1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 data_race(memcpy(new, orig, sizeof(*new))); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 VMA_ITERATOR(old_vmi, oldmm, 0); 589 VMA_ITERATOR(vmi, mm, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 for_each_vma(old_vmi, mpnt) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto loop_out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 vm_flags_clear(tmp, VM_LOCKED_MASK); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Copy/update hugetlb private vma information. 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 hugetlb_dup_vma_private(tmp); 684 685 /* Link the vma into the MT */ 686 if (vma_iter_bulk_store(&vmi, tmp)) 687 goto fail_nomem_vmi_store; 688 689 mm->map_count++; 690 if (!(tmp->vm_flags & VM_WIPEONFORK)) 691 retval = copy_page_range(tmp, mpnt); 692 693 if (tmp->vm_ops && tmp->vm_ops->open) 694 tmp->vm_ops->open(tmp); 695 696 if (retval) 697 goto loop_out; 698 } 699 /* a new mm has just been created */ 700 retval = arch_dup_mmap(oldmm, mm); 701 loop_out: 702 vma_iter_free(&vmi); 703 out: 704 mmap_write_unlock(mm); 705 flush_tlb_mm(oldmm); 706 mmap_write_unlock(oldmm); 707 dup_userfaultfd_complete(&uf); 708 fail_uprobe_end: 709 uprobe_end_dup_mmap(); 710 return retval; 711 712 fail_nomem_vmi_store: 713 unlink_anon_vmas(tmp); 714 fail_nomem_anon_vma_fork: 715 mpol_put(vma_policy(tmp)); 716 fail_nomem_policy: 717 vm_area_free(tmp); 718 fail_nomem: 719 retval = -ENOMEM; 720 vm_unacct_memory(charge); 721 goto loop_out; 722 } 723 724 static inline int mm_alloc_pgd(struct mm_struct *mm) 725 { 726 mm->pgd = pgd_alloc(mm); 727 if (unlikely(!mm->pgd)) 728 return -ENOMEM; 729 return 0; 730 } 731 732 static inline void mm_free_pgd(struct mm_struct *mm) 733 { 734 pgd_free(mm, mm->pgd); 735 } 736 #else 737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 738 { 739 mmap_write_lock(oldmm); 740 dup_mm_exe_file(mm, oldmm); 741 mmap_write_unlock(oldmm); 742 return 0; 743 } 744 #define mm_alloc_pgd(mm) (0) 745 #define mm_free_pgd(mm) 746 #endif /* CONFIG_MMU */ 747 748 static void check_mm(struct mm_struct *mm) 749 { 750 int i; 751 752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 753 "Please make sure 'struct resident_page_types[]' is updated as well"); 754 755 for (i = 0; i < NR_MM_COUNTERS; i++) { 756 long x = percpu_counter_sum(&mm->rss_stat[i]); 757 758 if (unlikely(x)) 759 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 760 mm, resident_page_types[i], x); 761 } 762 763 if (mm_pgtables_bytes(mm)) 764 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 765 mm_pgtables_bytes(mm)); 766 767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 768 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 769 #endif 770 } 771 772 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 773 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 774 775 /* 776 * Called when the last reference to the mm 777 * is dropped: either by a lazy thread or by 778 * mmput. Free the page directory and the mm. 779 */ 780 void __mmdrop(struct mm_struct *mm) 781 { 782 int i; 783 784 BUG_ON(mm == &init_mm); 785 WARN_ON_ONCE(mm == current->mm); 786 WARN_ON_ONCE(mm == current->active_mm); 787 mm_free_pgd(mm); 788 destroy_context(mm); 789 mmu_notifier_subscriptions_destroy(mm); 790 check_mm(mm); 791 put_user_ns(mm->user_ns); 792 mm_pasid_drop(mm); 793 794 for (i = 0; i < NR_MM_COUNTERS; i++) 795 percpu_counter_destroy(&mm->rss_stat[i]); 796 free_mm(mm); 797 } 798 EXPORT_SYMBOL_GPL(__mmdrop); 799 800 static void mmdrop_async_fn(struct work_struct *work) 801 { 802 struct mm_struct *mm; 803 804 mm = container_of(work, struct mm_struct, async_put_work); 805 __mmdrop(mm); 806 } 807 808 static void mmdrop_async(struct mm_struct *mm) 809 { 810 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 811 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 812 schedule_work(&mm->async_put_work); 813 } 814 } 815 816 static inline void free_signal_struct(struct signal_struct *sig) 817 { 818 taskstats_tgid_free(sig); 819 sched_autogroup_exit(sig); 820 /* 821 * __mmdrop is not safe to call from softirq context on x86 due to 822 * pgd_dtor so postpone it to the async context 823 */ 824 if (sig->oom_mm) 825 mmdrop_async(sig->oom_mm); 826 kmem_cache_free(signal_cachep, sig); 827 } 828 829 static inline void put_signal_struct(struct signal_struct *sig) 830 { 831 if (refcount_dec_and_test(&sig->sigcnt)) 832 free_signal_struct(sig); 833 } 834 835 void __put_task_struct(struct task_struct *tsk) 836 { 837 WARN_ON(!tsk->exit_state); 838 WARN_ON(refcount_read(&tsk->usage)); 839 WARN_ON(tsk == current); 840 841 io_uring_free(tsk); 842 cgroup_free(tsk); 843 task_numa_free(tsk, true); 844 security_task_free(tsk); 845 bpf_task_storage_free(tsk); 846 exit_creds(tsk); 847 delayacct_tsk_free(tsk); 848 put_signal_struct(tsk->signal); 849 sched_core_free(tsk); 850 free_task(tsk); 851 } 852 EXPORT_SYMBOL_GPL(__put_task_struct); 853 854 void __init __weak arch_task_cache_init(void) { } 855 856 /* 857 * set_max_threads 858 */ 859 static void set_max_threads(unsigned int max_threads_suggested) 860 { 861 u64 threads; 862 unsigned long nr_pages = totalram_pages(); 863 864 /* 865 * The number of threads shall be limited such that the thread 866 * structures may only consume a small part of the available memory. 867 */ 868 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 869 threads = MAX_THREADS; 870 else 871 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 872 (u64) THREAD_SIZE * 8UL); 873 874 if (threads > max_threads_suggested) 875 threads = max_threads_suggested; 876 877 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 878 } 879 880 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 881 /* Initialized by the architecture: */ 882 int arch_task_struct_size __read_mostly; 883 #endif 884 885 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 886 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 887 { 888 /* Fetch thread_struct whitelist for the architecture. */ 889 arch_thread_struct_whitelist(offset, size); 890 891 /* 892 * Handle zero-sized whitelist or empty thread_struct, otherwise 893 * adjust offset to position of thread_struct in task_struct. 894 */ 895 if (unlikely(*size == 0)) 896 *offset = 0; 897 else 898 *offset += offsetof(struct task_struct, thread); 899 } 900 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 901 902 void __init fork_init(void) 903 { 904 int i; 905 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 906 #ifndef ARCH_MIN_TASKALIGN 907 #define ARCH_MIN_TASKALIGN 0 908 #endif 909 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 910 unsigned long useroffset, usersize; 911 912 /* create a slab on which task_structs can be allocated */ 913 task_struct_whitelist(&useroffset, &usersize); 914 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 915 arch_task_struct_size, align, 916 SLAB_PANIC|SLAB_ACCOUNT, 917 useroffset, usersize, NULL); 918 #endif 919 920 /* do the arch specific task caches init */ 921 arch_task_cache_init(); 922 923 set_max_threads(MAX_THREADS); 924 925 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 926 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 927 init_task.signal->rlim[RLIMIT_SIGPENDING] = 928 init_task.signal->rlim[RLIMIT_NPROC]; 929 930 for (i = 0; i < UCOUNT_COUNTS; i++) 931 init_user_ns.ucount_max[i] = max_threads/2; 932 933 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 934 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 935 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 936 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 937 938 #ifdef CONFIG_VMAP_STACK 939 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 940 NULL, free_vm_stack_cache); 941 #endif 942 943 scs_init(); 944 945 lockdep_init_task(&init_task); 946 uprobes_init(); 947 } 948 949 int __weak arch_dup_task_struct(struct task_struct *dst, 950 struct task_struct *src) 951 { 952 *dst = *src; 953 return 0; 954 } 955 956 void set_task_stack_end_magic(struct task_struct *tsk) 957 { 958 unsigned long *stackend; 959 960 stackend = end_of_stack(tsk); 961 *stackend = STACK_END_MAGIC; /* for overflow detection */ 962 } 963 964 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 965 { 966 struct task_struct *tsk; 967 int err; 968 969 if (node == NUMA_NO_NODE) 970 node = tsk_fork_get_node(orig); 971 tsk = alloc_task_struct_node(node); 972 if (!tsk) 973 return NULL; 974 975 err = arch_dup_task_struct(tsk, orig); 976 if (err) 977 goto free_tsk; 978 979 err = alloc_thread_stack_node(tsk, node); 980 if (err) 981 goto free_tsk; 982 983 #ifdef CONFIG_THREAD_INFO_IN_TASK 984 refcount_set(&tsk->stack_refcount, 1); 985 #endif 986 account_kernel_stack(tsk, 1); 987 988 err = scs_prepare(tsk, node); 989 if (err) 990 goto free_stack; 991 992 #ifdef CONFIG_SECCOMP 993 /* 994 * We must handle setting up seccomp filters once we're under 995 * the sighand lock in case orig has changed between now and 996 * then. Until then, filter must be NULL to avoid messing up 997 * the usage counts on the error path calling free_task. 998 */ 999 tsk->seccomp.filter = NULL; 1000 #endif 1001 1002 setup_thread_stack(tsk, orig); 1003 clear_user_return_notifier(tsk); 1004 clear_tsk_need_resched(tsk); 1005 set_task_stack_end_magic(tsk); 1006 clear_syscall_work_syscall_user_dispatch(tsk); 1007 1008 #ifdef CONFIG_STACKPROTECTOR 1009 tsk->stack_canary = get_random_canary(); 1010 #endif 1011 if (orig->cpus_ptr == &orig->cpus_mask) 1012 tsk->cpus_ptr = &tsk->cpus_mask; 1013 dup_user_cpus_ptr(tsk, orig, node); 1014 1015 /* 1016 * One for the user space visible state that goes away when reaped. 1017 * One for the scheduler. 1018 */ 1019 refcount_set(&tsk->rcu_users, 2); 1020 /* One for the rcu users */ 1021 refcount_set(&tsk->usage, 1); 1022 #ifdef CONFIG_BLK_DEV_IO_TRACE 1023 tsk->btrace_seq = 0; 1024 #endif 1025 tsk->splice_pipe = NULL; 1026 tsk->task_frag.page = NULL; 1027 tsk->wake_q.next = NULL; 1028 tsk->worker_private = NULL; 1029 1030 kcov_task_init(tsk); 1031 kmsan_task_create(tsk); 1032 kmap_local_fork(tsk); 1033 1034 #ifdef CONFIG_FAULT_INJECTION 1035 tsk->fail_nth = 0; 1036 #endif 1037 1038 #ifdef CONFIG_BLK_CGROUP 1039 tsk->throttle_disk = NULL; 1040 tsk->use_memdelay = 0; 1041 #endif 1042 1043 #ifdef CONFIG_IOMMU_SVA 1044 tsk->pasid_activated = 0; 1045 #endif 1046 1047 #ifdef CONFIG_MEMCG 1048 tsk->active_memcg = NULL; 1049 #endif 1050 1051 #ifdef CONFIG_CPU_SUP_INTEL 1052 tsk->reported_split_lock = 0; 1053 #endif 1054 1055 #ifdef CONFIG_SCHED_MM_CID 1056 tsk->mm_cid = -1; 1057 tsk->mm_cid_active = 0; 1058 #endif 1059 return tsk; 1060 1061 free_stack: 1062 exit_task_stack_account(tsk); 1063 free_thread_stack(tsk); 1064 free_tsk: 1065 free_task_struct(tsk); 1066 return NULL; 1067 } 1068 1069 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1070 1071 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1072 1073 static int __init coredump_filter_setup(char *s) 1074 { 1075 default_dump_filter = 1076 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1077 MMF_DUMP_FILTER_MASK; 1078 return 1; 1079 } 1080 1081 __setup("coredump_filter=", coredump_filter_setup); 1082 1083 #include <linux/init_task.h> 1084 1085 static void mm_init_aio(struct mm_struct *mm) 1086 { 1087 #ifdef CONFIG_AIO 1088 spin_lock_init(&mm->ioctx_lock); 1089 mm->ioctx_table = NULL; 1090 #endif 1091 } 1092 1093 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1094 struct task_struct *p) 1095 { 1096 #ifdef CONFIG_MEMCG 1097 if (mm->owner == p) 1098 WRITE_ONCE(mm->owner, NULL); 1099 #endif 1100 } 1101 1102 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1103 { 1104 #ifdef CONFIG_MEMCG 1105 mm->owner = p; 1106 #endif 1107 } 1108 1109 static void mm_init_uprobes_state(struct mm_struct *mm) 1110 { 1111 #ifdef CONFIG_UPROBES 1112 mm->uprobes_state.xol_area = NULL; 1113 #endif 1114 } 1115 1116 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1117 struct user_namespace *user_ns) 1118 { 1119 int i; 1120 1121 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1122 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1123 atomic_set(&mm->mm_users, 1); 1124 atomic_set(&mm->mm_count, 1); 1125 seqcount_init(&mm->write_protect_seq); 1126 mmap_init_lock(mm); 1127 INIT_LIST_HEAD(&mm->mmlist); 1128 mm_pgtables_bytes_init(mm); 1129 mm->map_count = 0; 1130 mm->locked_vm = 0; 1131 atomic64_set(&mm->pinned_vm, 0); 1132 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1133 spin_lock_init(&mm->page_table_lock); 1134 spin_lock_init(&mm->arg_lock); 1135 mm_init_cpumask(mm); 1136 mm_init_aio(mm); 1137 mm_init_owner(mm, p); 1138 mm_pasid_init(mm); 1139 RCU_INIT_POINTER(mm->exe_file, NULL); 1140 mmu_notifier_subscriptions_init(mm); 1141 init_tlb_flush_pending(mm); 1142 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1143 mm->pmd_huge_pte = NULL; 1144 #endif 1145 mm_init_uprobes_state(mm); 1146 hugetlb_count_init(mm); 1147 1148 if (current->mm) { 1149 mm->flags = current->mm->flags & MMF_INIT_MASK; 1150 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1151 } else { 1152 mm->flags = default_dump_filter; 1153 mm->def_flags = 0; 1154 } 1155 1156 if (mm_alloc_pgd(mm)) 1157 goto fail_nopgd; 1158 1159 if (init_new_context(p, mm)) 1160 goto fail_nocontext; 1161 1162 for (i = 0; i < NR_MM_COUNTERS; i++) 1163 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1164 goto fail_pcpu; 1165 1166 mm->user_ns = get_user_ns(user_ns); 1167 lru_gen_init_mm(mm); 1168 mm_init_cid(mm); 1169 return mm; 1170 1171 fail_pcpu: 1172 while (i > 0) 1173 percpu_counter_destroy(&mm->rss_stat[--i]); 1174 fail_nocontext: 1175 mm_free_pgd(mm); 1176 fail_nopgd: 1177 free_mm(mm); 1178 return NULL; 1179 } 1180 1181 /* 1182 * Allocate and initialize an mm_struct. 1183 */ 1184 struct mm_struct *mm_alloc(void) 1185 { 1186 struct mm_struct *mm; 1187 1188 mm = allocate_mm(); 1189 if (!mm) 1190 return NULL; 1191 1192 memset(mm, 0, sizeof(*mm)); 1193 return mm_init(mm, current, current_user_ns()); 1194 } 1195 1196 static inline void __mmput(struct mm_struct *mm) 1197 { 1198 VM_BUG_ON(atomic_read(&mm->mm_users)); 1199 1200 uprobe_clear_state(mm); 1201 exit_aio(mm); 1202 ksm_exit(mm); 1203 khugepaged_exit(mm); /* must run before exit_mmap */ 1204 exit_mmap(mm); 1205 mm_put_huge_zero_page(mm); 1206 set_mm_exe_file(mm, NULL); 1207 if (!list_empty(&mm->mmlist)) { 1208 spin_lock(&mmlist_lock); 1209 list_del(&mm->mmlist); 1210 spin_unlock(&mmlist_lock); 1211 } 1212 if (mm->binfmt) 1213 module_put(mm->binfmt->module); 1214 lru_gen_del_mm(mm); 1215 mmdrop(mm); 1216 } 1217 1218 /* 1219 * Decrement the use count and release all resources for an mm. 1220 */ 1221 void mmput(struct mm_struct *mm) 1222 { 1223 might_sleep(); 1224 1225 if (atomic_dec_and_test(&mm->mm_users)) 1226 __mmput(mm); 1227 } 1228 EXPORT_SYMBOL_GPL(mmput); 1229 1230 #ifdef CONFIG_MMU 1231 static void mmput_async_fn(struct work_struct *work) 1232 { 1233 struct mm_struct *mm = container_of(work, struct mm_struct, 1234 async_put_work); 1235 1236 __mmput(mm); 1237 } 1238 1239 void mmput_async(struct mm_struct *mm) 1240 { 1241 if (atomic_dec_and_test(&mm->mm_users)) { 1242 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1243 schedule_work(&mm->async_put_work); 1244 } 1245 } 1246 EXPORT_SYMBOL_GPL(mmput_async); 1247 #endif 1248 1249 /** 1250 * set_mm_exe_file - change a reference to the mm's executable file 1251 * 1252 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1253 * 1254 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1255 * invocations: in mmput() nobody alive left, in execve task is single 1256 * threaded. 1257 * 1258 * Can only fail if new_exe_file != NULL. 1259 */ 1260 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1261 { 1262 struct file *old_exe_file; 1263 1264 /* 1265 * It is safe to dereference the exe_file without RCU as 1266 * this function is only called if nobody else can access 1267 * this mm -- see comment above for justification. 1268 */ 1269 old_exe_file = rcu_dereference_raw(mm->exe_file); 1270 1271 if (new_exe_file) { 1272 /* 1273 * We expect the caller (i.e., sys_execve) to already denied 1274 * write access, so this is unlikely to fail. 1275 */ 1276 if (unlikely(deny_write_access(new_exe_file))) 1277 return -EACCES; 1278 get_file(new_exe_file); 1279 } 1280 rcu_assign_pointer(mm->exe_file, new_exe_file); 1281 if (old_exe_file) { 1282 allow_write_access(old_exe_file); 1283 fput(old_exe_file); 1284 } 1285 return 0; 1286 } 1287 1288 /** 1289 * replace_mm_exe_file - replace a reference to the mm's executable file 1290 * 1291 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1292 * dealing with concurrent invocation and without grabbing the mmap lock in 1293 * write mode. 1294 * 1295 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1296 */ 1297 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1298 { 1299 struct vm_area_struct *vma; 1300 struct file *old_exe_file; 1301 int ret = 0; 1302 1303 /* Forbid mm->exe_file change if old file still mapped. */ 1304 old_exe_file = get_mm_exe_file(mm); 1305 if (old_exe_file) { 1306 VMA_ITERATOR(vmi, mm, 0); 1307 mmap_read_lock(mm); 1308 for_each_vma(vmi, vma) { 1309 if (!vma->vm_file) 1310 continue; 1311 if (path_equal(&vma->vm_file->f_path, 1312 &old_exe_file->f_path)) { 1313 ret = -EBUSY; 1314 break; 1315 } 1316 } 1317 mmap_read_unlock(mm); 1318 fput(old_exe_file); 1319 if (ret) 1320 return ret; 1321 } 1322 1323 /* set the new file, lockless */ 1324 ret = deny_write_access(new_exe_file); 1325 if (ret) 1326 return -EACCES; 1327 get_file(new_exe_file); 1328 1329 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1330 if (old_exe_file) { 1331 /* 1332 * Don't race with dup_mmap() getting the file and disallowing 1333 * write access while someone might open the file writable. 1334 */ 1335 mmap_read_lock(mm); 1336 allow_write_access(old_exe_file); 1337 fput(old_exe_file); 1338 mmap_read_unlock(mm); 1339 } 1340 return 0; 1341 } 1342 1343 /** 1344 * get_mm_exe_file - acquire a reference to the mm's executable file 1345 * 1346 * Returns %NULL if mm has no associated executable file. 1347 * User must release file via fput(). 1348 */ 1349 struct file *get_mm_exe_file(struct mm_struct *mm) 1350 { 1351 struct file *exe_file; 1352 1353 rcu_read_lock(); 1354 exe_file = rcu_dereference(mm->exe_file); 1355 if (exe_file && !get_file_rcu(exe_file)) 1356 exe_file = NULL; 1357 rcu_read_unlock(); 1358 return exe_file; 1359 } 1360 1361 /** 1362 * get_task_exe_file - acquire a reference to the task's executable file 1363 * 1364 * Returns %NULL if task's mm (if any) has no associated executable file or 1365 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1366 * User must release file via fput(). 1367 */ 1368 struct file *get_task_exe_file(struct task_struct *task) 1369 { 1370 struct file *exe_file = NULL; 1371 struct mm_struct *mm; 1372 1373 task_lock(task); 1374 mm = task->mm; 1375 if (mm) { 1376 if (!(task->flags & PF_KTHREAD)) 1377 exe_file = get_mm_exe_file(mm); 1378 } 1379 task_unlock(task); 1380 return exe_file; 1381 } 1382 1383 /** 1384 * get_task_mm - acquire a reference to the task's mm 1385 * 1386 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1387 * this kernel workthread has transiently adopted a user mm with use_mm, 1388 * to do its AIO) is not set and if so returns a reference to it, after 1389 * bumping up the use count. User must release the mm via mmput() 1390 * after use. Typically used by /proc and ptrace. 1391 */ 1392 struct mm_struct *get_task_mm(struct task_struct *task) 1393 { 1394 struct mm_struct *mm; 1395 1396 task_lock(task); 1397 mm = task->mm; 1398 if (mm) { 1399 if (task->flags & PF_KTHREAD) 1400 mm = NULL; 1401 else 1402 mmget(mm); 1403 } 1404 task_unlock(task); 1405 return mm; 1406 } 1407 EXPORT_SYMBOL_GPL(get_task_mm); 1408 1409 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1410 { 1411 struct mm_struct *mm; 1412 int err; 1413 1414 err = down_read_killable(&task->signal->exec_update_lock); 1415 if (err) 1416 return ERR_PTR(err); 1417 1418 mm = get_task_mm(task); 1419 if (mm && mm != current->mm && 1420 !ptrace_may_access(task, mode)) { 1421 mmput(mm); 1422 mm = ERR_PTR(-EACCES); 1423 } 1424 up_read(&task->signal->exec_update_lock); 1425 1426 return mm; 1427 } 1428 1429 static void complete_vfork_done(struct task_struct *tsk) 1430 { 1431 struct completion *vfork; 1432 1433 task_lock(tsk); 1434 vfork = tsk->vfork_done; 1435 if (likely(vfork)) { 1436 tsk->vfork_done = NULL; 1437 complete(vfork); 1438 } 1439 task_unlock(tsk); 1440 } 1441 1442 static int wait_for_vfork_done(struct task_struct *child, 1443 struct completion *vfork) 1444 { 1445 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1446 int killed; 1447 1448 cgroup_enter_frozen(); 1449 killed = wait_for_completion_state(vfork, state); 1450 cgroup_leave_frozen(false); 1451 1452 if (killed) { 1453 task_lock(child); 1454 child->vfork_done = NULL; 1455 task_unlock(child); 1456 } 1457 1458 put_task_struct(child); 1459 return killed; 1460 } 1461 1462 /* Please note the differences between mmput and mm_release. 1463 * mmput is called whenever we stop holding onto a mm_struct, 1464 * error success whatever. 1465 * 1466 * mm_release is called after a mm_struct has been removed 1467 * from the current process. 1468 * 1469 * This difference is important for error handling, when we 1470 * only half set up a mm_struct for a new process and need to restore 1471 * the old one. Because we mmput the new mm_struct before 1472 * restoring the old one. . . 1473 * Eric Biederman 10 January 1998 1474 */ 1475 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1476 { 1477 uprobe_free_utask(tsk); 1478 1479 /* Get rid of any cached register state */ 1480 deactivate_mm(tsk, mm); 1481 1482 /* 1483 * Signal userspace if we're not exiting with a core dump 1484 * because we want to leave the value intact for debugging 1485 * purposes. 1486 */ 1487 if (tsk->clear_child_tid) { 1488 if (atomic_read(&mm->mm_users) > 1) { 1489 /* 1490 * We don't check the error code - if userspace has 1491 * not set up a proper pointer then tough luck. 1492 */ 1493 put_user(0, tsk->clear_child_tid); 1494 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1495 1, NULL, NULL, 0, 0); 1496 } 1497 tsk->clear_child_tid = NULL; 1498 } 1499 1500 /* 1501 * All done, finally we can wake up parent and return this mm to him. 1502 * Also kthread_stop() uses this completion for synchronization. 1503 */ 1504 if (tsk->vfork_done) 1505 complete_vfork_done(tsk); 1506 } 1507 1508 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1509 { 1510 futex_exit_release(tsk); 1511 mm_release(tsk, mm); 1512 } 1513 1514 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1515 { 1516 futex_exec_release(tsk); 1517 mm_release(tsk, mm); 1518 } 1519 1520 /** 1521 * dup_mm() - duplicates an existing mm structure 1522 * @tsk: the task_struct with which the new mm will be associated. 1523 * @oldmm: the mm to duplicate. 1524 * 1525 * Allocates a new mm structure and duplicates the provided @oldmm structure 1526 * content into it. 1527 * 1528 * Return: the duplicated mm or NULL on failure. 1529 */ 1530 static struct mm_struct *dup_mm(struct task_struct *tsk, 1531 struct mm_struct *oldmm) 1532 { 1533 struct mm_struct *mm; 1534 int err; 1535 1536 mm = allocate_mm(); 1537 if (!mm) 1538 goto fail_nomem; 1539 1540 memcpy(mm, oldmm, sizeof(*mm)); 1541 1542 if (!mm_init(mm, tsk, mm->user_ns)) 1543 goto fail_nomem; 1544 1545 err = dup_mmap(mm, oldmm); 1546 if (err) 1547 goto free_pt; 1548 1549 mm->hiwater_rss = get_mm_rss(mm); 1550 mm->hiwater_vm = mm->total_vm; 1551 1552 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1553 goto free_pt; 1554 1555 return mm; 1556 1557 free_pt: 1558 /* don't put binfmt in mmput, we haven't got module yet */ 1559 mm->binfmt = NULL; 1560 mm_init_owner(mm, NULL); 1561 mmput(mm); 1562 1563 fail_nomem: 1564 return NULL; 1565 } 1566 1567 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1568 { 1569 struct mm_struct *mm, *oldmm; 1570 1571 tsk->min_flt = tsk->maj_flt = 0; 1572 tsk->nvcsw = tsk->nivcsw = 0; 1573 #ifdef CONFIG_DETECT_HUNG_TASK 1574 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1575 tsk->last_switch_time = 0; 1576 #endif 1577 1578 tsk->mm = NULL; 1579 tsk->active_mm = NULL; 1580 1581 /* 1582 * Are we cloning a kernel thread? 1583 * 1584 * We need to steal a active VM for that.. 1585 */ 1586 oldmm = current->mm; 1587 if (!oldmm) 1588 return 0; 1589 1590 if (clone_flags & CLONE_VM) { 1591 mmget(oldmm); 1592 mm = oldmm; 1593 } else { 1594 mm = dup_mm(tsk, current->mm); 1595 if (!mm) 1596 return -ENOMEM; 1597 } 1598 1599 tsk->mm = mm; 1600 tsk->active_mm = mm; 1601 sched_mm_cid_fork(tsk); 1602 return 0; 1603 } 1604 1605 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1606 { 1607 struct fs_struct *fs = current->fs; 1608 if (clone_flags & CLONE_FS) { 1609 /* tsk->fs is already what we want */ 1610 spin_lock(&fs->lock); 1611 if (fs->in_exec) { 1612 spin_unlock(&fs->lock); 1613 return -EAGAIN; 1614 } 1615 fs->users++; 1616 spin_unlock(&fs->lock); 1617 return 0; 1618 } 1619 tsk->fs = copy_fs_struct(fs); 1620 if (!tsk->fs) 1621 return -ENOMEM; 1622 return 0; 1623 } 1624 1625 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1626 { 1627 struct files_struct *oldf, *newf; 1628 int error = 0; 1629 1630 /* 1631 * A background process may not have any files ... 1632 */ 1633 oldf = current->files; 1634 if (!oldf) 1635 goto out; 1636 1637 if (clone_flags & CLONE_FILES) { 1638 atomic_inc(&oldf->count); 1639 goto out; 1640 } 1641 1642 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1643 if (!newf) 1644 goto out; 1645 1646 tsk->files = newf; 1647 error = 0; 1648 out: 1649 return error; 1650 } 1651 1652 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1653 { 1654 struct sighand_struct *sig; 1655 1656 if (clone_flags & CLONE_SIGHAND) { 1657 refcount_inc(¤t->sighand->count); 1658 return 0; 1659 } 1660 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1661 RCU_INIT_POINTER(tsk->sighand, sig); 1662 if (!sig) 1663 return -ENOMEM; 1664 1665 refcount_set(&sig->count, 1); 1666 spin_lock_irq(¤t->sighand->siglock); 1667 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1668 spin_unlock_irq(¤t->sighand->siglock); 1669 1670 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1671 if (clone_flags & CLONE_CLEAR_SIGHAND) 1672 flush_signal_handlers(tsk, 0); 1673 1674 return 0; 1675 } 1676 1677 void __cleanup_sighand(struct sighand_struct *sighand) 1678 { 1679 if (refcount_dec_and_test(&sighand->count)) { 1680 signalfd_cleanup(sighand); 1681 /* 1682 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1683 * without an RCU grace period, see __lock_task_sighand(). 1684 */ 1685 kmem_cache_free(sighand_cachep, sighand); 1686 } 1687 } 1688 1689 /* 1690 * Initialize POSIX timer handling for a thread group. 1691 */ 1692 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1693 { 1694 struct posix_cputimers *pct = &sig->posix_cputimers; 1695 unsigned long cpu_limit; 1696 1697 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1698 posix_cputimers_group_init(pct, cpu_limit); 1699 } 1700 1701 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1702 { 1703 struct signal_struct *sig; 1704 1705 if (clone_flags & CLONE_THREAD) 1706 return 0; 1707 1708 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1709 tsk->signal = sig; 1710 if (!sig) 1711 return -ENOMEM; 1712 1713 sig->nr_threads = 1; 1714 sig->quick_threads = 1; 1715 atomic_set(&sig->live, 1); 1716 refcount_set(&sig->sigcnt, 1); 1717 1718 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1719 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1720 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1721 1722 init_waitqueue_head(&sig->wait_chldexit); 1723 sig->curr_target = tsk; 1724 init_sigpending(&sig->shared_pending); 1725 INIT_HLIST_HEAD(&sig->multiprocess); 1726 seqlock_init(&sig->stats_lock); 1727 prev_cputime_init(&sig->prev_cputime); 1728 1729 #ifdef CONFIG_POSIX_TIMERS 1730 INIT_LIST_HEAD(&sig->posix_timers); 1731 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1732 sig->real_timer.function = it_real_fn; 1733 #endif 1734 1735 task_lock(current->group_leader); 1736 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1737 task_unlock(current->group_leader); 1738 1739 posix_cpu_timers_init_group(sig); 1740 1741 tty_audit_fork(sig); 1742 sched_autogroup_fork(sig); 1743 1744 sig->oom_score_adj = current->signal->oom_score_adj; 1745 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1746 1747 mutex_init(&sig->cred_guard_mutex); 1748 init_rwsem(&sig->exec_update_lock); 1749 1750 return 0; 1751 } 1752 1753 static void copy_seccomp(struct task_struct *p) 1754 { 1755 #ifdef CONFIG_SECCOMP 1756 /* 1757 * Must be called with sighand->lock held, which is common to 1758 * all threads in the group. Holding cred_guard_mutex is not 1759 * needed because this new task is not yet running and cannot 1760 * be racing exec. 1761 */ 1762 assert_spin_locked(¤t->sighand->siglock); 1763 1764 /* Ref-count the new filter user, and assign it. */ 1765 get_seccomp_filter(current); 1766 p->seccomp = current->seccomp; 1767 1768 /* 1769 * Explicitly enable no_new_privs here in case it got set 1770 * between the task_struct being duplicated and holding the 1771 * sighand lock. The seccomp state and nnp must be in sync. 1772 */ 1773 if (task_no_new_privs(current)) 1774 task_set_no_new_privs(p); 1775 1776 /* 1777 * If the parent gained a seccomp mode after copying thread 1778 * flags and between before we held the sighand lock, we have 1779 * to manually enable the seccomp thread flag here. 1780 */ 1781 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1782 set_task_syscall_work(p, SECCOMP); 1783 #endif 1784 } 1785 1786 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1787 { 1788 current->clear_child_tid = tidptr; 1789 1790 return task_pid_vnr(current); 1791 } 1792 1793 static void rt_mutex_init_task(struct task_struct *p) 1794 { 1795 raw_spin_lock_init(&p->pi_lock); 1796 #ifdef CONFIG_RT_MUTEXES 1797 p->pi_waiters = RB_ROOT_CACHED; 1798 p->pi_top_task = NULL; 1799 p->pi_blocked_on = NULL; 1800 #endif 1801 } 1802 1803 static inline void init_task_pid_links(struct task_struct *task) 1804 { 1805 enum pid_type type; 1806 1807 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1808 INIT_HLIST_NODE(&task->pid_links[type]); 1809 } 1810 1811 static inline void 1812 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1813 { 1814 if (type == PIDTYPE_PID) 1815 task->thread_pid = pid; 1816 else 1817 task->signal->pids[type] = pid; 1818 } 1819 1820 static inline void rcu_copy_process(struct task_struct *p) 1821 { 1822 #ifdef CONFIG_PREEMPT_RCU 1823 p->rcu_read_lock_nesting = 0; 1824 p->rcu_read_unlock_special.s = 0; 1825 p->rcu_blocked_node = NULL; 1826 INIT_LIST_HEAD(&p->rcu_node_entry); 1827 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1828 #ifdef CONFIG_TASKS_RCU 1829 p->rcu_tasks_holdout = false; 1830 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1831 p->rcu_tasks_idle_cpu = -1; 1832 #endif /* #ifdef CONFIG_TASKS_RCU */ 1833 #ifdef CONFIG_TASKS_TRACE_RCU 1834 p->trc_reader_nesting = 0; 1835 p->trc_reader_special.s = 0; 1836 INIT_LIST_HEAD(&p->trc_holdout_list); 1837 INIT_LIST_HEAD(&p->trc_blkd_node); 1838 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1839 } 1840 1841 struct pid *pidfd_pid(const struct file *file) 1842 { 1843 if (file->f_op == &pidfd_fops) 1844 return file->private_data; 1845 1846 return ERR_PTR(-EBADF); 1847 } 1848 1849 static int pidfd_release(struct inode *inode, struct file *file) 1850 { 1851 struct pid *pid = file->private_data; 1852 1853 file->private_data = NULL; 1854 put_pid(pid); 1855 return 0; 1856 } 1857 1858 #ifdef CONFIG_PROC_FS 1859 /** 1860 * pidfd_show_fdinfo - print information about a pidfd 1861 * @m: proc fdinfo file 1862 * @f: file referencing a pidfd 1863 * 1864 * Pid: 1865 * This function will print the pid that a given pidfd refers to in the 1866 * pid namespace of the procfs instance. 1867 * If the pid namespace of the process is not a descendant of the pid 1868 * namespace of the procfs instance 0 will be shown as its pid. This is 1869 * similar to calling getppid() on a process whose parent is outside of 1870 * its pid namespace. 1871 * 1872 * NSpid: 1873 * If pid namespaces are supported then this function will also print 1874 * the pid of a given pidfd refers to for all descendant pid namespaces 1875 * starting from the current pid namespace of the instance, i.e. the 1876 * Pid field and the first entry in the NSpid field will be identical. 1877 * If the pid namespace of the process is not a descendant of the pid 1878 * namespace of the procfs instance 0 will be shown as its first NSpid 1879 * entry and no others will be shown. 1880 * Note that this differs from the Pid and NSpid fields in 1881 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1882 * the pid namespace of the procfs instance. The difference becomes 1883 * obvious when sending around a pidfd between pid namespaces from a 1884 * different branch of the tree, i.e. where no ancestral relation is 1885 * present between the pid namespaces: 1886 * - create two new pid namespaces ns1 and ns2 in the initial pid 1887 * namespace (also take care to create new mount namespaces in the 1888 * new pid namespace and mount procfs) 1889 * - create a process with a pidfd in ns1 1890 * - send pidfd from ns1 to ns2 1891 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1892 * have exactly one entry, which is 0 1893 */ 1894 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1895 { 1896 struct pid *pid = f->private_data; 1897 struct pid_namespace *ns; 1898 pid_t nr = -1; 1899 1900 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1901 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1902 nr = pid_nr_ns(pid, ns); 1903 } 1904 1905 seq_put_decimal_ll(m, "Pid:\t", nr); 1906 1907 #ifdef CONFIG_PID_NS 1908 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1909 if (nr > 0) { 1910 int i; 1911 1912 /* If nr is non-zero it means that 'pid' is valid and that 1913 * ns, i.e. the pid namespace associated with the procfs 1914 * instance, is in the pid namespace hierarchy of pid. 1915 * Start at one below the already printed level. 1916 */ 1917 for (i = ns->level + 1; i <= pid->level; i++) 1918 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1919 } 1920 #endif 1921 seq_putc(m, '\n'); 1922 } 1923 #endif 1924 1925 /* 1926 * Poll support for process exit notification. 1927 */ 1928 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1929 { 1930 struct pid *pid = file->private_data; 1931 __poll_t poll_flags = 0; 1932 1933 poll_wait(file, &pid->wait_pidfd, pts); 1934 1935 /* 1936 * Inform pollers only when the whole thread group exits. 1937 * If the thread group leader exits before all other threads in the 1938 * group, then poll(2) should block, similar to the wait(2) family. 1939 */ 1940 if (thread_group_exited(pid)) 1941 poll_flags = EPOLLIN | EPOLLRDNORM; 1942 1943 return poll_flags; 1944 } 1945 1946 const struct file_operations pidfd_fops = { 1947 .release = pidfd_release, 1948 .poll = pidfd_poll, 1949 #ifdef CONFIG_PROC_FS 1950 .show_fdinfo = pidfd_show_fdinfo, 1951 #endif 1952 }; 1953 1954 static void __delayed_free_task(struct rcu_head *rhp) 1955 { 1956 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1957 1958 free_task(tsk); 1959 } 1960 1961 static __always_inline void delayed_free_task(struct task_struct *tsk) 1962 { 1963 if (IS_ENABLED(CONFIG_MEMCG)) 1964 call_rcu(&tsk->rcu, __delayed_free_task); 1965 else 1966 free_task(tsk); 1967 } 1968 1969 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1970 { 1971 /* Skip if kernel thread */ 1972 if (!tsk->mm) 1973 return; 1974 1975 /* Skip if spawning a thread or using vfork */ 1976 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1977 return; 1978 1979 /* We need to synchronize with __set_oom_adj */ 1980 mutex_lock(&oom_adj_mutex); 1981 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1982 /* Update the values in case they were changed after copy_signal */ 1983 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1984 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1985 mutex_unlock(&oom_adj_mutex); 1986 } 1987 1988 #ifdef CONFIG_RV 1989 static void rv_task_fork(struct task_struct *p) 1990 { 1991 int i; 1992 1993 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1994 p->rv[i].da_mon.monitoring = false; 1995 } 1996 #else 1997 #define rv_task_fork(p) do {} while (0) 1998 #endif 1999 2000 /* 2001 * This creates a new process as a copy of the old one, 2002 * but does not actually start it yet. 2003 * 2004 * It copies the registers, and all the appropriate 2005 * parts of the process environment (as per the clone 2006 * flags). The actual kick-off is left to the caller. 2007 */ 2008 static __latent_entropy struct task_struct *copy_process( 2009 struct pid *pid, 2010 int trace, 2011 int node, 2012 struct kernel_clone_args *args) 2013 { 2014 int pidfd = -1, retval; 2015 struct task_struct *p; 2016 struct multiprocess_signals delayed; 2017 struct file *pidfile = NULL; 2018 const u64 clone_flags = args->flags; 2019 struct nsproxy *nsp = current->nsproxy; 2020 2021 /* 2022 * Don't allow sharing the root directory with processes in a different 2023 * namespace 2024 */ 2025 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2026 return ERR_PTR(-EINVAL); 2027 2028 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2029 return ERR_PTR(-EINVAL); 2030 2031 /* 2032 * Thread groups must share signals as well, and detached threads 2033 * can only be started up within the thread group. 2034 */ 2035 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2036 return ERR_PTR(-EINVAL); 2037 2038 /* 2039 * Shared signal handlers imply shared VM. By way of the above, 2040 * thread groups also imply shared VM. Blocking this case allows 2041 * for various simplifications in other code. 2042 */ 2043 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2044 return ERR_PTR(-EINVAL); 2045 2046 /* 2047 * Siblings of global init remain as zombies on exit since they are 2048 * not reaped by their parent (swapper). To solve this and to avoid 2049 * multi-rooted process trees, prevent global and container-inits 2050 * from creating siblings. 2051 */ 2052 if ((clone_flags & CLONE_PARENT) && 2053 current->signal->flags & SIGNAL_UNKILLABLE) 2054 return ERR_PTR(-EINVAL); 2055 2056 /* 2057 * If the new process will be in a different pid or user namespace 2058 * do not allow it to share a thread group with the forking task. 2059 */ 2060 if (clone_flags & CLONE_THREAD) { 2061 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2062 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2063 return ERR_PTR(-EINVAL); 2064 } 2065 2066 if (clone_flags & CLONE_PIDFD) { 2067 /* 2068 * - CLONE_DETACHED is blocked so that we can potentially 2069 * reuse it later for CLONE_PIDFD. 2070 * - CLONE_THREAD is blocked until someone really needs it. 2071 */ 2072 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2073 return ERR_PTR(-EINVAL); 2074 } 2075 2076 /* 2077 * Force any signals received before this point to be delivered 2078 * before the fork happens. Collect up signals sent to multiple 2079 * processes that happen during the fork and delay them so that 2080 * they appear to happen after the fork. 2081 */ 2082 sigemptyset(&delayed.signal); 2083 INIT_HLIST_NODE(&delayed.node); 2084 2085 spin_lock_irq(¤t->sighand->siglock); 2086 if (!(clone_flags & CLONE_THREAD)) 2087 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2088 recalc_sigpending(); 2089 spin_unlock_irq(¤t->sighand->siglock); 2090 retval = -ERESTARTNOINTR; 2091 if (task_sigpending(current)) 2092 goto fork_out; 2093 2094 retval = -ENOMEM; 2095 p = dup_task_struct(current, node); 2096 if (!p) 2097 goto fork_out; 2098 p->flags &= ~PF_KTHREAD; 2099 if (args->kthread) 2100 p->flags |= PF_KTHREAD; 2101 if (args->io_thread) { 2102 /* 2103 * Mark us an IO worker, and block any signal that isn't 2104 * fatal or STOP 2105 */ 2106 p->flags |= PF_IO_WORKER; 2107 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2108 } 2109 2110 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2111 /* 2112 * Clear TID on mm_release()? 2113 */ 2114 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2115 2116 ftrace_graph_init_task(p); 2117 2118 rt_mutex_init_task(p); 2119 2120 lockdep_assert_irqs_enabled(); 2121 #ifdef CONFIG_PROVE_LOCKING 2122 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2123 #endif 2124 retval = copy_creds(p, clone_flags); 2125 if (retval < 0) 2126 goto bad_fork_free; 2127 2128 retval = -EAGAIN; 2129 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2130 if (p->real_cred->user != INIT_USER && 2131 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2132 goto bad_fork_cleanup_count; 2133 } 2134 current->flags &= ~PF_NPROC_EXCEEDED; 2135 2136 /* 2137 * If multiple threads are within copy_process(), then this check 2138 * triggers too late. This doesn't hurt, the check is only there 2139 * to stop root fork bombs. 2140 */ 2141 retval = -EAGAIN; 2142 if (data_race(nr_threads >= max_threads)) 2143 goto bad_fork_cleanup_count; 2144 2145 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2146 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2147 p->flags |= PF_FORKNOEXEC; 2148 INIT_LIST_HEAD(&p->children); 2149 INIT_LIST_HEAD(&p->sibling); 2150 rcu_copy_process(p); 2151 p->vfork_done = NULL; 2152 spin_lock_init(&p->alloc_lock); 2153 2154 init_sigpending(&p->pending); 2155 2156 p->utime = p->stime = p->gtime = 0; 2157 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2158 p->utimescaled = p->stimescaled = 0; 2159 #endif 2160 prev_cputime_init(&p->prev_cputime); 2161 2162 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2163 seqcount_init(&p->vtime.seqcount); 2164 p->vtime.starttime = 0; 2165 p->vtime.state = VTIME_INACTIVE; 2166 #endif 2167 2168 #ifdef CONFIG_IO_URING 2169 p->io_uring = NULL; 2170 #endif 2171 2172 #if defined(SPLIT_RSS_COUNTING) 2173 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2174 #endif 2175 2176 p->default_timer_slack_ns = current->timer_slack_ns; 2177 2178 #ifdef CONFIG_PSI 2179 p->psi_flags = 0; 2180 #endif 2181 2182 task_io_accounting_init(&p->ioac); 2183 acct_clear_integrals(p); 2184 2185 posix_cputimers_init(&p->posix_cputimers); 2186 2187 p->io_context = NULL; 2188 audit_set_context(p, NULL); 2189 cgroup_fork(p); 2190 if (args->kthread) { 2191 if (!set_kthread_struct(p)) 2192 goto bad_fork_cleanup_delayacct; 2193 } 2194 #ifdef CONFIG_NUMA 2195 p->mempolicy = mpol_dup(p->mempolicy); 2196 if (IS_ERR(p->mempolicy)) { 2197 retval = PTR_ERR(p->mempolicy); 2198 p->mempolicy = NULL; 2199 goto bad_fork_cleanup_delayacct; 2200 } 2201 #endif 2202 #ifdef CONFIG_CPUSETS 2203 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2204 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2205 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2206 #endif 2207 #ifdef CONFIG_TRACE_IRQFLAGS 2208 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2209 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2210 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2211 p->softirqs_enabled = 1; 2212 p->softirq_context = 0; 2213 #endif 2214 2215 p->pagefault_disabled = 0; 2216 2217 #ifdef CONFIG_LOCKDEP 2218 lockdep_init_task(p); 2219 #endif 2220 2221 #ifdef CONFIG_DEBUG_MUTEXES 2222 p->blocked_on = NULL; /* not blocked yet */ 2223 #endif 2224 #ifdef CONFIG_BCACHE 2225 p->sequential_io = 0; 2226 p->sequential_io_avg = 0; 2227 #endif 2228 #ifdef CONFIG_BPF_SYSCALL 2229 RCU_INIT_POINTER(p->bpf_storage, NULL); 2230 p->bpf_ctx = NULL; 2231 #endif 2232 2233 /* Perform scheduler related setup. Assign this task to a CPU. */ 2234 retval = sched_fork(clone_flags, p); 2235 if (retval) 2236 goto bad_fork_cleanup_policy; 2237 2238 retval = perf_event_init_task(p, clone_flags); 2239 if (retval) 2240 goto bad_fork_cleanup_policy; 2241 retval = audit_alloc(p); 2242 if (retval) 2243 goto bad_fork_cleanup_perf; 2244 /* copy all the process information */ 2245 shm_init_task(p); 2246 retval = security_task_alloc(p, clone_flags); 2247 if (retval) 2248 goto bad_fork_cleanup_audit; 2249 retval = copy_semundo(clone_flags, p); 2250 if (retval) 2251 goto bad_fork_cleanup_security; 2252 retval = copy_files(clone_flags, p); 2253 if (retval) 2254 goto bad_fork_cleanup_semundo; 2255 retval = copy_fs(clone_flags, p); 2256 if (retval) 2257 goto bad_fork_cleanup_files; 2258 retval = copy_sighand(clone_flags, p); 2259 if (retval) 2260 goto bad_fork_cleanup_fs; 2261 retval = copy_signal(clone_flags, p); 2262 if (retval) 2263 goto bad_fork_cleanup_sighand; 2264 retval = copy_mm(clone_flags, p); 2265 if (retval) 2266 goto bad_fork_cleanup_signal; 2267 retval = copy_namespaces(clone_flags, p); 2268 if (retval) 2269 goto bad_fork_cleanup_mm; 2270 retval = copy_io(clone_flags, p); 2271 if (retval) 2272 goto bad_fork_cleanup_namespaces; 2273 retval = copy_thread(p, args); 2274 if (retval) 2275 goto bad_fork_cleanup_io; 2276 2277 stackleak_task_init(p); 2278 2279 if (pid != &init_struct_pid) { 2280 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2281 args->set_tid_size); 2282 if (IS_ERR(pid)) { 2283 retval = PTR_ERR(pid); 2284 goto bad_fork_cleanup_thread; 2285 } 2286 } 2287 2288 /* 2289 * This has to happen after we've potentially unshared the file 2290 * descriptor table (so that the pidfd doesn't leak into the child 2291 * if the fd table isn't shared). 2292 */ 2293 if (clone_flags & CLONE_PIDFD) { 2294 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2295 if (retval < 0) 2296 goto bad_fork_free_pid; 2297 2298 pidfd = retval; 2299 2300 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2301 O_RDWR | O_CLOEXEC); 2302 if (IS_ERR(pidfile)) { 2303 put_unused_fd(pidfd); 2304 retval = PTR_ERR(pidfile); 2305 goto bad_fork_free_pid; 2306 } 2307 get_pid(pid); /* held by pidfile now */ 2308 2309 retval = put_user(pidfd, args->pidfd); 2310 if (retval) 2311 goto bad_fork_put_pidfd; 2312 } 2313 2314 #ifdef CONFIG_BLOCK 2315 p->plug = NULL; 2316 #endif 2317 futex_init_task(p); 2318 2319 /* 2320 * sigaltstack should be cleared when sharing the same VM 2321 */ 2322 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2323 sas_ss_reset(p); 2324 2325 /* 2326 * Syscall tracing and stepping should be turned off in the 2327 * child regardless of CLONE_PTRACE. 2328 */ 2329 user_disable_single_step(p); 2330 clear_task_syscall_work(p, SYSCALL_TRACE); 2331 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2332 clear_task_syscall_work(p, SYSCALL_EMU); 2333 #endif 2334 clear_tsk_latency_tracing(p); 2335 2336 /* ok, now we should be set up.. */ 2337 p->pid = pid_nr(pid); 2338 if (clone_flags & CLONE_THREAD) { 2339 p->group_leader = current->group_leader; 2340 p->tgid = current->tgid; 2341 } else { 2342 p->group_leader = p; 2343 p->tgid = p->pid; 2344 } 2345 2346 p->nr_dirtied = 0; 2347 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2348 p->dirty_paused_when = 0; 2349 2350 p->pdeath_signal = 0; 2351 INIT_LIST_HEAD(&p->thread_group); 2352 p->task_works = NULL; 2353 clear_posix_cputimers_work(p); 2354 2355 #ifdef CONFIG_KRETPROBES 2356 p->kretprobe_instances.first = NULL; 2357 #endif 2358 #ifdef CONFIG_RETHOOK 2359 p->rethooks.first = NULL; 2360 #endif 2361 2362 /* 2363 * Ensure that the cgroup subsystem policies allow the new process to be 2364 * forked. It should be noted that the new process's css_set can be changed 2365 * between here and cgroup_post_fork() if an organisation operation is in 2366 * progress. 2367 */ 2368 retval = cgroup_can_fork(p, args); 2369 if (retval) 2370 goto bad_fork_put_pidfd; 2371 2372 /* 2373 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2374 * the new task on the correct runqueue. All this *before* the task 2375 * becomes visible. 2376 * 2377 * This isn't part of ->can_fork() because while the re-cloning is 2378 * cgroup specific, it unconditionally needs to place the task on a 2379 * runqueue. 2380 */ 2381 sched_cgroup_fork(p, args); 2382 2383 /* 2384 * From this point on we must avoid any synchronous user-space 2385 * communication until we take the tasklist-lock. In particular, we do 2386 * not want user-space to be able to predict the process start-time by 2387 * stalling fork(2) after we recorded the start_time but before it is 2388 * visible to the system. 2389 */ 2390 2391 p->start_time = ktime_get_ns(); 2392 p->start_boottime = ktime_get_boottime_ns(); 2393 2394 /* 2395 * Make it visible to the rest of the system, but dont wake it up yet. 2396 * Need tasklist lock for parent etc handling! 2397 */ 2398 write_lock_irq(&tasklist_lock); 2399 2400 /* CLONE_PARENT re-uses the old parent */ 2401 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2402 p->real_parent = current->real_parent; 2403 p->parent_exec_id = current->parent_exec_id; 2404 if (clone_flags & CLONE_THREAD) 2405 p->exit_signal = -1; 2406 else 2407 p->exit_signal = current->group_leader->exit_signal; 2408 } else { 2409 p->real_parent = current; 2410 p->parent_exec_id = current->self_exec_id; 2411 p->exit_signal = args->exit_signal; 2412 } 2413 2414 klp_copy_process(p); 2415 2416 sched_core_fork(p); 2417 2418 spin_lock(¤t->sighand->siglock); 2419 2420 rv_task_fork(p); 2421 2422 rseq_fork(p, clone_flags); 2423 2424 /* Don't start children in a dying pid namespace */ 2425 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2426 retval = -ENOMEM; 2427 goto bad_fork_cancel_cgroup; 2428 } 2429 2430 /* Let kill terminate clone/fork in the middle */ 2431 if (fatal_signal_pending(current)) { 2432 retval = -EINTR; 2433 goto bad_fork_cancel_cgroup; 2434 } 2435 2436 /* No more failure paths after this point. */ 2437 2438 /* 2439 * Copy seccomp details explicitly here, in case they were changed 2440 * before holding sighand lock. 2441 */ 2442 copy_seccomp(p); 2443 2444 init_task_pid_links(p); 2445 if (likely(p->pid)) { 2446 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2447 2448 init_task_pid(p, PIDTYPE_PID, pid); 2449 if (thread_group_leader(p)) { 2450 init_task_pid(p, PIDTYPE_TGID, pid); 2451 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2452 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2453 2454 if (is_child_reaper(pid)) { 2455 ns_of_pid(pid)->child_reaper = p; 2456 p->signal->flags |= SIGNAL_UNKILLABLE; 2457 } 2458 p->signal->shared_pending.signal = delayed.signal; 2459 p->signal->tty = tty_kref_get(current->signal->tty); 2460 /* 2461 * Inherit has_child_subreaper flag under the same 2462 * tasklist_lock with adding child to the process tree 2463 * for propagate_has_child_subreaper optimization. 2464 */ 2465 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2466 p->real_parent->signal->is_child_subreaper; 2467 list_add_tail(&p->sibling, &p->real_parent->children); 2468 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2469 attach_pid(p, PIDTYPE_TGID); 2470 attach_pid(p, PIDTYPE_PGID); 2471 attach_pid(p, PIDTYPE_SID); 2472 __this_cpu_inc(process_counts); 2473 } else { 2474 current->signal->nr_threads++; 2475 current->signal->quick_threads++; 2476 atomic_inc(¤t->signal->live); 2477 refcount_inc(¤t->signal->sigcnt); 2478 task_join_group_stop(p); 2479 list_add_tail_rcu(&p->thread_group, 2480 &p->group_leader->thread_group); 2481 list_add_tail_rcu(&p->thread_node, 2482 &p->signal->thread_head); 2483 } 2484 attach_pid(p, PIDTYPE_PID); 2485 nr_threads++; 2486 } 2487 total_forks++; 2488 hlist_del_init(&delayed.node); 2489 spin_unlock(¤t->sighand->siglock); 2490 syscall_tracepoint_update(p); 2491 write_unlock_irq(&tasklist_lock); 2492 2493 if (pidfile) 2494 fd_install(pidfd, pidfile); 2495 2496 proc_fork_connector(p); 2497 sched_post_fork(p); 2498 cgroup_post_fork(p, args); 2499 perf_event_fork(p); 2500 2501 trace_task_newtask(p, clone_flags); 2502 uprobe_copy_process(p, clone_flags); 2503 2504 copy_oom_score_adj(clone_flags, p); 2505 2506 return p; 2507 2508 bad_fork_cancel_cgroup: 2509 sched_core_free(p); 2510 spin_unlock(¤t->sighand->siglock); 2511 write_unlock_irq(&tasklist_lock); 2512 cgroup_cancel_fork(p, args); 2513 bad_fork_put_pidfd: 2514 if (clone_flags & CLONE_PIDFD) { 2515 fput(pidfile); 2516 put_unused_fd(pidfd); 2517 } 2518 bad_fork_free_pid: 2519 if (pid != &init_struct_pid) 2520 free_pid(pid); 2521 bad_fork_cleanup_thread: 2522 exit_thread(p); 2523 bad_fork_cleanup_io: 2524 if (p->io_context) 2525 exit_io_context(p); 2526 bad_fork_cleanup_namespaces: 2527 exit_task_namespaces(p); 2528 bad_fork_cleanup_mm: 2529 if (p->mm) { 2530 mm_clear_owner(p->mm, p); 2531 mmput(p->mm); 2532 } 2533 bad_fork_cleanup_signal: 2534 if (!(clone_flags & CLONE_THREAD)) 2535 free_signal_struct(p->signal); 2536 bad_fork_cleanup_sighand: 2537 __cleanup_sighand(p->sighand); 2538 bad_fork_cleanup_fs: 2539 exit_fs(p); /* blocking */ 2540 bad_fork_cleanup_files: 2541 exit_files(p); /* blocking */ 2542 bad_fork_cleanup_semundo: 2543 exit_sem(p); 2544 bad_fork_cleanup_security: 2545 security_task_free(p); 2546 bad_fork_cleanup_audit: 2547 audit_free(p); 2548 bad_fork_cleanup_perf: 2549 perf_event_free_task(p); 2550 bad_fork_cleanup_policy: 2551 lockdep_free_task(p); 2552 #ifdef CONFIG_NUMA 2553 mpol_put(p->mempolicy); 2554 #endif 2555 bad_fork_cleanup_delayacct: 2556 delayacct_tsk_free(p); 2557 bad_fork_cleanup_count: 2558 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2559 exit_creds(p); 2560 bad_fork_free: 2561 WRITE_ONCE(p->__state, TASK_DEAD); 2562 exit_task_stack_account(p); 2563 put_task_stack(p); 2564 delayed_free_task(p); 2565 fork_out: 2566 spin_lock_irq(¤t->sighand->siglock); 2567 hlist_del_init(&delayed.node); 2568 spin_unlock_irq(¤t->sighand->siglock); 2569 return ERR_PTR(retval); 2570 } 2571 2572 static inline void init_idle_pids(struct task_struct *idle) 2573 { 2574 enum pid_type type; 2575 2576 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2577 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2578 init_task_pid(idle, type, &init_struct_pid); 2579 } 2580 } 2581 2582 static int idle_dummy(void *dummy) 2583 { 2584 /* This function is never called */ 2585 return 0; 2586 } 2587 2588 struct task_struct * __init fork_idle(int cpu) 2589 { 2590 struct task_struct *task; 2591 struct kernel_clone_args args = { 2592 .flags = CLONE_VM, 2593 .fn = &idle_dummy, 2594 .fn_arg = NULL, 2595 .kthread = 1, 2596 .idle = 1, 2597 }; 2598 2599 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2600 if (!IS_ERR(task)) { 2601 init_idle_pids(task); 2602 init_idle(task, cpu); 2603 } 2604 2605 return task; 2606 } 2607 2608 /* 2609 * This is like kernel_clone(), but shaved down and tailored to just 2610 * creating io_uring workers. It returns a created task, or an error pointer. 2611 * The returned task is inactive, and the caller must fire it up through 2612 * wake_up_new_task(p). All signals are blocked in the created task. 2613 */ 2614 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2615 { 2616 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2617 CLONE_IO; 2618 struct kernel_clone_args args = { 2619 .flags = ((lower_32_bits(flags) | CLONE_VM | 2620 CLONE_UNTRACED) & ~CSIGNAL), 2621 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2622 .fn = fn, 2623 .fn_arg = arg, 2624 .io_thread = 1, 2625 }; 2626 2627 return copy_process(NULL, 0, node, &args); 2628 } 2629 2630 /* 2631 * Ok, this is the main fork-routine. 2632 * 2633 * It copies the process, and if successful kick-starts 2634 * it and waits for it to finish using the VM if required. 2635 * 2636 * args->exit_signal is expected to be checked for sanity by the caller. 2637 */ 2638 pid_t kernel_clone(struct kernel_clone_args *args) 2639 { 2640 u64 clone_flags = args->flags; 2641 struct completion vfork; 2642 struct pid *pid; 2643 struct task_struct *p; 2644 int trace = 0; 2645 pid_t nr; 2646 2647 /* 2648 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2649 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2650 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2651 * field in struct clone_args and it still doesn't make sense to have 2652 * them both point at the same memory location. Performing this check 2653 * here has the advantage that we don't need to have a separate helper 2654 * to check for legacy clone(). 2655 */ 2656 if ((args->flags & CLONE_PIDFD) && 2657 (args->flags & CLONE_PARENT_SETTID) && 2658 (args->pidfd == args->parent_tid)) 2659 return -EINVAL; 2660 2661 /* 2662 * Determine whether and which event to report to ptracer. When 2663 * called from kernel_thread or CLONE_UNTRACED is explicitly 2664 * requested, no event is reported; otherwise, report if the event 2665 * for the type of forking is enabled. 2666 */ 2667 if (!(clone_flags & CLONE_UNTRACED)) { 2668 if (clone_flags & CLONE_VFORK) 2669 trace = PTRACE_EVENT_VFORK; 2670 else if (args->exit_signal != SIGCHLD) 2671 trace = PTRACE_EVENT_CLONE; 2672 else 2673 trace = PTRACE_EVENT_FORK; 2674 2675 if (likely(!ptrace_event_enabled(current, trace))) 2676 trace = 0; 2677 } 2678 2679 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2680 add_latent_entropy(); 2681 2682 if (IS_ERR(p)) 2683 return PTR_ERR(p); 2684 2685 /* 2686 * Do this prior waking up the new thread - the thread pointer 2687 * might get invalid after that point, if the thread exits quickly. 2688 */ 2689 trace_sched_process_fork(current, p); 2690 2691 pid = get_task_pid(p, PIDTYPE_PID); 2692 nr = pid_vnr(pid); 2693 2694 if (clone_flags & CLONE_PARENT_SETTID) 2695 put_user(nr, args->parent_tid); 2696 2697 if (clone_flags & CLONE_VFORK) { 2698 p->vfork_done = &vfork; 2699 init_completion(&vfork); 2700 get_task_struct(p); 2701 } 2702 2703 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2704 /* lock the task to synchronize with memcg migration */ 2705 task_lock(p); 2706 lru_gen_add_mm(p->mm); 2707 task_unlock(p); 2708 } 2709 2710 wake_up_new_task(p); 2711 2712 /* forking complete and child started to run, tell ptracer */ 2713 if (unlikely(trace)) 2714 ptrace_event_pid(trace, pid); 2715 2716 if (clone_flags & CLONE_VFORK) { 2717 if (!wait_for_vfork_done(p, &vfork)) 2718 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2719 } 2720 2721 put_pid(pid); 2722 return nr; 2723 } 2724 2725 /* 2726 * Create a kernel thread. 2727 */ 2728 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2729 { 2730 struct kernel_clone_args args = { 2731 .flags = ((lower_32_bits(flags) | CLONE_VM | 2732 CLONE_UNTRACED) & ~CSIGNAL), 2733 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2734 .fn = fn, 2735 .fn_arg = arg, 2736 .kthread = 1, 2737 }; 2738 2739 return kernel_clone(&args); 2740 } 2741 2742 /* 2743 * Create a user mode thread. 2744 */ 2745 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2746 { 2747 struct kernel_clone_args args = { 2748 .flags = ((lower_32_bits(flags) | CLONE_VM | 2749 CLONE_UNTRACED) & ~CSIGNAL), 2750 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2751 .fn = fn, 2752 .fn_arg = arg, 2753 }; 2754 2755 return kernel_clone(&args); 2756 } 2757 2758 #ifdef __ARCH_WANT_SYS_FORK 2759 SYSCALL_DEFINE0(fork) 2760 { 2761 #ifdef CONFIG_MMU 2762 struct kernel_clone_args args = { 2763 .exit_signal = SIGCHLD, 2764 }; 2765 2766 return kernel_clone(&args); 2767 #else 2768 /* can not support in nommu mode */ 2769 return -EINVAL; 2770 #endif 2771 } 2772 #endif 2773 2774 #ifdef __ARCH_WANT_SYS_VFORK 2775 SYSCALL_DEFINE0(vfork) 2776 { 2777 struct kernel_clone_args args = { 2778 .flags = CLONE_VFORK | CLONE_VM, 2779 .exit_signal = SIGCHLD, 2780 }; 2781 2782 return kernel_clone(&args); 2783 } 2784 #endif 2785 2786 #ifdef __ARCH_WANT_SYS_CLONE 2787 #ifdef CONFIG_CLONE_BACKWARDS 2788 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2789 int __user *, parent_tidptr, 2790 unsigned long, tls, 2791 int __user *, child_tidptr) 2792 #elif defined(CONFIG_CLONE_BACKWARDS2) 2793 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2794 int __user *, parent_tidptr, 2795 int __user *, child_tidptr, 2796 unsigned long, tls) 2797 #elif defined(CONFIG_CLONE_BACKWARDS3) 2798 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2799 int, stack_size, 2800 int __user *, parent_tidptr, 2801 int __user *, child_tidptr, 2802 unsigned long, tls) 2803 #else 2804 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2805 int __user *, parent_tidptr, 2806 int __user *, child_tidptr, 2807 unsigned long, tls) 2808 #endif 2809 { 2810 struct kernel_clone_args args = { 2811 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2812 .pidfd = parent_tidptr, 2813 .child_tid = child_tidptr, 2814 .parent_tid = parent_tidptr, 2815 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2816 .stack = newsp, 2817 .tls = tls, 2818 }; 2819 2820 return kernel_clone(&args); 2821 } 2822 #endif 2823 2824 #ifdef __ARCH_WANT_SYS_CLONE3 2825 2826 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2827 struct clone_args __user *uargs, 2828 size_t usize) 2829 { 2830 int err; 2831 struct clone_args args; 2832 pid_t *kset_tid = kargs->set_tid; 2833 2834 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2835 CLONE_ARGS_SIZE_VER0); 2836 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2837 CLONE_ARGS_SIZE_VER1); 2838 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2839 CLONE_ARGS_SIZE_VER2); 2840 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2841 2842 if (unlikely(usize > PAGE_SIZE)) 2843 return -E2BIG; 2844 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2845 return -EINVAL; 2846 2847 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2848 if (err) 2849 return err; 2850 2851 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2852 return -EINVAL; 2853 2854 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2855 return -EINVAL; 2856 2857 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2858 return -EINVAL; 2859 2860 /* 2861 * Verify that higher 32bits of exit_signal are unset and that 2862 * it is a valid signal 2863 */ 2864 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2865 !valid_signal(args.exit_signal))) 2866 return -EINVAL; 2867 2868 if ((args.flags & CLONE_INTO_CGROUP) && 2869 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2870 return -EINVAL; 2871 2872 *kargs = (struct kernel_clone_args){ 2873 .flags = args.flags, 2874 .pidfd = u64_to_user_ptr(args.pidfd), 2875 .child_tid = u64_to_user_ptr(args.child_tid), 2876 .parent_tid = u64_to_user_ptr(args.parent_tid), 2877 .exit_signal = args.exit_signal, 2878 .stack = args.stack, 2879 .stack_size = args.stack_size, 2880 .tls = args.tls, 2881 .set_tid_size = args.set_tid_size, 2882 .cgroup = args.cgroup, 2883 }; 2884 2885 if (args.set_tid && 2886 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2887 (kargs->set_tid_size * sizeof(pid_t)))) 2888 return -EFAULT; 2889 2890 kargs->set_tid = kset_tid; 2891 2892 return 0; 2893 } 2894 2895 /** 2896 * clone3_stack_valid - check and prepare stack 2897 * @kargs: kernel clone args 2898 * 2899 * Verify that the stack arguments userspace gave us are sane. 2900 * In addition, set the stack direction for userspace since it's easy for us to 2901 * determine. 2902 */ 2903 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2904 { 2905 if (kargs->stack == 0) { 2906 if (kargs->stack_size > 0) 2907 return false; 2908 } else { 2909 if (kargs->stack_size == 0) 2910 return false; 2911 2912 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2913 return false; 2914 2915 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2916 kargs->stack += kargs->stack_size; 2917 #endif 2918 } 2919 2920 return true; 2921 } 2922 2923 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2924 { 2925 /* Verify that no unknown flags are passed along. */ 2926 if (kargs->flags & 2927 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2928 return false; 2929 2930 /* 2931 * - make the CLONE_DETACHED bit reusable for clone3 2932 * - make the CSIGNAL bits reusable for clone3 2933 */ 2934 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2935 return false; 2936 2937 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2938 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2939 return false; 2940 2941 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2942 kargs->exit_signal) 2943 return false; 2944 2945 if (!clone3_stack_valid(kargs)) 2946 return false; 2947 2948 return true; 2949 } 2950 2951 /** 2952 * clone3 - create a new process with specific properties 2953 * @uargs: argument structure 2954 * @size: size of @uargs 2955 * 2956 * clone3() is the extensible successor to clone()/clone2(). 2957 * It takes a struct as argument that is versioned by its size. 2958 * 2959 * Return: On success, a positive PID for the child process. 2960 * On error, a negative errno number. 2961 */ 2962 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2963 { 2964 int err; 2965 2966 struct kernel_clone_args kargs; 2967 pid_t set_tid[MAX_PID_NS_LEVEL]; 2968 2969 kargs.set_tid = set_tid; 2970 2971 err = copy_clone_args_from_user(&kargs, uargs, size); 2972 if (err) 2973 return err; 2974 2975 if (!clone3_args_valid(&kargs)) 2976 return -EINVAL; 2977 2978 return kernel_clone(&kargs); 2979 } 2980 #endif 2981 2982 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2983 { 2984 struct task_struct *leader, *parent, *child; 2985 int res; 2986 2987 read_lock(&tasklist_lock); 2988 leader = top = top->group_leader; 2989 down: 2990 for_each_thread(leader, parent) { 2991 list_for_each_entry(child, &parent->children, sibling) { 2992 res = visitor(child, data); 2993 if (res) { 2994 if (res < 0) 2995 goto out; 2996 leader = child; 2997 goto down; 2998 } 2999 up: 3000 ; 3001 } 3002 } 3003 3004 if (leader != top) { 3005 child = leader; 3006 parent = child->real_parent; 3007 leader = parent->group_leader; 3008 goto up; 3009 } 3010 out: 3011 read_unlock(&tasklist_lock); 3012 } 3013 3014 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3015 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3016 #endif 3017 3018 static void sighand_ctor(void *data) 3019 { 3020 struct sighand_struct *sighand = data; 3021 3022 spin_lock_init(&sighand->siglock); 3023 init_waitqueue_head(&sighand->signalfd_wqh); 3024 } 3025 3026 void __init mm_cache_init(void) 3027 { 3028 unsigned int mm_size; 3029 3030 /* 3031 * The mm_cpumask is located at the end of mm_struct, and is 3032 * dynamically sized based on the maximum CPU number this system 3033 * can have, taking hotplug into account (nr_cpu_ids). 3034 */ 3035 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3036 3037 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3038 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3039 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3040 offsetof(struct mm_struct, saved_auxv), 3041 sizeof_field(struct mm_struct, saved_auxv), 3042 NULL); 3043 } 3044 3045 void __init proc_caches_init(void) 3046 { 3047 sighand_cachep = kmem_cache_create("sighand_cache", 3048 sizeof(struct sighand_struct), 0, 3049 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3050 SLAB_ACCOUNT, sighand_ctor); 3051 signal_cachep = kmem_cache_create("signal_cache", 3052 sizeof(struct signal_struct), 0, 3053 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3054 NULL); 3055 files_cachep = kmem_cache_create("files_cache", 3056 sizeof(struct files_struct), 0, 3057 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3058 NULL); 3059 fs_cachep = kmem_cache_create("fs_cache", 3060 sizeof(struct fs_struct), 0, 3061 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3062 NULL); 3063 3064 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3065 mmap_init(); 3066 nsproxy_cache_init(); 3067 } 3068 3069 /* 3070 * Check constraints on flags passed to the unshare system call. 3071 */ 3072 static int check_unshare_flags(unsigned long unshare_flags) 3073 { 3074 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3075 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3076 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3077 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3078 CLONE_NEWTIME)) 3079 return -EINVAL; 3080 /* 3081 * Not implemented, but pretend it works if there is nothing 3082 * to unshare. Note that unsharing the address space or the 3083 * signal handlers also need to unshare the signal queues (aka 3084 * CLONE_THREAD). 3085 */ 3086 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3087 if (!thread_group_empty(current)) 3088 return -EINVAL; 3089 } 3090 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3091 if (refcount_read(¤t->sighand->count) > 1) 3092 return -EINVAL; 3093 } 3094 if (unshare_flags & CLONE_VM) { 3095 if (!current_is_single_threaded()) 3096 return -EINVAL; 3097 } 3098 3099 return 0; 3100 } 3101 3102 /* 3103 * Unshare the filesystem structure if it is being shared 3104 */ 3105 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3106 { 3107 struct fs_struct *fs = current->fs; 3108 3109 if (!(unshare_flags & CLONE_FS) || !fs) 3110 return 0; 3111 3112 /* don't need lock here; in the worst case we'll do useless copy */ 3113 if (fs->users == 1) 3114 return 0; 3115 3116 *new_fsp = copy_fs_struct(fs); 3117 if (!*new_fsp) 3118 return -ENOMEM; 3119 3120 return 0; 3121 } 3122 3123 /* 3124 * Unshare file descriptor table if it is being shared 3125 */ 3126 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3127 struct files_struct **new_fdp) 3128 { 3129 struct files_struct *fd = current->files; 3130 int error = 0; 3131 3132 if ((unshare_flags & CLONE_FILES) && 3133 (fd && atomic_read(&fd->count) > 1)) { 3134 *new_fdp = dup_fd(fd, max_fds, &error); 3135 if (!*new_fdp) 3136 return error; 3137 } 3138 3139 return 0; 3140 } 3141 3142 /* 3143 * unshare allows a process to 'unshare' part of the process 3144 * context which was originally shared using clone. copy_* 3145 * functions used by kernel_clone() cannot be used here directly 3146 * because they modify an inactive task_struct that is being 3147 * constructed. Here we are modifying the current, active, 3148 * task_struct. 3149 */ 3150 int ksys_unshare(unsigned long unshare_flags) 3151 { 3152 struct fs_struct *fs, *new_fs = NULL; 3153 struct files_struct *new_fd = NULL; 3154 struct cred *new_cred = NULL; 3155 struct nsproxy *new_nsproxy = NULL; 3156 int do_sysvsem = 0; 3157 int err; 3158 3159 /* 3160 * If unsharing a user namespace must also unshare the thread group 3161 * and unshare the filesystem root and working directories. 3162 */ 3163 if (unshare_flags & CLONE_NEWUSER) 3164 unshare_flags |= CLONE_THREAD | CLONE_FS; 3165 /* 3166 * If unsharing vm, must also unshare signal handlers. 3167 */ 3168 if (unshare_flags & CLONE_VM) 3169 unshare_flags |= CLONE_SIGHAND; 3170 /* 3171 * If unsharing a signal handlers, must also unshare the signal queues. 3172 */ 3173 if (unshare_flags & CLONE_SIGHAND) 3174 unshare_flags |= CLONE_THREAD; 3175 /* 3176 * If unsharing namespace, must also unshare filesystem information. 3177 */ 3178 if (unshare_flags & CLONE_NEWNS) 3179 unshare_flags |= CLONE_FS; 3180 3181 err = check_unshare_flags(unshare_flags); 3182 if (err) 3183 goto bad_unshare_out; 3184 /* 3185 * CLONE_NEWIPC must also detach from the undolist: after switching 3186 * to a new ipc namespace, the semaphore arrays from the old 3187 * namespace are unreachable. 3188 */ 3189 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3190 do_sysvsem = 1; 3191 err = unshare_fs(unshare_flags, &new_fs); 3192 if (err) 3193 goto bad_unshare_out; 3194 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3195 if (err) 3196 goto bad_unshare_cleanup_fs; 3197 err = unshare_userns(unshare_flags, &new_cred); 3198 if (err) 3199 goto bad_unshare_cleanup_fd; 3200 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3201 new_cred, new_fs); 3202 if (err) 3203 goto bad_unshare_cleanup_cred; 3204 3205 if (new_cred) { 3206 err = set_cred_ucounts(new_cred); 3207 if (err) 3208 goto bad_unshare_cleanup_cred; 3209 } 3210 3211 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3212 if (do_sysvsem) { 3213 /* 3214 * CLONE_SYSVSEM is equivalent to sys_exit(). 3215 */ 3216 exit_sem(current); 3217 } 3218 if (unshare_flags & CLONE_NEWIPC) { 3219 /* Orphan segments in old ns (see sem above). */ 3220 exit_shm(current); 3221 shm_init_task(current); 3222 } 3223 3224 if (new_nsproxy) 3225 switch_task_namespaces(current, new_nsproxy); 3226 3227 task_lock(current); 3228 3229 if (new_fs) { 3230 fs = current->fs; 3231 spin_lock(&fs->lock); 3232 current->fs = new_fs; 3233 if (--fs->users) 3234 new_fs = NULL; 3235 else 3236 new_fs = fs; 3237 spin_unlock(&fs->lock); 3238 } 3239 3240 if (new_fd) 3241 swap(current->files, new_fd); 3242 3243 task_unlock(current); 3244 3245 if (new_cred) { 3246 /* Install the new user namespace */ 3247 commit_creds(new_cred); 3248 new_cred = NULL; 3249 } 3250 } 3251 3252 perf_event_namespaces(current); 3253 3254 bad_unshare_cleanup_cred: 3255 if (new_cred) 3256 put_cred(new_cred); 3257 bad_unshare_cleanup_fd: 3258 if (new_fd) 3259 put_files_struct(new_fd); 3260 3261 bad_unshare_cleanup_fs: 3262 if (new_fs) 3263 free_fs_struct(new_fs); 3264 3265 bad_unshare_out: 3266 return err; 3267 } 3268 3269 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3270 { 3271 return ksys_unshare(unshare_flags); 3272 } 3273 3274 /* 3275 * Helper to unshare the files of the current task. 3276 * We don't want to expose copy_files internals to 3277 * the exec layer of the kernel. 3278 */ 3279 3280 int unshare_files(void) 3281 { 3282 struct task_struct *task = current; 3283 struct files_struct *old, *copy = NULL; 3284 int error; 3285 3286 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3287 if (error || !copy) 3288 return error; 3289 3290 old = task->files; 3291 task_lock(task); 3292 task->files = copy; 3293 task_unlock(task); 3294 put_files_struct(old); 3295 return 0; 3296 } 3297 3298 int sysctl_max_threads(struct ctl_table *table, int write, 3299 void *buffer, size_t *lenp, loff_t *ppos) 3300 { 3301 struct ctl_table t; 3302 int ret; 3303 int threads = max_threads; 3304 int min = 1; 3305 int max = MAX_THREADS; 3306 3307 t = *table; 3308 t.data = &threads; 3309 t.extra1 = &min; 3310 t.extra2 = &max; 3311 3312 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3313 if (ret || !write) 3314 return ret; 3315 3316 max_threads = threads; 3317 3318 return 0; 3319 } 3320