1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 *new = data_race(*orig); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 589 MA_STATE(mas, &mm->mm_mt, 0, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = mas_expected_entries(&mas, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto loop_out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Copy/update hugetlb private vma information. 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 hugetlb_dup_vma_private(tmp); 684 685 /* Link the vma into the MT */ 686 mas.index = tmp->vm_start; 687 mas.last = tmp->vm_end - 1; 688 mas_store(&mas, tmp); 689 if (mas_is_err(&mas)) 690 goto fail_nomem_mas_store; 691 692 mm->map_count++; 693 if (!(tmp->vm_flags & VM_WIPEONFORK)) 694 retval = copy_page_range(tmp, mpnt); 695 696 if (tmp->vm_ops && tmp->vm_ops->open) 697 tmp->vm_ops->open(tmp); 698 699 if (retval) 700 goto loop_out; 701 } 702 /* a new mm has just been created */ 703 retval = arch_dup_mmap(oldmm, mm); 704 loop_out: 705 mas_destroy(&mas); 706 out: 707 mmap_write_unlock(mm); 708 flush_tlb_mm(oldmm); 709 mmap_write_unlock(oldmm); 710 dup_userfaultfd_complete(&uf); 711 fail_uprobe_end: 712 uprobe_end_dup_mmap(); 713 return retval; 714 715 fail_nomem_mas_store: 716 unlink_anon_vmas(tmp); 717 fail_nomem_anon_vma_fork: 718 mpol_put(vma_policy(tmp)); 719 fail_nomem_policy: 720 vm_area_free(tmp); 721 fail_nomem: 722 retval = -ENOMEM; 723 vm_unacct_memory(charge); 724 goto loop_out; 725 } 726 727 static inline int mm_alloc_pgd(struct mm_struct *mm) 728 { 729 mm->pgd = pgd_alloc(mm); 730 if (unlikely(!mm->pgd)) 731 return -ENOMEM; 732 return 0; 733 } 734 735 static inline void mm_free_pgd(struct mm_struct *mm) 736 { 737 pgd_free(mm, mm->pgd); 738 } 739 #else 740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 741 { 742 mmap_write_lock(oldmm); 743 dup_mm_exe_file(mm, oldmm); 744 mmap_write_unlock(oldmm); 745 return 0; 746 } 747 #define mm_alloc_pgd(mm) (0) 748 #define mm_free_pgd(mm) 749 #endif /* CONFIG_MMU */ 750 751 static void check_mm(struct mm_struct *mm) 752 { 753 int i; 754 755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 756 "Please make sure 'struct resident_page_types[]' is updated as well"); 757 758 for (i = 0; i < NR_MM_COUNTERS; i++) { 759 long x = atomic_long_read(&mm->rss_stat.count[i]); 760 761 if (unlikely(x)) 762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 763 mm, resident_page_types[i], x); 764 } 765 766 if (mm_pgtables_bytes(mm)) 767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 768 mm_pgtables_bytes(mm)); 769 770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 772 #endif 773 } 774 775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 777 778 /* 779 * Called when the last reference to the mm 780 * is dropped: either by a lazy thread or by 781 * mmput. Free the page directory and the mm. 782 */ 783 void __mmdrop(struct mm_struct *mm) 784 { 785 BUG_ON(mm == &init_mm); 786 WARN_ON_ONCE(mm == current->mm); 787 WARN_ON_ONCE(mm == current->active_mm); 788 mm_free_pgd(mm); 789 destroy_context(mm); 790 mmu_notifier_subscriptions_destroy(mm); 791 check_mm(mm); 792 put_user_ns(mm->user_ns); 793 mm_pasid_drop(mm); 794 free_mm(mm); 795 } 796 EXPORT_SYMBOL_GPL(__mmdrop); 797 798 static void mmdrop_async_fn(struct work_struct *work) 799 { 800 struct mm_struct *mm; 801 802 mm = container_of(work, struct mm_struct, async_put_work); 803 __mmdrop(mm); 804 } 805 806 static void mmdrop_async(struct mm_struct *mm) 807 { 808 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 809 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 810 schedule_work(&mm->async_put_work); 811 } 812 } 813 814 static inline void free_signal_struct(struct signal_struct *sig) 815 { 816 taskstats_tgid_free(sig); 817 sched_autogroup_exit(sig); 818 /* 819 * __mmdrop is not safe to call from softirq context on x86 due to 820 * pgd_dtor so postpone it to the async context 821 */ 822 if (sig->oom_mm) 823 mmdrop_async(sig->oom_mm); 824 kmem_cache_free(signal_cachep, sig); 825 } 826 827 static inline void put_signal_struct(struct signal_struct *sig) 828 { 829 if (refcount_dec_and_test(&sig->sigcnt)) 830 free_signal_struct(sig); 831 } 832 833 void __put_task_struct(struct task_struct *tsk) 834 { 835 WARN_ON(!tsk->exit_state); 836 WARN_ON(refcount_read(&tsk->usage)); 837 WARN_ON(tsk == current); 838 839 io_uring_free(tsk); 840 cgroup_free(tsk); 841 task_numa_free(tsk, true); 842 security_task_free(tsk); 843 bpf_task_storage_free(tsk); 844 exit_creds(tsk); 845 delayacct_tsk_free(tsk); 846 put_signal_struct(tsk->signal); 847 sched_core_free(tsk); 848 free_task(tsk); 849 } 850 EXPORT_SYMBOL_GPL(__put_task_struct); 851 852 void __init __weak arch_task_cache_init(void) { } 853 854 /* 855 * set_max_threads 856 */ 857 static void set_max_threads(unsigned int max_threads_suggested) 858 { 859 u64 threads; 860 unsigned long nr_pages = totalram_pages(); 861 862 /* 863 * The number of threads shall be limited such that the thread 864 * structures may only consume a small part of the available memory. 865 */ 866 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 867 threads = MAX_THREADS; 868 else 869 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 870 (u64) THREAD_SIZE * 8UL); 871 872 if (threads > max_threads_suggested) 873 threads = max_threads_suggested; 874 875 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 876 } 877 878 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 879 /* Initialized by the architecture: */ 880 int arch_task_struct_size __read_mostly; 881 #endif 882 883 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 884 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 885 { 886 /* Fetch thread_struct whitelist for the architecture. */ 887 arch_thread_struct_whitelist(offset, size); 888 889 /* 890 * Handle zero-sized whitelist or empty thread_struct, otherwise 891 * adjust offset to position of thread_struct in task_struct. 892 */ 893 if (unlikely(*size == 0)) 894 *offset = 0; 895 else 896 *offset += offsetof(struct task_struct, thread); 897 } 898 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 899 900 void __init fork_init(void) 901 { 902 int i; 903 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 904 #ifndef ARCH_MIN_TASKALIGN 905 #define ARCH_MIN_TASKALIGN 0 906 #endif 907 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 908 unsigned long useroffset, usersize; 909 910 /* create a slab on which task_structs can be allocated */ 911 task_struct_whitelist(&useroffset, &usersize); 912 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 913 arch_task_struct_size, align, 914 SLAB_PANIC|SLAB_ACCOUNT, 915 useroffset, usersize, NULL); 916 #endif 917 918 /* do the arch specific task caches init */ 919 arch_task_cache_init(); 920 921 set_max_threads(MAX_THREADS); 922 923 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 924 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 925 init_task.signal->rlim[RLIMIT_SIGPENDING] = 926 init_task.signal->rlim[RLIMIT_NPROC]; 927 928 for (i = 0; i < UCOUNT_COUNTS; i++) 929 init_user_ns.ucount_max[i] = max_threads/2; 930 931 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 932 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 933 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 934 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 935 936 #ifdef CONFIG_VMAP_STACK 937 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 938 NULL, free_vm_stack_cache); 939 #endif 940 941 scs_init(); 942 943 lockdep_init_task(&init_task); 944 uprobes_init(); 945 } 946 947 int __weak arch_dup_task_struct(struct task_struct *dst, 948 struct task_struct *src) 949 { 950 *dst = *src; 951 return 0; 952 } 953 954 void set_task_stack_end_magic(struct task_struct *tsk) 955 { 956 unsigned long *stackend; 957 958 stackend = end_of_stack(tsk); 959 *stackend = STACK_END_MAGIC; /* for overflow detection */ 960 } 961 962 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 963 { 964 struct task_struct *tsk; 965 int err; 966 967 if (node == NUMA_NO_NODE) 968 node = tsk_fork_get_node(orig); 969 tsk = alloc_task_struct_node(node); 970 if (!tsk) 971 return NULL; 972 973 err = arch_dup_task_struct(tsk, orig); 974 if (err) 975 goto free_tsk; 976 977 err = alloc_thread_stack_node(tsk, node); 978 if (err) 979 goto free_tsk; 980 981 #ifdef CONFIG_THREAD_INFO_IN_TASK 982 refcount_set(&tsk->stack_refcount, 1); 983 #endif 984 account_kernel_stack(tsk, 1); 985 986 err = scs_prepare(tsk, node); 987 if (err) 988 goto free_stack; 989 990 #ifdef CONFIG_SECCOMP 991 /* 992 * We must handle setting up seccomp filters once we're under 993 * the sighand lock in case orig has changed between now and 994 * then. Until then, filter must be NULL to avoid messing up 995 * the usage counts on the error path calling free_task. 996 */ 997 tsk->seccomp.filter = NULL; 998 #endif 999 1000 setup_thread_stack(tsk, orig); 1001 clear_user_return_notifier(tsk); 1002 clear_tsk_need_resched(tsk); 1003 set_task_stack_end_magic(tsk); 1004 clear_syscall_work_syscall_user_dispatch(tsk); 1005 1006 #ifdef CONFIG_STACKPROTECTOR 1007 tsk->stack_canary = get_random_canary(); 1008 #endif 1009 if (orig->cpus_ptr == &orig->cpus_mask) 1010 tsk->cpus_ptr = &tsk->cpus_mask; 1011 dup_user_cpus_ptr(tsk, orig, node); 1012 1013 /* 1014 * One for the user space visible state that goes away when reaped. 1015 * One for the scheduler. 1016 */ 1017 refcount_set(&tsk->rcu_users, 2); 1018 /* One for the rcu users */ 1019 refcount_set(&tsk->usage, 1); 1020 #ifdef CONFIG_BLK_DEV_IO_TRACE 1021 tsk->btrace_seq = 0; 1022 #endif 1023 tsk->splice_pipe = NULL; 1024 tsk->task_frag.page = NULL; 1025 tsk->wake_q.next = NULL; 1026 tsk->worker_private = NULL; 1027 1028 kcov_task_init(tsk); 1029 kmsan_task_create(tsk); 1030 kmap_local_fork(tsk); 1031 1032 #ifdef CONFIG_FAULT_INJECTION 1033 tsk->fail_nth = 0; 1034 #endif 1035 1036 #ifdef CONFIG_BLK_CGROUP 1037 tsk->throttle_queue = NULL; 1038 tsk->use_memdelay = 0; 1039 #endif 1040 1041 #ifdef CONFIG_IOMMU_SVA 1042 tsk->pasid_activated = 0; 1043 #endif 1044 1045 #ifdef CONFIG_MEMCG 1046 tsk->active_memcg = NULL; 1047 #endif 1048 1049 #ifdef CONFIG_CPU_SUP_INTEL 1050 tsk->reported_split_lock = 0; 1051 #endif 1052 1053 return tsk; 1054 1055 free_stack: 1056 exit_task_stack_account(tsk); 1057 free_thread_stack(tsk); 1058 free_tsk: 1059 free_task_struct(tsk); 1060 return NULL; 1061 } 1062 1063 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1064 1065 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1066 1067 static int __init coredump_filter_setup(char *s) 1068 { 1069 default_dump_filter = 1070 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1071 MMF_DUMP_FILTER_MASK; 1072 return 1; 1073 } 1074 1075 __setup("coredump_filter=", coredump_filter_setup); 1076 1077 #include <linux/init_task.h> 1078 1079 static void mm_init_aio(struct mm_struct *mm) 1080 { 1081 #ifdef CONFIG_AIO 1082 spin_lock_init(&mm->ioctx_lock); 1083 mm->ioctx_table = NULL; 1084 #endif 1085 } 1086 1087 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1088 struct task_struct *p) 1089 { 1090 #ifdef CONFIG_MEMCG 1091 if (mm->owner == p) 1092 WRITE_ONCE(mm->owner, NULL); 1093 #endif 1094 } 1095 1096 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1097 { 1098 #ifdef CONFIG_MEMCG 1099 mm->owner = p; 1100 #endif 1101 } 1102 1103 static void mm_init_uprobes_state(struct mm_struct *mm) 1104 { 1105 #ifdef CONFIG_UPROBES 1106 mm->uprobes_state.xol_area = NULL; 1107 #endif 1108 } 1109 1110 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1111 struct user_namespace *user_ns) 1112 { 1113 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1114 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1115 atomic_set(&mm->mm_users, 1); 1116 atomic_set(&mm->mm_count, 1); 1117 seqcount_init(&mm->write_protect_seq); 1118 mmap_init_lock(mm); 1119 INIT_LIST_HEAD(&mm->mmlist); 1120 mm_pgtables_bytes_init(mm); 1121 mm->map_count = 0; 1122 mm->locked_vm = 0; 1123 atomic64_set(&mm->pinned_vm, 0); 1124 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1125 spin_lock_init(&mm->page_table_lock); 1126 spin_lock_init(&mm->arg_lock); 1127 mm_init_cpumask(mm); 1128 mm_init_aio(mm); 1129 mm_init_owner(mm, p); 1130 mm_pasid_init(mm); 1131 RCU_INIT_POINTER(mm->exe_file, NULL); 1132 mmu_notifier_subscriptions_init(mm); 1133 init_tlb_flush_pending(mm); 1134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1135 mm->pmd_huge_pte = NULL; 1136 #endif 1137 mm_init_uprobes_state(mm); 1138 hugetlb_count_init(mm); 1139 1140 if (current->mm) { 1141 mm->flags = current->mm->flags & MMF_INIT_MASK; 1142 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1143 } else { 1144 mm->flags = default_dump_filter; 1145 mm->def_flags = 0; 1146 } 1147 1148 if (mm_alloc_pgd(mm)) 1149 goto fail_nopgd; 1150 1151 if (init_new_context(p, mm)) 1152 goto fail_nocontext; 1153 1154 mm->user_ns = get_user_ns(user_ns); 1155 lru_gen_init_mm(mm); 1156 return mm; 1157 1158 fail_nocontext: 1159 mm_free_pgd(mm); 1160 fail_nopgd: 1161 free_mm(mm); 1162 return NULL; 1163 } 1164 1165 /* 1166 * Allocate and initialize an mm_struct. 1167 */ 1168 struct mm_struct *mm_alloc(void) 1169 { 1170 struct mm_struct *mm; 1171 1172 mm = allocate_mm(); 1173 if (!mm) 1174 return NULL; 1175 1176 memset(mm, 0, sizeof(*mm)); 1177 return mm_init(mm, current, current_user_ns()); 1178 } 1179 1180 static inline void __mmput(struct mm_struct *mm) 1181 { 1182 VM_BUG_ON(atomic_read(&mm->mm_users)); 1183 1184 uprobe_clear_state(mm); 1185 exit_aio(mm); 1186 ksm_exit(mm); 1187 khugepaged_exit(mm); /* must run before exit_mmap */ 1188 exit_mmap(mm); 1189 mm_put_huge_zero_page(mm); 1190 set_mm_exe_file(mm, NULL); 1191 if (!list_empty(&mm->mmlist)) { 1192 spin_lock(&mmlist_lock); 1193 list_del(&mm->mmlist); 1194 spin_unlock(&mmlist_lock); 1195 } 1196 if (mm->binfmt) 1197 module_put(mm->binfmt->module); 1198 lru_gen_del_mm(mm); 1199 mmdrop(mm); 1200 } 1201 1202 /* 1203 * Decrement the use count and release all resources for an mm. 1204 */ 1205 void mmput(struct mm_struct *mm) 1206 { 1207 might_sleep(); 1208 1209 if (atomic_dec_and_test(&mm->mm_users)) 1210 __mmput(mm); 1211 } 1212 EXPORT_SYMBOL_GPL(mmput); 1213 1214 #ifdef CONFIG_MMU 1215 static void mmput_async_fn(struct work_struct *work) 1216 { 1217 struct mm_struct *mm = container_of(work, struct mm_struct, 1218 async_put_work); 1219 1220 __mmput(mm); 1221 } 1222 1223 void mmput_async(struct mm_struct *mm) 1224 { 1225 if (atomic_dec_and_test(&mm->mm_users)) { 1226 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1227 schedule_work(&mm->async_put_work); 1228 } 1229 } 1230 EXPORT_SYMBOL_GPL(mmput_async); 1231 #endif 1232 1233 /** 1234 * set_mm_exe_file - change a reference to the mm's executable file 1235 * 1236 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1237 * 1238 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1239 * invocations: in mmput() nobody alive left, in execve task is single 1240 * threaded. 1241 * 1242 * Can only fail if new_exe_file != NULL. 1243 */ 1244 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1245 { 1246 struct file *old_exe_file; 1247 1248 /* 1249 * It is safe to dereference the exe_file without RCU as 1250 * this function is only called if nobody else can access 1251 * this mm -- see comment above for justification. 1252 */ 1253 old_exe_file = rcu_dereference_raw(mm->exe_file); 1254 1255 if (new_exe_file) { 1256 /* 1257 * We expect the caller (i.e., sys_execve) to already denied 1258 * write access, so this is unlikely to fail. 1259 */ 1260 if (unlikely(deny_write_access(new_exe_file))) 1261 return -EACCES; 1262 get_file(new_exe_file); 1263 } 1264 rcu_assign_pointer(mm->exe_file, new_exe_file); 1265 if (old_exe_file) { 1266 allow_write_access(old_exe_file); 1267 fput(old_exe_file); 1268 } 1269 return 0; 1270 } 1271 1272 /** 1273 * replace_mm_exe_file - replace a reference to the mm's executable file 1274 * 1275 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1276 * dealing with concurrent invocation and without grabbing the mmap lock in 1277 * write mode. 1278 * 1279 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1280 */ 1281 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1282 { 1283 struct vm_area_struct *vma; 1284 struct file *old_exe_file; 1285 int ret = 0; 1286 1287 /* Forbid mm->exe_file change if old file still mapped. */ 1288 old_exe_file = get_mm_exe_file(mm); 1289 if (old_exe_file) { 1290 VMA_ITERATOR(vmi, mm, 0); 1291 mmap_read_lock(mm); 1292 for_each_vma(vmi, vma) { 1293 if (!vma->vm_file) 1294 continue; 1295 if (path_equal(&vma->vm_file->f_path, 1296 &old_exe_file->f_path)) { 1297 ret = -EBUSY; 1298 break; 1299 } 1300 } 1301 mmap_read_unlock(mm); 1302 fput(old_exe_file); 1303 if (ret) 1304 return ret; 1305 } 1306 1307 /* set the new file, lockless */ 1308 ret = deny_write_access(new_exe_file); 1309 if (ret) 1310 return -EACCES; 1311 get_file(new_exe_file); 1312 1313 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1314 if (old_exe_file) { 1315 /* 1316 * Don't race with dup_mmap() getting the file and disallowing 1317 * write access while someone might open the file writable. 1318 */ 1319 mmap_read_lock(mm); 1320 allow_write_access(old_exe_file); 1321 fput(old_exe_file); 1322 mmap_read_unlock(mm); 1323 } 1324 return 0; 1325 } 1326 1327 /** 1328 * get_mm_exe_file - acquire a reference to the mm's executable file 1329 * 1330 * Returns %NULL if mm has no associated executable file. 1331 * User must release file via fput(). 1332 */ 1333 struct file *get_mm_exe_file(struct mm_struct *mm) 1334 { 1335 struct file *exe_file; 1336 1337 rcu_read_lock(); 1338 exe_file = rcu_dereference(mm->exe_file); 1339 if (exe_file && !get_file_rcu(exe_file)) 1340 exe_file = NULL; 1341 rcu_read_unlock(); 1342 return exe_file; 1343 } 1344 1345 /** 1346 * get_task_exe_file - acquire a reference to the task's executable file 1347 * 1348 * Returns %NULL if task's mm (if any) has no associated executable file or 1349 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1350 * User must release file via fput(). 1351 */ 1352 struct file *get_task_exe_file(struct task_struct *task) 1353 { 1354 struct file *exe_file = NULL; 1355 struct mm_struct *mm; 1356 1357 task_lock(task); 1358 mm = task->mm; 1359 if (mm) { 1360 if (!(task->flags & PF_KTHREAD)) 1361 exe_file = get_mm_exe_file(mm); 1362 } 1363 task_unlock(task); 1364 return exe_file; 1365 } 1366 1367 /** 1368 * get_task_mm - acquire a reference to the task's mm 1369 * 1370 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1371 * this kernel workthread has transiently adopted a user mm with use_mm, 1372 * to do its AIO) is not set and if so returns a reference to it, after 1373 * bumping up the use count. User must release the mm via mmput() 1374 * after use. Typically used by /proc and ptrace. 1375 */ 1376 struct mm_struct *get_task_mm(struct task_struct *task) 1377 { 1378 struct mm_struct *mm; 1379 1380 task_lock(task); 1381 mm = task->mm; 1382 if (mm) { 1383 if (task->flags & PF_KTHREAD) 1384 mm = NULL; 1385 else 1386 mmget(mm); 1387 } 1388 task_unlock(task); 1389 return mm; 1390 } 1391 EXPORT_SYMBOL_GPL(get_task_mm); 1392 1393 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1394 { 1395 struct mm_struct *mm; 1396 int err; 1397 1398 err = down_read_killable(&task->signal->exec_update_lock); 1399 if (err) 1400 return ERR_PTR(err); 1401 1402 mm = get_task_mm(task); 1403 if (mm && mm != current->mm && 1404 !ptrace_may_access(task, mode)) { 1405 mmput(mm); 1406 mm = ERR_PTR(-EACCES); 1407 } 1408 up_read(&task->signal->exec_update_lock); 1409 1410 return mm; 1411 } 1412 1413 static void complete_vfork_done(struct task_struct *tsk) 1414 { 1415 struct completion *vfork; 1416 1417 task_lock(tsk); 1418 vfork = tsk->vfork_done; 1419 if (likely(vfork)) { 1420 tsk->vfork_done = NULL; 1421 complete(vfork); 1422 } 1423 task_unlock(tsk); 1424 } 1425 1426 static int wait_for_vfork_done(struct task_struct *child, 1427 struct completion *vfork) 1428 { 1429 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1430 int killed; 1431 1432 cgroup_enter_frozen(); 1433 killed = wait_for_completion_state(vfork, state); 1434 cgroup_leave_frozen(false); 1435 1436 if (killed) { 1437 task_lock(child); 1438 child->vfork_done = NULL; 1439 task_unlock(child); 1440 } 1441 1442 put_task_struct(child); 1443 return killed; 1444 } 1445 1446 /* Please note the differences between mmput and mm_release. 1447 * mmput is called whenever we stop holding onto a mm_struct, 1448 * error success whatever. 1449 * 1450 * mm_release is called after a mm_struct has been removed 1451 * from the current process. 1452 * 1453 * This difference is important for error handling, when we 1454 * only half set up a mm_struct for a new process and need to restore 1455 * the old one. Because we mmput the new mm_struct before 1456 * restoring the old one. . . 1457 * Eric Biederman 10 January 1998 1458 */ 1459 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1460 { 1461 uprobe_free_utask(tsk); 1462 1463 /* Get rid of any cached register state */ 1464 deactivate_mm(tsk, mm); 1465 1466 /* 1467 * Signal userspace if we're not exiting with a core dump 1468 * because we want to leave the value intact for debugging 1469 * purposes. 1470 */ 1471 if (tsk->clear_child_tid) { 1472 if (atomic_read(&mm->mm_users) > 1) { 1473 /* 1474 * We don't check the error code - if userspace has 1475 * not set up a proper pointer then tough luck. 1476 */ 1477 put_user(0, tsk->clear_child_tid); 1478 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1479 1, NULL, NULL, 0, 0); 1480 } 1481 tsk->clear_child_tid = NULL; 1482 } 1483 1484 /* 1485 * All done, finally we can wake up parent and return this mm to him. 1486 * Also kthread_stop() uses this completion for synchronization. 1487 */ 1488 if (tsk->vfork_done) 1489 complete_vfork_done(tsk); 1490 } 1491 1492 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1493 { 1494 futex_exit_release(tsk); 1495 mm_release(tsk, mm); 1496 } 1497 1498 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1499 { 1500 futex_exec_release(tsk); 1501 mm_release(tsk, mm); 1502 } 1503 1504 /** 1505 * dup_mm() - duplicates an existing mm structure 1506 * @tsk: the task_struct with which the new mm will be associated. 1507 * @oldmm: the mm to duplicate. 1508 * 1509 * Allocates a new mm structure and duplicates the provided @oldmm structure 1510 * content into it. 1511 * 1512 * Return: the duplicated mm or NULL on failure. 1513 */ 1514 static struct mm_struct *dup_mm(struct task_struct *tsk, 1515 struct mm_struct *oldmm) 1516 { 1517 struct mm_struct *mm; 1518 int err; 1519 1520 mm = allocate_mm(); 1521 if (!mm) 1522 goto fail_nomem; 1523 1524 memcpy(mm, oldmm, sizeof(*mm)); 1525 1526 if (!mm_init(mm, tsk, mm->user_ns)) 1527 goto fail_nomem; 1528 1529 err = dup_mmap(mm, oldmm); 1530 if (err) 1531 goto free_pt; 1532 1533 mm->hiwater_rss = get_mm_rss(mm); 1534 mm->hiwater_vm = mm->total_vm; 1535 1536 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1537 goto free_pt; 1538 1539 return mm; 1540 1541 free_pt: 1542 /* don't put binfmt in mmput, we haven't got module yet */ 1543 mm->binfmt = NULL; 1544 mm_init_owner(mm, NULL); 1545 mmput(mm); 1546 1547 fail_nomem: 1548 return NULL; 1549 } 1550 1551 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1552 { 1553 struct mm_struct *mm, *oldmm; 1554 1555 tsk->min_flt = tsk->maj_flt = 0; 1556 tsk->nvcsw = tsk->nivcsw = 0; 1557 #ifdef CONFIG_DETECT_HUNG_TASK 1558 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1559 tsk->last_switch_time = 0; 1560 #endif 1561 1562 tsk->mm = NULL; 1563 tsk->active_mm = NULL; 1564 1565 /* 1566 * Are we cloning a kernel thread? 1567 * 1568 * We need to steal a active VM for that.. 1569 */ 1570 oldmm = current->mm; 1571 if (!oldmm) 1572 return 0; 1573 1574 if (clone_flags & CLONE_VM) { 1575 mmget(oldmm); 1576 mm = oldmm; 1577 } else { 1578 mm = dup_mm(tsk, current->mm); 1579 if (!mm) 1580 return -ENOMEM; 1581 } 1582 1583 tsk->mm = mm; 1584 tsk->active_mm = mm; 1585 return 0; 1586 } 1587 1588 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1589 { 1590 struct fs_struct *fs = current->fs; 1591 if (clone_flags & CLONE_FS) { 1592 /* tsk->fs is already what we want */ 1593 spin_lock(&fs->lock); 1594 if (fs->in_exec) { 1595 spin_unlock(&fs->lock); 1596 return -EAGAIN; 1597 } 1598 fs->users++; 1599 spin_unlock(&fs->lock); 1600 return 0; 1601 } 1602 tsk->fs = copy_fs_struct(fs); 1603 if (!tsk->fs) 1604 return -ENOMEM; 1605 return 0; 1606 } 1607 1608 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1609 { 1610 struct files_struct *oldf, *newf; 1611 int error = 0; 1612 1613 /* 1614 * A background process may not have any files ... 1615 */ 1616 oldf = current->files; 1617 if (!oldf) 1618 goto out; 1619 1620 if (clone_flags & CLONE_FILES) { 1621 atomic_inc(&oldf->count); 1622 goto out; 1623 } 1624 1625 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1626 if (!newf) 1627 goto out; 1628 1629 tsk->files = newf; 1630 error = 0; 1631 out: 1632 return error; 1633 } 1634 1635 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1636 { 1637 struct sighand_struct *sig; 1638 1639 if (clone_flags & CLONE_SIGHAND) { 1640 refcount_inc(¤t->sighand->count); 1641 return 0; 1642 } 1643 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1644 RCU_INIT_POINTER(tsk->sighand, sig); 1645 if (!sig) 1646 return -ENOMEM; 1647 1648 refcount_set(&sig->count, 1); 1649 spin_lock_irq(¤t->sighand->siglock); 1650 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1651 spin_unlock_irq(¤t->sighand->siglock); 1652 1653 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1654 if (clone_flags & CLONE_CLEAR_SIGHAND) 1655 flush_signal_handlers(tsk, 0); 1656 1657 return 0; 1658 } 1659 1660 void __cleanup_sighand(struct sighand_struct *sighand) 1661 { 1662 if (refcount_dec_and_test(&sighand->count)) { 1663 signalfd_cleanup(sighand); 1664 /* 1665 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1666 * without an RCU grace period, see __lock_task_sighand(). 1667 */ 1668 kmem_cache_free(sighand_cachep, sighand); 1669 } 1670 } 1671 1672 /* 1673 * Initialize POSIX timer handling for a thread group. 1674 */ 1675 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1676 { 1677 struct posix_cputimers *pct = &sig->posix_cputimers; 1678 unsigned long cpu_limit; 1679 1680 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1681 posix_cputimers_group_init(pct, cpu_limit); 1682 } 1683 1684 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1685 { 1686 struct signal_struct *sig; 1687 1688 if (clone_flags & CLONE_THREAD) 1689 return 0; 1690 1691 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1692 tsk->signal = sig; 1693 if (!sig) 1694 return -ENOMEM; 1695 1696 sig->nr_threads = 1; 1697 sig->quick_threads = 1; 1698 atomic_set(&sig->live, 1); 1699 refcount_set(&sig->sigcnt, 1); 1700 1701 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1702 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1703 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1704 1705 init_waitqueue_head(&sig->wait_chldexit); 1706 sig->curr_target = tsk; 1707 init_sigpending(&sig->shared_pending); 1708 INIT_HLIST_HEAD(&sig->multiprocess); 1709 seqlock_init(&sig->stats_lock); 1710 prev_cputime_init(&sig->prev_cputime); 1711 1712 #ifdef CONFIG_POSIX_TIMERS 1713 INIT_LIST_HEAD(&sig->posix_timers); 1714 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1715 sig->real_timer.function = it_real_fn; 1716 #endif 1717 1718 task_lock(current->group_leader); 1719 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1720 task_unlock(current->group_leader); 1721 1722 posix_cpu_timers_init_group(sig); 1723 1724 tty_audit_fork(sig); 1725 sched_autogroup_fork(sig); 1726 1727 sig->oom_score_adj = current->signal->oom_score_adj; 1728 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1729 1730 mutex_init(&sig->cred_guard_mutex); 1731 init_rwsem(&sig->exec_update_lock); 1732 1733 return 0; 1734 } 1735 1736 static void copy_seccomp(struct task_struct *p) 1737 { 1738 #ifdef CONFIG_SECCOMP 1739 /* 1740 * Must be called with sighand->lock held, which is common to 1741 * all threads in the group. Holding cred_guard_mutex is not 1742 * needed because this new task is not yet running and cannot 1743 * be racing exec. 1744 */ 1745 assert_spin_locked(¤t->sighand->siglock); 1746 1747 /* Ref-count the new filter user, and assign it. */ 1748 get_seccomp_filter(current); 1749 p->seccomp = current->seccomp; 1750 1751 /* 1752 * Explicitly enable no_new_privs here in case it got set 1753 * between the task_struct being duplicated and holding the 1754 * sighand lock. The seccomp state and nnp must be in sync. 1755 */ 1756 if (task_no_new_privs(current)) 1757 task_set_no_new_privs(p); 1758 1759 /* 1760 * If the parent gained a seccomp mode after copying thread 1761 * flags and between before we held the sighand lock, we have 1762 * to manually enable the seccomp thread flag here. 1763 */ 1764 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1765 set_task_syscall_work(p, SECCOMP); 1766 #endif 1767 } 1768 1769 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1770 { 1771 current->clear_child_tid = tidptr; 1772 1773 return task_pid_vnr(current); 1774 } 1775 1776 static void rt_mutex_init_task(struct task_struct *p) 1777 { 1778 raw_spin_lock_init(&p->pi_lock); 1779 #ifdef CONFIG_RT_MUTEXES 1780 p->pi_waiters = RB_ROOT_CACHED; 1781 p->pi_top_task = NULL; 1782 p->pi_blocked_on = NULL; 1783 #endif 1784 } 1785 1786 static inline void init_task_pid_links(struct task_struct *task) 1787 { 1788 enum pid_type type; 1789 1790 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1791 INIT_HLIST_NODE(&task->pid_links[type]); 1792 } 1793 1794 static inline void 1795 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1796 { 1797 if (type == PIDTYPE_PID) 1798 task->thread_pid = pid; 1799 else 1800 task->signal->pids[type] = pid; 1801 } 1802 1803 static inline void rcu_copy_process(struct task_struct *p) 1804 { 1805 #ifdef CONFIG_PREEMPT_RCU 1806 p->rcu_read_lock_nesting = 0; 1807 p->rcu_read_unlock_special.s = 0; 1808 p->rcu_blocked_node = NULL; 1809 INIT_LIST_HEAD(&p->rcu_node_entry); 1810 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1811 #ifdef CONFIG_TASKS_RCU 1812 p->rcu_tasks_holdout = false; 1813 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1814 p->rcu_tasks_idle_cpu = -1; 1815 #endif /* #ifdef CONFIG_TASKS_RCU */ 1816 #ifdef CONFIG_TASKS_TRACE_RCU 1817 p->trc_reader_nesting = 0; 1818 p->trc_reader_special.s = 0; 1819 INIT_LIST_HEAD(&p->trc_holdout_list); 1820 INIT_LIST_HEAD(&p->trc_blkd_node); 1821 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1822 } 1823 1824 struct pid *pidfd_pid(const struct file *file) 1825 { 1826 if (file->f_op == &pidfd_fops) 1827 return file->private_data; 1828 1829 return ERR_PTR(-EBADF); 1830 } 1831 1832 static int pidfd_release(struct inode *inode, struct file *file) 1833 { 1834 struct pid *pid = file->private_data; 1835 1836 file->private_data = NULL; 1837 put_pid(pid); 1838 return 0; 1839 } 1840 1841 #ifdef CONFIG_PROC_FS 1842 /** 1843 * pidfd_show_fdinfo - print information about a pidfd 1844 * @m: proc fdinfo file 1845 * @f: file referencing a pidfd 1846 * 1847 * Pid: 1848 * This function will print the pid that a given pidfd refers to in the 1849 * pid namespace of the procfs instance. 1850 * If the pid namespace of the process is not a descendant of the pid 1851 * namespace of the procfs instance 0 will be shown as its pid. This is 1852 * similar to calling getppid() on a process whose parent is outside of 1853 * its pid namespace. 1854 * 1855 * NSpid: 1856 * If pid namespaces are supported then this function will also print 1857 * the pid of a given pidfd refers to for all descendant pid namespaces 1858 * starting from the current pid namespace of the instance, i.e. the 1859 * Pid field and the first entry in the NSpid field will be identical. 1860 * If the pid namespace of the process is not a descendant of the pid 1861 * namespace of the procfs instance 0 will be shown as its first NSpid 1862 * entry and no others will be shown. 1863 * Note that this differs from the Pid and NSpid fields in 1864 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1865 * the pid namespace of the procfs instance. The difference becomes 1866 * obvious when sending around a pidfd between pid namespaces from a 1867 * different branch of the tree, i.e. where no ancestral relation is 1868 * present between the pid namespaces: 1869 * - create two new pid namespaces ns1 and ns2 in the initial pid 1870 * namespace (also take care to create new mount namespaces in the 1871 * new pid namespace and mount procfs) 1872 * - create a process with a pidfd in ns1 1873 * - send pidfd from ns1 to ns2 1874 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1875 * have exactly one entry, which is 0 1876 */ 1877 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1878 { 1879 struct pid *pid = f->private_data; 1880 struct pid_namespace *ns; 1881 pid_t nr = -1; 1882 1883 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1884 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1885 nr = pid_nr_ns(pid, ns); 1886 } 1887 1888 seq_put_decimal_ll(m, "Pid:\t", nr); 1889 1890 #ifdef CONFIG_PID_NS 1891 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1892 if (nr > 0) { 1893 int i; 1894 1895 /* If nr is non-zero it means that 'pid' is valid and that 1896 * ns, i.e. the pid namespace associated with the procfs 1897 * instance, is in the pid namespace hierarchy of pid. 1898 * Start at one below the already printed level. 1899 */ 1900 for (i = ns->level + 1; i <= pid->level; i++) 1901 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1902 } 1903 #endif 1904 seq_putc(m, '\n'); 1905 } 1906 #endif 1907 1908 /* 1909 * Poll support for process exit notification. 1910 */ 1911 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1912 { 1913 struct pid *pid = file->private_data; 1914 __poll_t poll_flags = 0; 1915 1916 poll_wait(file, &pid->wait_pidfd, pts); 1917 1918 /* 1919 * Inform pollers only when the whole thread group exits. 1920 * If the thread group leader exits before all other threads in the 1921 * group, then poll(2) should block, similar to the wait(2) family. 1922 */ 1923 if (thread_group_exited(pid)) 1924 poll_flags = EPOLLIN | EPOLLRDNORM; 1925 1926 return poll_flags; 1927 } 1928 1929 const struct file_operations pidfd_fops = { 1930 .release = pidfd_release, 1931 .poll = pidfd_poll, 1932 #ifdef CONFIG_PROC_FS 1933 .show_fdinfo = pidfd_show_fdinfo, 1934 #endif 1935 }; 1936 1937 static void __delayed_free_task(struct rcu_head *rhp) 1938 { 1939 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1940 1941 free_task(tsk); 1942 } 1943 1944 static __always_inline void delayed_free_task(struct task_struct *tsk) 1945 { 1946 if (IS_ENABLED(CONFIG_MEMCG)) 1947 call_rcu(&tsk->rcu, __delayed_free_task); 1948 else 1949 free_task(tsk); 1950 } 1951 1952 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1953 { 1954 /* Skip if kernel thread */ 1955 if (!tsk->mm) 1956 return; 1957 1958 /* Skip if spawning a thread or using vfork */ 1959 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1960 return; 1961 1962 /* We need to synchronize with __set_oom_adj */ 1963 mutex_lock(&oom_adj_mutex); 1964 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1965 /* Update the values in case they were changed after copy_signal */ 1966 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1967 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1968 mutex_unlock(&oom_adj_mutex); 1969 } 1970 1971 #ifdef CONFIG_RV 1972 static void rv_task_fork(struct task_struct *p) 1973 { 1974 int i; 1975 1976 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1977 p->rv[i].da_mon.monitoring = false; 1978 } 1979 #else 1980 #define rv_task_fork(p) do {} while (0) 1981 #endif 1982 1983 /* 1984 * This creates a new process as a copy of the old one, 1985 * but does not actually start it yet. 1986 * 1987 * It copies the registers, and all the appropriate 1988 * parts of the process environment (as per the clone 1989 * flags). The actual kick-off is left to the caller. 1990 */ 1991 static __latent_entropy struct task_struct *copy_process( 1992 struct pid *pid, 1993 int trace, 1994 int node, 1995 struct kernel_clone_args *args) 1996 { 1997 int pidfd = -1, retval; 1998 struct task_struct *p; 1999 struct multiprocess_signals delayed; 2000 struct file *pidfile = NULL; 2001 const u64 clone_flags = args->flags; 2002 struct nsproxy *nsp = current->nsproxy; 2003 2004 /* 2005 * Don't allow sharing the root directory with processes in a different 2006 * namespace 2007 */ 2008 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2009 return ERR_PTR(-EINVAL); 2010 2011 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2012 return ERR_PTR(-EINVAL); 2013 2014 /* 2015 * Thread groups must share signals as well, and detached threads 2016 * can only be started up within the thread group. 2017 */ 2018 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2019 return ERR_PTR(-EINVAL); 2020 2021 /* 2022 * Shared signal handlers imply shared VM. By way of the above, 2023 * thread groups also imply shared VM. Blocking this case allows 2024 * for various simplifications in other code. 2025 */ 2026 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2027 return ERR_PTR(-EINVAL); 2028 2029 /* 2030 * Siblings of global init remain as zombies on exit since they are 2031 * not reaped by their parent (swapper). To solve this and to avoid 2032 * multi-rooted process trees, prevent global and container-inits 2033 * from creating siblings. 2034 */ 2035 if ((clone_flags & CLONE_PARENT) && 2036 current->signal->flags & SIGNAL_UNKILLABLE) 2037 return ERR_PTR(-EINVAL); 2038 2039 /* 2040 * If the new process will be in a different pid or user namespace 2041 * do not allow it to share a thread group with the forking task. 2042 */ 2043 if (clone_flags & CLONE_THREAD) { 2044 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2045 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2046 return ERR_PTR(-EINVAL); 2047 } 2048 2049 if (clone_flags & CLONE_PIDFD) { 2050 /* 2051 * - CLONE_DETACHED is blocked so that we can potentially 2052 * reuse it later for CLONE_PIDFD. 2053 * - CLONE_THREAD is blocked until someone really needs it. 2054 */ 2055 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2056 return ERR_PTR(-EINVAL); 2057 } 2058 2059 /* 2060 * Force any signals received before this point to be delivered 2061 * before the fork happens. Collect up signals sent to multiple 2062 * processes that happen during the fork and delay them so that 2063 * they appear to happen after the fork. 2064 */ 2065 sigemptyset(&delayed.signal); 2066 INIT_HLIST_NODE(&delayed.node); 2067 2068 spin_lock_irq(¤t->sighand->siglock); 2069 if (!(clone_flags & CLONE_THREAD)) 2070 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2071 recalc_sigpending(); 2072 spin_unlock_irq(¤t->sighand->siglock); 2073 retval = -ERESTARTNOINTR; 2074 if (task_sigpending(current)) 2075 goto fork_out; 2076 2077 retval = -ENOMEM; 2078 p = dup_task_struct(current, node); 2079 if (!p) 2080 goto fork_out; 2081 p->flags &= ~PF_KTHREAD; 2082 if (args->kthread) 2083 p->flags |= PF_KTHREAD; 2084 if (args->io_thread) { 2085 /* 2086 * Mark us an IO worker, and block any signal that isn't 2087 * fatal or STOP 2088 */ 2089 p->flags |= PF_IO_WORKER; 2090 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2091 } 2092 2093 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2094 /* 2095 * Clear TID on mm_release()? 2096 */ 2097 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2098 2099 ftrace_graph_init_task(p); 2100 2101 rt_mutex_init_task(p); 2102 2103 lockdep_assert_irqs_enabled(); 2104 #ifdef CONFIG_PROVE_LOCKING 2105 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2106 #endif 2107 retval = copy_creds(p, clone_flags); 2108 if (retval < 0) 2109 goto bad_fork_free; 2110 2111 retval = -EAGAIN; 2112 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2113 if (p->real_cred->user != INIT_USER && 2114 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2115 goto bad_fork_cleanup_count; 2116 } 2117 current->flags &= ~PF_NPROC_EXCEEDED; 2118 2119 /* 2120 * If multiple threads are within copy_process(), then this check 2121 * triggers too late. This doesn't hurt, the check is only there 2122 * to stop root fork bombs. 2123 */ 2124 retval = -EAGAIN; 2125 if (data_race(nr_threads >= max_threads)) 2126 goto bad_fork_cleanup_count; 2127 2128 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2129 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2130 p->flags |= PF_FORKNOEXEC; 2131 INIT_LIST_HEAD(&p->children); 2132 INIT_LIST_HEAD(&p->sibling); 2133 rcu_copy_process(p); 2134 p->vfork_done = NULL; 2135 spin_lock_init(&p->alloc_lock); 2136 2137 init_sigpending(&p->pending); 2138 2139 p->utime = p->stime = p->gtime = 0; 2140 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2141 p->utimescaled = p->stimescaled = 0; 2142 #endif 2143 prev_cputime_init(&p->prev_cputime); 2144 2145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2146 seqcount_init(&p->vtime.seqcount); 2147 p->vtime.starttime = 0; 2148 p->vtime.state = VTIME_INACTIVE; 2149 #endif 2150 2151 #ifdef CONFIG_IO_URING 2152 p->io_uring = NULL; 2153 #endif 2154 2155 #if defined(SPLIT_RSS_COUNTING) 2156 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2157 #endif 2158 2159 p->default_timer_slack_ns = current->timer_slack_ns; 2160 2161 #ifdef CONFIG_PSI 2162 p->psi_flags = 0; 2163 #endif 2164 2165 task_io_accounting_init(&p->ioac); 2166 acct_clear_integrals(p); 2167 2168 posix_cputimers_init(&p->posix_cputimers); 2169 2170 p->io_context = NULL; 2171 audit_set_context(p, NULL); 2172 cgroup_fork(p); 2173 if (args->kthread) { 2174 if (!set_kthread_struct(p)) 2175 goto bad_fork_cleanup_delayacct; 2176 } 2177 #ifdef CONFIG_NUMA 2178 p->mempolicy = mpol_dup(p->mempolicy); 2179 if (IS_ERR(p->mempolicy)) { 2180 retval = PTR_ERR(p->mempolicy); 2181 p->mempolicy = NULL; 2182 goto bad_fork_cleanup_delayacct; 2183 } 2184 #endif 2185 #ifdef CONFIG_CPUSETS 2186 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2187 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2188 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2189 #endif 2190 #ifdef CONFIG_TRACE_IRQFLAGS 2191 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2192 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2193 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2194 p->softirqs_enabled = 1; 2195 p->softirq_context = 0; 2196 #endif 2197 2198 p->pagefault_disabled = 0; 2199 2200 #ifdef CONFIG_LOCKDEP 2201 lockdep_init_task(p); 2202 #endif 2203 2204 #ifdef CONFIG_DEBUG_MUTEXES 2205 p->blocked_on = NULL; /* not blocked yet */ 2206 #endif 2207 #ifdef CONFIG_BCACHE 2208 p->sequential_io = 0; 2209 p->sequential_io_avg = 0; 2210 #endif 2211 #ifdef CONFIG_BPF_SYSCALL 2212 RCU_INIT_POINTER(p->bpf_storage, NULL); 2213 p->bpf_ctx = NULL; 2214 #endif 2215 2216 /* Perform scheduler related setup. Assign this task to a CPU. */ 2217 retval = sched_fork(clone_flags, p); 2218 if (retval) 2219 goto bad_fork_cleanup_policy; 2220 2221 retval = perf_event_init_task(p, clone_flags); 2222 if (retval) 2223 goto bad_fork_cleanup_policy; 2224 retval = audit_alloc(p); 2225 if (retval) 2226 goto bad_fork_cleanup_perf; 2227 /* copy all the process information */ 2228 shm_init_task(p); 2229 retval = security_task_alloc(p, clone_flags); 2230 if (retval) 2231 goto bad_fork_cleanup_audit; 2232 retval = copy_semundo(clone_flags, p); 2233 if (retval) 2234 goto bad_fork_cleanup_security; 2235 retval = copy_files(clone_flags, p); 2236 if (retval) 2237 goto bad_fork_cleanup_semundo; 2238 retval = copy_fs(clone_flags, p); 2239 if (retval) 2240 goto bad_fork_cleanup_files; 2241 retval = copy_sighand(clone_flags, p); 2242 if (retval) 2243 goto bad_fork_cleanup_fs; 2244 retval = copy_signal(clone_flags, p); 2245 if (retval) 2246 goto bad_fork_cleanup_sighand; 2247 retval = copy_mm(clone_flags, p); 2248 if (retval) 2249 goto bad_fork_cleanup_signal; 2250 retval = copy_namespaces(clone_flags, p); 2251 if (retval) 2252 goto bad_fork_cleanup_mm; 2253 retval = copy_io(clone_flags, p); 2254 if (retval) 2255 goto bad_fork_cleanup_namespaces; 2256 retval = copy_thread(p, args); 2257 if (retval) 2258 goto bad_fork_cleanup_io; 2259 2260 stackleak_task_init(p); 2261 2262 if (pid != &init_struct_pid) { 2263 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2264 args->set_tid_size); 2265 if (IS_ERR(pid)) { 2266 retval = PTR_ERR(pid); 2267 goto bad_fork_cleanup_thread; 2268 } 2269 } 2270 2271 /* 2272 * This has to happen after we've potentially unshared the file 2273 * descriptor table (so that the pidfd doesn't leak into the child 2274 * if the fd table isn't shared). 2275 */ 2276 if (clone_flags & CLONE_PIDFD) { 2277 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2278 if (retval < 0) 2279 goto bad_fork_free_pid; 2280 2281 pidfd = retval; 2282 2283 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2284 O_RDWR | O_CLOEXEC); 2285 if (IS_ERR(pidfile)) { 2286 put_unused_fd(pidfd); 2287 retval = PTR_ERR(pidfile); 2288 goto bad_fork_free_pid; 2289 } 2290 get_pid(pid); /* held by pidfile now */ 2291 2292 retval = put_user(pidfd, args->pidfd); 2293 if (retval) 2294 goto bad_fork_put_pidfd; 2295 } 2296 2297 #ifdef CONFIG_BLOCK 2298 p->plug = NULL; 2299 #endif 2300 futex_init_task(p); 2301 2302 /* 2303 * sigaltstack should be cleared when sharing the same VM 2304 */ 2305 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2306 sas_ss_reset(p); 2307 2308 /* 2309 * Syscall tracing and stepping should be turned off in the 2310 * child regardless of CLONE_PTRACE. 2311 */ 2312 user_disable_single_step(p); 2313 clear_task_syscall_work(p, SYSCALL_TRACE); 2314 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2315 clear_task_syscall_work(p, SYSCALL_EMU); 2316 #endif 2317 clear_tsk_latency_tracing(p); 2318 2319 /* ok, now we should be set up.. */ 2320 p->pid = pid_nr(pid); 2321 if (clone_flags & CLONE_THREAD) { 2322 p->group_leader = current->group_leader; 2323 p->tgid = current->tgid; 2324 } else { 2325 p->group_leader = p; 2326 p->tgid = p->pid; 2327 } 2328 2329 p->nr_dirtied = 0; 2330 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2331 p->dirty_paused_when = 0; 2332 2333 p->pdeath_signal = 0; 2334 INIT_LIST_HEAD(&p->thread_group); 2335 p->task_works = NULL; 2336 clear_posix_cputimers_work(p); 2337 2338 #ifdef CONFIG_KRETPROBES 2339 p->kretprobe_instances.first = NULL; 2340 #endif 2341 #ifdef CONFIG_RETHOOK 2342 p->rethooks.first = NULL; 2343 #endif 2344 2345 /* 2346 * Ensure that the cgroup subsystem policies allow the new process to be 2347 * forked. It should be noted that the new process's css_set can be changed 2348 * between here and cgroup_post_fork() if an organisation operation is in 2349 * progress. 2350 */ 2351 retval = cgroup_can_fork(p, args); 2352 if (retval) 2353 goto bad_fork_put_pidfd; 2354 2355 /* 2356 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2357 * the new task on the correct runqueue. All this *before* the task 2358 * becomes visible. 2359 * 2360 * This isn't part of ->can_fork() because while the re-cloning is 2361 * cgroup specific, it unconditionally needs to place the task on a 2362 * runqueue. 2363 */ 2364 sched_cgroup_fork(p, args); 2365 2366 /* 2367 * From this point on we must avoid any synchronous user-space 2368 * communication until we take the tasklist-lock. In particular, we do 2369 * not want user-space to be able to predict the process start-time by 2370 * stalling fork(2) after we recorded the start_time but before it is 2371 * visible to the system. 2372 */ 2373 2374 p->start_time = ktime_get_ns(); 2375 p->start_boottime = ktime_get_boottime_ns(); 2376 2377 /* 2378 * Make it visible to the rest of the system, but dont wake it up yet. 2379 * Need tasklist lock for parent etc handling! 2380 */ 2381 write_lock_irq(&tasklist_lock); 2382 2383 /* CLONE_PARENT re-uses the old parent */ 2384 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2385 p->real_parent = current->real_parent; 2386 p->parent_exec_id = current->parent_exec_id; 2387 if (clone_flags & CLONE_THREAD) 2388 p->exit_signal = -1; 2389 else 2390 p->exit_signal = current->group_leader->exit_signal; 2391 } else { 2392 p->real_parent = current; 2393 p->parent_exec_id = current->self_exec_id; 2394 p->exit_signal = args->exit_signal; 2395 } 2396 2397 klp_copy_process(p); 2398 2399 sched_core_fork(p); 2400 2401 spin_lock(¤t->sighand->siglock); 2402 2403 rv_task_fork(p); 2404 2405 rseq_fork(p, clone_flags); 2406 2407 /* Don't start children in a dying pid namespace */ 2408 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2409 retval = -ENOMEM; 2410 goto bad_fork_cancel_cgroup; 2411 } 2412 2413 /* Let kill terminate clone/fork in the middle */ 2414 if (fatal_signal_pending(current)) { 2415 retval = -EINTR; 2416 goto bad_fork_cancel_cgroup; 2417 } 2418 2419 /* No more failure paths after this point. */ 2420 2421 /* 2422 * Copy seccomp details explicitly here, in case they were changed 2423 * before holding sighand lock. 2424 */ 2425 copy_seccomp(p); 2426 2427 init_task_pid_links(p); 2428 if (likely(p->pid)) { 2429 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2430 2431 init_task_pid(p, PIDTYPE_PID, pid); 2432 if (thread_group_leader(p)) { 2433 init_task_pid(p, PIDTYPE_TGID, pid); 2434 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2435 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2436 2437 if (is_child_reaper(pid)) { 2438 ns_of_pid(pid)->child_reaper = p; 2439 p->signal->flags |= SIGNAL_UNKILLABLE; 2440 } 2441 p->signal->shared_pending.signal = delayed.signal; 2442 p->signal->tty = tty_kref_get(current->signal->tty); 2443 /* 2444 * Inherit has_child_subreaper flag under the same 2445 * tasklist_lock with adding child to the process tree 2446 * for propagate_has_child_subreaper optimization. 2447 */ 2448 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2449 p->real_parent->signal->is_child_subreaper; 2450 list_add_tail(&p->sibling, &p->real_parent->children); 2451 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2452 attach_pid(p, PIDTYPE_TGID); 2453 attach_pid(p, PIDTYPE_PGID); 2454 attach_pid(p, PIDTYPE_SID); 2455 __this_cpu_inc(process_counts); 2456 } else { 2457 current->signal->nr_threads++; 2458 current->signal->quick_threads++; 2459 atomic_inc(¤t->signal->live); 2460 refcount_inc(¤t->signal->sigcnt); 2461 task_join_group_stop(p); 2462 list_add_tail_rcu(&p->thread_group, 2463 &p->group_leader->thread_group); 2464 list_add_tail_rcu(&p->thread_node, 2465 &p->signal->thread_head); 2466 } 2467 attach_pid(p, PIDTYPE_PID); 2468 nr_threads++; 2469 } 2470 total_forks++; 2471 hlist_del_init(&delayed.node); 2472 spin_unlock(¤t->sighand->siglock); 2473 syscall_tracepoint_update(p); 2474 write_unlock_irq(&tasklist_lock); 2475 2476 if (pidfile) 2477 fd_install(pidfd, pidfile); 2478 2479 proc_fork_connector(p); 2480 sched_post_fork(p); 2481 cgroup_post_fork(p, args); 2482 perf_event_fork(p); 2483 2484 trace_task_newtask(p, clone_flags); 2485 uprobe_copy_process(p, clone_flags); 2486 2487 copy_oom_score_adj(clone_flags, p); 2488 2489 return p; 2490 2491 bad_fork_cancel_cgroup: 2492 sched_core_free(p); 2493 spin_unlock(¤t->sighand->siglock); 2494 write_unlock_irq(&tasklist_lock); 2495 cgroup_cancel_fork(p, args); 2496 bad_fork_put_pidfd: 2497 if (clone_flags & CLONE_PIDFD) { 2498 fput(pidfile); 2499 put_unused_fd(pidfd); 2500 } 2501 bad_fork_free_pid: 2502 if (pid != &init_struct_pid) 2503 free_pid(pid); 2504 bad_fork_cleanup_thread: 2505 exit_thread(p); 2506 bad_fork_cleanup_io: 2507 if (p->io_context) 2508 exit_io_context(p); 2509 bad_fork_cleanup_namespaces: 2510 exit_task_namespaces(p); 2511 bad_fork_cleanup_mm: 2512 if (p->mm) { 2513 mm_clear_owner(p->mm, p); 2514 mmput(p->mm); 2515 } 2516 bad_fork_cleanup_signal: 2517 if (!(clone_flags & CLONE_THREAD)) 2518 free_signal_struct(p->signal); 2519 bad_fork_cleanup_sighand: 2520 __cleanup_sighand(p->sighand); 2521 bad_fork_cleanup_fs: 2522 exit_fs(p); /* blocking */ 2523 bad_fork_cleanup_files: 2524 exit_files(p); /* blocking */ 2525 bad_fork_cleanup_semundo: 2526 exit_sem(p); 2527 bad_fork_cleanup_security: 2528 security_task_free(p); 2529 bad_fork_cleanup_audit: 2530 audit_free(p); 2531 bad_fork_cleanup_perf: 2532 perf_event_free_task(p); 2533 bad_fork_cleanup_policy: 2534 lockdep_free_task(p); 2535 #ifdef CONFIG_NUMA 2536 mpol_put(p->mempolicy); 2537 #endif 2538 bad_fork_cleanup_delayacct: 2539 delayacct_tsk_free(p); 2540 bad_fork_cleanup_count: 2541 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2542 exit_creds(p); 2543 bad_fork_free: 2544 WRITE_ONCE(p->__state, TASK_DEAD); 2545 exit_task_stack_account(p); 2546 put_task_stack(p); 2547 delayed_free_task(p); 2548 fork_out: 2549 spin_lock_irq(¤t->sighand->siglock); 2550 hlist_del_init(&delayed.node); 2551 spin_unlock_irq(¤t->sighand->siglock); 2552 return ERR_PTR(retval); 2553 } 2554 2555 static inline void init_idle_pids(struct task_struct *idle) 2556 { 2557 enum pid_type type; 2558 2559 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2560 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2561 init_task_pid(idle, type, &init_struct_pid); 2562 } 2563 } 2564 2565 static int idle_dummy(void *dummy) 2566 { 2567 /* This function is never called */ 2568 return 0; 2569 } 2570 2571 struct task_struct * __init fork_idle(int cpu) 2572 { 2573 struct task_struct *task; 2574 struct kernel_clone_args args = { 2575 .flags = CLONE_VM, 2576 .fn = &idle_dummy, 2577 .fn_arg = NULL, 2578 .kthread = 1, 2579 .idle = 1, 2580 }; 2581 2582 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2583 if (!IS_ERR(task)) { 2584 init_idle_pids(task); 2585 init_idle(task, cpu); 2586 } 2587 2588 return task; 2589 } 2590 2591 struct mm_struct *copy_init_mm(void) 2592 { 2593 return dup_mm(NULL, &init_mm); 2594 } 2595 2596 /* 2597 * This is like kernel_clone(), but shaved down and tailored to just 2598 * creating io_uring workers. It returns a created task, or an error pointer. 2599 * The returned task is inactive, and the caller must fire it up through 2600 * wake_up_new_task(p). All signals are blocked in the created task. 2601 */ 2602 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2603 { 2604 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2605 CLONE_IO; 2606 struct kernel_clone_args args = { 2607 .flags = ((lower_32_bits(flags) | CLONE_VM | 2608 CLONE_UNTRACED) & ~CSIGNAL), 2609 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2610 .fn = fn, 2611 .fn_arg = arg, 2612 .io_thread = 1, 2613 }; 2614 2615 return copy_process(NULL, 0, node, &args); 2616 } 2617 2618 /* 2619 * Ok, this is the main fork-routine. 2620 * 2621 * It copies the process, and if successful kick-starts 2622 * it and waits for it to finish using the VM if required. 2623 * 2624 * args->exit_signal is expected to be checked for sanity by the caller. 2625 */ 2626 pid_t kernel_clone(struct kernel_clone_args *args) 2627 { 2628 u64 clone_flags = args->flags; 2629 struct completion vfork; 2630 struct pid *pid; 2631 struct task_struct *p; 2632 int trace = 0; 2633 pid_t nr; 2634 2635 /* 2636 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2637 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2638 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2639 * field in struct clone_args and it still doesn't make sense to have 2640 * them both point at the same memory location. Performing this check 2641 * here has the advantage that we don't need to have a separate helper 2642 * to check for legacy clone(). 2643 */ 2644 if ((args->flags & CLONE_PIDFD) && 2645 (args->flags & CLONE_PARENT_SETTID) && 2646 (args->pidfd == args->parent_tid)) 2647 return -EINVAL; 2648 2649 /* 2650 * Determine whether and which event to report to ptracer. When 2651 * called from kernel_thread or CLONE_UNTRACED is explicitly 2652 * requested, no event is reported; otherwise, report if the event 2653 * for the type of forking is enabled. 2654 */ 2655 if (!(clone_flags & CLONE_UNTRACED)) { 2656 if (clone_flags & CLONE_VFORK) 2657 trace = PTRACE_EVENT_VFORK; 2658 else if (args->exit_signal != SIGCHLD) 2659 trace = PTRACE_EVENT_CLONE; 2660 else 2661 trace = PTRACE_EVENT_FORK; 2662 2663 if (likely(!ptrace_event_enabled(current, trace))) 2664 trace = 0; 2665 } 2666 2667 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2668 add_latent_entropy(); 2669 2670 if (IS_ERR(p)) 2671 return PTR_ERR(p); 2672 2673 /* 2674 * Do this prior waking up the new thread - the thread pointer 2675 * might get invalid after that point, if the thread exits quickly. 2676 */ 2677 trace_sched_process_fork(current, p); 2678 2679 pid = get_task_pid(p, PIDTYPE_PID); 2680 nr = pid_vnr(pid); 2681 2682 if (clone_flags & CLONE_PARENT_SETTID) 2683 put_user(nr, args->parent_tid); 2684 2685 if (clone_flags & CLONE_VFORK) { 2686 p->vfork_done = &vfork; 2687 init_completion(&vfork); 2688 get_task_struct(p); 2689 } 2690 2691 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2692 /* lock the task to synchronize with memcg migration */ 2693 task_lock(p); 2694 lru_gen_add_mm(p->mm); 2695 task_unlock(p); 2696 } 2697 2698 wake_up_new_task(p); 2699 2700 /* forking complete and child started to run, tell ptracer */ 2701 if (unlikely(trace)) 2702 ptrace_event_pid(trace, pid); 2703 2704 if (clone_flags & CLONE_VFORK) { 2705 if (!wait_for_vfork_done(p, &vfork)) 2706 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2707 } 2708 2709 put_pid(pid); 2710 return nr; 2711 } 2712 2713 /* 2714 * Create a kernel thread. 2715 */ 2716 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2717 { 2718 struct kernel_clone_args args = { 2719 .flags = ((lower_32_bits(flags) | CLONE_VM | 2720 CLONE_UNTRACED) & ~CSIGNAL), 2721 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2722 .fn = fn, 2723 .fn_arg = arg, 2724 .kthread = 1, 2725 }; 2726 2727 return kernel_clone(&args); 2728 } 2729 2730 /* 2731 * Create a user mode thread. 2732 */ 2733 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2734 { 2735 struct kernel_clone_args args = { 2736 .flags = ((lower_32_bits(flags) | CLONE_VM | 2737 CLONE_UNTRACED) & ~CSIGNAL), 2738 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2739 .fn = fn, 2740 .fn_arg = arg, 2741 }; 2742 2743 return kernel_clone(&args); 2744 } 2745 2746 #ifdef __ARCH_WANT_SYS_FORK 2747 SYSCALL_DEFINE0(fork) 2748 { 2749 #ifdef CONFIG_MMU 2750 struct kernel_clone_args args = { 2751 .exit_signal = SIGCHLD, 2752 }; 2753 2754 return kernel_clone(&args); 2755 #else 2756 /* can not support in nommu mode */ 2757 return -EINVAL; 2758 #endif 2759 } 2760 #endif 2761 2762 #ifdef __ARCH_WANT_SYS_VFORK 2763 SYSCALL_DEFINE0(vfork) 2764 { 2765 struct kernel_clone_args args = { 2766 .flags = CLONE_VFORK | CLONE_VM, 2767 .exit_signal = SIGCHLD, 2768 }; 2769 2770 return kernel_clone(&args); 2771 } 2772 #endif 2773 2774 #ifdef __ARCH_WANT_SYS_CLONE 2775 #ifdef CONFIG_CLONE_BACKWARDS 2776 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2777 int __user *, parent_tidptr, 2778 unsigned long, tls, 2779 int __user *, child_tidptr) 2780 #elif defined(CONFIG_CLONE_BACKWARDS2) 2781 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2782 int __user *, parent_tidptr, 2783 int __user *, child_tidptr, 2784 unsigned long, tls) 2785 #elif defined(CONFIG_CLONE_BACKWARDS3) 2786 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2787 int, stack_size, 2788 int __user *, parent_tidptr, 2789 int __user *, child_tidptr, 2790 unsigned long, tls) 2791 #else 2792 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2793 int __user *, parent_tidptr, 2794 int __user *, child_tidptr, 2795 unsigned long, tls) 2796 #endif 2797 { 2798 struct kernel_clone_args args = { 2799 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2800 .pidfd = parent_tidptr, 2801 .child_tid = child_tidptr, 2802 .parent_tid = parent_tidptr, 2803 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2804 .stack = newsp, 2805 .tls = tls, 2806 }; 2807 2808 return kernel_clone(&args); 2809 } 2810 #endif 2811 2812 #ifdef __ARCH_WANT_SYS_CLONE3 2813 2814 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2815 struct clone_args __user *uargs, 2816 size_t usize) 2817 { 2818 int err; 2819 struct clone_args args; 2820 pid_t *kset_tid = kargs->set_tid; 2821 2822 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2823 CLONE_ARGS_SIZE_VER0); 2824 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2825 CLONE_ARGS_SIZE_VER1); 2826 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2827 CLONE_ARGS_SIZE_VER2); 2828 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2829 2830 if (unlikely(usize > PAGE_SIZE)) 2831 return -E2BIG; 2832 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2833 return -EINVAL; 2834 2835 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2836 if (err) 2837 return err; 2838 2839 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2840 return -EINVAL; 2841 2842 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2843 return -EINVAL; 2844 2845 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2846 return -EINVAL; 2847 2848 /* 2849 * Verify that higher 32bits of exit_signal are unset and that 2850 * it is a valid signal 2851 */ 2852 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2853 !valid_signal(args.exit_signal))) 2854 return -EINVAL; 2855 2856 if ((args.flags & CLONE_INTO_CGROUP) && 2857 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2858 return -EINVAL; 2859 2860 *kargs = (struct kernel_clone_args){ 2861 .flags = args.flags, 2862 .pidfd = u64_to_user_ptr(args.pidfd), 2863 .child_tid = u64_to_user_ptr(args.child_tid), 2864 .parent_tid = u64_to_user_ptr(args.parent_tid), 2865 .exit_signal = args.exit_signal, 2866 .stack = args.stack, 2867 .stack_size = args.stack_size, 2868 .tls = args.tls, 2869 .set_tid_size = args.set_tid_size, 2870 .cgroup = args.cgroup, 2871 }; 2872 2873 if (args.set_tid && 2874 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2875 (kargs->set_tid_size * sizeof(pid_t)))) 2876 return -EFAULT; 2877 2878 kargs->set_tid = kset_tid; 2879 2880 return 0; 2881 } 2882 2883 /** 2884 * clone3_stack_valid - check and prepare stack 2885 * @kargs: kernel clone args 2886 * 2887 * Verify that the stack arguments userspace gave us are sane. 2888 * In addition, set the stack direction for userspace since it's easy for us to 2889 * determine. 2890 */ 2891 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2892 { 2893 if (kargs->stack == 0) { 2894 if (kargs->stack_size > 0) 2895 return false; 2896 } else { 2897 if (kargs->stack_size == 0) 2898 return false; 2899 2900 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2901 return false; 2902 2903 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2904 kargs->stack += kargs->stack_size; 2905 #endif 2906 } 2907 2908 return true; 2909 } 2910 2911 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2912 { 2913 /* Verify that no unknown flags are passed along. */ 2914 if (kargs->flags & 2915 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2916 return false; 2917 2918 /* 2919 * - make the CLONE_DETACHED bit reusable for clone3 2920 * - make the CSIGNAL bits reusable for clone3 2921 */ 2922 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2923 return false; 2924 2925 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2926 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2927 return false; 2928 2929 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2930 kargs->exit_signal) 2931 return false; 2932 2933 if (!clone3_stack_valid(kargs)) 2934 return false; 2935 2936 return true; 2937 } 2938 2939 /** 2940 * clone3 - create a new process with specific properties 2941 * @uargs: argument structure 2942 * @size: size of @uargs 2943 * 2944 * clone3() is the extensible successor to clone()/clone2(). 2945 * It takes a struct as argument that is versioned by its size. 2946 * 2947 * Return: On success, a positive PID for the child process. 2948 * On error, a negative errno number. 2949 */ 2950 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2951 { 2952 int err; 2953 2954 struct kernel_clone_args kargs; 2955 pid_t set_tid[MAX_PID_NS_LEVEL]; 2956 2957 kargs.set_tid = set_tid; 2958 2959 err = copy_clone_args_from_user(&kargs, uargs, size); 2960 if (err) 2961 return err; 2962 2963 if (!clone3_args_valid(&kargs)) 2964 return -EINVAL; 2965 2966 return kernel_clone(&kargs); 2967 } 2968 #endif 2969 2970 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2971 { 2972 struct task_struct *leader, *parent, *child; 2973 int res; 2974 2975 read_lock(&tasklist_lock); 2976 leader = top = top->group_leader; 2977 down: 2978 for_each_thread(leader, parent) { 2979 list_for_each_entry(child, &parent->children, sibling) { 2980 res = visitor(child, data); 2981 if (res) { 2982 if (res < 0) 2983 goto out; 2984 leader = child; 2985 goto down; 2986 } 2987 up: 2988 ; 2989 } 2990 } 2991 2992 if (leader != top) { 2993 child = leader; 2994 parent = child->real_parent; 2995 leader = parent->group_leader; 2996 goto up; 2997 } 2998 out: 2999 read_unlock(&tasklist_lock); 3000 } 3001 3002 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3003 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3004 #endif 3005 3006 static void sighand_ctor(void *data) 3007 { 3008 struct sighand_struct *sighand = data; 3009 3010 spin_lock_init(&sighand->siglock); 3011 init_waitqueue_head(&sighand->signalfd_wqh); 3012 } 3013 3014 void __init proc_caches_init(void) 3015 { 3016 unsigned int mm_size; 3017 3018 sighand_cachep = kmem_cache_create("sighand_cache", 3019 sizeof(struct sighand_struct), 0, 3020 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3021 SLAB_ACCOUNT, sighand_ctor); 3022 signal_cachep = kmem_cache_create("signal_cache", 3023 sizeof(struct signal_struct), 0, 3024 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3025 NULL); 3026 files_cachep = kmem_cache_create("files_cache", 3027 sizeof(struct files_struct), 0, 3028 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3029 NULL); 3030 fs_cachep = kmem_cache_create("fs_cache", 3031 sizeof(struct fs_struct), 0, 3032 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3033 NULL); 3034 3035 /* 3036 * The mm_cpumask is located at the end of mm_struct, and is 3037 * dynamically sized based on the maximum CPU number this system 3038 * can have, taking hotplug into account (nr_cpu_ids). 3039 */ 3040 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3041 3042 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3043 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3044 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3045 offsetof(struct mm_struct, saved_auxv), 3046 sizeof_field(struct mm_struct, saved_auxv), 3047 NULL); 3048 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3049 mmap_init(); 3050 nsproxy_cache_init(); 3051 } 3052 3053 /* 3054 * Check constraints on flags passed to the unshare system call. 3055 */ 3056 static int check_unshare_flags(unsigned long unshare_flags) 3057 { 3058 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3059 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3060 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3061 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3062 CLONE_NEWTIME)) 3063 return -EINVAL; 3064 /* 3065 * Not implemented, but pretend it works if there is nothing 3066 * to unshare. Note that unsharing the address space or the 3067 * signal handlers also need to unshare the signal queues (aka 3068 * CLONE_THREAD). 3069 */ 3070 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3071 if (!thread_group_empty(current)) 3072 return -EINVAL; 3073 } 3074 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3075 if (refcount_read(¤t->sighand->count) > 1) 3076 return -EINVAL; 3077 } 3078 if (unshare_flags & CLONE_VM) { 3079 if (!current_is_single_threaded()) 3080 return -EINVAL; 3081 } 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * Unshare the filesystem structure if it is being shared 3088 */ 3089 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3090 { 3091 struct fs_struct *fs = current->fs; 3092 3093 if (!(unshare_flags & CLONE_FS) || !fs) 3094 return 0; 3095 3096 /* don't need lock here; in the worst case we'll do useless copy */ 3097 if (fs->users == 1) 3098 return 0; 3099 3100 *new_fsp = copy_fs_struct(fs); 3101 if (!*new_fsp) 3102 return -ENOMEM; 3103 3104 return 0; 3105 } 3106 3107 /* 3108 * Unshare file descriptor table if it is being shared 3109 */ 3110 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3111 struct files_struct **new_fdp) 3112 { 3113 struct files_struct *fd = current->files; 3114 int error = 0; 3115 3116 if ((unshare_flags & CLONE_FILES) && 3117 (fd && atomic_read(&fd->count) > 1)) { 3118 *new_fdp = dup_fd(fd, max_fds, &error); 3119 if (!*new_fdp) 3120 return error; 3121 } 3122 3123 return 0; 3124 } 3125 3126 /* 3127 * unshare allows a process to 'unshare' part of the process 3128 * context which was originally shared using clone. copy_* 3129 * functions used by kernel_clone() cannot be used here directly 3130 * because they modify an inactive task_struct that is being 3131 * constructed. Here we are modifying the current, active, 3132 * task_struct. 3133 */ 3134 int ksys_unshare(unsigned long unshare_flags) 3135 { 3136 struct fs_struct *fs, *new_fs = NULL; 3137 struct files_struct *new_fd = NULL; 3138 struct cred *new_cred = NULL; 3139 struct nsproxy *new_nsproxy = NULL; 3140 int do_sysvsem = 0; 3141 int err; 3142 3143 /* 3144 * If unsharing a user namespace must also unshare the thread group 3145 * and unshare the filesystem root and working directories. 3146 */ 3147 if (unshare_flags & CLONE_NEWUSER) 3148 unshare_flags |= CLONE_THREAD | CLONE_FS; 3149 /* 3150 * If unsharing vm, must also unshare signal handlers. 3151 */ 3152 if (unshare_flags & CLONE_VM) 3153 unshare_flags |= CLONE_SIGHAND; 3154 /* 3155 * If unsharing a signal handlers, must also unshare the signal queues. 3156 */ 3157 if (unshare_flags & CLONE_SIGHAND) 3158 unshare_flags |= CLONE_THREAD; 3159 /* 3160 * If unsharing namespace, must also unshare filesystem information. 3161 */ 3162 if (unshare_flags & CLONE_NEWNS) 3163 unshare_flags |= CLONE_FS; 3164 3165 err = check_unshare_flags(unshare_flags); 3166 if (err) 3167 goto bad_unshare_out; 3168 /* 3169 * CLONE_NEWIPC must also detach from the undolist: after switching 3170 * to a new ipc namespace, the semaphore arrays from the old 3171 * namespace are unreachable. 3172 */ 3173 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3174 do_sysvsem = 1; 3175 err = unshare_fs(unshare_flags, &new_fs); 3176 if (err) 3177 goto bad_unshare_out; 3178 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3179 if (err) 3180 goto bad_unshare_cleanup_fs; 3181 err = unshare_userns(unshare_flags, &new_cred); 3182 if (err) 3183 goto bad_unshare_cleanup_fd; 3184 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3185 new_cred, new_fs); 3186 if (err) 3187 goto bad_unshare_cleanup_cred; 3188 3189 if (new_cred) { 3190 err = set_cred_ucounts(new_cred); 3191 if (err) 3192 goto bad_unshare_cleanup_cred; 3193 } 3194 3195 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3196 if (do_sysvsem) { 3197 /* 3198 * CLONE_SYSVSEM is equivalent to sys_exit(). 3199 */ 3200 exit_sem(current); 3201 } 3202 if (unshare_flags & CLONE_NEWIPC) { 3203 /* Orphan segments in old ns (see sem above). */ 3204 exit_shm(current); 3205 shm_init_task(current); 3206 } 3207 3208 if (new_nsproxy) 3209 switch_task_namespaces(current, new_nsproxy); 3210 3211 task_lock(current); 3212 3213 if (new_fs) { 3214 fs = current->fs; 3215 spin_lock(&fs->lock); 3216 current->fs = new_fs; 3217 if (--fs->users) 3218 new_fs = NULL; 3219 else 3220 new_fs = fs; 3221 spin_unlock(&fs->lock); 3222 } 3223 3224 if (new_fd) 3225 swap(current->files, new_fd); 3226 3227 task_unlock(current); 3228 3229 if (new_cred) { 3230 /* Install the new user namespace */ 3231 commit_creds(new_cred); 3232 new_cred = NULL; 3233 } 3234 } 3235 3236 perf_event_namespaces(current); 3237 3238 bad_unshare_cleanup_cred: 3239 if (new_cred) 3240 put_cred(new_cred); 3241 bad_unshare_cleanup_fd: 3242 if (new_fd) 3243 put_files_struct(new_fd); 3244 3245 bad_unshare_cleanup_fs: 3246 if (new_fs) 3247 free_fs_struct(new_fs); 3248 3249 bad_unshare_out: 3250 return err; 3251 } 3252 3253 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3254 { 3255 return ksys_unshare(unshare_flags); 3256 } 3257 3258 /* 3259 * Helper to unshare the files of the current task. 3260 * We don't want to expose copy_files internals to 3261 * the exec layer of the kernel. 3262 */ 3263 3264 int unshare_files(void) 3265 { 3266 struct task_struct *task = current; 3267 struct files_struct *old, *copy = NULL; 3268 int error; 3269 3270 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3271 if (error || !copy) 3272 return error; 3273 3274 old = task->files; 3275 task_lock(task); 3276 task->files = copy; 3277 task_unlock(task); 3278 put_files_struct(old); 3279 return 0; 3280 } 3281 3282 int sysctl_max_threads(struct ctl_table *table, int write, 3283 void *buffer, size_t *lenp, loff_t *ppos) 3284 { 3285 struct ctl_table t; 3286 int ret; 3287 int threads = max_threads; 3288 int min = 1; 3289 int max = MAX_THREADS; 3290 3291 t = *table; 3292 t.data = &threads; 3293 t.extra1 = &min; 3294 t.extra2 = &max; 3295 3296 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3297 if (ret || !write) 3298 return ret; 3299 3300 max_threads = threads; 3301 3302 return 0; 3303 } 3304