct *mm; 1329 int err; 1330 1331 mm = allocate_mm(); 1332 if (!mm) 1333 goto fail_nomem; 1334 1335 memcpy(mm, oldmm, sizeof(*mm)); 1336 1337 if (!mm_init(mm, tsk, mm->user_ns)) 1338 goto fail_nomem; 1339 1340 err = dup_mmap(mm, oldmm); 1341 if (err) 1342 goto free_pt; 1343 1344 mm->hiwater_rss = get_mm_rss(mm); 1345 mm->hiwater_vm = mm->total_vm; 1346 1347 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1348 goto free_pt; 1349 1350 return mm; 1351 1352 free_pt: 1353 /* don't put binfmt in mmput, we haven't got module yet */ 1354 mm->binfmt = NULL; 1355 mm_init_owner(mm, NULL); 1356 mmput(mm); 1357 1358 fail_nomem: 1359 return NULL; 1360 } 1361 1362 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1363 { 1364 struct mm_struct *mm, *oldmm; 1365 int retval; 1366 1367 tsk->min_flt = tsk->maj_flt = 0; 1368 tsk->nvcsw = tsk->nivcsw = 0; 1369 #ifdef CONFIG_DETECT_HUNG_TASK 1370 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1371 tsk->last_switch_time = 0; 1372 #endif 1373 1374 tsk->mm = NULL; 1375 tsk->active_mm = NULL; 1376 1377 /* 1378 * Are we cloning a kernel thread? 1379 * 1380 * We need to steal a active VM for that.. 1381 */ 1382 oldmm = current->mm; 1383 if (!oldmm) 1384 return 0; 1385 1386 /* initialize the new vmacache entries */ 1387 vmacache_flush(tsk); 1388 1389 if (clone_flags & CLONE_VM) { 1390 mmget(oldmm); 1391 mm = oldmm; 1392 goto good_mm; 1393 } 1394 1395 retval = -ENOMEM; 1396 mm = dup_mm(tsk, current->mm); 1397 if (!mm) 1398 goto fail_nomem; 1399 1400 good_mm: 1401 tsk->mm = mm; 1402 tsk->active_mm = mm; 1403 return 0; 1404 1405 fail_nomem: 1406 return retval; 1407 } 1408 1409 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1410 { 1411 struct fs_struct *fs = current->fs; 1412 if (clone_flags & CLONE_FS) { 1413 /* tsk->fs is already what we want */ 1414 spin_lock(&fs->lock); 1415 if (fs->in_exec) { 1416 spin_unlock(&fs->lock); 1417 return -EAGAIN; 1418 } 1419 fs->users++; 1420 spin_unlock(&fs->lock); 1421 return 0; 1422 } 1423 tsk->fs = copy_fs_struct(fs); 1424 if (!tsk->fs) 1425 return -ENOMEM; 1426 return 0; 1427 } 1428 1429 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1430 { 1431 struct files_struct *oldf, *newf; 1432 int error = 0; 1433 1434 /* 1435 * A background process may not have any files ... 1436 */ 1437 oldf = current->files; 1438 if (!oldf) 1439 goto out; 1440 1441 if (clone_flags & CLONE_FILES) { 1442 atomic_inc(&oldf->count); 1443 goto out; 1444 } 1445 1446 newf = dup_fd(oldf, &error); 1447 if (!newf) 1448 goto out; 1449 1450 tsk->files = newf; 1451 error = 0; 1452 out: 1453 return error; 1454 } 1455 1456 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1457 { 1458 #ifdef CONFIG_BLOCK 1459 struct io_context *ioc = current->io_context; 1460 struct io_context *new_ioc; 1461 1462 if (!ioc) 1463 return 0; 1464 /* 1465 * Share io context with parent, if CLONE_IO is set 1466 */ 1467 if (clone_flags & CLONE_IO) { 1468 ioc_task_link(ioc); 1469 tsk->io_context = ioc; 1470 } else if (ioprio_valid(ioc->ioprio)) { 1471 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1472 if (unlikely(!new_ioc)) 1473 return -ENOMEM; 1474 1475 new_ioc->ioprio = ioc->ioprio; 1476 put_io_context(new_ioc); 1477 } 1478 #endif 1479 return 0; 1480 } 1481 1482 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1483 { 1484 struct sighand_struct *sig; 1485 1486 if (clone_flags & CLONE_SIGHAND) { 1487 refcount_inc(¤t->sighand->count); 1488 return 0; 1489 } 1490 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1491 rcu_assign_pointer(tsk->sighand, sig); 1492 if (!sig) 1493 return -ENOMEM; 1494 1495 refcount_set(&sig->count, 1); 1496 spin_lock_irq(¤t->sighand->siglock); 1497 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1498 spin_unlock_irq(¤t->sighand->siglock); 1499 return 0; 1500 } 1501 1502 void __cleanup_sighand(struct sighand_struct *sighand) 1503 { 1504 if (refcount_dec_and_test(&sighand->count)) { 1505 signalfd_cleanup(sighand); 1506 /* 1507 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1508 * without an RCU grace period, see __lock_task_sighand(). 1509 */ 1510 kmem_cache_free(sighand_cachep, sighand); 1511 } 1512 } 1513 1514 #ifdef CONFIG_POSIX_TIMERS 1515 /* 1516 * Initialize POSIX timer handling for a thread group. 1517 */ 1518 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1519 { 1520 unsigned long cpu_limit; 1521 1522 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1523 if (cpu_limit != RLIM_INFINITY) { 1524 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1525 sig->cputimer.running = true; 1526 } 1527 1528 /* The timer lists. */ 1529 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1530 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1531 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1532 } 1533 #else 1534 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1535 #endif 1536 1537 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1538 { 1539 struct signal_struct *sig; 1540 1541 if (clone_flags & CLONE_THREAD) 1542 return 0; 1543 1544 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1545 tsk->signal = sig; 1546 if (!sig) 1547 return -ENOMEM; 1548 1549 sig->nr_threads = 1; 1550 atomic_set(&sig->live, 1); 1551 refcount_set(&sig->sigcnt, 1); 1552 1553 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1554 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1555 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1556 1557 init_waitqueue_head(&sig->wait_chldexit); 1558 sig->curr_target = tsk; 1559 init_sigpending(&sig->shared_pending); 1560 INIT_HLIST_HEAD(&sig->multiprocess); 1561 seqlock_init(&sig->stats_lock); 1562 prev_cputime_init(&sig->prev_cputime); 1563 1564 #ifdef CONFIG_POSIX_TIMERS 1565 INIT_LIST_HEAD(&sig->posix_timers); 1566 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1567 sig->real_timer.function = it_real_fn; 1568 #endif 1569 1570 task_lock(current->group_leader); 1571 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1572 task_unlock(current->group_leader); 1573 1574 posix_cpu_timers_init_group(sig); 1575 1576 tty_audit_fork(sig); 1577 sched_autogroup_fork(sig); 1578 1579 sig->oom_score_adj = current->signal->oom_score_adj; 1580 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1581 1582 mutex_init(&sig->cred_guard_mutex); 1583 1584 return 0; 1585 } 1586 1587 static void copy_seccomp(struct task_struct *p) 1588 { 1589 #ifdef CONFIG_SECCOMP 1590 /* 1591 * Must be called with sighand->lock held, which is common to 1592 * all threads in the group. Holding cred_guard_mutex is not 1593 * needed because this new task is not yet running and cannot 1594 * be racing exec. 1595 */ 1596 assert_spin_locked(¤t->sighand->siglock); 1597 1598 /* Ref-count the new filter user, and assign it. */ 1599 get_seccomp_filter(current); 1600 p->seccomp = current->seccomp; 1601 1602 /* 1603 * Explicitly enable no_new_privs here in case it got set 1604 * between the task_struct being duplicated and holding the 1605 * sighand lock. The seccomp state and nnp must be in sync. 1606 */ 1607 if (task_no_new_privs(current)) 1608 task_set_no_new_privs(p); 1609 1610 /* 1611 * If the parent gained a seccomp mode after copying thread 1612 * flags and between before we held the sighand lock, we have 1613 * to manually enable the seccomp thread flag here. 1614 */ 1615 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1616 set_tsk_thread_flag(p, TIF_SECCOMP); 1617 #endif 1618 } 1619 1620 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1621 { 1622 current->clear_child_tid = tidptr; 1623 1624 return task_pid_vnr(current); 1625 } 1626 1627 static void rt_mutex_init_task(struct task_struct *p) 1628 { 1629 raw_spin_lock_init(&p->pi_lock); 1630 #ifdef CONFIG_RT_MUTEXES 1631 p->pi_waiters = RB_ROOT_CACHED; 1632 p->pi_top_task = NULL; 1633 p->pi_blocked_on = NULL; 1634 #endif 1635 } 1636 1637 #ifdef CONFIG_POSIX_TIMERS 1638 /* 1639 * Initialize POSIX timer handling for a single task. 1640 */ 1641 static void posix_cpu_timers_init(struct task_struct *tsk) 1642 { 1643 tsk->cputime_expires.prof_exp = 0; 1644 tsk->cputime_expires.virt_exp = 0; 1645 tsk->cputime_expires.sched_exp = 0; 1646 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1647 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1648 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1649 } 1650 #else 1651 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1652 #endif 1653 1654 static inline void init_task_pid_links(struct task_struct *task) 1655 { 1656 enum pid_type type; 1657 1658 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1659 INIT_HLIST_NODE(&task->pid_links[type]); 1660 } 1661 } 1662 1663 static inline void 1664 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1665 { 1666 if (type == PIDTYPE_PID) 1667 task->thread_pid = pid; 1668 else 1669 task->signal->pids[type] = pid; 1670 } 1671 1672 static inline void rcu_copy_process(struct task_struct *p) 1673 { 1674 #ifdef CONFIG_PREEMPT_RCU 1675 p->rcu_read_lock_nesting = 0; 1676 p->rcu_read_unlock_special.s = 0; 1677 p->rcu_blocked_node = NULL; 1678 INIT_LIST_HEAD(&p->rcu_node_entry); 1679 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1680 #ifdef CONFIG_TASKS_RCU 1681 p->rcu_tasks_holdout = false; 1682 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1683 p->rcu_tasks_idle_cpu = -1; 1684 #endif /* #ifdef CONFIG_TASKS_RCU */ 1685 } 1686 1687 static int pidfd_release(struct inode *inode, struct file *file) 1688 { 1689 struct pid *pid = file->private_data; 1690 1691 file->private_data = NULL; 1692 put_pid(pid); 1693 return 0; 1694 } 1695 1696 #ifdef CONFIG_PROC_FS 1697 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1698 { 1699 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1700 struct pid *pid = f->private_data; 1701 1702 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1703 seq_putc(m, '\n'); 1704 } 1705 #endif 1706 1707 const struct file_operations pidfd_fops = { 1708 .release = pidfd_release, 1709 #ifdef CONFIG_PROC_FS 1710 .show_fdinfo = pidfd_show_fdinfo, 1711 #endif 1712 }; 1713 1714 /** 1715 * pidfd_create() - Create a new pid file descriptor. 1716 * 1717 * @pid: struct pid that the pidfd will reference 1718 * 1719 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 1720 * 1721 * Note, that this function can only be called after the fd table has 1722 * been unshared to avoid leaking the pidfd to the new process. 1723 * 1724 * Return: On success, a cloexec pidfd is returned. 1725 * On error, a negative errno number will be returned. 1726 */ 1727 static int pidfd_create(struct pid *pid) 1728 { 1729 int fd; 1730 1731 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 1732 O_RDWR | O_CLOEXEC); 1733 if (fd < 0) 1734 put_pid(pid); 1735 1736 return fd; 1737 } 1738 1739 static void __delayed_free_task(struct rcu_head *rhp) 1740 { 1741 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1742 1743 free_task(tsk); 1744 } 1745 1746 static __always_inline void delayed_free_task(struct task_struct *tsk) 1747 { 1748 if (IS_ENABLED(CONFIG_MEMCG)) 1749 call_rcu(&tsk->rcu, __delayed_free_task); 1750 else 1751 free_task(tsk); 1752 } 1753 1754 /* 1755 * This creates a new process as a copy of the old one, 1756 * but does not actually start it yet. 1757 * 1758 * It copies the registers, and all the appropriate 1759 * parts of the process environment (as per the clone 1760 * flags). The actual kick-off is left to the caller. 1761 */ 1762 static __latent_entropy struct task_struct *copy_process( 1763 unsigned long clone_flags, 1764 unsigned long stack_start, 1765 unsigned long stack_size, 1766 int __user *parent_tidptr, 1767 int __user *child_tidptr, 1768 struct pid *pid, 1769 int trace, 1770 unsigned long tls, 1771 int node) 1772 { 1773 int pidfd = -1, retval; 1774 struct task_struct *p; 1775 struct multiprocess_signals delayed; 1776 1777 /* 1778 * Don't allow sharing the root directory with processes in a different 1779 * namespace 1780 */ 1781 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1782 return ERR_PTR(-EINVAL); 1783 1784 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1785 return ERR_PTR(-EINVAL); 1786 1787 /* 1788 * Thread groups must share signals as well, and detached threads 1789 * can only be started up within the thread group. 1790 */ 1791 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1792 return ERR_PTR(-EINVAL); 1793 1794 /* 1795 * Shared signal handlers imply shared VM. By way of the above, 1796 * thread groups also imply shared VM. Blocking this case allows 1797 * for various simplifications in other code. 1798 */ 1799 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1800 return ERR_PTR(-EINVAL); 1801 1802 /* 1803 * Siblings of global init remain as zombies on exit since they are 1804 * not reaped by their parent (swapper). To solve this and to avoid 1805 * multi-rooted process trees, prevent global and container-inits 1806 * from creating siblings. 1807 */ 1808 if ((clone_flags & CLONE_PARENT) && 1809 current->signal->flags & SIGNAL_UNKILLABLE) 1810 return ERR_PTR(-EINVAL); 1811 1812 /* 1813 * If the new process will be in a different pid or user namespace 1814 * do not allow it to share a thread group with the forking task. 1815 */ 1816 if (clone_flags & CLONE_THREAD) { 1817 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1818 (task_active_pid_ns(current) != 1819 current->nsproxy->pid_ns_for_children)) 1820 return ERR_PTR(-EINVAL); 1821 } 1822 1823 if (clone_flags & CLONE_PIDFD) { 1824 int reserved; 1825 1826 /* 1827 * - CLONE_PARENT_SETTID is useless for pidfds and also 1828 * parent_tidptr is used to return pidfds. 1829 * - CLONE_DETACHED is blocked so that we can potentially 1830 * reuse it later for CLONE_PIDFD. 1831 * - CLONE_THREAD is blocked until someone really needs it. 1832 */ 1833 if (clone_flags & 1834 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD)) 1835 return ERR_PTR(-EINVAL); 1836 1837 /* 1838 * Verify that parent_tidptr is sane so we can potentially 1839 * reuse it later. 1840 */ 1841 if (get_user(reserved, parent_tidptr)) 1842 return ERR_PTR(-EFAULT); 1843 1844 if (reserved != 0) 1845 return ERR_PTR(-EINVAL); 1846 } 1847 1848 /* 1849 * Force any signals received before this point to be delivered 1850 * before the fork happens. Collect up signals sent to multiple 1851 * processes that happen during the fork and delay them so that 1852 * they appear to happen after the fork. 1853 */ 1854 sigemptyset(&delayed.signal); 1855 INIT_HLIST_NODE(&delayed.node); 1856 1857 spin_lock_irq(¤t->sighand->siglock); 1858 if (!(clone_flags & CLONE_THREAD)) 1859 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1860 recalc_sigpending(); 1861 spin_unlock_irq(¤t->sighand->siglock); 1862 retval = -ERESTARTNOINTR; 1863 if (signal_pending(current)) 1864 goto fork_out; 1865 1866 retval = -ENOMEM; 1867 p = dup_task_struct(current, node); 1868 if (!p) 1869 goto fork_out; 1870 1871 /* 1872 * This _must_ happen before we call free_task(), i.e. before we jump 1873 * to any of the bad_fork_* labels. This is to avoid freeing 1874 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1875 * kernel threads (PF_KTHREAD). 1876 */ 1877 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1878 /* 1879 * Clear TID on mm_release()? 1880 */ 1881 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1882 1883 ftrace_graph_init_task(p); 1884 1885 rt_mutex_init_task(p); 1886 1887 #ifdef CONFIG_PROVE_LOCKING 1888 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1889 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1890 #endif 1891 retval = -EAGAIN; 1892 if (atomic_read(&p->real_cred->user->processes) >= 1893 task_rlimit(p, RLIMIT_NPROC)) { 1894 if (p->real_cred->user != INIT_USER && 1895 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1896 goto bad_fork_free; 1897 } 1898 current->flags &= ~PF_NPROC_EXCEEDED; 1899 1900 retval = copy_creds(p, clone_flags); 1901 if (retval < 0) 1902 goto bad_fork_free; 1903 1904 /* 1905 * If multiple threads are within copy_process(), then this check 1906 * triggers too late. This doesn't hurt, the check is only there 1907 * to stop root fork bombs. 1908 */ 1909 retval = -EAGAIN; 1910 if (nr_threads >= max_threads) 1911 goto bad_fork_cleanup_count; 1912 1913 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1914 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1915 p->flags |= PF_FORKNOEXEC; 1916 INIT_LIST_HEAD(&p->children); 1917 INIT_LIST_HEAD(&p->sibling); 1918 rcu_copy_process(p); 1919 p->vfork_done = NULL; 1920 spin_lock_init(&p->alloc_lock); 1921 1922 init_sigpending(&p->pending); 1923 1924 p->utime = p->stime = p->gtime = 0; 1925 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1926 p->utimescaled = p->stimescaled = 0; 1927 #endif 1928 prev_cputime_init(&p->prev_cputime); 1929 1930 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1931 seqcount_init(&p->vtime.seqcount); 1932 p->vtime.starttime = 0; 1933 p->vtime.state = VTIME_INACTIVE; 1934 #endif 1935 1936 #if defined(SPLIT_RSS_COUNTING) 1937 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1938 #endif 1939 1940 p->default_timer_slack_ns = current->timer_slack_ns; 1941 1942 #ifdef CONFIG_PSI 1943 p->psi_flags = 0; 1944 #endif 1945 1946 task_io_accounting_init(&p->ioac); 1947 acct_clear_integrals(p); 1948 1949 posix_cpu_timers_init(p); 1950 1951 p->io_context = NULL; 1952 audit_set_context(p, NULL); 1953 cgroup_fork(p); 1954 #ifdef CONFIG_NUMA 1955 p->mempolicy = mpol_dup(p->mempolicy); 1956 if (IS_ERR(p->mempolicy)) { 1957 retval = PTR_ERR(p->mempolicy); 1958 p->mempolicy = NULL; 1959 goto bad_fork_cleanup_threadgroup_lock; 1960 } 1961 #endif 1962 #ifdef CONFIG_CPUSETS 1963 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1964 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1965 seqcount_init(&p->mems_allowed_seq); 1966 #endif 1967 #ifdef CONFIG_TRACE_IRQFLAGS 1968 p->irq_events = 0; 1969 p->hardirqs_enabled = 0; 1970 p->hardirq_enable_ip = 0; 1971 p->hardirq_enable_event = 0; 1972 p->hardirq_disable_ip = _THIS_IP_; 1973 p->hardirq_disable_event = 0; 1974 p->softirqs_enabled = 1; 1975 p->softirq_enable_ip = _THIS_IP_; 1976 p->softirq_enable_event = 0; 1977 p->softirq_disable_ip = 0; 1978 p->softirq_disable_event = 0; 1979 p->hardirq_context = 0; 1980 p->softirq_context = 0; 1981 #endif 1982 1983 p->pagefault_disabled = 0; 1984 1985 #ifdef CONFIG_LOCKDEP 1986 p->lockdep_depth = 0; /* no locks held yet */ 1987 p->curr_chain_key = 0; 1988 p->lockdep_recursion = 0; 1989 lockdep_init_task(p); 1990 #endif 1991 1992 #ifdef CONFIG_DEBUG_MUTEXES 1993 p->blocked_on = NULL; /* not blocked yet */ 1994 #endif 1995 #ifdef CONFIG_BCACHE 1996 p->sequential_io = 0; 1997 p->sequential_io_avg = 0; 1998 #endif 1999 2000 /* Perform scheduler related setup. Assign this task to a CPU. */ 2001 retval = sched_fork(clone_flags, p); 2002 if (retval) 2003 goto bad_fork_cleanup_policy; 2004 2005 retval = perf_event_init_task(p); 2006 if (retval) 2007 goto bad_fork_cleanup_policy; 2008 retval = audit_alloc(p); 2009 if (retval) 2010 goto bad_fork_cleanup_perf; 2011 /* copy all the process information */ 2012 shm_init_task(p); 2013 retval = security_task_alloc(p, clone_flags); 2014 if (retval) 2015 goto bad_fork_cleanup_audit; 2016 retval = copy_semundo(clone_flags, p); 2017 if (retval) 2018 goto bad_fork_cleanup_security; 2019 retval = copy_files(clone_flags, p); 2020 if (retval) 2021 goto bad_fork_cleanup_semundo; 2022 retval = copy_fs(clone_flags, p); 2023 if (retval) 2024 goto bad_fork_cleanup_files; 2025 retval = copy_sighand(clone_flags, p); 2026 if (retval) 2027 goto bad_fork_cleanup_fs; 2028 retval = copy_signal(clone_flags, p); 2029 if (retval) 2030 goto bad_fork_cleanup_sighand; 2031 retval = copy_mm(clone_flags, p); 2032 if (retval) 2033 goto bad_fork_cleanup_signal; 2034 retval = copy_namespaces(clone_flags, p); 2035 if (retval) 2036 goto bad_fork_cleanup_mm; 2037 retval = copy_io(clone_flags, p); 2038 if (retval) 2039 goto bad_fork_cleanup_namespaces; 2040 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 2041 if (retval) 2042 goto bad_fork_cleanup_io; 2043 2044 stackleak_task_init(p); 2045 2046 if (pid != &init_struct_pid) { 2047 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2048 if (IS_ERR(pid)) { 2049 retval = PTR_ERR(pid); 2050 goto bad_fork_cleanup_thread; 2051 } 2052 } 2053 2054 /* 2055 * This has to happen after we've potentially unshared the file 2056 * descriptor table (so that the pidfd doesn't leak into the child 2057 * if the fd table isn't shared). 2058 */ 2059 if (clone_flags & CLONE_PIDFD) { 2060 retval = pidfd_create(pid); 2061 if (retval < 0) 2062 goto bad_fork_free_pid; 2063 2064 pidfd = retval; 2065 retval = put_user(pidfd, parent_tidptr); 2066 if (retval) 2067 goto bad_fork_put_pidfd; 2068 } 2069 2070 #ifdef CONFIG_BLOCK 2071 p->plug = NULL; 2072 #endif 2073 #ifdef CONFIG_FUTEX 2074 p->robust_list = NULL; 2075 #ifdef CONFIG_COMPAT 2076 p->compat_robust_list = NULL; 2077 #endif 2078 INIT_LIST_HEAD(&p->pi_state_list); 2079 p->pi_state_cache = NULL; 2080 #endif 2081 /* 2082 * sigaltstack should be cleared when sharing the same VM 2083 */ 2084 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2085 sas_ss_reset(p); 2086 2087 /* 2088 * Syscall tracing and stepping should be turned off in the 2089 * child regardless of CLONE_PTRACE. 2090 */ 2091 user_disable_single_step(p); 2092 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2093 #ifdef TIF_SYSCALL_EMU 2094 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2095 #endif 2096 clear_tsk_latency_tracing(p); 2097 2098 /* ok, now we should be set up.. */ 2099 p->pid = pid_nr(pid); 2100 if (clone_flags & CLONE_THREAD) { 2101 p->exit_signal = -1; 2102 p->group_leader = current->group_leader; 2103 p->tgid = current->tgid; 2104 } else { 2105 if (clone_flags & CLONE_PARENT) 2106 p->exit_signal = current->group_leader->exit_signal; 2107 else 2108 p->exit_signal = (clone_flags & CSIGNAL); 2109 p->group_leader = p; 2110 p->tgid = p->pid; 2111 } 2112 2113 p->nr_dirtied = 0; 2114 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2115 p->dirty_paused_when = 0; 2116 2117 p->pdeath_signal = 0; 2118 INIT_LIST_HEAD(&p->thread_group); 2119 p->task_works = NULL; 2120 2121 cgroup_threadgroup_change_begin(current); 2122 /* 2123 * Ensure that the cgroup subsystem policies allow the new process to be 2124 * forked. It should be noted the the new process's css_set can be changed 2125 * between here and cgroup_post_fork() if an organisation operation is in 2126 * progress. 2127 */ 2128 retval = cgroup_can_fork(p); 2129 if (retval) 2130 goto bad_fork_cgroup_threadgroup_change_end; 2131 2132 /* 2133 * From this point on we must avoid any synchronous user-space 2134 * communication until we take the tasklist-lock. In particular, we do 2135 * not want user-space to be able to predict the process start-time by 2136 * stalling fork(2) after we recorded the start_time but before it is 2137 * visible to the system. 2138 */ 2139 2140 p->start_time = ktime_get_ns(); 2141 p->real_start_time = ktime_get_boot_ns(); 2142 2143 /* 2144 * Make it visible to the rest of the system, but dont wake it up yet. 2145 * Need tasklist lock for parent etc handling! 2146 */ 2147 write_lock_irq(&tasklist_lock); 2148 2149 /* CLONE_PARENT re-uses the old parent */ 2150 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2151 p->real_parent = current->real_parent; 2152 p->parent_exec_id = current->parent_exec_id; 2153 } else { 2154 p->real_parent = current; 2155 p->parent_exec_id = current->self_exec_id; 2156 } 2157 2158 klp_copy_process(p); 2159 2160 spin_lock(¤t->sighand->siglock); 2161 2162 /* 2163 * Copy seccomp details explicitly here, in case they were changed 2164 * before holding sighand lock. 2165 */ 2166 copy_seccomp(p); 2167 2168 rseq_fork(p, clone_flags); 2169 2170 /* Don't start children in a dying pid namespace */ 2171 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2172 retval = -ENOMEM; 2173 goto bad_fork_cancel_cgroup; 2174 } 2175 2176 /* Let kill terminate clone/fork in the middle */ 2177 if (fatal_signal_pending(current)) { 2178 retval = -EINTR; 2179 goto bad_fork_cancel_cgroup; 2180 } 2181 2182 2183 init_task_pid_links(p); 2184 if (likely(p->pid)) { 2185 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2186 2187 init_task_pid(p, PIDTYPE_PID, pid); 2188 if (thread_group_leader(p)) { 2189 init_task_pid(p, PIDTYPE_TGID, pid); 2190 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2191 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2192 2193 if (is_child_reaper(pid)) { 2194 ns_of_pid(pid)->child_reaper = p; 2195 p->signal->flags |= SIGNAL_UNKILLABLE; 2196 } 2197 p->signal->shared_pending.signal = delayed.signal; 2198 p->signal->tty = tty_kref_get(current->signal->tty); 2199 /* 2200 * Inherit has_child_subreaper flag under the same 2201 * tasklist_lock with adding child to the process tree 2202 * for propagate_has_child_subreaper optimization. 2203 */ 2204 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2205 p->real_parent->signal->is_child_subreaper; 2206 list_add_tail(&p->sibling, &p->real_parent->children); 2207 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2208 attach_pid(p, PIDTYPE_TGID); 2209 attach_pid(p, PIDTYPE_PGID); 2210 attach_pid(p, PIDTYPE_SID); 2211 __this_cpu_inc(process_counts); 2212 } else { 2213 current->signal->nr_threads++; 2214 atomic_inc(¤t->signal->live); 2215 refcount_inc(¤t->signal->sigcnt); 2216 task_join_group_stop(p); 2217 list_add_tail_rcu(&p->thread_group, 2218 &p->group_leader->thread_group); 2219 list_add_tail_rcu(&p->thread_node, 2220 &p->signal->thread_head); 2221 } 2222 attach_pid(p, PIDTYPE_PID); 2223 nr_threads++; 2224 } 2225 total_forks++; 2226 hlist_del_init(&delayed.node); 2227 spin_unlock(¤t->sighand->siglock); 2228 syscall_tracepoint_update(p); 2229 write_unlock_irq(&tasklist_lock); 2230 2231 proc_fork_connector(p); 2232 cgroup_post_fork(p); 2233 cgroup_threadgroup_change_end(current); 2234 perf_event_fork(p); 2235 2236 trace_task_newtask(p, clone_flags); 2237 uprobe_copy_process(p, clone_flags); 2238 2239 return p; 2240 2241 bad_fork_cancel_cgroup: 2242 spin_unlock(¤t->sighand->siglock); 2243 write_unlock_irq(&tasklist_lock); 2244 cgroup_cancel_fork(p); 2245 bad_fork_cgroup_threadgroup_change_end: 2246 cgroup_threadgroup_change_end(current); 2247 bad_fork_put_pidfd: 2248 if (clone_flags & CLONE_PIDFD) 2249 ksys_close(pidfd); 2250 bad_fork_free_pid: 2251 if (pid != &init_struct_pid) 2252 free_pid(pid); 2253 bad_fork_cleanup_thread: 2254 exit_thread(p); 2255 bad_fork_cleanup_io: 2256 if (p->io_context) 2257 exit_io_context(p); 2258 bad_fork_cleanup_namespaces: 2259 exit_task_namespaces(p); 2260 bad_fork_cleanup_mm: 2261 if (p->mm) { 2262 mm_clear_owner(p->mm, p); 2263 mmput(p->mm); 2264 } 2265 bad_fork_cleanup_signal: 2266 if (!(clone_flags & CLONE_THREAD)) 2267 free_signal_struct(p->signal); 2268 bad_fork_cleanup_sighand: 2269 __cleanup_sighand(p->sighand); 2270 bad_fork_cleanup_fs: 2271 exit_fs(p); /* blocking */ 2272 bad_fork_cleanup_files: 2273 exit_files(p); /* blocking */ 2274 bad_fork_cleanup_semundo: 2275 exit_sem(p); 2276 bad_fork_cleanup_security: 2277 security_task_free(p); 2278 bad_fork_cleanup_audit: 2279 audit_free(p); 2280 bad_fork_cleanup_perf: 2281 perf_event_free_task(p); 2282 bad_fork_cleanup_policy: 2283 lockdep_free_task(p); 2284 #ifdef CONFIG_NUMA 2285 mpol_put(p->mempolicy); 2286 bad_fork_cleanup_threadgroup_lock: 2287 #endif 2288 delayacct_tsk_free(p); 2289 bad_fork_cleanup_count: 2290 atomic_dec(&p->cred->user->processes); 2291 exit_creds(p); 2292 bad_fork_free: 2293 p->state = TASK_DEAD; 2294 put_task_stack(p); 2295 delayed_free_task(p); 2296 fork_out: 2297 spin_lock_irq(¤t->sighand->siglock); 2298 hlist_del_init(&delayed.node); 2299 spin_unlock_irq(¤t->sighand->siglock); 2300 return ERR_PTR(retval); 2301 } 2302 2303 static inline void init_idle_pids(struct task_struct *idle) 2304 { 2305 enum pid_type type; 2306 2307 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2308 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2309 init_task_pid(idle, type, &init_struct_pid); 2310 } 2311 } 2312 2313 struct task_struct *fork_idle(int cpu) 2314 { 2315 struct task_struct *task; 2316 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0, 2317 cpu_to_node(cpu)); 2318 if (!IS_ERR(task)) { 2319 init_idle_pids(task); 2320 init_idle(task, cpu); 2321 } 2322 2323 return task; 2324 } 2325 2326 struct mm_struct *copy_init_mm(void) 2327 { 2328 return dup_mm(NULL, &init_mm); 2329 } 2330 2331 /* 2332 * Ok, this is the main fork-routine. 2333 * 2334 * It copies the process, and if successful kick-starts 2335 * it and waits for it to finish using the VM if required. 2336 */ 2337 long _do_fork(unsigned long clone_flags, 2338 unsigned long stack_start, 2339 unsigned long stack_size, 2340 int __user *parent_tidptr, 2341 int __user *child_tidptr, 2342 unsigned long tls) 2343 { 2344 struct completion vfork; 2345 struct pid *pid; 2346 struct task_struct *p; 2347 int trace = 0; 2348 long nr; 2349 2350 /* 2351 * Determine whether and which event to report to ptracer. When 2352 * called from kernel_thread or CLONE_UNTRACED is explicitly 2353 * requested, no event is reported; otherwise, report if the event 2354 * for the type of forking is enabled. 2355 */ 2356 if (!(clone_flags & CLONE_UNTRACED)) { 2357 if (clone_flags & CLONE_VFORK) 2358 trace = PTRACE_EVENT_VFORK; 2359 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2360 trace = PTRACE_EVENT_CLONE; 2361 else 2362 trace = PTRACE_EVENT_FORK; 2363 2364 if (likely(!ptrace_event_enabled(current, trace))) 2365 trace = 0; 2366 } 2367 2368 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr, 2369 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2370 add_latent_entropy(); 2371 2372 if (IS_ERR(p)) 2373 return PTR_ERR(p); 2374 2375 /* 2376 * Do this prior waking up the new thread - the thread pointer 2377 * might get invalid after that point, if the thread exits quickly. 2378 */ 2379 trace_sched_process_fork(current, p); 2380 2381 pid = get_task_pid(p, PIDTYPE_PID); 2382 nr = pid_vnr(pid); 2383 2384 if (clone_flags & CLONE_PARENT_SETTID) 2385 put_user(nr, parent_tidptr); 2386 2387 if (clone_flags & CLONE_VFORK) { 2388 p->vfork_done = &vfork; 2389 init_completion(&vfork); 2390 get_task_struct(p); 2391 } 2392 2393 wake_up_new_task(p); 2394 2395 /* forking complete and child started to run, tell ptracer */ 2396 if (unlikely(trace)) 2397 ptrace_event_pid(trace, pid); 2398 2399 if (clone_flags & CLONE_VFORK) { 2400 if (!wait_for_vfork_done(p, &vfork)) 2401 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2402 } 2403 2404 put_pid(pid); 2405 return nr; 2406 } 2407 2408 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2409 /* For compatibility with architectures that call do_fork directly rather than 2410 * using the syscall entry points below. */ 2411 long do_fork(unsigned long clone_flags, 2412 unsigned long stack_start, 2413 unsigned long stack_size, 2414 int __user *parent_tidptr, 2415 int __user *child_tidptr) 2416 { 2417 return _do_fork(clone_flags, stack_start, stack_size, 2418 parent_tidptr, child_tidptr, 0); 2419 } 2420 #endif 2421 2422 /* 2423 * Create a kernel thread. 2424 */ 2425 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2426 { 2427 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2428 (unsigned long)arg, NULL, NULL, 0); 2429 } 2430 2431 #ifdef __ARCH_WANT_SYS_FORK 2432 SYSCALL_DEFINE0(fork) 2433 { 2434 #ifdef CONFIG_MMU 2435 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2436 #else 2437 /* can not support in nommu mode */ 2438 return -EINVAL; 2439 #endif 2440 } 2441 #endif 2442 2443 #ifdef __ARCH_WANT_SYS_VFORK 2444 SYSCALL_DEFINE0(vfork) 2445 { 2446 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2447 0, NULL, NULL, 0); 2448 } 2449 #endif 2450 2451 #ifdef __ARCH_WANT_SYS_CLONE 2452 #ifdef CONFIG_CLONE_BACKWARDS 2453 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2454 int __user *, parent_tidptr, 2455 unsigned long, tls, 2456 int __user *, child_tidptr) 2457 #elif defined(CONFIG_CLONE_BACKWARDS2) 2458 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2459 int __user *, parent_tidptr, 2460 int __user *, child_tidptr, 2461 unsigned long, tls) 2462 #elif defined(CONFIG_CLONE_BACKWARDS3) 2463 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2464 int, stack_size, 2465 int __user *, parent_tidptr, 2466 int __user *, child_tidptr, 2467 unsigned long, tls) 2468 #else 2469 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2470 int __user *, parent_tidptr, 2471 int __user *, child_tidptr, 2472 unsigned long, tls) 2473 #endif 2474 { 2475 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2476 } 2477 #endif 2478 2479 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2480 { 2481 struct task_struct *leader, *parent, *child; 2482 int res; 2483 2484 read_lock(&tasklist_lock); 2485 leader = top = top->group_leader; 2486 down: 2487 for_each_thread(leader, parent) { 2488 list_for_each_entry(child, &parent->children, sibling) { 2489 res = visitor(child, data); 2490 if (res) { 2491 if (res < 0) 2492 goto out; 2493 leader = child; 2494 goto down; 2495 } 2496 up: 2497 ; 2498 } 2499 } 2500 2501 if (leader != top) { 2502 child = leader; 2503 parent = child->real_parent; 2504 leader = parent->group_leader; 2505 goto up; 2506 } 2507 out: 2508 read_unlock(&tasklist_lock); 2509 } 2510 2511 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2512 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2513 #endif 2514 2515 static void sighand_ctor(void *data) 2516 { 2517 struct sighand_struct *sighand = data; 2518 2519 spin_lock_init(&sighand->siglock); 2520 init_waitqueue_head(&sighand->signalfd_wqh); 2521 } 2522 2523 void __init proc_caches_init(void) 2524 { 2525 unsigned int mm_size; 2526 2527 sighand_cachep = kmem_cache_create("sighand_cache", 2528 sizeof(struct sighand_struct), 0, 2529 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2530 SLAB_ACCOUNT, sighand_ctor); 2531 signal_cachep = kmem_cache_create("signal_cache", 2532 sizeof(struct signal_struct), 0, 2533 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2534 NULL); 2535 files_cachep = kmem_cache_create("files_cache", 2536 sizeof(struct files_struct), 0, 2537 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2538 NULL); 2539 fs_cachep = kmem_cache_create("fs_cache", 2540 sizeof(struct fs_struct), 0, 2541 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2542 NULL); 2543 2544 /* 2545 * The mm_cpumask is located at the end of mm_struct, and is 2546 * dynamically sized based on the maximum CPU number this system 2547 * can have, taking hotplug into account (nr_cpu_ids). 2548 */ 2549 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2550 2551 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2552 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2553 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2554 offsetof(struct mm_struct, saved_auxv), 2555 sizeof_field(struct mm_struct, saved_auxv), 2556 NULL); 2557 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2558 mmap_init(); 2559 nsproxy_cache_init(); 2560 } 2561 2562 /* 2563 * Check constraints on flags passed to the unshare system call. 2564 */ 2565 static int check_unshare_flags(unsigned long unshare_flags) 2566 { 2567 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2568 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2569 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2570 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2571 return -EINVAL; 2572 /* 2573 * Not implemented, but pretend it works if there is nothing 2574 * to unshare. Note that unsharing the address space or the 2575 * signal handlers also need to unshare the signal queues (aka 2576 * CLONE_THREAD). 2577 */ 2578 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2579 if (!thread_group_empty(current)) 2580 return -EINVAL; 2581 } 2582 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2583 if (refcount_read(¤t->sighand->count) > 1) 2584 return -EINVAL; 2585 } 2586 if (unshare_flags & CLONE_VM) { 2587 if (!current_is_single_threaded()) 2588 return -EINVAL; 2589 } 2590 2591 return 0; 2592 } 2593 2594 /* 2595 * Unshare the filesystem structure if it is being shared 2596 */ 2597 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2598 { 2599 struct fs_struct *fs = current->fs; 2600 2601 if (!(unshare_flags & CLONE_FS) || !fs) 2602 return 0; 2603 2604 /* don't need lock here; in the worst case we'll do useless copy */ 2605 if (fs->users == 1) 2606 return 0; 2607 2608 *new_fsp = copy_fs_struct(fs); 2609 if (!*new_fsp) 2610 return -ENOMEM; 2611 2612 return 0; 2613 } 2614 2615 /* 2616 * Unshare file descriptor table if it is being shared 2617 */ 2618 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2619 { 2620 struct files_struct *fd = current->files; 2621 int error = 0; 2622 2623 if ((unshare_flags & CLONE_FILES) && 2624 (fd && atomic_read(&fd->count) > 1)) { 2625 *new_fdp = dup_fd(fd, &error); 2626 if (!*new_fdp) 2627 return error; 2628 } 2629 2630 return 0; 2631 } 2632 2633 /* 2634 * unshare allows a process to 'unshare' part of the process 2635 * context which was originally shared using clone. copy_* 2636 * functions used by do_fork() cannot be used here directly 2637 * because they modify an inactive task_struct that is being 2638 * constructed. Here we are modifying the current, active, 2639 * task_struct. 2640 */ 2641 int ksys_unshare(unsigned long unshare_flags) 2642 { 2643 struct fs_struct *fs, *new_fs = NULL; 2644 struct files_struct *fd, *new_fd = NULL; 2645 struct cred *new_cred = NULL; 2646 struct nsproxy *new_nsproxy = NULL; 2647 int do_sysvsem = 0; 2648 int err; 2649 2650 /* 2651 * If unsharing a user namespace must also unshare the thread group 2652 * and unshare the filesystem root and working directories. 2653 */ 2654 if (unshare_flags & CLONE_NEWUSER) 2655 unshare_flags |= CLONE_THREAD | CLONE_FS; 2656 /* 2657 * If unsharing vm, must also unshare signal handlers. 2658 */ 2659 if (unshare_flags & CLONE_VM) 2660 unshare_flags |= CLONE_SIGHAND; 2661 /* 2662 * If unsharing a signal handlers, must also unshare the signal queues. 2663 */ 2664 if (unshare_flags & CLONE_SIGHAND) 2665 unshare_flags |= CLONE_THREAD; 2666 /* 2667 * If unsharing namespace, must also unshare filesystem information. 2668 */ 2669 if (unshare_flags & CLONE_NEWNS) 2670 unshare_flags |= CLONE_FS; 2671 2672 err = check_unshare_flags(unshare_flags); 2673 if (err) 2674 goto bad_unshare_out; 2675 /* 2676 * CLONE_NEWIPC must also detach from the undolist: after switching 2677 * to a new ipc namespace, the semaphore arrays from the old 2678 * namespace are unreachable. 2679 */ 2680 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2681 do_sysvsem = 1; 2682 err = unshare_fs(unshare_flags, &new_fs); 2683 if (err) 2684 goto bad_unshare_out; 2685 err = unshare_fd(unshare_flags, &new_fd); 2686 if (err) 2687 goto bad_unshare_cleanup_fs; 2688 err = unshare_userns(unshare_flags, &new_cred); 2689 if (err) 2690 goto bad_unshare_cleanup_fd; 2691 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2692 new_cred, new_fs); 2693 if (err) 2694 goto bad_unshare_cleanup_cred; 2695 2696 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2697 if (do_sysvsem) { 2698 /* 2699 * CLONE_SYSVSEM is equivalent to sys_exit(). 2700 */ 2701 exit_sem(current); 2702 } 2703 if (unshare_flags & CLONE_NEWIPC) { 2704 /* Orphan segments in old ns (see sem above). */ 2705 exit_shm(current); 2706 shm_init_task(current); 2707 } 2708 2709 if (new_nsproxy) 2710 switch_task_namespaces(current, new_nsproxy); 2711 2712 task_lock(current); 2713 2714 if (new_fs) { 2715 fs = current->fs; 2716 spin_lock(&fs->lock); 2717 current->fs = new_fs; 2718 if (--fs->users) 2719 new_fs = NULL; 2720 else 2721 new_fs = fs; 2722 spin_unlock(&fs->lock); 2723 } 2724 2725 if (new_fd) { 2726 fd = current->files; 2727 current->files = new_fd; 2728 new_fd = fd; 2729 } 2730 2731 task_unlock(current); 2732 2733 if (new_cred) { 2734 /* Install the new user namespace */ 2735 commit_creds(new_cred); 2736 new_cred = NULL; 2737 } 2738 } 2739 2740 perf_event_namespaces(current); 2741 2742 bad_unshare_cleanup_cred: 2743 if (new_cred) 2744 put_cred(new_cred); 2745 bad_unshare_cleanup_fd: 2746 if (new_fd) 2747 put_files_struct(new_fd); 2748 2749 bad_unshare_cleanup_fs: 2750 if (new_fs) 2751 free_fs_struct(new_fs); 2752 2753 bad_unshare_out: 2754 return err; 2755 } 2756 2757 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2758 { 2759 return ksys_unshare(unshare_flags); 2760 } 2761 2762 /* 2763 * Helper to unshare the files of the current task. 2764 * We don't want to expose copy_files internals to 2765 * the exec layer of the kernel. 2766 */ 2767 2768 int unshare_files(struct files_struct **displaced) 2769 { 2770 struct task_struct *task = current; 2771 struct files_struct *copy = NULL; 2772 int error; 2773 2774 error = unshare_fd(CLONE_FILES, ©); 2775 if (error || !copy) { 2776 *displaced = NULL; 2777 return error; 2778 } 2779 *displaced = task->files; 2780 task_lock(task); 2781 task->files = copy; 2782 task_unlock(task); 2783 return 0; 2784 } 2785 2786 int sysctl_max_threads(struct ctl_table *table, int write, 2787 void __user *buffer, size_t *lenp, loff_t *ppos) 2788 { 2789 struct ctl_table t; 2790 int ret; 2791 int threads = max_threads; 2792 int min = MIN_THREADS; 2793 int max = MAX_THREADS; 2794 2795 t = *table; 2796 t.data = &threads; 2797 t.extra1 = &min; 2798 t.extra2 = &max; 2799 2800 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2801 if (ret || !write) 2802 return ret; 2803 2804 set_max_threads(threads); 2805 2806 return 0; 2807 } 2808