xref: /openbmc/linux/kernel/fork.c (revision 0d456bad)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 	kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 						  int node)
148 {
149 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
150 					     THREAD_SIZE_ORDER);
151 
152 	return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170 	kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 					      THREAD_SIZE, 0, NULL);
177 	BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193 
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 	struct zone *zone = page_zone(virt_to_page(ti));
203 
204 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209 	account_kernel_stack(tsk->stack, -1);
210 	arch_release_thread_info(tsk->stack);
211 	free_thread_info(tsk->stack);
212 	rt_mutex_debug_task_free(tsk);
213 	ftrace_graph_exit_task(tsk);
214 	put_seccomp_filter(tsk);
215 	arch_release_task_struct(tsk);
216 	free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 	taskstats_tgid_free(sig);
223 	sched_autogroup_exit(sig);
224 	kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 	if (atomic_dec_and_test(&sig->sigcnt))
230 		free_signal_struct(sig);
231 }
232 
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 	WARN_ON(!tsk->exit_state);
236 	WARN_ON(atomic_read(&tsk->usage));
237 	WARN_ON(tsk == current);
238 
239 	security_task_free(tsk);
240 	exit_creds(tsk);
241 	delayacct_tsk_free(tsk);
242 	put_signal_struct(tsk->signal);
243 
244 	if (!profile_handoff_task(tsk))
245 		free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248 
249 void __init __weak arch_task_cache_init(void) { }
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
256 #endif
257 	/* create a slab on which task_structs can be allocated */
258 	task_struct_cachep =
259 		kmem_cache_create("task_struct", sizeof(struct task_struct),
260 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262 
263 	/* do the arch specific task caches init */
264 	arch_task_cache_init();
265 
266 	/*
267 	 * The default maximum number of threads is set to a safe
268 	 * value: the thread structures can take up at most half
269 	 * of memory.
270 	 */
271 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273 	/*
274 	 * we need to allow at least 20 threads to boot a system
275 	 */
276 	if (max_threads < 20)
277 		max_threads = 20;
278 
279 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 		init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 					       struct task_struct *src)
287 {
288 	*dst = *src;
289 	return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 	struct task_struct *tsk;
295 	struct thread_info *ti;
296 	unsigned long *stackend;
297 	int node = tsk_fork_get_node(orig);
298 	int err;
299 
300 	tsk = alloc_task_struct_node(node);
301 	if (!tsk)
302 		return NULL;
303 
304 	ti = alloc_thread_info_node(tsk, node);
305 	if (!ti)
306 		goto free_tsk;
307 
308 	err = arch_dup_task_struct(tsk, orig);
309 	if (err)
310 		goto free_ti;
311 
312 	tsk->stack = ti;
313 
314 	setup_thread_stack(tsk, orig);
315 	clear_user_return_notifier(tsk);
316 	clear_tsk_need_resched(tsk);
317 	stackend = end_of_stack(tsk);
318 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 	tsk->stack_canary = get_random_int();
322 #endif
323 
324 	/*
325 	 * One for us, one for whoever does the "release_task()" (usually
326 	 * parent)
327 	 */
328 	atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 	tsk->btrace_seq = 0;
331 #endif
332 	tsk->splice_pipe = NULL;
333 	tsk->task_frag.page = NULL;
334 
335 	account_kernel_stack(ti, 1);
336 
337 	return tsk;
338 
339 free_ti:
340 	free_thread_info(ti);
341 free_tsk:
342 	free_task_struct(tsk);
343 	return NULL;
344 }
345 
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 	struct rb_node **rb_link, *rb_parent;
351 	int retval;
352 	unsigned long charge;
353 	struct mempolicy *pol;
354 
355 	uprobe_start_dup_mmap();
356 	down_write(&oldmm->mmap_sem);
357 	flush_cache_dup_mm(oldmm);
358 	uprobe_dup_mmap(oldmm, mm);
359 	/*
360 	 * Not linked in yet - no deadlock potential:
361 	 */
362 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363 
364 	mm->locked_vm = 0;
365 	mm->mmap = NULL;
366 	mm->mmap_cache = NULL;
367 	mm->free_area_cache = oldmm->mmap_base;
368 	mm->cached_hole_size = ~0UL;
369 	mm->map_count = 0;
370 	cpumask_clear(mm_cpumask(mm));
371 	mm->mm_rb = RB_ROOT;
372 	rb_link = &mm->mm_rb.rb_node;
373 	rb_parent = NULL;
374 	pprev = &mm->mmap;
375 	retval = ksm_fork(mm, oldmm);
376 	if (retval)
377 		goto out;
378 	retval = khugepaged_fork(mm, oldmm);
379 	if (retval)
380 		goto out;
381 
382 	prev = NULL;
383 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 		struct file *file;
385 
386 		if (mpnt->vm_flags & VM_DONTCOPY) {
387 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388 							-vma_pages(mpnt));
389 			continue;
390 		}
391 		charge = 0;
392 		if (mpnt->vm_flags & VM_ACCOUNT) {
393 			unsigned long len = vma_pages(mpnt);
394 
395 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396 				goto fail_nomem;
397 			charge = len;
398 		}
399 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400 		if (!tmp)
401 			goto fail_nomem;
402 		*tmp = *mpnt;
403 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
404 		pol = mpol_dup(vma_policy(mpnt));
405 		retval = PTR_ERR(pol);
406 		if (IS_ERR(pol))
407 			goto fail_nomem_policy;
408 		vma_set_policy(tmp, pol);
409 		tmp->vm_mm = mm;
410 		if (anon_vma_fork(tmp, mpnt))
411 			goto fail_nomem_anon_vma_fork;
412 		tmp->vm_flags &= ~VM_LOCKED;
413 		tmp->vm_next = tmp->vm_prev = NULL;
414 		file = tmp->vm_file;
415 		if (file) {
416 			struct inode *inode = file->f_path.dentry->d_inode;
417 			struct address_space *mapping = file->f_mapping;
418 
419 			get_file(file);
420 			if (tmp->vm_flags & VM_DENYWRITE)
421 				atomic_dec(&inode->i_writecount);
422 			mutex_lock(&mapping->i_mmap_mutex);
423 			if (tmp->vm_flags & VM_SHARED)
424 				mapping->i_mmap_writable++;
425 			flush_dcache_mmap_lock(mapping);
426 			/* insert tmp into the share list, just after mpnt */
427 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
428 				vma_nonlinear_insert(tmp,
429 						&mapping->i_mmap_nonlinear);
430 			else
431 				vma_interval_tree_insert_after(tmp, mpnt,
432 							&mapping->i_mmap);
433 			flush_dcache_mmap_unlock(mapping);
434 			mutex_unlock(&mapping->i_mmap_mutex);
435 		}
436 
437 		/*
438 		 * Clear hugetlb-related page reserves for children. This only
439 		 * affects MAP_PRIVATE mappings. Faults generated by the child
440 		 * are not guaranteed to succeed, even if read-only
441 		 */
442 		if (is_vm_hugetlb_page(tmp))
443 			reset_vma_resv_huge_pages(tmp);
444 
445 		/*
446 		 * Link in the new vma and copy the page table entries.
447 		 */
448 		*pprev = tmp;
449 		pprev = &tmp->vm_next;
450 		tmp->vm_prev = prev;
451 		prev = tmp;
452 
453 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
454 		rb_link = &tmp->vm_rb.rb_right;
455 		rb_parent = &tmp->vm_rb;
456 
457 		mm->map_count++;
458 		retval = copy_page_range(mm, oldmm, mpnt);
459 
460 		if (tmp->vm_ops && tmp->vm_ops->open)
461 			tmp->vm_ops->open(tmp);
462 
463 		if (retval)
464 			goto out;
465 	}
466 	/* a new mm has just been created */
467 	arch_dup_mmap(oldmm, mm);
468 	retval = 0;
469 out:
470 	up_write(&mm->mmap_sem);
471 	flush_tlb_mm(oldmm);
472 	up_write(&oldmm->mmap_sem);
473 	uprobe_end_dup_mmap();
474 	return retval;
475 fail_nomem_anon_vma_fork:
476 	mpol_put(pol);
477 fail_nomem_policy:
478 	kmem_cache_free(vm_area_cachep, tmp);
479 fail_nomem:
480 	retval = -ENOMEM;
481 	vm_unacct_memory(charge);
482 	goto out;
483 }
484 
485 static inline int mm_alloc_pgd(struct mm_struct *mm)
486 {
487 	mm->pgd = pgd_alloc(mm);
488 	if (unlikely(!mm->pgd))
489 		return -ENOMEM;
490 	return 0;
491 }
492 
493 static inline void mm_free_pgd(struct mm_struct *mm)
494 {
495 	pgd_free(mm, mm->pgd);
496 }
497 #else
498 #define dup_mmap(mm, oldmm)	(0)
499 #define mm_alloc_pgd(mm)	(0)
500 #define mm_free_pgd(mm)
501 #endif /* CONFIG_MMU */
502 
503 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504 
505 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
507 
508 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509 
510 static int __init coredump_filter_setup(char *s)
511 {
512 	default_dump_filter =
513 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
514 		MMF_DUMP_FILTER_MASK;
515 	return 1;
516 }
517 
518 __setup("coredump_filter=", coredump_filter_setup);
519 
520 #include <linux/init_task.h>
521 
522 static void mm_init_aio(struct mm_struct *mm)
523 {
524 #ifdef CONFIG_AIO
525 	spin_lock_init(&mm->ioctx_lock);
526 	INIT_HLIST_HEAD(&mm->ioctx_list);
527 #endif
528 }
529 
530 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531 {
532 	atomic_set(&mm->mm_users, 1);
533 	atomic_set(&mm->mm_count, 1);
534 	init_rwsem(&mm->mmap_sem);
535 	INIT_LIST_HEAD(&mm->mmlist);
536 	mm->flags = (current->mm) ?
537 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
538 	mm->core_state = NULL;
539 	mm->nr_ptes = 0;
540 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
541 	spin_lock_init(&mm->page_table_lock);
542 	mm->free_area_cache = TASK_UNMAPPED_BASE;
543 	mm->cached_hole_size = ~0UL;
544 	mm_init_aio(mm);
545 	mm_init_owner(mm, p);
546 
547 	if (likely(!mm_alloc_pgd(mm))) {
548 		mm->def_flags = 0;
549 		mmu_notifier_mm_init(mm);
550 		return mm;
551 	}
552 
553 	free_mm(mm);
554 	return NULL;
555 }
556 
557 static void check_mm(struct mm_struct *mm)
558 {
559 	int i;
560 
561 	for (i = 0; i < NR_MM_COUNTERS; i++) {
562 		long x = atomic_long_read(&mm->rss_stat.count[i]);
563 
564 		if (unlikely(x))
565 			printk(KERN_ALERT "BUG: Bad rss-counter state "
566 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
567 	}
568 
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 	VM_BUG_ON(mm->pmd_huge_pte);
571 #endif
572 }
573 
574 /*
575  * Allocate and initialize an mm_struct.
576  */
577 struct mm_struct *mm_alloc(void)
578 {
579 	struct mm_struct *mm;
580 
581 	mm = allocate_mm();
582 	if (!mm)
583 		return NULL;
584 
585 	memset(mm, 0, sizeof(*mm));
586 	mm_init_cpumask(mm);
587 	return mm_init(mm, current);
588 }
589 
590 /*
591  * Called when the last reference to the mm
592  * is dropped: either by a lazy thread or by
593  * mmput. Free the page directory and the mm.
594  */
595 void __mmdrop(struct mm_struct *mm)
596 {
597 	BUG_ON(mm == &init_mm);
598 	mm_free_pgd(mm);
599 	destroy_context(mm);
600 	mmu_notifier_mm_destroy(mm);
601 	check_mm(mm);
602 	free_mm(mm);
603 }
604 EXPORT_SYMBOL_GPL(__mmdrop);
605 
606 /*
607  * Decrement the use count and release all resources for an mm.
608  */
609 void mmput(struct mm_struct *mm)
610 {
611 	might_sleep();
612 
613 	if (atomic_dec_and_test(&mm->mm_users)) {
614 		uprobe_clear_state(mm);
615 		exit_aio(mm);
616 		ksm_exit(mm);
617 		khugepaged_exit(mm); /* must run before exit_mmap */
618 		exit_mmap(mm);
619 		set_mm_exe_file(mm, NULL);
620 		if (!list_empty(&mm->mmlist)) {
621 			spin_lock(&mmlist_lock);
622 			list_del(&mm->mmlist);
623 			spin_unlock(&mmlist_lock);
624 		}
625 		if (mm->binfmt)
626 			module_put(mm->binfmt->module);
627 		mmdrop(mm);
628 	}
629 }
630 EXPORT_SYMBOL_GPL(mmput);
631 
632 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
633 {
634 	if (new_exe_file)
635 		get_file(new_exe_file);
636 	if (mm->exe_file)
637 		fput(mm->exe_file);
638 	mm->exe_file = new_exe_file;
639 }
640 
641 struct file *get_mm_exe_file(struct mm_struct *mm)
642 {
643 	struct file *exe_file;
644 
645 	/* We need mmap_sem to protect against races with removal of exe_file */
646 	down_read(&mm->mmap_sem);
647 	exe_file = mm->exe_file;
648 	if (exe_file)
649 		get_file(exe_file);
650 	up_read(&mm->mmap_sem);
651 	return exe_file;
652 }
653 
654 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
655 {
656 	/* It's safe to write the exe_file pointer without exe_file_lock because
657 	 * this is called during fork when the task is not yet in /proc */
658 	newmm->exe_file = get_mm_exe_file(oldmm);
659 }
660 
661 /**
662  * get_task_mm - acquire a reference to the task's mm
663  *
664  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
665  * this kernel workthread has transiently adopted a user mm with use_mm,
666  * to do its AIO) is not set and if so returns a reference to it, after
667  * bumping up the use count.  User must release the mm via mmput()
668  * after use.  Typically used by /proc and ptrace.
669  */
670 struct mm_struct *get_task_mm(struct task_struct *task)
671 {
672 	struct mm_struct *mm;
673 
674 	task_lock(task);
675 	mm = task->mm;
676 	if (mm) {
677 		if (task->flags & PF_KTHREAD)
678 			mm = NULL;
679 		else
680 			atomic_inc(&mm->mm_users);
681 	}
682 	task_unlock(task);
683 	return mm;
684 }
685 EXPORT_SYMBOL_GPL(get_task_mm);
686 
687 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
688 {
689 	struct mm_struct *mm;
690 	int err;
691 
692 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
693 	if (err)
694 		return ERR_PTR(err);
695 
696 	mm = get_task_mm(task);
697 	if (mm && mm != current->mm &&
698 			!ptrace_may_access(task, mode)) {
699 		mmput(mm);
700 		mm = ERR_PTR(-EACCES);
701 	}
702 	mutex_unlock(&task->signal->cred_guard_mutex);
703 
704 	return mm;
705 }
706 
707 static void complete_vfork_done(struct task_struct *tsk)
708 {
709 	struct completion *vfork;
710 
711 	task_lock(tsk);
712 	vfork = tsk->vfork_done;
713 	if (likely(vfork)) {
714 		tsk->vfork_done = NULL;
715 		complete(vfork);
716 	}
717 	task_unlock(tsk);
718 }
719 
720 static int wait_for_vfork_done(struct task_struct *child,
721 				struct completion *vfork)
722 {
723 	int killed;
724 
725 	freezer_do_not_count();
726 	killed = wait_for_completion_killable(vfork);
727 	freezer_count();
728 
729 	if (killed) {
730 		task_lock(child);
731 		child->vfork_done = NULL;
732 		task_unlock(child);
733 	}
734 
735 	put_task_struct(child);
736 	return killed;
737 }
738 
739 /* Please note the differences between mmput and mm_release.
740  * mmput is called whenever we stop holding onto a mm_struct,
741  * error success whatever.
742  *
743  * mm_release is called after a mm_struct has been removed
744  * from the current process.
745  *
746  * This difference is important for error handling, when we
747  * only half set up a mm_struct for a new process and need to restore
748  * the old one.  Because we mmput the new mm_struct before
749  * restoring the old one. . .
750  * Eric Biederman 10 January 1998
751  */
752 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
753 {
754 	/* Get rid of any futexes when releasing the mm */
755 #ifdef CONFIG_FUTEX
756 	if (unlikely(tsk->robust_list)) {
757 		exit_robust_list(tsk);
758 		tsk->robust_list = NULL;
759 	}
760 #ifdef CONFIG_COMPAT
761 	if (unlikely(tsk->compat_robust_list)) {
762 		compat_exit_robust_list(tsk);
763 		tsk->compat_robust_list = NULL;
764 	}
765 #endif
766 	if (unlikely(!list_empty(&tsk->pi_state_list)))
767 		exit_pi_state_list(tsk);
768 #endif
769 
770 	uprobe_free_utask(tsk);
771 
772 	/* Get rid of any cached register state */
773 	deactivate_mm(tsk, mm);
774 
775 	/*
776 	 * If we're exiting normally, clear a user-space tid field if
777 	 * requested.  We leave this alone when dying by signal, to leave
778 	 * the value intact in a core dump, and to save the unnecessary
779 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
780 	 * Userland only wants this done for a sys_exit.
781 	 */
782 	if (tsk->clear_child_tid) {
783 		if (!(tsk->flags & PF_SIGNALED) &&
784 		    atomic_read(&mm->mm_users) > 1) {
785 			/*
786 			 * We don't check the error code - if userspace has
787 			 * not set up a proper pointer then tough luck.
788 			 */
789 			put_user(0, tsk->clear_child_tid);
790 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
791 					1, NULL, NULL, 0);
792 		}
793 		tsk->clear_child_tid = NULL;
794 	}
795 
796 	/*
797 	 * All done, finally we can wake up parent and return this mm to him.
798 	 * Also kthread_stop() uses this completion for synchronization.
799 	 */
800 	if (tsk->vfork_done)
801 		complete_vfork_done(tsk);
802 }
803 
804 /*
805  * Allocate a new mm structure and copy contents from the
806  * mm structure of the passed in task structure.
807  */
808 struct mm_struct *dup_mm(struct task_struct *tsk)
809 {
810 	struct mm_struct *mm, *oldmm = current->mm;
811 	int err;
812 
813 	if (!oldmm)
814 		return NULL;
815 
816 	mm = allocate_mm();
817 	if (!mm)
818 		goto fail_nomem;
819 
820 	memcpy(mm, oldmm, sizeof(*mm));
821 	mm_init_cpumask(mm);
822 
823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
824 	mm->pmd_huge_pte = NULL;
825 #endif
826 #ifdef CONFIG_NUMA_BALANCING
827 	mm->first_nid = NUMA_PTE_SCAN_INIT;
828 #endif
829 	if (!mm_init(mm, tsk))
830 		goto fail_nomem;
831 
832 	if (init_new_context(tsk, mm))
833 		goto fail_nocontext;
834 
835 	dup_mm_exe_file(oldmm, mm);
836 
837 	err = dup_mmap(mm, oldmm);
838 	if (err)
839 		goto free_pt;
840 
841 	mm->hiwater_rss = get_mm_rss(mm);
842 	mm->hiwater_vm = mm->total_vm;
843 
844 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
845 		goto free_pt;
846 
847 	return mm;
848 
849 free_pt:
850 	/* don't put binfmt in mmput, we haven't got module yet */
851 	mm->binfmt = NULL;
852 	mmput(mm);
853 
854 fail_nomem:
855 	return NULL;
856 
857 fail_nocontext:
858 	/*
859 	 * If init_new_context() failed, we cannot use mmput() to free the mm
860 	 * because it calls destroy_context()
861 	 */
862 	mm_free_pgd(mm);
863 	free_mm(mm);
864 	return NULL;
865 }
866 
867 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
868 {
869 	struct mm_struct *mm, *oldmm;
870 	int retval;
871 
872 	tsk->min_flt = tsk->maj_flt = 0;
873 	tsk->nvcsw = tsk->nivcsw = 0;
874 #ifdef CONFIG_DETECT_HUNG_TASK
875 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
876 #endif
877 
878 	tsk->mm = NULL;
879 	tsk->active_mm = NULL;
880 
881 	/*
882 	 * Are we cloning a kernel thread?
883 	 *
884 	 * We need to steal a active VM for that..
885 	 */
886 	oldmm = current->mm;
887 	if (!oldmm)
888 		return 0;
889 
890 	if (clone_flags & CLONE_VM) {
891 		atomic_inc(&oldmm->mm_users);
892 		mm = oldmm;
893 		goto good_mm;
894 	}
895 
896 	retval = -ENOMEM;
897 	mm = dup_mm(tsk);
898 	if (!mm)
899 		goto fail_nomem;
900 
901 good_mm:
902 	tsk->mm = mm;
903 	tsk->active_mm = mm;
904 	return 0;
905 
906 fail_nomem:
907 	return retval;
908 }
909 
910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
911 {
912 	struct fs_struct *fs = current->fs;
913 	if (clone_flags & CLONE_FS) {
914 		/* tsk->fs is already what we want */
915 		spin_lock(&fs->lock);
916 		if (fs->in_exec) {
917 			spin_unlock(&fs->lock);
918 			return -EAGAIN;
919 		}
920 		fs->users++;
921 		spin_unlock(&fs->lock);
922 		return 0;
923 	}
924 	tsk->fs = copy_fs_struct(fs);
925 	if (!tsk->fs)
926 		return -ENOMEM;
927 	return 0;
928 }
929 
930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
931 {
932 	struct files_struct *oldf, *newf;
933 	int error = 0;
934 
935 	/*
936 	 * A background process may not have any files ...
937 	 */
938 	oldf = current->files;
939 	if (!oldf)
940 		goto out;
941 
942 	if (clone_flags & CLONE_FILES) {
943 		atomic_inc(&oldf->count);
944 		goto out;
945 	}
946 
947 	newf = dup_fd(oldf, &error);
948 	if (!newf)
949 		goto out;
950 
951 	tsk->files = newf;
952 	error = 0;
953 out:
954 	return error;
955 }
956 
957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
958 {
959 #ifdef CONFIG_BLOCK
960 	struct io_context *ioc = current->io_context;
961 	struct io_context *new_ioc;
962 
963 	if (!ioc)
964 		return 0;
965 	/*
966 	 * Share io context with parent, if CLONE_IO is set
967 	 */
968 	if (clone_flags & CLONE_IO) {
969 		ioc_task_link(ioc);
970 		tsk->io_context = ioc;
971 	} else if (ioprio_valid(ioc->ioprio)) {
972 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
973 		if (unlikely(!new_ioc))
974 			return -ENOMEM;
975 
976 		new_ioc->ioprio = ioc->ioprio;
977 		put_io_context(new_ioc);
978 	}
979 #endif
980 	return 0;
981 }
982 
983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 	struct sighand_struct *sig;
986 
987 	if (clone_flags & CLONE_SIGHAND) {
988 		atomic_inc(&current->sighand->count);
989 		return 0;
990 	}
991 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 	rcu_assign_pointer(tsk->sighand, sig);
993 	if (!sig)
994 		return -ENOMEM;
995 	atomic_set(&sig->count, 1);
996 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
997 	return 0;
998 }
999 
1000 void __cleanup_sighand(struct sighand_struct *sighand)
1001 {
1002 	if (atomic_dec_and_test(&sighand->count)) {
1003 		signalfd_cleanup(sighand);
1004 		kmem_cache_free(sighand_cachep, sighand);
1005 	}
1006 }
1007 
1008 
1009 /*
1010  * Initialize POSIX timer handling for a thread group.
1011  */
1012 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1013 {
1014 	unsigned long cpu_limit;
1015 
1016 	/* Thread group counters. */
1017 	thread_group_cputime_init(sig);
1018 
1019 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1020 	if (cpu_limit != RLIM_INFINITY) {
1021 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1022 		sig->cputimer.running = 1;
1023 	}
1024 
1025 	/* The timer lists. */
1026 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1027 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1028 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1029 }
1030 
1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033 	struct signal_struct *sig;
1034 
1035 	if (clone_flags & CLONE_THREAD)
1036 		return 0;
1037 
1038 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1039 	tsk->signal = sig;
1040 	if (!sig)
1041 		return -ENOMEM;
1042 
1043 	sig->nr_threads = 1;
1044 	atomic_set(&sig->live, 1);
1045 	atomic_set(&sig->sigcnt, 1);
1046 	init_waitqueue_head(&sig->wait_chldexit);
1047 	sig->curr_target = tsk;
1048 	init_sigpending(&sig->shared_pending);
1049 	INIT_LIST_HEAD(&sig->posix_timers);
1050 
1051 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1052 	sig->real_timer.function = it_real_fn;
1053 
1054 	task_lock(current->group_leader);
1055 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1056 	task_unlock(current->group_leader);
1057 
1058 	posix_cpu_timers_init_group(sig);
1059 
1060 	tty_audit_fork(sig);
1061 	sched_autogroup_fork(sig);
1062 
1063 #ifdef CONFIG_CGROUPS
1064 	init_rwsem(&sig->group_rwsem);
1065 #endif
1066 
1067 	sig->oom_score_adj = current->signal->oom_score_adj;
1068 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1069 
1070 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1071 				   current->signal->is_child_subreaper;
1072 
1073 	mutex_init(&sig->cred_guard_mutex);
1074 
1075 	return 0;
1076 }
1077 
1078 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1079 {
1080 	unsigned long new_flags = p->flags;
1081 
1082 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1083 	new_flags |= PF_FORKNOEXEC;
1084 	p->flags = new_flags;
1085 }
1086 
1087 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1088 {
1089 	current->clear_child_tid = tidptr;
1090 
1091 	return task_pid_vnr(current);
1092 }
1093 
1094 static void rt_mutex_init_task(struct task_struct *p)
1095 {
1096 	raw_spin_lock_init(&p->pi_lock);
1097 #ifdef CONFIG_RT_MUTEXES
1098 	plist_head_init(&p->pi_waiters);
1099 	p->pi_blocked_on = NULL;
1100 #endif
1101 }
1102 
1103 #ifdef CONFIG_MM_OWNER
1104 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1105 {
1106 	mm->owner = p;
1107 }
1108 #endif /* CONFIG_MM_OWNER */
1109 
1110 /*
1111  * Initialize POSIX timer handling for a single task.
1112  */
1113 static void posix_cpu_timers_init(struct task_struct *tsk)
1114 {
1115 	tsk->cputime_expires.prof_exp = 0;
1116 	tsk->cputime_expires.virt_exp = 0;
1117 	tsk->cputime_expires.sched_exp = 0;
1118 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1119 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1120 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1121 }
1122 
1123 /*
1124  * This creates a new process as a copy of the old one,
1125  * but does not actually start it yet.
1126  *
1127  * It copies the registers, and all the appropriate
1128  * parts of the process environment (as per the clone
1129  * flags). The actual kick-off is left to the caller.
1130  */
1131 static struct task_struct *copy_process(unsigned long clone_flags,
1132 					unsigned long stack_start,
1133 					unsigned long stack_size,
1134 					int __user *child_tidptr,
1135 					struct pid *pid,
1136 					int trace)
1137 {
1138 	int retval;
1139 	struct task_struct *p;
1140 
1141 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1142 		return ERR_PTR(-EINVAL);
1143 
1144 	/*
1145 	 * Thread groups must share signals as well, and detached threads
1146 	 * can only be started up within the thread group.
1147 	 */
1148 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1149 		return ERR_PTR(-EINVAL);
1150 
1151 	/*
1152 	 * Shared signal handlers imply shared VM. By way of the above,
1153 	 * thread groups also imply shared VM. Blocking this case allows
1154 	 * for various simplifications in other code.
1155 	 */
1156 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1157 		return ERR_PTR(-EINVAL);
1158 
1159 	/*
1160 	 * Siblings of global init remain as zombies on exit since they are
1161 	 * not reaped by their parent (swapper). To solve this and to avoid
1162 	 * multi-rooted process trees, prevent global and container-inits
1163 	 * from creating siblings.
1164 	 */
1165 	if ((clone_flags & CLONE_PARENT) &&
1166 				current->signal->flags & SIGNAL_UNKILLABLE)
1167 		return ERR_PTR(-EINVAL);
1168 
1169 	retval = security_task_create(clone_flags);
1170 	if (retval)
1171 		goto fork_out;
1172 
1173 	retval = -ENOMEM;
1174 	p = dup_task_struct(current);
1175 	if (!p)
1176 		goto fork_out;
1177 
1178 	ftrace_graph_init_task(p);
1179 	get_seccomp_filter(p);
1180 
1181 	rt_mutex_init_task(p);
1182 
1183 #ifdef CONFIG_PROVE_LOCKING
1184 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1185 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1186 #endif
1187 	retval = -EAGAIN;
1188 	if (atomic_read(&p->real_cred->user->processes) >=
1189 			task_rlimit(p, RLIMIT_NPROC)) {
1190 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1191 		    p->real_cred->user != INIT_USER)
1192 			goto bad_fork_free;
1193 	}
1194 	current->flags &= ~PF_NPROC_EXCEEDED;
1195 
1196 	retval = copy_creds(p, clone_flags);
1197 	if (retval < 0)
1198 		goto bad_fork_free;
1199 
1200 	/*
1201 	 * If multiple threads are within copy_process(), then this check
1202 	 * triggers too late. This doesn't hurt, the check is only there
1203 	 * to stop root fork bombs.
1204 	 */
1205 	retval = -EAGAIN;
1206 	if (nr_threads >= max_threads)
1207 		goto bad_fork_cleanup_count;
1208 
1209 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1210 		goto bad_fork_cleanup_count;
1211 
1212 	p->did_exec = 0;
1213 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1214 	copy_flags(clone_flags, p);
1215 	INIT_LIST_HEAD(&p->children);
1216 	INIT_LIST_HEAD(&p->sibling);
1217 	rcu_copy_process(p);
1218 	p->vfork_done = NULL;
1219 	spin_lock_init(&p->alloc_lock);
1220 
1221 	init_sigpending(&p->pending);
1222 
1223 	p->utime = p->stime = p->gtime = 0;
1224 	p->utimescaled = p->stimescaled = 0;
1225 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1226 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1227 #endif
1228 #if defined(SPLIT_RSS_COUNTING)
1229 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1230 #endif
1231 
1232 	p->default_timer_slack_ns = current->timer_slack_ns;
1233 
1234 	task_io_accounting_init(&p->ioac);
1235 	acct_clear_integrals(p);
1236 
1237 	posix_cpu_timers_init(p);
1238 
1239 	do_posix_clock_monotonic_gettime(&p->start_time);
1240 	p->real_start_time = p->start_time;
1241 	monotonic_to_bootbased(&p->real_start_time);
1242 	p->io_context = NULL;
1243 	p->audit_context = NULL;
1244 	if (clone_flags & CLONE_THREAD)
1245 		threadgroup_change_begin(current);
1246 	cgroup_fork(p);
1247 #ifdef CONFIG_NUMA
1248 	p->mempolicy = mpol_dup(p->mempolicy);
1249 	if (IS_ERR(p->mempolicy)) {
1250 		retval = PTR_ERR(p->mempolicy);
1251 		p->mempolicy = NULL;
1252 		goto bad_fork_cleanup_cgroup;
1253 	}
1254 	mpol_fix_fork_child_flag(p);
1255 #endif
1256 #ifdef CONFIG_CPUSETS
1257 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1258 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1259 	seqcount_init(&p->mems_allowed_seq);
1260 #endif
1261 #ifdef CONFIG_TRACE_IRQFLAGS
1262 	p->irq_events = 0;
1263 	p->hardirqs_enabled = 0;
1264 	p->hardirq_enable_ip = 0;
1265 	p->hardirq_enable_event = 0;
1266 	p->hardirq_disable_ip = _THIS_IP_;
1267 	p->hardirq_disable_event = 0;
1268 	p->softirqs_enabled = 1;
1269 	p->softirq_enable_ip = _THIS_IP_;
1270 	p->softirq_enable_event = 0;
1271 	p->softirq_disable_ip = 0;
1272 	p->softirq_disable_event = 0;
1273 	p->hardirq_context = 0;
1274 	p->softirq_context = 0;
1275 #endif
1276 #ifdef CONFIG_LOCKDEP
1277 	p->lockdep_depth = 0; /* no locks held yet */
1278 	p->curr_chain_key = 0;
1279 	p->lockdep_recursion = 0;
1280 #endif
1281 
1282 #ifdef CONFIG_DEBUG_MUTEXES
1283 	p->blocked_on = NULL; /* not blocked yet */
1284 #endif
1285 #ifdef CONFIG_MEMCG
1286 	p->memcg_batch.do_batch = 0;
1287 	p->memcg_batch.memcg = NULL;
1288 #endif
1289 
1290 	/* Perform scheduler related setup. Assign this task to a CPU. */
1291 	sched_fork(p);
1292 
1293 	retval = perf_event_init_task(p);
1294 	if (retval)
1295 		goto bad_fork_cleanup_policy;
1296 	retval = audit_alloc(p);
1297 	if (retval)
1298 		goto bad_fork_cleanup_policy;
1299 	/* copy all the process information */
1300 	retval = copy_semundo(clone_flags, p);
1301 	if (retval)
1302 		goto bad_fork_cleanup_audit;
1303 	retval = copy_files(clone_flags, p);
1304 	if (retval)
1305 		goto bad_fork_cleanup_semundo;
1306 	retval = copy_fs(clone_flags, p);
1307 	if (retval)
1308 		goto bad_fork_cleanup_files;
1309 	retval = copy_sighand(clone_flags, p);
1310 	if (retval)
1311 		goto bad_fork_cleanup_fs;
1312 	retval = copy_signal(clone_flags, p);
1313 	if (retval)
1314 		goto bad_fork_cleanup_sighand;
1315 	retval = copy_mm(clone_flags, p);
1316 	if (retval)
1317 		goto bad_fork_cleanup_signal;
1318 	retval = copy_namespaces(clone_flags, p);
1319 	if (retval)
1320 		goto bad_fork_cleanup_mm;
1321 	retval = copy_io(clone_flags, p);
1322 	if (retval)
1323 		goto bad_fork_cleanup_namespaces;
1324 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1325 	if (retval)
1326 		goto bad_fork_cleanup_io;
1327 
1328 	if (pid != &init_struct_pid) {
1329 		retval = -ENOMEM;
1330 		pid = alloc_pid(p->nsproxy->pid_ns);
1331 		if (!pid)
1332 			goto bad_fork_cleanup_io;
1333 	}
1334 
1335 	p->pid = pid_nr(pid);
1336 	p->tgid = p->pid;
1337 	if (clone_flags & CLONE_THREAD)
1338 		p->tgid = current->tgid;
1339 
1340 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1341 	/*
1342 	 * Clear TID on mm_release()?
1343 	 */
1344 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1345 #ifdef CONFIG_BLOCK
1346 	p->plug = NULL;
1347 #endif
1348 #ifdef CONFIG_FUTEX
1349 	p->robust_list = NULL;
1350 #ifdef CONFIG_COMPAT
1351 	p->compat_robust_list = NULL;
1352 #endif
1353 	INIT_LIST_HEAD(&p->pi_state_list);
1354 	p->pi_state_cache = NULL;
1355 #endif
1356 	uprobe_copy_process(p);
1357 	/*
1358 	 * sigaltstack should be cleared when sharing the same VM
1359 	 */
1360 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1361 		p->sas_ss_sp = p->sas_ss_size = 0;
1362 
1363 	/*
1364 	 * Syscall tracing and stepping should be turned off in the
1365 	 * child regardless of CLONE_PTRACE.
1366 	 */
1367 	user_disable_single_step(p);
1368 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1369 #ifdef TIF_SYSCALL_EMU
1370 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1371 #endif
1372 	clear_all_latency_tracing(p);
1373 
1374 	/* ok, now we should be set up.. */
1375 	if (clone_flags & CLONE_THREAD)
1376 		p->exit_signal = -1;
1377 	else if (clone_flags & CLONE_PARENT)
1378 		p->exit_signal = current->group_leader->exit_signal;
1379 	else
1380 		p->exit_signal = (clone_flags & CSIGNAL);
1381 
1382 	p->pdeath_signal = 0;
1383 	p->exit_state = 0;
1384 
1385 	p->nr_dirtied = 0;
1386 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1387 	p->dirty_paused_when = 0;
1388 
1389 	/*
1390 	 * Ok, make it visible to the rest of the system.
1391 	 * We dont wake it up yet.
1392 	 */
1393 	p->group_leader = p;
1394 	INIT_LIST_HEAD(&p->thread_group);
1395 	p->task_works = NULL;
1396 
1397 	/* Need tasklist lock for parent etc handling! */
1398 	write_lock_irq(&tasklist_lock);
1399 
1400 	/* CLONE_PARENT re-uses the old parent */
1401 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1402 		p->real_parent = current->real_parent;
1403 		p->parent_exec_id = current->parent_exec_id;
1404 	} else {
1405 		p->real_parent = current;
1406 		p->parent_exec_id = current->self_exec_id;
1407 	}
1408 
1409 	spin_lock(&current->sighand->siglock);
1410 
1411 	/*
1412 	 * Process group and session signals need to be delivered to just the
1413 	 * parent before the fork or both the parent and the child after the
1414 	 * fork. Restart if a signal comes in before we add the new process to
1415 	 * it's process group.
1416 	 * A fatal signal pending means that current will exit, so the new
1417 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1418 	*/
1419 	recalc_sigpending();
1420 	if (signal_pending(current)) {
1421 		spin_unlock(&current->sighand->siglock);
1422 		write_unlock_irq(&tasklist_lock);
1423 		retval = -ERESTARTNOINTR;
1424 		goto bad_fork_free_pid;
1425 	}
1426 
1427 	if (clone_flags & CLONE_THREAD) {
1428 		current->signal->nr_threads++;
1429 		atomic_inc(&current->signal->live);
1430 		atomic_inc(&current->signal->sigcnt);
1431 		p->group_leader = current->group_leader;
1432 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1433 	}
1434 
1435 	if (likely(p->pid)) {
1436 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1437 
1438 		if (thread_group_leader(p)) {
1439 			if (is_child_reaper(pid)) {
1440 				ns_of_pid(pid)->child_reaper = p;
1441 				p->signal->flags |= SIGNAL_UNKILLABLE;
1442 			}
1443 
1444 			p->signal->leader_pid = pid;
1445 			p->signal->tty = tty_kref_get(current->signal->tty);
1446 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1447 			attach_pid(p, PIDTYPE_SID, task_session(current));
1448 			list_add_tail(&p->sibling, &p->real_parent->children);
1449 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1450 			__this_cpu_inc(process_counts);
1451 		}
1452 		attach_pid(p, PIDTYPE_PID, pid);
1453 		nr_threads++;
1454 	}
1455 
1456 	total_forks++;
1457 	spin_unlock(&current->sighand->siglock);
1458 	write_unlock_irq(&tasklist_lock);
1459 	proc_fork_connector(p);
1460 	cgroup_post_fork(p);
1461 	if (clone_flags & CLONE_THREAD)
1462 		threadgroup_change_end(current);
1463 	perf_event_fork(p);
1464 
1465 	trace_task_newtask(p, clone_flags);
1466 
1467 	return p;
1468 
1469 bad_fork_free_pid:
1470 	if (pid != &init_struct_pid)
1471 		free_pid(pid);
1472 bad_fork_cleanup_io:
1473 	if (p->io_context)
1474 		exit_io_context(p);
1475 bad_fork_cleanup_namespaces:
1476 	exit_task_namespaces(p);
1477 bad_fork_cleanup_mm:
1478 	if (p->mm)
1479 		mmput(p->mm);
1480 bad_fork_cleanup_signal:
1481 	if (!(clone_flags & CLONE_THREAD))
1482 		free_signal_struct(p->signal);
1483 bad_fork_cleanup_sighand:
1484 	__cleanup_sighand(p->sighand);
1485 bad_fork_cleanup_fs:
1486 	exit_fs(p); /* blocking */
1487 bad_fork_cleanup_files:
1488 	exit_files(p); /* blocking */
1489 bad_fork_cleanup_semundo:
1490 	exit_sem(p);
1491 bad_fork_cleanup_audit:
1492 	audit_free(p);
1493 bad_fork_cleanup_policy:
1494 	perf_event_free_task(p);
1495 #ifdef CONFIG_NUMA
1496 	mpol_put(p->mempolicy);
1497 bad_fork_cleanup_cgroup:
1498 #endif
1499 	if (clone_flags & CLONE_THREAD)
1500 		threadgroup_change_end(current);
1501 	cgroup_exit(p, 0);
1502 	delayacct_tsk_free(p);
1503 	module_put(task_thread_info(p)->exec_domain->module);
1504 bad_fork_cleanup_count:
1505 	atomic_dec(&p->cred->user->processes);
1506 	exit_creds(p);
1507 bad_fork_free:
1508 	free_task(p);
1509 fork_out:
1510 	return ERR_PTR(retval);
1511 }
1512 
1513 static inline void init_idle_pids(struct pid_link *links)
1514 {
1515 	enum pid_type type;
1516 
1517 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1518 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1519 		links[type].pid = &init_struct_pid;
1520 	}
1521 }
1522 
1523 struct task_struct * __cpuinit fork_idle(int cpu)
1524 {
1525 	struct task_struct *task;
1526 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1527 	if (!IS_ERR(task)) {
1528 		init_idle_pids(task->pids);
1529 		init_idle(task, cpu);
1530 	}
1531 
1532 	return task;
1533 }
1534 
1535 /*
1536  *  Ok, this is the main fork-routine.
1537  *
1538  * It copies the process, and if successful kick-starts
1539  * it and waits for it to finish using the VM if required.
1540  */
1541 long do_fork(unsigned long clone_flags,
1542 	      unsigned long stack_start,
1543 	      unsigned long stack_size,
1544 	      int __user *parent_tidptr,
1545 	      int __user *child_tidptr)
1546 {
1547 	struct task_struct *p;
1548 	int trace = 0;
1549 	long nr;
1550 
1551 	/*
1552 	 * Do some preliminary argument and permissions checking before we
1553 	 * actually start allocating stuff
1554 	 */
1555 	if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1556 		if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1557 			return -EINVAL;
1558 	}
1559 
1560 	/*
1561 	 * Determine whether and which event to report to ptracer.  When
1562 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1563 	 * requested, no event is reported; otherwise, report if the event
1564 	 * for the type of forking is enabled.
1565 	 */
1566 	if (!(clone_flags & CLONE_UNTRACED)) {
1567 		if (clone_flags & CLONE_VFORK)
1568 			trace = PTRACE_EVENT_VFORK;
1569 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1570 			trace = PTRACE_EVENT_CLONE;
1571 		else
1572 			trace = PTRACE_EVENT_FORK;
1573 
1574 		if (likely(!ptrace_event_enabled(current, trace)))
1575 			trace = 0;
1576 	}
1577 
1578 	p = copy_process(clone_flags, stack_start, stack_size,
1579 			 child_tidptr, NULL, trace);
1580 	/*
1581 	 * Do this prior waking up the new thread - the thread pointer
1582 	 * might get invalid after that point, if the thread exits quickly.
1583 	 */
1584 	if (!IS_ERR(p)) {
1585 		struct completion vfork;
1586 
1587 		trace_sched_process_fork(current, p);
1588 
1589 		nr = task_pid_vnr(p);
1590 
1591 		if (clone_flags & CLONE_PARENT_SETTID)
1592 			put_user(nr, parent_tidptr);
1593 
1594 		if (clone_flags & CLONE_VFORK) {
1595 			p->vfork_done = &vfork;
1596 			init_completion(&vfork);
1597 			get_task_struct(p);
1598 		}
1599 
1600 		wake_up_new_task(p);
1601 
1602 		/* forking complete and child started to run, tell ptracer */
1603 		if (unlikely(trace))
1604 			ptrace_event(trace, nr);
1605 
1606 		if (clone_flags & CLONE_VFORK) {
1607 			if (!wait_for_vfork_done(p, &vfork))
1608 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1609 		}
1610 	} else {
1611 		nr = PTR_ERR(p);
1612 	}
1613 	return nr;
1614 }
1615 
1616 #ifdef CONFIG_GENERIC_KERNEL_THREAD
1617 /*
1618  * Create a kernel thread.
1619  */
1620 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1621 {
1622 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1623 		(unsigned long)arg, NULL, NULL);
1624 }
1625 #endif
1626 
1627 #ifdef __ARCH_WANT_SYS_FORK
1628 SYSCALL_DEFINE0(fork)
1629 {
1630 #ifdef CONFIG_MMU
1631 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1632 #else
1633 	/* can not support in nommu mode */
1634 	return(-EINVAL);
1635 #endif
1636 }
1637 #endif
1638 
1639 #ifdef __ARCH_WANT_SYS_VFORK
1640 SYSCALL_DEFINE0(vfork)
1641 {
1642 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1643 			0, NULL, NULL);
1644 }
1645 #endif
1646 
1647 #ifdef __ARCH_WANT_SYS_CLONE
1648 #ifdef CONFIG_CLONE_BACKWARDS
1649 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1650 		 int __user *, parent_tidptr,
1651 		 int, tls_val,
1652 		 int __user *, child_tidptr)
1653 #elif defined(CONFIG_CLONE_BACKWARDS2)
1654 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1655 		 int __user *, parent_tidptr,
1656 		 int __user *, child_tidptr,
1657 		 int, tls_val)
1658 #else
1659 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1660 		 int __user *, parent_tidptr,
1661 		 int __user *, child_tidptr,
1662 		 int, tls_val)
1663 #endif
1664 {
1665 	return do_fork(clone_flags, newsp, 0,
1666 		parent_tidptr, child_tidptr);
1667 }
1668 #endif
1669 
1670 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1671 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1672 #endif
1673 
1674 static void sighand_ctor(void *data)
1675 {
1676 	struct sighand_struct *sighand = data;
1677 
1678 	spin_lock_init(&sighand->siglock);
1679 	init_waitqueue_head(&sighand->signalfd_wqh);
1680 }
1681 
1682 void __init proc_caches_init(void)
1683 {
1684 	sighand_cachep = kmem_cache_create("sighand_cache",
1685 			sizeof(struct sighand_struct), 0,
1686 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1687 			SLAB_NOTRACK, sighand_ctor);
1688 	signal_cachep = kmem_cache_create("signal_cache",
1689 			sizeof(struct signal_struct), 0,
1690 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1691 	files_cachep = kmem_cache_create("files_cache",
1692 			sizeof(struct files_struct), 0,
1693 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1694 	fs_cachep = kmem_cache_create("fs_cache",
1695 			sizeof(struct fs_struct), 0,
1696 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1697 	/*
1698 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1699 	 * whole struct cpumask for the OFFSTACK case. We could change
1700 	 * this to *only* allocate as much of it as required by the
1701 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1702 	 * is at the end of the structure, exactly for that reason.
1703 	 */
1704 	mm_cachep = kmem_cache_create("mm_struct",
1705 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1706 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1707 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1708 	mmap_init();
1709 	nsproxy_cache_init();
1710 }
1711 
1712 /*
1713  * Check constraints on flags passed to the unshare system call.
1714  */
1715 static int check_unshare_flags(unsigned long unshare_flags)
1716 {
1717 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1718 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1719 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1720 				CLONE_NEWUSER|CLONE_NEWPID))
1721 		return -EINVAL;
1722 	/*
1723 	 * Not implemented, but pretend it works if there is nothing to
1724 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1725 	 * needs to unshare vm.
1726 	 */
1727 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1728 		/* FIXME: get_task_mm() increments ->mm_users */
1729 		if (atomic_read(&current->mm->mm_users) > 1)
1730 			return -EINVAL;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Unshare the filesystem structure if it is being shared
1738  */
1739 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1740 {
1741 	struct fs_struct *fs = current->fs;
1742 
1743 	if (!(unshare_flags & CLONE_FS) || !fs)
1744 		return 0;
1745 
1746 	/* don't need lock here; in the worst case we'll do useless copy */
1747 	if (fs->users == 1)
1748 		return 0;
1749 
1750 	*new_fsp = copy_fs_struct(fs);
1751 	if (!*new_fsp)
1752 		return -ENOMEM;
1753 
1754 	return 0;
1755 }
1756 
1757 /*
1758  * Unshare file descriptor table if it is being shared
1759  */
1760 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1761 {
1762 	struct files_struct *fd = current->files;
1763 	int error = 0;
1764 
1765 	if ((unshare_flags & CLONE_FILES) &&
1766 	    (fd && atomic_read(&fd->count) > 1)) {
1767 		*new_fdp = dup_fd(fd, &error);
1768 		if (!*new_fdp)
1769 			return error;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 /*
1776  * unshare allows a process to 'unshare' part of the process
1777  * context which was originally shared using clone.  copy_*
1778  * functions used by do_fork() cannot be used here directly
1779  * because they modify an inactive task_struct that is being
1780  * constructed. Here we are modifying the current, active,
1781  * task_struct.
1782  */
1783 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1784 {
1785 	struct fs_struct *fs, *new_fs = NULL;
1786 	struct files_struct *fd, *new_fd = NULL;
1787 	struct cred *new_cred = NULL;
1788 	struct nsproxy *new_nsproxy = NULL;
1789 	int do_sysvsem = 0;
1790 	int err;
1791 
1792 	/*
1793 	 * If unsharing a user namespace must also unshare the thread.
1794 	 */
1795 	if (unshare_flags & CLONE_NEWUSER)
1796 		unshare_flags |= CLONE_THREAD;
1797 	/*
1798 	 * If unsharing a pid namespace must also unshare the thread.
1799 	 */
1800 	if (unshare_flags & CLONE_NEWPID)
1801 		unshare_flags |= CLONE_THREAD;
1802 	/*
1803 	 * If unsharing a thread from a thread group, must also unshare vm.
1804 	 */
1805 	if (unshare_flags & CLONE_THREAD)
1806 		unshare_flags |= CLONE_VM;
1807 	/*
1808 	 * If unsharing vm, must also unshare signal handlers.
1809 	 */
1810 	if (unshare_flags & CLONE_VM)
1811 		unshare_flags |= CLONE_SIGHAND;
1812 	/*
1813 	 * If unsharing namespace, must also unshare filesystem information.
1814 	 */
1815 	if (unshare_flags & CLONE_NEWNS)
1816 		unshare_flags |= CLONE_FS;
1817 
1818 	err = check_unshare_flags(unshare_flags);
1819 	if (err)
1820 		goto bad_unshare_out;
1821 	/*
1822 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1823 	 * to a new ipc namespace, the semaphore arrays from the old
1824 	 * namespace are unreachable.
1825 	 */
1826 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1827 		do_sysvsem = 1;
1828 	err = unshare_fs(unshare_flags, &new_fs);
1829 	if (err)
1830 		goto bad_unshare_out;
1831 	err = unshare_fd(unshare_flags, &new_fd);
1832 	if (err)
1833 		goto bad_unshare_cleanup_fs;
1834 	err = unshare_userns(unshare_flags, &new_cred);
1835 	if (err)
1836 		goto bad_unshare_cleanup_fd;
1837 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1838 					 new_cred, new_fs);
1839 	if (err)
1840 		goto bad_unshare_cleanup_cred;
1841 
1842 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1843 		if (do_sysvsem) {
1844 			/*
1845 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1846 			 */
1847 			exit_sem(current);
1848 		}
1849 
1850 		if (new_nsproxy) {
1851 			switch_task_namespaces(current, new_nsproxy);
1852 			new_nsproxy = NULL;
1853 		}
1854 
1855 		task_lock(current);
1856 
1857 		if (new_fs) {
1858 			fs = current->fs;
1859 			spin_lock(&fs->lock);
1860 			current->fs = new_fs;
1861 			if (--fs->users)
1862 				new_fs = NULL;
1863 			else
1864 				new_fs = fs;
1865 			spin_unlock(&fs->lock);
1866 		}
1867 
1868 		if (new_fd) {
1869 			fd = current->files;
1870 			current->files = new_fd;
1871 			new_fd = fd;
1872 		}
1873 
1874 		task_unlock(current);
1875 
1876 		if (new_cred) {
1877 			/* Install the new user namespace */
1878 			commit_creds(new_cred);
1879 			new_cred = NULL;
1880 		}
1881 	}
1882 
1883 	if (new_nsproxy)
1884 		put_nsproxy(new_nsproxy);
1885 
1886 bad_unshare_cleanup_cred:
1887 	if (new_cred)
1888 		put_cred(new_cred);
1889 bad_unshare_cleanup_fd:
1890 	if (new_fd)
1891 		put_files_struct(new_fd);
1892 
1893 bad_unshare_cleanup_fs:
1894 	if (new_fs)
1895 		free_fs_struct(new_fs);
1896 
1897 bad_unshare_out:
1898 	return err;
1899 }
1900 
1901 /*
1902  *	Helper to unshare the files of the current task.
1903  *	We don't want to expose copy_files internals to
1904  *	the exec layer of the kernel.
1905  */
1906 
1907 int unshare_files(struct files_struct **displaced)
1908 {
1909 	struct task_struct *task = current;
1910 	struct files_struct *copy = NULL;
1911 	int error;
1912 
1913 	error = unshare_fd(CLONE_FILES, &copy);
1914 	if (error || !copy) {
1915 		*displaced = NULL;
1916 		return error;
1917 	}
1918 	*displaced = task->files;
1919 	task_lock(task);
1920 	task->files = copy;
1921 	task_unlock(task);
1922 	return 0;
1923 }
1924