1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 #include <linux/tick.h> 103 104 #include <asm/pgalloc.h> 105 #include <linux/uaccess.h> 106 #include <asm/mmu_context.h> 107 #include <asm/cacheflush.h> 108 #include <asm/tlbflush.h> 109 110 #include <trace/events/sched.h> 111 112 #define CREATE_TRACE_POINTS 113 #include <trace/events/task.h> 114 115 /* 116 * Minimum number of threads to boot the kernel 117 */ 118 #define MIN_THREADS 20 119 120 /* 121 * Maximum number of threads 122 */ 123 #define MAX_THREADS FUTEX_TID_MASK 124 125 /* 126 * Protected counters by write_lock_irq(&tasklist_lock) 127 */ 128 unsigned long total_forks; /* Handle normal Linux uptimes. */ 129 int nr_threads; /* The idle threads do not count.. */ 130 131 static int max_threads; /* tunable limit on nr_threads */ 132 133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 134 135 static const char * const resident_page_types[] = { 136 NAMED_ARRAY_INDEX(MM_FILEPAGES), 137 NAMED_ARRAY_INDEX(MM_ANONPAGES), 138 NAMED_ARRAY_INDEX(MM_SWAPENTS), 139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 140 }; 141 142 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 143 144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 145 146 #ifdef CONFIG_PROVE_RCU 147 int lockdep_tasklist_lock_is_held(void) 148 { 149 return lockdep_is_held(&tasklist_lock); 150 } 151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 152 #endif /* #ifdef CONFIG_PROVE_RCU */ 153 154 int nr_processes(void) 155 { 156 int cpu; 157 int total = 0; 158 159 for_each_possible_cpu(cpu) 160 total += per_cpu(process_counts, cpu); 161 162 return total; 163 } 164 165 void __weak arch_release_task_struct(struct task_struct *tsk) 166 { 167 } 168 169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 170 static struct kmem_cache *task_struct_cachep; 171 172 static inline struct task_struct *alloc_task_struct_node(int node) 173 { 174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 175 } 176 177 static inline void free_task_struct(struct task_struct *tsk) 178 { 179 kmem_cache_free(task_struct_cachep, tsk); 180 } 181 #endif 182 183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 184 185 /* 186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 187 * kmemcache based allocator. 188 */ 189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 190 191 # ifdef CONFIG_VMAP_STACK 192 /* 193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 194 * flush. Try to minimize the number of calls by caching stacks. 195 */ 196 #define NR_CACHED_STACKS 2 197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 198 199 struct vm_stack { 200 struct rcu_head rcu; 201 struct vm_struct *stack_vm_area; 202 }; 203 204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 205 { 206 unsigned int i; 207 208 for (i = 0; i < NR_CACHED_STACKS; i++) { 209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 210 continue; 211 return true; 212 } 213 return false; 214 } 215 216 static void thread_stack_free_rcu(struct rcu_head *rh) 217 { 218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 219 220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 221 return; 222 223 vfree(vm_stack); 224 } 225 226 static void thread_stack_delayed_free(struct task_struct *tsk) 227 { 228 struct vm_stack *vm_stack = tsk->stack; 229 230 vm_stack->stack_vm_area = tsk->stack_vm_area; 231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 232 } 233 234 static int free_vm_stack_cache(unsigned int cpu) 235 { 236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 237 int i; 238 239 for (i = 0; i < NR_CACHED_STACKS; i++) { 240 struct vm_struct *vm_stack = cached_vm_stacks[i]; 241 242 if (!vm_stack) 243 continue; 244 245 vfree(vm_stack->addr); 246 cached_vm_stacks[i] = NULL; 247 } 248 249 return 0; 250 } 251 252 static int memcg_charge_kernel_stack(struct vm_struct *vm) 253 { 254 int i; 255 int ret; 256 int nr_charged = 0; 257 258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 259 260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 262 if (ret) 263 goto err; 264 nr_charged++; 265 } 266 return 0; 267 err: 268 for (i = 0; i < nr_charged; i++) 269 memcg_kmem_uncharge_page(vm->pages[i], 0); 270 return ret; 271 } 272 273 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 274 { 275 struct vm_struct *vm; 276 void *stack; 277 int i; 278 279 for (i = 0; i < NR_CACHED_STACKS; i++) { 280 struct vm_struct *s; 281 282 s = this_cpu_xchg(cached_stacks[i], NULL); 283 284 if (!s) 285 continue; 286 287 /* Reset stack metadata. */ 288 kasan_unpoison_range(s->addr, THREAD_SIZE); 289 290 stack = kasan_reset_tag(s->addr); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(stack, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = stack; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 stack = kasan_reset_tag(stack); 330 tsk->stack = stack; 331 return 0; 332 } 333 334 static void free_thread_stack(struct task_struct *tsk) 335 { 336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 337 thread_stack_delayed_free(tsk); 338 339 tsk->stack = NULL; 340 tsk->stack_vm_area = NULL; 341 } 342 343 # else /* !CONFIG_VMAP_STACK */ 344 345 static void thread_stack_free_rcu(struct rcu_head *rh) 346 { 347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 348 } 349 350 static void thread_stack_delayed_free(struct task_struct *tsk) 351 { 352 struct rcu_head *rh = tsk->stack; 353 354 call_rcu(rh, thread_stack_free_rcu); 355 } 356 357 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 358 { 359 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 360 THREAD_SIZE_ORDER); 361 362 if (likely(page)) { 363 tsk->stack = kasan_reset_tag(page_address(page)); 364 return 0; 365 } 366 return -ENOMEM; 367 } 368 369 static void free_thread_stack(struct task_struct *tsk) 370 { 371 thread_stack_delayed_free(tsk); 372 tsk->stack = NULL; 373 } 374 375 # endif /* CONFIG_VMAP_STACK */ 376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 377 378 static struct kmem_cache *thread_stack_cache; 379 380 static void thread_stack_free_rcu(struct rcu_head *rh) 381 { 382 kmem_cache_free(thread_stack_cache, rh); 383 } 384 385 static void thread_stack_delayed_free(struct task_struct *tsk) 386 { 387 struct rcu_head *rh = tsk->stack; 388 389 call_rcu(rh, thread_stack_free_rcu); 390 } 391 392 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 393 { 394 unsigned long *stack; 395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 396 stack = kasan_reset_tag(stack); 397 tsk->stack = stack; 398 return stack ? 0 : -ENOMEM; 399 } 400 401 static void free_thread_stack(struct task_struct *tsk) 402 { 403 thread_stack_delayed_free(tsk); 404 tsk->stack = NULL; 405 } 406 407 void thread_stack_cache_init(void) 408 { 409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 410 THREAD_SIZE, THREAD_SIZE, 0, 0, 411 THREAD_SIZE, NULL); 412 BUG_ON(thread_stack_cache == NULL); 413 } 414 415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 417 418 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 419 { 420 unsigned long *stack; 421 422 stack = arch_alloc_thread_stack_node(tsk, node); 423 tsk->stack = stack; 424 return stack ? 0 : -ENOMEM; 425 } 426 427 static void free_thread_stack(struct task_struct *tsk) 428 { 429 arch_free_thread_stack(tsk); 430 tsk->stack = NULL; 431 } 432 433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 434 435 /* SLAB cache for signal_struct structures (tsk->signal) */ 436 static struct kmem_cache *signal_cachep; 437 438 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 439 struct kmem_cache *sighand_cachep; 440 441 /* SLAB cache for files_struct structures (tsk->files) */ 442 struct kmem_cache *files_cachep; 443 444 /* SLAB cache for fs_struct structures (tsk->fs) */ 445 struct kmem_cache *fs_cachep; 446 447 /* SLAB cache for vm_area_struct structures */ 448 static struct kmem_cache *vm_area_cachep; 449 450 /* SLAB cache for mm_struct structures (tsk->mm) */ 451 static struct kmem_cache *mm_cachep; 452 453 #ifdef CONFIG_PER_VMA_LOCK 454 455 /* SLAB cache for vm_area_struct.lock */ 456 static struct kmem_cache *vma_lock_cachep; 457 458 static bool vma_lock_alloc(struct vm_area_struct *vma) 459 { 460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 461 if (!vma->vm_lock) 462 return false; 463 464 init_rwsem(&vma->vm_lock->lock); 465 vma->vm_lock_seq = -1; 466 467 return true; 468 } 469 470 static inline void vma_lock_free(struct vm_area_struct *vma) 471 { 472 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 473 } 474 475 #else /* CONFIG_PER_VMA_LOCK */ 476 477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 478 static inline void vma_lock_free(struct vm_area_struct *vma) {} 479 480 #endif /* CONFIG_PER_VMA_LOCK */ 481 482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 483 { 484 struct vm_area_struct *vma; 485 486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 487 if (!vma) 488 return NULL; 489 490 vma_init(vma, mm); 491 if (!vma_lock_alloc(vma)) { 492 kmem_cache_free(vm_area_cachep, vma); 493 return NULL; 494 } 495 496 return vma; 497 } 498 499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 500 { 501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 502 503 if (!new) 504 return NULL; 505 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 508 /* 509 * orig->shared.rb may be modified concurrently, but the clone 510 * will be reinitialized. 511 */ 512 data_race(memcpy(new, orig, sizeof(*new))); 513 if (!vma_lock_alloc(new)) { 514 kmem_cache_free(vm_area_cachep, new); 515 return NULL; 516 } 517 INIT_LIST_HEAD(&new->anon_vma_chain); 518 vma_numab_state_init(new); 519 dup_anon_vma_name(orig, new); 520 521 /* track_pfn_copy() will later take care of copying internal state. */ 522 if (unlikely(new->vm_flags & VM_PFNMAP)) 523 untrack_pfn_clear(new); 524 525 return new; 526 } 527 528 void __vm_area_free(struct vm_area_struct *vma) 529 { 530 vma_numab_state_free(vma); 531 free_anon_vma_name(vma); 532 vma_lock_free(vma); 533 kmem_cache_free(vm_area_cachep, vma); 534 } 535 536 #ifdef CONFIG_PER_VMA_LOCK 537 static void vm_area_free_rcu_cb(struct rcu_head *head) 538 { 539 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 540 vm_rcu); 541 542 /* The vma should not be locked while being destroyed. */ 543 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 544 __vm_area_free(vma); 545 } 546 #endif 547 548 void vm_area_free(struct vm_area_struct *vma) 549 { 550 #ifdef CONFIG_PER_VMA_LOCK 551 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 552 #else 553 __vm_area_free(vma); 554 #endif 555 } 556 557 static void account_kernel_stack(struct task_struct *tsk, int account) 558 { 559 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 560 struct vm_struct *vm = task_stack_vm_area(tsk); 561 int i; 562 563 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 564 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 565 account * (PAGE_SIZE / 1024)); 566 } else { 567 void *stack = task_stack_page(tsk); 568 569 /* All stack pages are in the same node. */ 570 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 571 account * (THREAD_SIZE / 1024)); 572 } 573 } 574 575 void exit_task_stack_account(struct task_struct *tsk) 576 { 577 account_kernel_stack(tsk, -1); 578 579 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 580 struct vm_struct *vm; 581 int i; 582 583 vm = task_stack_vm_area(tsk); 584 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 585 memcg_kmem_uncharge_page(vm->pages[i], 0); 586 } 587 } 588 589 static void release_task_stack(struct task_struct *tsk) 590 { 591 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 592 return; /* Better to leak the stack than to free prematurely */ 593 594 free_thread_stack(tsk); 595 } 596 597 #ifdef CONFIG_THREAD_INFO_IN_TASK 598 void put_task_stack(struct task_struct *tsk) 599 { 600 if (refcount_dec_and_test(&tsk->stack_refcount)) 601 release_task_stack(tsk); 602 } 603 #endif 604 605 void free_task(struct task_struct *tsk) 606 { 607 #ifdef CONFIG_SECCOMP 608 WARN_ON_ONCE(tsk->seccomp.filter); 609 #endif 610 release_user_cpus_ptr(tsk); 611 scs_release(tsk); 612 613 #ifndef CONFIG_THREAD_INFO_IN_TASK 614 /* 615 * The task is finally done with both the stack and thread_info, 616 * so free both. 617 */ 618 release_task_stack(tsk); 619 #else 620 /* 621 * If the task had a separate stack allocation, it should be gone 622 * by now. 623 */ 624 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 625 #endif 626 rt_mutex_debug_task_free(tsk); 627 ftrace_graph_exit_task(tsk); 628 arch_release_task_struct(tsk); 629 if (tsk->flags & PF_KTHREAD) 630 free_kthread_struct(tsk); 631 bpf_task_storage_free(tsk); 632 free_task_struct(tsk); 633 } 634 EXPORT_SYMBOL(free_task); 635 636 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 637 { 638 struct file *exe_file; 639 640 exe_file = get_mm_exe_file(oldmm); 641 RCU_INIT_POINTER(mm->exe_file, exe_file); 642 /* 643 * We depend on the oldmm having properly denied write access to the 644 * exe_file already. 645 */ 646 if (exe_file && deny_write_access(exe_file)) 647 pr_warn_once("deny_write_access() failed in %s\n", __func__); 648 } 649 650 #ifdef CONFIG_MMU 651 static __latent_entropy int dup_mmap(struct mm_struct *mm, 652 struct mm_struct *oldmm) 653 { 654 struct vm_area_struct *mpnt, *tmp; 655 int retval; 656 unsigned long charge = 0; 657 LIST_HEAD(uf); 658 VMA_ITERATOR(old_vmi, oldmm, 0); 659 VMA_ITERATOR(vmi, mm, 0); 660 661 uprobe_start_dup_mmap(); 662 if (mmap_write_lock_killable(oldmm)) { 663 retval = -EINTR; 664 goto fail_uprobe_end; 665 } 666 flush_cache_dup_mm(oldmm); 667 uprobe_dup_mmap(oldmm, mm); 668 /* 669 * Not linked in yet - no deadlock potential: 670 */ 671 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 672 673 /* No ordering required: file already has been exposed. */ 674 dup_mm_exe_file(mm, oldmm); 675 676 mm->total_vm = oldmm->total_vm; 677 mm->data_vm = oldmm->data_vm; 678 mm->exec_vm = oldmm->exec_vm; 679 mm->stack_vm = oldmm->stack_vm; 680 681 retval = ksm_fork(mm, oldmm); 682 if (retval) 683 goto out; 684 khugepaged_fork(mm, oldmm); 685 686 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 687 if (retval) 688 goto out; 689 690 mt_clear_in_rcu(vmi.mas.tree); 691 for_each_vma(old_vmi, mpnt) { 692 struct file *file; 693 694 vma_start_write(mpnt); 695 if (mpnt->vm_flags & VM_DONTCOPY) { 696 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 697 continue; 698 } 699 charge = 0; 700 /* 701 * Don't duplicate many vmas if we've been oom-killed (for 702 * example) 703 */ 704 if (fatal_signal_pending(current)) { 705 retval = -EINTR; 706 goto loop_out; 707 } 708 if (mpnt->vm_flags & VM_ACCOUNT) { 709 unsigned long len = vma_pages(mpnt); 710 711 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 712 goto fail_nomem; 713 charge = len; 714 } 715 tmp = vm_area_dup(mpnt); 716 if (!tmp) 717 goto fail_nomem; 718 retval = vma_dup_policy(mpnt, tmp); 719 if (retval) 720 goto fail_nomem_policy; 721 tmp->vm_mm = mm; 722 retval = dup_userfaultfd(tmp, &uf); 723 if (retval) 724 goto fail_nomem_anon_vma_fork; 725 if (tmp->vm_flags & VM_WIPEONFORK) { 726 /* 727 * VM_WIPEONFORK gets a clean slate in the child. 728 * Don't prepare anon_vma until fault since we don't 729 * copy page for current vma. 730 */ 731 tmp->anon_vma = NULL; 732 } else if (anon_vma_fork(tmp, mpnt)) 733 goto fail_nomem_anon_vma_fork; 734 vm_flags_clear(tmp, VM_LOCKED_MASK); 735 file = tmp->vm_file; 736 if (file) { 737 struct address_space *mapping = file->f_mapping; 738 739 get_file(file); 740 i_mmap_lock_write(mapping); 741 if (tmp->vm_flags & VM_SHARED) 742 mapping_allow_writable(mapping); 743 flush_dcache_mmap_lock(mapping); 744 /* insert tmp into the share list, just after mpnt */ 745 vma_interval_tree_insert_after(tmp, mpnt, 746 &mapping->i_mmap); 747 flush_dcache_mmap_unlock(mapping); 748 i_mmap_unlock_write(mapping); 749 } 750 751 /* 752 * Copy/update hugetlb private vma information. 753 */ 754 if (is_vm_hugetlb_page(tmp)) 755 hugetlb_dup_vma_private(tmp); 756 757 /* Link the vma into the MT */ 758 if (vma_iter_bulk_store(&vmi, tmp)) 759 goto fail_nomem_vmi_store; 760 761 mm->map_count++; 762 if (!(tmp->vm_flags & VM_WIPEONFORK)) 763 retval = copy_page_range(tmp, mpnt); 764 765 if (tmp->vm_ops && tmp->vm_ops->open) 766 tmp->vm_ops->open(tmp); 767 768 if (retval) 769 goto loop_out; 770 } 771 /* a new mm has just been created */ 772 retval = arch_dup_mmap(oldmm, mm); 773 loop_out: 774 vma_iter_free(&vmi); 775 if (!retval) 776 mt_set_in_rcu(vmi.mas.tree); 777 out: 778 mmap_write_unlock(mm); 779 flush_tlb_mm(oldmm); 780 mmap_write_unlock(oldmm); 781 dup_userfaultfd_complete(&uf); 782 fail_uprobe_end: 783 uprobe_end_dup_mmap(); 784 return retval; 785 786 fail_nomem_vmi_store: 787 unlink_anon_vmas(tmp); 788 fail_nomem_anon_vma_fork: 789 mpol_put(vma_policy(tmp)); 790 fail_nomem_policy: 791 vm_area_free(tmp); 792 fail_nomem: 793 retval = -ENOMEM; 794 vm_unacct_memory(charge); 795 goto loop_out; 796 } 797 798 static inline int mm_alloc_pgd(struct mm_struct *mm) 799 { 800 mm->pgd = pgd_alloc(mm); 801 if (unlikely(!mm->pgd)) 802 return -ENOMEM; 803 return 0; 804 } 805 806 static inline void mm_free_pgd(struct mm_struct *mm) 807 { 808 pgd_free(mm, mm->pgd); 809 } 810 #else 811 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 812 { 813 mmap_write_lock(oldmm); 814 dup_mm_exe_file(mm, oldmm); 815 mmap_write_unlock(oldmm); 816 return 0; 817 } 818 #define mm_alloc_pgd(mm) (0) 819 #define mm_free_pgd(mm) 820 #endif /* CONFIG_MMU */ 821 822 static void check_mm(struct mm_struct *mm) 823 { 824 int i; 825 826 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 827 "Please make sure 'struct resident_page_types[]' is updated as well"); 828 829 for (i = 0; i < NR_MM_COUNTERS; i++) { 830 long x = percpu_counter_sum(&mm->rss_stat[i]); 831 832 if (unlikely(x)) 833 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 834 mm, resident_page_types[i], x); 835 } 836 837 if (mm_pgtables_bytes(mm)) 838 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 839 mm_pgtables_bytes(mm)); 840 841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 842 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 843 #endif 844 } 845 846 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 847 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 848 849 static void do_check_lazy_tlb(void *arg) 850 { 851 struct mm_struct *mm = arg; 852 853 WARN_ON_ONCE(current->active_mm == mm); 854 } 855 856 static void do_shoot_lazy_tlb(void *arg) 857 { 858 struct mm_struct *mm = arg; 859 860 if (current->active_mm == mm) { 861 WARN_ON_ONCE(current->mm); 862 current->active_mm = &init_mm; 863 switch_mm(mm, &init_mm, current); 864 } 865 } 866 867 static void cleanup_lazy_tlbs(struct mm_struct *mm) 868 { 869 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 870 /* 871 * In this case, lazy tlb mms are refounted and would not reach 872 * __mmdrop until all CPUs have switched away and mmdrop()ed. 873 */ 874 return; 875 } 876 877 /* 878 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 879 * requires lazy mm users to switch to another mm when the refcount 880 * drops to zero, before the mm is freed. This requires IPIs here to 881 * switch kernel threads to init_mm. 882 * 883 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 884 * switch with the final userspace teardown TLB flush which leaves the 885 * mm lazy on this CPU but no others, reducing the need for additional 886 * IPIs here. There are cases where a final IPI is still required here, 887 * such as the final mmdrop being performed on a different CPU than the 888 * one exiting, or kernel threads using the mm when userspace exits. 889 * 890 * IPI overheads have not found to be expensive, but they could be 891 * reduced in a number of possible ways, for example (roughly 892 * increasing order of complexity): 893 * - The last lazy reference created by exit_mm() could instead switch 894 * to init_mm, however it's probable this will run on the same CPU 895 * immediately afterwards, so this may not reduce IPIs much. 896 * - A batch of mms requiring IPIs could be gathered and freed at once. 897 * - CPUs store active_mm where it can be remotely checked without a 898 * lock, to filter out false-positives in the cpumask. 899 * - After mm_users or mm_count reaches zero, switching away from the 900 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 901 * with some batching or delaying of the final IPIs. 902 * - A delayed freeing and RCU-like quiescing sequence based on mm 903 * switching to avoid IPIs completely. 904 */ 905 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 906 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 907 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 908 } 909 910 /* 911 * Called when the last reference to the mm 912 * is dropped: either by a lazy thread or by 913 * mmput. Free the page directory and the mm. 914 */ 915 void __mmdrop(struct mm_struct *mm) 916 { 917 BUG_ON(mm == &init_mm); 918 WARN_ON_ONCE(mm == current->mm); 919 920 /* Ensure no CPUs are using this as their lazy tlb mm */ 921 cleanup_lazy_tlbs(mm); 922 923 WARN_ON_ONCE(mm == current->active_mm); 924 mm_free_pgd(mm); 925 destroy_context(mm); 926 mmu_notifier_subscriptions_destroy(mm); 927 check_mm(mm); 928 put_user_ns(mm->user_ns); 929 mm_pasid_drop(mm); 930 mm_destroy_cid(mm); 931 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 932 933 free_mm(mm); 934 } 935 EXPORT_SYMBOL_GPL(__mmdrop); 936 937 static void mmdrop_async_fn(struct work_struct *work) 938 { 939 struct mm_struct *mm; 940 941 mm = container_of(work, struct mm_struct, async_put_work); 942 __mmdrop(mm); 943 } 944 945 static void mmdrop_async(struct mm_struct *mm) 946 { 947 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 948 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 949 schedule_work(&mm->async_put_work); 950 } 951 } 952 953 static inline void free_signal_struct(struct signal_struct *sig) 954 { 955 taskstats_tgid_free(sig); 956 sched_autogroup_exit(sig); 957 /* 958 * __mmdrop is not safe to call from softirq context on x86 due to 959 * pgd_dtor so postpone it to the async context 960 */ 961 if (sig->oom_mm) 962 mmdrop_async(sig->oom_mm); 963 kmem_cache_free(signal_cachep, sig); 964 } 965 966 static inline void put_signal_struct(struct signal_struct *sig) 967 { 968 if (refcount_dec_and_test(&sig->sigcnt)) 969 free_signal_struct(sig); 970 } 971 972 void __put_task_struct(struct task_struct *tsk) 973 { 974 WARN_ON(!tsk->exit_state); 975 WARN_ON(refcount_read(&tsk->usage)); 976 WARN_ON(tsk == current); 977 978 io_uring_free(tsk); 979 cgroup_free(tsk); 980 task_numa_free(tsk, true); 981 security_task_free(tsk); 982 exit_creds(tsk); 983 delayacct_tsk_free(tsk); 984 put_signal_struct(tsk->signal); 985 sched_core_free(tsk); 986 free_task(tsk); 987 } 988 EXPORT_SYMBOL_GPL(__put_task_struct); 989 990 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 991 { 992 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 993 994 __put_task_struct(task); 995 } 996 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 997 998 void __init __weak arch_task_cache_init(void) { } 999 1000 /* 1001 * set_max_threads 1002 */ 1003 static void set_max_threads(unsigned int max_threads_suggested) 1004 { 1005 u64 threads; 1006 unsigned long nr_pages = totalram_pages(); 1007 1008 /* 1009 * The number of threads shall be limited such that the thread 1010 * structures may only consume a small part of the available memory. 1011 */ 1012 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1013 threads = MAX_THREADS; 1014 else 1015 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1016 (u64) THREAD_SIZE * 8UL); 1017 1018 if (threads > max_threads_suggested) 1019 threads = max_threads_suggested; 1020 1021 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1022 } 1023 1024 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1025 /* Initialized by the architecture: */ 1026 int arch_task_struct_size __read_mostly; 1027 #endif 1028 1029 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1030 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1031 { 1032 /* Fetch thread_struct whitelist for the architecture. */ 1033 arch_thread_struct_whitelist(offset, size); 1034 1035 /* 1036 * Handle zero-sized whitelist or empty thread_struct, otherwise 1037 * adjust offset to position of thread_struct in task_struct. 1038 */ 1039 if (unlikely(*size == 0)) 1040 *offset = 0; 1041 else 1042 *offset += offsetof(struct task_struct, thread); 1043 } 1044 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1045 1046 void __init fork_init(void) 1047 { 1048 int i; 1049 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1050 #ifndef ARCH_MIN_TASKALIGN 1051 #define ARCH_MIN_TASKALIGN 0 1052 #endif 1053 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1054 unsigned long useroffset, usersize; 1055 1056 /* create a slab on which task_structs can be allocated */ 1057 task_struct_whitelist(&useroffset, &usersize); 1058 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1059 arch_task_struct_size, align, 1060 SLAB_PANIC|SLAB_ACCOUNT, 1061 useroffset, usersize, NULL); 1062 #endif 1063 1064 /* do the arch specific task caches init */ 1065 arch_task_cache_init(); 1066 1067 set_max_threads(MAX_THREADS); 1068 1069 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1070 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1071 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1072 init_task.signal->rlim[RLIMIT_NPROC]; 1073 1074 for (i = 0; i < UCOUNT_COUNTS; i++) 1075 init_user_ns.ucount_max[i] = max_threads/2; 1076 1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1079 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1080 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1081 1082 #ifdef CONFIG_VMAP_STACK 1083 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1084 NULL, free_vm_stack_cache); 1085 #endif 1086 1087 scs_init(); 1088 1089 lockdep_init_task(&init_task); 1090 uprobes_init(); 1091 } 1092 1093 int __weak arch_dup_task_struct(struct task_struct *dst, 1094 struct task_struct *src) 1095 { 1096 *dst = *src; 1097 return 0; 1098 } 1099 1100 void set_task_stack_end_magic(struct task_struct *tsk) 1101 { 1102 unsigned long *stackend; 1103 1104 stackend = end_of_stack(tsk); 1105 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1106 } 1107 1108 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1109 { 1110 struct task_struct *tsk; 1111 int err; 1112 1113 if (node == NUMA_NO_NODE) 1114 node = tsk_fork_get_node(orig); 1115 tsk = alloc_task_struct_node(node); 1116 if (!tsk) 1117 return NULL; 1118 1119 err = arch_dup_task_struct(tsk, orig); 1120 if (err) 1121 goto free_tsk; 1122 1123 err = alloc_thread_stack_node(tsk, node); 1124 if (err) 1125 goto free_tsk; 1126 1127 #ifdef CONFIG_THREAD_INFO_IN_TASK 1128 refcount_set(&tsk->stack_refcount, 1); 1129 #endif 1130 account_kernel_stack(tsk, 1); 1131 1132 err = scs_prepare(tsk, node); 1133 if (err) 1134 goto free_stack; 1135 1136 #ifdef CONFIG_SECCOMP 1137 /* 1138 * We must handle setting up seccomp filters once we're under 1139 * the sighand lock in case orig has changed between now and 1140 * then. Until then, filter must be NULL to avoid messing up 1141 * the usage counts on the error path calling free_task. 1142 */ 1143 tsk->seccomp.filter = NULL; 1144 #endif 1145 1146 setup_thread_stack(tsk, orig); 1147 clear_user_return_notifier(tsk); 1148 clear_tsk_need_resched(tsk); 1149 set_task_stack_end_magic(tsk); 1150 clear_syscall_work_syscall_user_dispatch(tsk); 1151 1152 #ifdef CONFIG_STACKPROTECTOR 1153 tsk->stack_canary = get_random_canary(); 1154 #endif 1155 if (orig->cpus_ptr == &orig->cpus_mask) 1156 tsk->cpus_ptr = &tsk->cpus_mask; 1157 dup_user_cpus_ptr(tsk, orig, node); 1158 1159 /* 1160 * One for the user space visible state that goes away when reaped. 1161 * One for the scheduler. 1162 */ 1163 refcount_set(&tsk->rcu_users, 2); 1164 /* One for the rcu users */ 1165 refcount_set(&tsk->usage, 1); 1166 #ifdef CONFIG_BLK_DEV_IO_TRACE 1167 tsk->btrace_seq = 0; 1168 #endif 1169 tsk->splice_pipe = NULL; 1170 tsk->task_frag.page = NULL; 1171 tsk->wake_q.next = NULL; 1172 tsk->worker_private = NULL; 1173 1174 kcov_task_init(tsk); 1175 kmsan_task_create(tsk); 1176 kmap_local_fork(tsk); 1177 1178 #ifdef CONFIG_FAULT_INJECTION 1179 tsk->fail_nth = 0; 1180 #endif 1181 1182 #ifdef CONFIG_BLK_CGROUP 1183 tsk->throttle_disk = NULL; 1184 tsk->use_memdelay = 0; 1185 #endif 1186 1187 #ifdef CONFIG_IOMMU_SVA 1188 tsk->pasid_activated = 0; 1189 #endif 1190 1191 #ifdef CONFIG_MEMCG 1192 tsk->active_memcg = NULL; 1193 #endif 1194 1195 #ifdef CONFIG_CPU_SUP_INTEL 1196 tsk->reported_split_lock = 0; 1197 #endif 1198 1199 #ifdef CONFIG_SCHED_MM_CID 1200 tsk->mm_cid = -1; 1201 tsk->last_mm_cid = -1; 1202 tsk->mm_cid_active = 0; 1203 tsk->migrate_from_cpu = -1; 1204 #endif 1205 return tsk; 1206 1207 free_stack: 1208 exit_task_stack_account(tsk); 1209 free_thread_stack(tsk); 1210 free_tsk: 1211 free_task_struct(tsk); 1212 return NULL; 1213 } 1214 1215 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1216 1217 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1218 1219 static int __init coredump_filter_setup(char *s) 1220 { 1221 default_dump_filter = 1222 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1223 MMF_DUMP_FILTER_MASK; 1224 return 1; 1225 } 1226 1227 __setup("coredump_filter=", coredump_filter_setup); 1228 1229 #include <linux/init_task.h> 1230 1231 static void mm_init_aio(struct mm_struct *mm) 1232 { 1233 #ifdef CONFIG_AIO 1234 spin_lock_init(&mm->ioctx_lock); 1235 mm->ioctx_table = NULL; 1236 #endif 1237 } 1238 1239 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1240 struct task_struct *p) 1241 { 1242 #ifdef CONFIG_MEMCG 1243 if (mm->owner == p) 1244 WRITE_ONCE(mm->owner, NULL); 1245 #endif 1246 } 1247 1248 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1249 { 1250 #ifdef CONFIG_MEMCG 1251 mm->owner = p; 1252 #endif 1253 } 1254 1255 static void mm_init_uprobes_state(struct mm_struct *mm) 1256 { 1257 #ifdef CONFIG_UPROBES 1258 mm->uprobes_state.xol_area = NULL; 1259 #endif 1260 } 1261 1262 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1263 struct user_namespace *user_ns) 1264 { 1265 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1266 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1267 atomic_set(&mm->mm_users, 1); 1268 atomic_set(&mm->mm_count, 1); 1269 seqcount_init(&mm->write_protect_seq); 1270 mmap_init_lock(mm); 1271 INIT_LIST_HEAD(&mm->mmlist); 1272 #ifdef CONFIG_PER_VMA_LOCK 1273 mm->mm_lock_seq = 0; 1274 #endif 1275 mm_pgtables_bytes_init(mm); 1276 mm->map_count = 0; 1277 mm->locked_vm = 0; 1278 atomic64_set(&mm->pinned_vm, 0); 1279 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1280 spin_lock_init(&mm->page_table_lock); 1281 spin_lock_init(&mm->arg_lock); 1282 mm_init_cpumask(mm); 1283 mm_init_aio(mm); 1284 mm_init_owner(mm, p); 1285 mm_pasid_init(mm); 1286 RCU_INIT_POINTER(mm->exe_file, NULL); 1287 mmu_notifier_subscriptions_init(mm); 1288 init_tlb_flush_pending(mm); 1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1290 mm->pmd_huge_pte = NULL; 1291 #endif 1292 mm_init_uprobes_state(mm); 1293 hugetlb_count_init(mm); 1294 1295 if (current->mm) { 1296 mm->flags = mmf_init_flags(current->mm->flags); 1297 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1298 } else { 1299 mm->flags = default_dump_filter; 1300 mm->def_flags = 0; 1301 } 1302 1303 if (mm_alloc_pgd(mm)) 1304 goto fail_nopgd; 1305 1306 if (init_new_context(p, mm)) 1307 goto fail_nocontext; 1308 1309 if (mm_alloc_cid(mm)) 1310 goto fail_cid; 1311 1312 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1313 NR_MM_COUNTERS)) 1314 goto fail_pcpu; 1315 1316 mm->user_ns = get_user_ns(user_ns); 1317 lru_gen_init_mm(mm); 1318 return mm; 1319 1320 fail_pcpu: 1321 mm_destroy_cid(mm); 1322 fail_cid: 1323 destroy_context(mm); 1324 fail_nocontext: 1325 mm_free_pgd(mm); 1326 fail_nopgd: 1327 free_mm(mm); 1328 return NULL; 1329 } 1330 1331 /* 1332 * Allocate and initialize an mm_struct. 1333 */ 1334 struct mm_struct *mm_alloc(void) 1335 { 1336 struct mm_struct *mm; 1337 1338 mm = allocate_mm(); 1339 if (!mm) 1340 return NULL; 1341 1342 memset(mm, 0, sizeof(*mm)); 1343 return mm_init(mm, current, current_user_ns()); 1344 } 1345 1346 static inline void __mmput(struct mm_struct *mm) 1347 { 1348 VM_BUG_ON(atomic_read(&mm->mm_users)); 1349 1350 uprobe_clear_state(mm); 1351 exit_aio(mm); 1352 ksm_exit(mm); 1353 khugepaged_exit(mm); /* must run before exit_mmap */ 1354 exit_mmap(mm); 1355 mm_put_huge_zero_page(mm); 1356 set_mm_exe_file(mm, NULL); 1357 if (!list_empty(&mm->mmlist)) { 1358 spin_lock(&mmlist_lock); 1359 list_del(&mm->mmlist); 1360 spin_unlock(&mmlist_lock); 1361 } 1362 if (mm->binfmt) 1363 module_put(mm->binfmt->module); 1364 lru_gen_del_mm(mm); 1365 mmdrop(mm); 1366 } 1367 1368 /* 1369 * Decrement the use count and release all resources for an mm. 1370 */ 1371 void mmput(struct mm_struct *mm) 1372 { 1373 might_sleep(); 1374 1375 if (atomic_dec_and_test(&mm->mm_users)) 1376 __mmput(mm); 1377 } 1378 EXPORT_SYMBOL_GPL(mmput); 1379 1380 #ifdef CONFIG_MMU 1381 static void mmput_async_fn(struct work_struct *work) 1382 { 1383 struct mm_struct *mm = container_of(work, struct mm_struct, 1384 async_put_work); 1385 1386 __mmput(mm); 1387 } 1388 1389 void mmput_async(struct mm_struct *mm) 1390 { 1391 if (atomic_dec_and_test(&mm->mm_users)) { 1392 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1393 schedule_work(&mm->async_put_work); 1394 } 1395 } 1396 EXPORT_SYMBOL_GPL(mmput_async); 1397 #endif 1398 1399 /** 1400 * set_mm_exe_file - change a reference to the mm's executable file 1401 * 1402 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1403 * 1404 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1405 * invocations: in mmput() nobody alive left, in execve it happens before 1406 * the new mm is made visible to anyone. 1407 * 1408 * Can only fail if new_exe_file != NULL. 1409 */ 1410 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1411 { 1412 struct file *old_exe_file; 1413 1414 /* 1415 * It is safe to dereference the exe_file without RCU as 1416 * this function is only called if nobody else can access 1417 * this mm -- see comment above for justification. 1418 */ 1419 old_exe_file = rcu_dereference_raw(mm->exe_file); 1420 1421 if (new_exe_file) { 1422 /* 1423 * We expect the caller (i.e., sys_execve) to already denied 1424 * write access, so this is unlikely to fail. 1425 */ 1426 if (unlikely(deny_write_access(new_exe_file))) 1427 return -EACCES; 1428 get_file(new_exe_file); 1429 } 1430 rcu_assign_pointer(mm->exe_file, new_exe_file); 1431 if (old_exe_file) { 1432 allow_write_access(old_exe_file); 1433 fput(old_exe_file); 1434 } 1435 return 0; 1436 } 1437 1438 /** 1439 * replace_mm_exe_file - replace a reference to the mm's executable file 1440 * 1441 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1442 * 1443 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1444 */ 1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1446 { 1447 struct vm_area_struct *vma; 1448 struct file *old_exe_file; 1449 int ret = 0; 1450 1451 /* Forbid mm->exe_file change if old file still mapped. */ 1452 old_exe_file = get_mm_exe_file(mm); 1453 if (old_exe_file) { 1454 VMA_ITERATOR(vmi, mm, 0); 1455 mmap_read_lock(mm); 1456 for_each_vma(vmi, vma) { 1457 if (!vma->vm_file) 1458 continue; 1459 if (path_equal(&vma->vm_file->f_path, 1460 &old_exe_file->f_path)) { 1461 ret = -EBUSY; 1462 break; 1463 } 1464 } 1465 mmap_read_unlock(mm); 1466 fput(old_exe_file); 1467 if (ret) 1468 return ret; 1469 } 1470 1471 ret = deny_write_access(new_exe_file); 1472 if (ret) 1473 return -EACCES; 1474 get_file(new_exe_file); 1475 1476 /* set the new file */ 1477 mmap_write_lock(mm); 1478 old_exe_file = rcu_dereference_raw(mm->exe_file); 1479 rcu_assign_pointer(mm->exe_file, new_exe_file); 1480 mmap_write_unlock(mm); 1481 1482 if (old_exe_file) { 1483 allow_write_access(old_exe_file); 1484 fput(old_exe_file); 1485 } 1486 return 0; 1487 } 1488 1489 /** 1490 * get_mm_exe_file - acquire a reference to the mm's executable file 1491 * 1492 * Returns %NULL if mm has no associated executable file. 1493 * User must release file via fput(). 1494 */ 1495 struct file *get_mm_exe_file(struct mm_struct *mm) 1496 { 1497 struct file *exe_file; 1498 1499 rcu_read_lock(); 1500 exe_file = rcu_dereference(mm->exe_file); 1501 if (exe_file && !get_file_rcu(exe_file)) 1502 exe_file = NULL; 1503 rcu_read_unlock(); 1504 return exe_file; 1505 } 1506 1507 /** 1508 * get_task_exe_file - acquire a reference to the task's executable file 1509 * 1510 * Returns %NULL if task's mm (if any) has no associated executable file or 1511 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1512 * User must release file via fput(). 1513 */ 1514 struct file *get_task_exe_file(struct task_struct *task) 1515 { 1516 struct file *exe_file = NULL; 1517 struct mm_struct *mm; 1518 1519 task_lock(task); 1520 mm = task->mm; 1521 if (mm) { 1522 if (!(task->flags & PF_KTHREAD)) 1523 exe_file = get_mm_exe_file(mm); 1524 } 1525 task_unlock(task); 1526 return exe_file; 1527 } 1528 1529 /** 1530 * get_task_mm - acquire a reference to the task's mm 1531 * 1532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1533 * this kernel workthread has transiently adopted a user mm with use_mm, 1534 * to do its AIO) is not set and if so returns a reference to it, after 1535 * bumping up the use count. User must release the mm via mmput() 1536 * after use. Typically used by /proc and ptrace. 1537 */ 1538 struct mm_struct *get_task_mm(struct task_struct *task) 1539 { 1540 struct mm_struct *mm; 1541 1542 task_lock(task); 1543 mm = task->mm; 1544 if (mm) { 1545 if (task->flags & PF_KTHREAD) 1546 mm = NULL; 1547 else 1548 mmget(mm); 1549 } 1550 task_unlock(task); 1551 return mm; 1552 } 1553 EXPORT_SYMBOL_GPL(get_task_mm); 1554 1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1556 { 1557 struct mm_struct *mm; 1558 int err; 1559 1560 err = down_read_killable(&task->signal->exec_update_lock); 1561 if (err) 1562 return ERR_PTR(err); 1563 1564 mm = get_task_mm(task); 1565 if (mm && mm != current->mm && 1566 !ptrace_may_access(task, mode)) { 1567 mmput(mm); 1568 mm = ERR_PTR(-EACCES); 1569 } 1570 up_read(&task->signal->exec_update_lock); 1571 1572 return mm; 1573 } 1574 1575 static void complete_vfork_done(struct task_struct *tsk) 1576 { 1577 struct completion *vfork; 1578 1579 task_lock(tsk); 1580 vfork = tsk->vfork_done; 1581 if (likely(vfork)) { 1582 tsk->vfork_done = NULL; 1583 complete(vfork); 1584 } 1585 task_unlock(tsk); 1586 } 1587 1588 static int wait_for_vfork_done(struct task_struct *child, 1589 struct completion *vfork) 1590 { 1591 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1592 int killed; 1593 1594 cgroup_enter_frozen(); 1595 killed = wait_for_completion_state(vfork, state); 1596 cgroup_leave_frozen(false); 1597 1598 if (killed) { 1599 task_lock(child); 1600 child->vfork_done = NULL; 1601 task_unlock(child); 1602 } 1603 1604 put_task_struct(child); 1605 return killed; 1606 } 1607 1608 /* Please note the differences between mmput and mm_release. 1609 * mmput is called whenever we stop holding onto a mm_struct, 1610 * error success whatever. 1611 * 1612 * mm_release is called after a mm_struct has been removed 1613 * from the current process. 1614 * 1615 * This difference is important for error handling, when we 1616 * only half set up a mm_struct for a new process and need to restore 1617 * the old one. Because we mmput the new mm_struct before 1618 * restoring the old one. . . 1619 * Eric Biederman 10 January 1998 1620 */ 1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1622 { 1623 uprobe_free_utask(tsk); 1624 1625 /* Get rid of any cached register state */ 1626 deactivate_mm(tsk, mm); 1627 1628 /* 1629 * Signal userspace if we're not exiting with a core dump 1630 * because we want to leave the value intact for debugging 1631 * purposes. 1632 */ 1633 if (tsk->clear_child_tid) { 1634 if (atomic_read(&mm->mm_users) > 1) { 1635 /* 1636 * We don't check the error code - if userspace has 1637 * not set up a proper pointer then tough luck. 1638 */ 1639 put_user(0, tsk->clear_child_tid); 1640 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1641 1, NULL, NULL, 0, 0); 1642 } 1643 tsk->clear_child_tid = NULL; 1644 } 1645 1646 /* 1647 * All done, finally we can wake up parent and return this mm to him. 1648 * Also kthread_stop() uses this completion for synchronization. 1649 */ 1650 if (tsk->vfork_done) 1651 complete_vfork_done(tsk); 1652 } 1653 1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1655 { 1656 futex_exit_release(tsk); 1657 mm_release(tsk, mm); 1658 } 1659 1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1661 { 1662 futex_exec_release(tsk); 1663 mm_release(tsk, mm); 1664 } 1665 1666 /** 1667 * dup_mm() - duplicates an existing mm structure 1668 * @tsk: the task_struct with which the new mm will be associated. 1669 * @oldmm: the mm to duplicate. 1670 * 1671 * Allocates a new mm structure and duplicates the provided @oldmm structure 1672 * content into it. 1673 * 1674 * Return: the duplicated mm or NULL on failure. 1675 */ 1676 static struct mm_struct *dup_mm(struct task_struct *tsk, 1677 struct mm_struct *oldmm) 1678 { 1679 struct mm_struct *mm; 1680 int err; 1681 1682 mm = allocate_mm(); 1683 if (!mm) 1684 goto fail_nomem; 1685 1686 memcpy(mm, oldmm, sizeof(*mm)); 1687 1688 if (!mm_init(mm, tsk, mm->user_ns)) 1689 goto fail_nomem; 1690 1691 err = dup_mmap(mm, oldmm); 1692 if (err) 1693 goto free_pt; 1694 1695 mm->hiwater_rss = get_mm_rss(mm); 1696 mm->hiwater_vm = mm->total_vm; 1697 1698 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1699 goto free_pt; 1700 1701 return mm; 1702 1703 free_pt: 1704 /* don't put binfmt in mmput, we haven't got module yet */ 1705 mm->binfmt = NULL; 1706 mm_init_owner(mm, NULL); 1707 mmput(mm); 1708 1709 fail_nomem: 1710 return NULL; 1711 } 1712 1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1714 { 1715 struct mm_struct *mm, *oldmm; 1716 1717 tsk->min_flt = tsk->maj_flt = 0; 1718 tsk->nvcsw = tsk->nivcsw = 0; 1719 #ifdef CONFIG_DETECT_HUNG_TASK 1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1721 tsk->last_switch_time = 0; 1722 #endif 1723 1724 tsk->mm = NULL; 1725 tsk->active_mm = NULL; 1726 1727 /* 1728 * Are we cloning a kernel thread? 1729 * 1730 * We need to steal a active VM for that.. 1731 */ 1732 oldmm = current->mm; 1733 if (!oldmm) 1734 return 0; 1735 1736 if (clone_flags & CLONE_VM) { 1737 mmget(oldmm); 1738 mm = oldmm; 1739 } else { 1740 mm = dup_mm(tsk, current->mm); 1741 if (!mm) 1742 return -ENOMEM; 1743 } 1744 1745 tsk->mm = mm; 1746 tsk->active_mm = mm; 1747 sched_mm_cid_fork(tsk); 1748 return 0; 1749 } 1750 1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1752 { 1753 struct fs_struct *fs = current->fs; 1754 if (clone_flags & CLONE_FS) { 1755 /* tsk->fs is already what we want */ 1756 spin_lock(&fs->lock); 1757 if (fs->in_exec) { 1758 spin_unlock(&fs->lock); 1759 return -EAGAIN; 1760 } 1761 fs->users++; 1762 spin_unlock(&fs->lock); 1763 return 0; 1764 } 1765 tsk->fs = copy_fs_struct(fs); 1766 if (!tsk->fs) 1767 return -ENOMEM; 1768 return 0; 1769 } 1770 1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1772 int no_files) 1773 { 1774 struct files_struct *oldf, *newf; 1775 1776 /* 1777 * A background process may not have any files ... 1778 */ 1779 oldf = current->files; 1780 if (!oldf) 1781 return 0; 1782 1783 if (no_files) { 1784 tsk->files = NULL; 1785 return 0; 1786 } 1787 1788 if (clone_flags & CLONE_FILES) { 1789 atomic_inc(&oldf->count); 1790 return 0; 1791 } 1792 1793 newf = dup_fd(oldf, NULL); 1794 if (IS_ERR(newf)) 1795 return PTR_ERR(newf); 1796 1797 tsk->files = newf; 1798 return 0; 1799 } 1800 1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1802 { 1803 struct sighand_struct *sig; 1804 1805 if (clone_flags & CLONE_SIGHAND) { 1806 refcount_inc(¤t->sighand->count); 1807 return 0; 1808 } 1809 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1810 RCU_INIT_POINTER(tsk->sighand, sig); 1811 if (!sig) 1812 return -ENOMEM; 1813 1814 refcount_set(&sig->count, 1); 1815 spin_lock_irq(¤t->sighand->siglock); 1816 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1817 spin_unlock_irq(¤t->sighand->siglock); 1818 1819 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1820 if (clone_flags & CLONE_CLEAR_SIGHAND) 1821 flush_signal_handlers(tsk, 0); 1822 1823 return 0; 1824 } 1825 1826 void __cleanup_sighand(struct sighand_struct *sighand) 1827 { 1828 if (refcount_dec_and_test(&sighand->count)) { 1829 signalfd_cleanup(sighand); 1830 /* 1831 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1832 * without an RCU grace period, see __lock_task_sighand(). 1833 */ 1834 kmem_cache_free(sighand_cachep, sighand); 1835 } 1836 } 1837 1838 /* 1839 * Initialize POSIX timer handling for a thread group. 1840 */ 1841 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1842 { 1843 struct posix_cputimers *pct = &sig->posix_cputimers; 1844 unsigned long cpu_limit; 1845 1846 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1847 posix_cputimers_group_init(pct, cpu_limit); 1848 } 1849 1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1851 { 1852 struct signal_struct *sig; 1853 1854 if (clone_flags & CLONE_THREAD) 1855 return 0; 1856 1857 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1858 tsk->signal = sig; 1859 if (!sig) 1860 return -ENOMEM; 1861 1862 sig->nr_threads = 1; 1863 sig->quick_threads = 1; 1864 atomic_set(&sig->live, 1); 1865 refcount_set(&sig->sigcnt, 1); 1866 1867 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1868 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1869 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1870 1871 init_waitqueue_head(&sig->wait_chldexit); 1872 sig->curr_target = tsk; 1873 init_sigpending(&sig->shared_pending); 1874 INIT_HLIST_HEAD(&sig->multiprocess); 1875 seqlock_init(&sig->stats_lock); 1876 prev_cputime_init(&sig->prev_cputime); 1877 1878 #ifdef CONFIG_POSIX_TIMERS 1879 INIT_LIST_HEAD(&sig->posix_timers); 1880 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1881 sig->real_timer.function = it_real_fn; 1882 #endif 1883 1884 task_lock(current->group_leader); 1885 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1886 task_unlock(current->group_leader); 1887 1888 posix_cpu_timers_init_group(sig); 1889 1890 tty_audit_fork(sig); 1891 sched_autogroup_fork(sig); 1892 1893 sig->oom_score_adj = current->signal->oom_score_adj; 1894 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1895 1896 mutex_init(&sig->cred_guard_mutex); 1897 init_rwsem(&sig->exec_update_lock); 1898 1899 return 0; 1900 } 1901 1902 static void copy_seccomp(struct task_struct *p) 1903 { 1904 #ifdef CONFIG_SECCOMP 1905 /* 1906 * Must be called with sighand->lock held, which is common to 1907 * all threads in the group. Holding cred_guard_mutex is not 1908 * needed because this new task is not yet running and cannot 1909 * be racing exec. 1910 */ 1911 assert_spin_locked(¤t->sighand->siglock); 1912 1913 /* Ref-count the new filter user, and assign it. */ 1914 get_seccomp_filter(current); 1915 p->seccomp = current->seccomp; 1916 1917 /* 1918 * Explicitly enable no_new_privs here in case it got set 1919 * between the task_struct being duplicated and holding the 1920 * sighand lock. The seccomp state and nnp must be in sync. 1921 */ 1922 if (task_no_new_privs(current)) 1923 task_set_no_new_privs(p); 1924 1925 /* 1926 * If the parent gained a seccomp mode after copying thread 1927 * flags and between before we held the sighand lock, we have 1928 * to manually enable the seccomp thread flag here. 1929 */ 1930 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1931 set_task_syscall_work(p, SECCOMP); 1932 #endif 1933 } 1934 1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1936 { 1937 current->clear_child_tid = tidptr; 1938 1939 return task_pid_vnr(current); 1940 } 1941 1942 static void rt_mutex_init_task(struct task_struct *p) 1943 { 1944 raw_spin_lock_init(&p->pi_lock); 1945 #ifdef CONFIG_RT_MUTEXES 1946 p->pi_waiters = RB_ROOT_CACHED; 1947 p->pi_top_task = NULL; 1948 p->pi_blocked_on = NULL; 1949 #endif 1950 } 1951 1952 static inline void init_task_pid_links(struct task_struct *task) 1953 { 1954 enum pid_type type; 1955 1956 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1957 INIT_HLIST_NODE(&task->pid_links[type]); 1958 } 1959 1960 static inline void 1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1962 { 1963 if (type == PIDTYPE_PID) 1964 task->thread_pid = pid; 1965 else 1966 task->signal->pids[type] = pid; 1967 } 1968 1969 static inline void rcu_copy_process(struct task_struct *p) 1970 { 1971 #ifdef CONFIG_PREEMPT_RCU 1972 p->rcu_read_lock_nesting = 0; 1973 p->rcu_read_unlock_special.s = 0; 1974 p->rcu_blocked_node = NULL; 1975 INIT_LIST_HEAD(&p->rcu_node_entry); 1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1977 #ifdef CONFIG_TASKS_RCU 1978 p->rcu_tasks_holdout = false; 1979 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1980 p->rcu_tasks_idle_cpu = -1; 1981 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1982 #endif /* #ifdef CONFIG_TASKS_RCU */ 1983 #ifdef CONFIG_TASKS_TRACE_RCU 1984 p->trc_reader_nesting = 0; 1985 p->trc_reader_special.s = 0; 1986 INIT_LIST_HEAD(&p->trc_holdout_list); 1987 INIT_LIST_HEAD(&p->trc_blkd_node); 1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1989 } 1990 1991 struct pid *pidfd_pid(const struct file *file) 1992 { 1993 if (file->f_op == &pidfd_fops) 1994 return file->private_data; 1995 1996 return ERR_PTR(-EBADF); 1997 } 1998 1999 static int pidfd_release(struct inode *inode, struct file *file) 2000 { 2001 struct pid *pid = file->private_data; 2002 2003 file->private_data = NULL; 2004 put_pid(pid); 2005 return 0; 2006 } 2007 2008 #ifdef CONFIG_PROC_FS 2009 /** 2010 * pidfd_show_fdinfo - print information about a pidfd 2011 * @m: proc fdinfo file 2012 * @f: file referencing a pidfd 2013 * 2014 * Pid: 2015 * This function will print the pid that a given pidfd refers to in the 2016 * pid namespace of the procfs instance. 2017 * If the pid namespace of the process is not a descendant of the pid 2018 * namespace of the procfs instance 0 will be shown as its pid. This is 2019 * similar to calling getppid() on a process whose parent is outside of 2020 * its pid namespace. 2021 * 2022 * NSpid: 2023 * If pid namespaces are supported then this function will also print 2024 * the pid of a given pidfd refers to for all descendant pid namespaces 2025 * starting from the current pid namespace of the instance, i.e. the 2026 * Pid field and the first entry in the NSpid field will be identical. 2027 * If the pid namespace of the process is not a descendant of the pid 2028 * namespace of the procfs instance 0 will be shown as its first NSpid 2029 * entry and no others will be shown. 2030 * Note that this differs from the Pid and NSpid fields in 2031 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2032 * the pid namespace of the procfs instance. The difference becomes 2033 * obvious when sending around a pidfd between pid namespaces from a 2034 * different branch of the tree, i.e. where no ancestral relation is 2035 * present between the pid namespaces: 2036 * - create two new pid namespaces ns1 and ns2 in the initial pid 2037 * namespace (also take care to create new mount namespaces in the 2038 * new pid namespace and mount procfs) 2039 * - create a process with a pidfd in ns1 2040 * - send pidfd from ns1 to ns2 2041 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2042 * have exactly one entry, which is 0 2043 */ 2044 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2045 { 2046 struct pid *pid = f->private_data; 2047 struct pid_namespace *ns; 2048 pid_t nr = -1; 2049 2050 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2051 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2052 nr = pid_nr_ns(pid, ns); 2053 } 2054 2055 seq_put_decimal_ll(m, "Pid:\t", nr); 2056 2057 #ifdef CONFIG_PID_NS 2058 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2059 if (nr > 0) { 2060 int i; 2061 2062 /* If nr is non-zero it means that 'pid' is valid and that 2063 * ns, i.e. the pid namespace associated with the procfs 2064 * instance, is in the pid namespace hierarchy of pid. 2065 * Start at one below the already printed level. 2066 */ 2067 for (i = ns->level + 1; i <= pid->level; i++) 2068 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2069 } 2070 #endif 2071 seq_putc(m, '\n'); 2072 } 2073 #endif 2074 2075 /* 2076 * Poll support for process exit notification. 2077 */ 2078 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2079 { 2080 struct pid *pid = file->private_data; 2081 __poll_t poll_flags = 0; 2082 2083 poll_wait(file, &pid->wait_pidfd, pts); 2084 2085 /* 2086 * Inform pollers only when the whole thread group exits. 2087 * If the thread group leader exits before all other threads in the 2088 * group, then poll(2) should block, similar to the wait(2) family. 2089 */ 2090 if (thread_group_exited(pid)) 2091 poll_flags = EPOLLIN | EPOLLRDNORM; 2092 2093 return poll_flags; 2094 } 2095 2096 const struct file_operations pidfd_fops = { 2097 .release = pidfd_release, 2098 .poll = pidfd_poll, 2099 #ifdef CONFIG_PROC_FS 2100 .show_fdinfo = pidfd_show_fdinfo, 2101 #endif 2102 }; 2103 2104 /** 2105 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2106 * @pid: the struct pid for which to create a pidfd 2107 * @flags: flags of the new @pidfd 2108 * @pidfd: the pidfd to return 2109 * 2110 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2111 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2112 2113 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2114 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2115 * pidfd file are prepared. 2116 * 2117 * If this function returns successfully the caller is responsible to either 2118 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2119 * order to install the pidfd into its file descriptor table or they must use 2120 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2121 * respectively. 2122 * 2123 * This function is useful when a pidfd must already be reserved but there 2124 * might still be points of failure afterwards and the caller wants to ensure 2125 * that no pidfd is leaked into its file descriptor table. 2126 * 2127 * Return: On success, a reserved pidfd is returned from the function and a new 2128 * pidfd file is returned in the last argument to the function. On 2129 * error, a negative error code is returned from the function and the 2130 * last argument remains unchanged. 2131 */ 2132 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2133 { 2134 int pidfd; 2135 struct file *pidfd_file; 2136 2137 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2138 return -EINVAL; 2139 2140 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2141 if (pidfd < 0) 2142 return pidfd; 2143 2144 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2145 flags | O_RDWR | O_CLOEXEC); 2146 if (IS_ERR(pidfd_file)) { 2147 put_unused_fd(pidfd); 2148 return PTR_ERR(pidfd_file); 2149 } 2150 get_pid(pid); /* held by pidfd_file now */ 2151 *ret = pidfd_file; 2152 return pidfd; 2153 } 2154 2155 /** 2156 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2157 * @pid: the struct pid for which to create a pidfd 2158 * @flags: flags of the new @pidfd 2159 * @pidfd: the pidfd to return 2160 * 2161 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2162 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2163 * 2164 * The helper verifies that @pid is used as a thread group leader. 2165 * 2166 * If this function returns successfully the caller is responsible to either 2167 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2168 * order to install the pidfd into its file descriptor table or they must use 2169 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2170 * respectively. 2171 * 2172 * This function is useful when a pidfd must already be reserved but there 2173 * might still be points of failure afterwards and the caller wants to ensure 2174 * that no pidfd is leaked into its file descriptor table. 2175 * 2176 * Return: On success, a reserved pidfd is returned from the function and a new 2177 * pidfd file is returned in the last argument to the function. On 2178 * error, a negative error code is returned from the function and the 2179 * last argument remains unchanged. 2180 */ 2181 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2182 { 2183 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2184 return -EINVAL; 2185 2186 return __pidfd_prepare(pid, flags, ret); 2187 } 2188 2189 static void __delayed_free_task(struct rcu_head *rhp) 2190 { 2191 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2192 2193 free_task(tsk); 2194 } 2195 2196 static __always_inline void delayed_free_task(struct task_struct *tsk) 2197 { 2198 if (IS_ENABLED(CONFIG_MEMCG)) 2199 call_rcu(&tsk->rcu, __delayed_free_task); 2200 else 2201 free_task(tsk); 2202 } 2203 2204 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2205 { 2206 /* Skip if kernel thread */ 2207 if (!tsk->mm) 2208 return; 2209 2210 /* Skip if spawning a thread or using vfork */ 2211 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2212 return; 2213 2214 /* We need to synchronize with __set_oom_adj */ 2215 mutex_lock(&oom_adj_mutex); 2216 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2217 /* Update the values in case they were changed after copy_signal */ 2218 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2219 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2220 mutex_unlock(&oom_adj_mutex); 2221 } 2222 2223 #ifdef CONFIG_RV 2224 static void rv_task_fork(struct task_struct *p) 2225 { 2226 int i; 2227 2228 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2229 p->rv[i].da_mon.monitoring = false; 2230 } 2231 #else 2232 #define rv_task_fork(p) do {} while (0) 2233 #endif 2234 2235 /* 2236 * This creates a new process as a copy of the old one, 2237 * but does not actually start it yet. 2238 * 2239 * It copies the registers, and all the appropriate 2240 * parts of the process environment (as per the clone 2241 * flags). The actual kick-off is left to the caller. 2242 */ 2243 __latent_entropy struct task_struct *copy_process( 2244 struct pid *pid, 2245 int trace, 2246 int node, 2247 struct kernel_clone_args *args) 2248 { 2249 int pidfd = -1, retval; 2250 struct task_struct *p; 2251 struct multiprocess_signals delayed; 2252 struct file *pidfile = NULL; 2253 const u64 clone_flags = args->flags; 2254 struct nsproxy *nsp = current->nsproxy; 2255 2256 /* 2257 * Don't allow sharing the root directory with processes in a different 2258 * namespace 2259 */ 2260 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2261 return ERR_PTR(-EINVAL); 2262 2263 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2264 return ERR_PTR(-EINVAL); 2265 2266 /* 2267 * Thread groups must share signals as well, and detached threads 2268 * can only be started up within the thread group. 2269 */ 2270 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2271 return ERR_PTR(-EINVAL); 2272 2273 /* 2274 * Shared signal handlers imply shared VM. By way of the above, 2275 * thread groups also imply shared VM. Blocking this case allows 2276 * for various simplifications in other code. 2277 */ 2278 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2279 return ERR_PTR(-EINVAL); 2280 2281 /* 2282 * Siblings of global init remain as zombies on exit since they are 2283 * not reaped by their parent (swapper). To solve this and to avoid 2284 * multi-rooted process trees, prevent global and container-inits 2285 * from creating siblings. 2286 */ 2287 if ((clone_flags & CLONE_PARENT) && 2288 current->signal->flags & SIGNAL_UNKILLABLE) 2289 return ERR_PTR(-EINVAL); 2290 2291 /* 2292 * If the new process will be in a different pid or user namespace 2293 * do not allow it to share a thread group with the forking task. 2294 */ 2295 if (clone_flags & CLONE_THREAD) { 2296 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2297 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2298 return ERR_PTR(-EINVAL); 2299 } 2300 2301 if (clone_flags & CLONE_PIDFD) { 2302 /* 2303 * - CLONE_DETACHED is blocked so that we can potentially 2304 * reuse it later for CLONE_PIDFD. 2305 * - CLONE_THREAD is blocked until someone really needs it. 2306 */ 2307 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2308 return ERR_PTR(-EINVAL); 2309 } 2310 2311 /* 2312 * Force any signals received before this point to be delivered 2313 * before the fork happens. Collect up signals sent to multiple 2314 * processes that happen during the fork and delay them so that 2315 * they appear to happen after the fork. 2316 */ 2317 sigemptyset(&delayed.signal); 2318 INIT_HLIST_NODE(&delayed.node); 2319 2320 spin_lock_irq(¤t->sighand->siglock); 2321 if (!(clone_flags & CLONE_THREAD)) 2322 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2323 recalc_sigpending(); 2324 spin_unlock_irq(¤t->sighand->siglock); 2325 retval = -ERESTARTNOINTR; 2326 if (task_sigpending(current)) 2327 goto fork_out; 2328 2329 retval = -ENOMEM; 2330 p = dup_task_struct(current, node); 2331 if (!p) 2332 goto fork_out; 2333 p->flags &= ~PF_KTHREAD; 2334 if (args->kthread) 2335 p->flags |= PF_KTHREAD; 2336 if (args->user_worker) { 2337 /* 2338 * Mark us a user worker, and block any signal that isn't 2339 * fatal or STOP 2340 */ 2341 p->flags |= PF_USER_WORKER; 2342 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2343 } 2344 if (args->io_thread) 2345 p->flags |= PF_IO_WORKER; 2346 2347 if (args->name) 2348 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2349 2350 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2351 /* 2352 * Clear TID on mm_release()? 2353 */ 2354 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2355 2356 ftrace_graph_init_task(p); 2357 2358 rt_mutex_init_task(p); 2359 2360 lockdep_assert_irqs_enabled(); 2361 #ifdef CONFIG_PROVE_LOCKING 2362 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2363 #endif 2364 retval = copy_creds(p, clone_flags); 2365 if (retval < 0) 2366 goto bad_fork_free; 2367 2368 retval = -EAGAIN; 2369 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2370 if (p->real_cred->user != INIT_USER && 2371 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2372 goto bad_fork_cleanup_count; 2373 } 2374 current->flags &= ~PF_NPROC_EXCEEDED; 2375 2376 /* 2377 * If multiple threads are within copy_process(), then this check 2378 * triggers too late. This doesn't hurt, the check is only there 2379 * to stop root fork bombs. 2380 */ 2381 retval = -EAGAIN; 2382 if (data_race(nr_threads >= max_threads)) 2383 goto bad_fork_cleanup_count; 2384 2385 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2386 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2387 p->flags |= PF_FORKNOEXEC; 2388 INIT_LIST_HEAD(&p->children); 2389 INIT_LIST_HEAD(&p->sibling); 2390 rcu_copy_process(p); 2391 p->vfork_done = NULL; 2392 spin_lock_init(&p->alloc_lock); 2393 2394 init_sigpending(&p->pending); 2395 2396 p->utime = p->stime = p->gtime = 0; 2397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2398 p->utimescaled = p->stimescaled = 0; 2399 #endif 2400 prev_cputime_init(&p->prev_cputime); 2401 2402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2403 seqcount_init(&p->vtime.seqcount); 2404 p->vtime.starttime = 0; 2405 p->vtime.state = VTIME_INACTIVE; 2406 #endif 2407 2408 #ifdef CONFIG_IO_URING 2409 p->io_uring = NULL; 2410 #endif 2411 2412 #if defined(SPLIT_RSS_COUNTING) 2413 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2414 #endif 2415 2416 p->default_timer_slack_ns = current->timer_slack_ns; 2417 2418 #ifdef CONFIG_PSI 2419 p->psi_flags = 0; 2420 #endif 2421 2422 task_io_accounting_init(&p->ioac); 2423 acct_clear_integrals(p); 2424 2425 posix_cputimers_init(&p->posix_cputimers); 2426 tick_dep_init_task(p); 2427 2428 p->io_context = NULL; 2429 audit_set_context(p, NULL); 2430 cgroup_fork(p); 2431 if (args->kthread) { 2432 if (!set_kthread_struct(p)) 2433 goto bad_fork_cleanup_delayacct; 2434 } 2435 #ifdef CONFIG_NUMA 2436 p->mempolicy = mpol_dup(p->mempolicy); 2437 if (IS_ERR(p->mempolicy)) { 2438 retval = PTR_ERR(p->mempolicy); 2439 p->mempolicy = NULL; 2440 goto bad_fork_cleanup_delayacct; 2441 } 2442 #endif 2443 #ifdef CONFIG_CPUSETS 2444 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2445 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2446 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2447 #endif 2448 #ifdef CONFIG_TRACE_IRQFLAGS 2449 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2450 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2451 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2452 p->softirqs_enabled = 1; 2453 p->softirq_context = 0; 2454 #endif 2455 2456 p->pagefault_disabled = 0; 2457 2458 #ifdef CONFIG_LOCKDEP 2459 lockdep_init_task(p); 2460 #endif 2461 2462 #ifdef CONFIG_DEBUG_MUTEXES 2463 p->blocked_on = NULL; /* not blocked yet */ 2464 #endif 2465 #ifdef CONFIG_BCACHE 2466 p->sequential_io = 0; 2467 p->sequential_io_avg = 0; 2468 #endif 2469 #ifdef CONFIG_BPF_SYSCALL 2470 RCU_INIT_POINTER(p->bpf_storage, NULL); 2471 p->bpf_ctx = NULL; 2472 #endif 2473 2474 /* Perform scheduler related setup. Assign this task to a CPU. */ 2475 retval = sched_fork(clone_flags, p); 2476 if (retval) 2477 goto bad_fork_cleanup_policy; 2478 2479 retval = perf_event_init_task(p, clone_flags); 2480 if (retval) 2481 goto bad_fork_cleanup_policy; 2482 retval = audit_alloc(p); 2483 if (retval) 2484 goto bad_fork_cleanup_perf; 2485 /* copy all the process information */ 2486 shm_init_task(p); 2487 retval = security_task_alloc(p, clone_flags); 2488 if (retval) 2489 goto bad_fork_cleanup_audit; 2490 retval = copy_semundo(clone_flags, p); 2491 if (retval) 2492 goto bad_fork_cleanup_security; 2493 retval = copy_files(clone_flags, p, args->no_files); 2494 if (retval) 2495 goto bad_fork_cleanup_semundo; 2496 retval = copy_fs(clone_flags, p); 2497 if (retval) 2498 goto bad_fork_cleanup_files; 2499 retval = copy_sighand(clone_flags, p); 2500 if (retval) 2501 goto bad_fork_cleanup_fs; 2502 retval = copy_signal(clone_flags, p); 2503 if (retval) 2504 goto bad_fork_cleanup_sighand; 2505 retval = copy_mm(clone_flags, p); 2506 if (retval) 2507 goto bad_fork_cleanup_signal; 2508 retval = copy_namespaces(clone_flags, p); 2509 if (retval) 2510 goto bad_fork_cleanup_mm; 2511 retval = copy_io(clone_flags, p); 2512 if (retval) 2513 goto bad_fork_cleanup_namespaces; 2514 retval = copy_thread(p, args); 2515 if (retval) 2516 goto bad_fork_cleanup_io; 2517 2518 stackleak_task_init(p); 2519 2520 if (pid != &init_struct_pid) { 2521 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2522 args->set_tid_size); 2523 if (IS_ERR(pid)) { 2524 retval = PTR_ERR(pid); 2525 goto bad_fork_cleanup_thread; 2526 } 2527 } 2528 2529 /* 2530 * This has to happen after we've potentially unshared the file 2531 * descriptor table (so that the pidfd doesn't leak into the child 2532 * if the fd table isn't shared). 2533 */ 2534 if (clone_flags & CLONE_PIDFD) { 2535 /* Note that no task has been attached to @pid yet. */ 2536 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2537 if (retval < 0) 2538 goto bad_fork_free_pid; 2539 pidfd = retval; 2540 2541 retval = put_user(pidfd, args->pidfd); 2542 if (retval) 2543 goto bad_fork_put_pidfd; 2544 } 2545 2546 #ifdef CONFIG_BLOCK 2547 p->plug = NULL; 2548 #endif 2549 futex_init_task(p); 2550 2551 /* 2552 * sigaltstack should be cleared when sharing the same VM 2553 */ 2554 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2555 sas_ss_reset(p); 2556 2557 /* 2558 * Syscall tracing and stepping should be turned off in the 2559 * child regardless of CLONE_PTRACE. 2560 */ 2561 user_disable_single_step(p); 2562 clear_task_syscall_work(p, SYSCALL_TRACE); 2563 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2564 clear_task_syscall_work(p, SYSCALL_EMU); 2565 #endif 2566 clear_tsk_latency_tracing(p); 2567 2568 /* ok, now we should be set up.. */ 2569 p->pid = pid_nr(pid); 2570 if (clone_flags & CLONE_THREAD) { 2571 p->group_leader = current->group_leader; 2572 p->tgid = current->tgid; 2573 } else { 2574 p->group_leader = p; 2575 p->tgid = p->pid; 2576 } 2577 2578 p->nr_dirtied = 0; 2579 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2580 p->dirty_paused_when = 0; 2581 2582 p->pdeath_signal = 0; 2583 INIT_LIST_HEAD(&p->thread_group); 2584 p->task_works = NULL; 2585 clear_posix_cputimers_work(p); 2586 2587 #ifdef CONFIG_KRETPROBES 2588 p->kretprobe_instances.first = NULL; 2589 #endif 2590 #ifdef CONFIG_RETHOOK 2591 p->rethooks.first = NULL; 2592 #endif 2593 2594 /* 2595 * Ensure that the cgroup subsystem policies allow the new process to be 2596 * forked. It should be noted that the new process's css_set can be changed 2597 * between here and cgroup_post_fork() if an organisation operation is in 2598 * progress. 2599 */ 2600 retval = cgroup_can_fork(p, args); 2601 if (retval) 2602 goto bad_fork_put_pidfd; 2603 2604 /* 2605 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2606 * the new task on the correct runqueue. All this *before* the task 2607 * becomes visible. 2608 * 2609 * This isn't part of ->can_fork() because while the re-cloning is 2610 * cgroup specific, it unconditionally needs to place the task on a 2611 * runqueue. 2612 */ 2613 sched_cgroup_fork(p, args); 2614 2615 /* 2616 * From this point on we must avoid any synchronous user-space 2617 * communication until we take the tasklist-lock. In particular, we do 2618 * not want user-space to be able to predict the process start-time by 2619 * stalling fork(2) after we recorded the start_time but before it is 2620 * visible to the system. 2621 */ 2622 2623 p->start_time = ktime_get_ns(); 2624 p->start_boottime = ktime_get_boottime_ns(); 2625 2626 /* 2627 * Make it visible to the rest of the system, but dont wake it up yet. 2628 * Need tasklist lock for parent etc handling! 2629 */ 2630 write_lock_irq(&tasklist_lock); 2631 2632 /* CLONE_PARENT re-uses the old parent */ 2633 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2634 p->real_parent = current->real_parent; 2635 p->parent_exec_id = current->parent_exec_id; 2636 if (clone_flags & CLONE_THREAD) 2637 p->exit_signal = -1; 2638 else 2639 p->exit_signal = current->group_leader->exit_signal; 2640 } else { 2641 p->real_parent = current; 2642 p->parent_exec_id = current->self_exec_id; 2643 p->exit_signal = args->exit_signal; 2644 } 2645 2646 klp_copy_process(p); 2647 2648 sched_core_fork(p); 2649 2650 spin_lock(¤t->sighand->siglock); 2651 2652 rv_task_fork(p); 2653 2654 rseq_fork(p, clone_flags); 2655 2656 /* Don't start children in a dying pid namespace */ 2657 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2658 retval = -ENOMEM; 2659 goto bad_fork_cancel_cgroup; 2660 } 2661 2662 /* Let kill terminate clone/fork in the middle */ 2663 if (fatal_signal_pending(current)) { 2664 retval = -EINTR; 2665 goto bad_fork_cancel_cgroup; 2666 } 2667 2668 /* No more failure paths after this point. */ 2669 2670 /* 2671 * Copy seccomp details explicitly here, in case they were changed 2672 * before holding sighand lock. 2673 */ 2674 copy_seccomp(p); 2675 2676 init_task_pid_links(p); 2677 if (likely(p->pid)) { 2678 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2679 2680 init_task_pid(p, PIDTYPE_PID, pid); 2681 if (thread_group_leader(p)) { 2682 init_task_pid(p, PIDTYPE_TGID, pid); 2683 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2684 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2685 2686 if (is_child_reaper(pid)) { 2687 ns_of_pid(pid)->child_reaper = p; 2688 p->signal->flags |= SIGNAL_UNKILLABLE; 2689 } 2690 p->signal->shared_pending.signal = delayed.signal; 2691 p->signal->tty = tty_kref_get(current->signal->tty); 2692 /* 2693 * Inherit has_child_subreaper flag under the same 2694 * tasklist_lock with adding child to the process tree 2695 * for propagate_has_child_subreaper optimization. 2696 */ 2697 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2698 p->real_parent->signal->is_child_subreaper; 2699 list_add_tail(&p->sibling, &p->real_parent->children); 2700 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2701 attach_pid(p, PIDTYPE_TGID); 2702 attach_pid(p, PIDTYPE_PGID); 2703 attach_pid(p, PIDTYPE_SID); 2704 __this_cpu_inc(process_counts); 2705 } else { 2706 current->signal->nr_threads++; 2707 current->signal->quick_threads++; 2708 atomic_inc(¤t->signal->live); 2709 refcount_inc(¤t->signal->sigcnt); 2710 task_join_group_stop(p); 2711 list_add_tail_rcu(&p->thread_group, 2712 &p->group_leader->thread_group); 2713 list_add_tail_rcu(&p->thread_node, 2714 &p->signal->thread_head); 2715 } 2716 attach_pid(p, PIDTYPE_PID); 2717 nr_threads++; 2718 } 2719 total_forks++; 2720 hlist_del_init(&delayed.node); 2721 spin_unlock(¤t->sighand->siglock); 2722 syscall_tracepoint_update(p); 2723 write_unlock_irq(&tasklist_lock); 2724 2725 if (pidfile) 2726 fd_install(pidfd, pidfile); 2727 2728 proc_fork_connector(p); 2729 sched_post_fork(p); 2730 cgroup_post_fork(p, args); 2731 perf_event_fork(p); 2732 2733 trace_task_newtask(p, clone_flags); 2734 uprobe_copy_process(p, clone_flags); 2735 user_events_fork(p, clone_flags); 2736 2737 copy_oom_score_adj(clone_flags, p); 2738 2739 return p; 2740 2741 bad_fork_cancel_cgroup: 2742 sched_core_free(p); 2743 spin_unlock(¤t->sighand->siglock); 2744 write_unlock_irq(&tasklist_lock); 2745 cgroup_cancel_fork(p, args); 2746 bad_fork_put_pidfd: 2747 if (clone_flags & CLONE_PIDFD) { 2748 fput(pidfile); 2749 put_unused_fd(pidfd); 2750 } 2751 bad_fork_free_pid: 2752 if (pid != &init_struct_pid) 2753 free_pid(pid); 2754 bad_fork_cleanup_thread: 2755 exit_thread(p); 2756 bad_fork_cleanup_io: 2757 if (p->io_context) 2758 exit_io_context(p); 2759 bad_fork_cleanup_namespaces: 2760 exit_task_namespaces(p); 2761 bad_fork_cleanup_mm: 2762 if (p->mm) { 2763 mm_clear_owner(p->mm, p); 2764 mmput(p->mm); 2765 } 2766 bad_fork_cleanup_signal: 2767 if (!(clone_flags & CLONE_THREAD)) 2768 free_signal_struct(p->signal); 2769 bad_fork_cleanup_sighand: 2770 __cleanup_sighand(p->sighand); 2771 bad_fork_cleanup_fs: 2772 exit_fs(p); /* blocking */ 2773 bad_fork_cleanup_files: 2774 exit_files(p); /* blocking */ 2775 bad_fork_cleanup_semundo: 2776 exit_sem(p); 2777 bad_fork_cleanup_security: 2778 security_task_free(p); 2779 bad_fork_cleanup_audit: 2780 audit_free(p); 2781 bad_fork_cleanup_perf: 2782 perf_event_free_task(p); 2783 bad_fork_cleanup_policy: 2784 lockdep_free_task(p); 2785 #ifdef CONFIG_NUMA 2786 mpol_put(p->mempolicy); 2787 #endif 2788 bad_fork_cleanup_delayacct: 2789 delayacct_tsk_free(p); 2790 bad_fork_cleanup_count: 2791 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2792 exit_creds(p); 2793 bad_fork_free: 2794 WRITE_ONCE(p->__state, TASK_DEAD); 2795 exit_task_stack_account(p); 2796 put_task_stack(p); 2797 delayed_free_task(p); 2798 fork_out: 2799 spin_lock_irq(¤t->sighand->siglock); 2800 hlist_del_init(&delayed.node); 2801 spin_unlock_irq(¤t->sighand->siglock); 2802 return ERR_PTR(retval); 2803 } 2804 2805 static inline void init_idle_pids(struct task_struct *idle) 2806 { 2807 enum pid_type type; 2808 2809 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2810 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2811 init_task_pid(idle, type, &init_struct_pid); 2812 } 2813 } 2814 2815 static int idle_dummy(void *dummy) 2816 { 2817 /* This function is never called */ 2818 return 0; 2819 } 2820 2821 struct task_struct * __init fork_idle(int cpu) 2822 { 2823 struct task_struct *task; 2824 struct kernel_clone_args args = { 2825 .flags = CLONE_VM, 2826 .fn = &idle_dummy, 2827 .fn_arg = NULL, 2828 .kthread = 1, 2829 .idle = 1, 2830 }; 2831 2832 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2833 if (!IS_ERR(task)) { 2834 init_idle_pids(task); 2835 init_idle(task, cpu); 2836 } 2837 2838 return task; 2839 } 2840 2841 /* 2842 * This is like kernel_clone(), but shaved down and tailored to just 2843 * creating io_uring workers. It returns a created task, or an error pointer. 2844 * The returned task is inactive, and the caller must fire it up through 2845 * wake_up_new_task(p). All signals are blocked in the created task. 2846 */ 2847 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2848 { 2849 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2850 CLONE_IO; 2851 struct kernel_clone_args args = { 2852 .flags = ((lower_32_bits(flags) | CLONE_VM | 2853 CLONE_UNTRACED) & ~CSIGNAL), 2854 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2855 .fn = fn, 2856 .fn_arg = arg, 2857 .io_thread = 1, 2858 .user_worker = 1, 2859 }; 2860 2861 return copy_process(NULL, 0, node, &args); 2862 } 2863 2864 /* 2865 * Ok, this is the main fork-routine. 2866 * 2867 * It copies the process, and if successful kick-starts 2868 * it and waits for it to finish using the VM if required. 2869 * 2870 * args->exit_signal is expected to be checked for sanity by the caller. 2871 */ 2872 pid_t kernel_clone(struct kernel_clone_args *args) 2873 { 2874 u64 clone_flags = args->flags; 2875 struct completion vfork; 2876 struct pid *pid; 2877 struct task_struct *p; 2878 int trace = 0; 2879 pid_t nr; 2880 2881 /* 2882 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2883 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2884 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2885 * field in struct clone_args and it still doesn't make sense to have 2886 * them both point at the same memory location. Performing this check 2887 * here has the advantage that we don't need to have a separate helper 2888 * to check for legacy clone(). 2889 */ 2890 if ((args->flags & CLONE_PIDFD) && 2891 (args->flags & CLONE_PARENT_SETTID) && 2892 (args->pidfd == args->parent_tid)) 2893 return -EINVAL; 2894 2895 /* 2896 * Determine whether and which event to report to ptracer. When 2897 * called from kernel_thread or CLONE_UNTRACED is explicitly 2898 * requested, no event is reported; otherwise, report if the event 2899 * for the type of forking is enabled. 2900 */ 2901 if (!(clone_flags & CLONE_UNTRACED)) { 2902 if (clone_flags & CLONE_VFORK) 2903 trace = PTRACE_EVENT_VFORK; 2904 else if (args->exit_signal != SIGCHLD) 2905 trace = PTRACE_EVENT_CLONE; 2906 else 2907 trace = PTRACE_EVENT_FORK; 2908 2909 if (likely(!ptrace_event_enabled(current, trace))) 2910 trace = 0; 2911 } 2912 2913 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2914 add_latent_entropy(); 2915 2916 if (IS_ERR(p)) 2917 return PTR_ERR(p); 2918 2919 /* 2920 * Do this prior waking up the new thread - the thread pointer 2921 * might get invalid after that point, if the thread exits quickly. 2922 */ 2923 trace_sched_process_fork(current, p); 2924 2925 pid = get_task_pid(p, PIDTYPE_PID); 2926 nr = pid_vnr(pid); 2927 2928 if (clone_flags & CLONE_PARENT_SETTID) 2929 put_user(nr, args->parent_tid); 2930 2931 if (clone_flags & CLONE_VFORK) { 2932 p->vfork_done = &vfork; 2933 init_completion(&vfork); 2934 get_task_struct(p); 2935 } 2936 2937 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2938 /* lock the task to synchronize with memcg migration */ 2939 task_lock(p); 2940 lru_gen_add_mm(p->mm); 2941 task_unlock(p); 2942 } 2943 2944 wake_up_new_task(p); 2945 2946 /* forking complete and child started to run, tell ptracer */ 2947 if (unlikely(trace)) 2948 ptrace_event_pid(trace, pid); 2949 2950 if (clone_flags & CLONE_VFORK) { 2951 if (!wait_for_vfork_done(p, &vfork)) 2952 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2953 } 2954 2955 put_pid(pid); 2956 return nr; 2957 } 2958 2959 /* 2960 * Create a kernel thread. 2961 */ 2962 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2963 unsigned long flags) 2964 { 2965 struct kernel_clone_args args = { 2966 .flags = ((lower_32_bits(flags) | CLONE_VM | 2967 CLONE_UNTRACED) & ~CSIGNAL), 2968 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2969 .fn = fn, 2970 .fn_arg = arg, 2971 .name = name, 2972 .kthread = 1, 2973 }; 2974 2975 return kernel_clone(&args); 2976 } 2977 2978 /* 2979 * Create a user mode thread. 2980 */ 2981 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2982 { 2983 struct kernel_clone_args args = { 2984 .flags = ((lower_32_bits(flags) | CLONE_VM | 2985 CLONE_UNTRACED) & ~CSIGNAL), 2986 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2987 .fn = fn, 2988 .fn_arg = arg, 2989 }; 2990 2991 return kernel_clone(&args); 2992 } 2993 2994 #ifdef __ARCH_WANT_SYS_FORK 2995 SYSCALL_DEFINE0(fork) 2996 { 2997 #ifdef CONFIG_MMU 2998 struct kernel_clone_args args = { 2999 .exit_signal = SIGCHLD, 3000 }; 3001 3002 return kernel_clone(&args); 3003 #else 3004 /* can not support in nommu mode */ 3005 return -EINVAL; 3006 #endif 3007 } 3008 #endif 3009 3010 #ifdef __ARCH_WANT_SYS_VFORK 3011 SYSCALL_DEFINE0(vfork) 3012 { 3013 struct kernel_clone_args args = { 3014 .flags = CLONE_VFORK | CLONE_VM, 3015 .exit_signal = SIGCHLD, 3016 }; 3017 3018 return kernel_clone(&args); 3019 } 3020 #endif 3021 3022 #ifdef __ARCH_WANT_SYS_CLONE 3023 #ifdef CONFIG_CLONE_BACKWARDS 3024 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3025 int __user *, parent_tidptr, 3026 unsigned long, tls, 3027 int __user *, child_tidptr) 3028 #elif defined(CONFIG_CLONE_BACKWARDS2) 3029 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3030 int __user *, parent_tidptr, 3031 int __user *, child_tidptr, 3032 unsigned long, tls) 3033 #elif defined(CONFIG_CLONE_BACKWARDS3) 3034 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3035 int, stack_size, 3036 int __user *, parent_tidptr, 3037 int __user *, child_tidptr, 3038 unsigned long, tls) 3039 #else 3040 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3041 int __user *, parent_tidptr, 3042 int __user *, child_tidptr, 3043 unsigned long, tls) 3044 #endif 3045 { 3046 struct kernel_clone_args args = { 3047 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3048 .pidfd = parent_tidptr, 3049 .child_tid = child_tidptr, 3050 .parent_tid = parent_tidptr, 3051 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3052 .stack = newsp, 3053 .tls = tls, 3054 }; 3055 3056 return kernel_clone(&args); 3057 } 3058 #endif 3059 3060 #ifdef __ARCH_WANT_SYS_CLONE3 3061 3062 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3063 struct clone_args __user *uargs, 3064 size_t usize) 3065 { 3066 int err; 3067 struct clone_args args; 3068 pid_t *kset_tid = kargs->set_tid; 3069 3070 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3071 CLONE_ARGS_SIZE_VER0); 3072 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3073 CLONE_ARGS_SIZE_VER1); 3074 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3075 CLONE_ARGS_SIZE_VER2); 3076 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3077 3078 if (unlikely(usize > PAGE_SIZE)) 3079 return -E2BIG; 3080 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3081 return -EINVAL; 3082 3083 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3084 if (err) 3085 return err; 3086 3087 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3088 return -EINVAL; 3089 3090 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3091 return -EINVAL; 3092 3093 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3094 return -EINVAL; 3095 3096 /* 3097 * Verify that higher 32bits of exit_signal are unset and that 3098 * it is a valid signal 3099 */ 3100 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3101 !valid_signal(args.exit_signal))) 3102 return -EINVAL; 3103 3104 if ((args.flags & CLONE_INTO_CGROUP) && 3105 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3106 return -EINVAL; 3107 3108 *kargs = (struct kernel_clone_args){ 3109 .flags = args.flags, 3110 .pidfd = u64_to_user_ptr(args.pidfd), 3111 .child_tid = u64_to_user_ptr(args.child_tid), 3112 .parent_tid = u64_to_user_ptr(args.parent_tid), 3113 .exit_signal = args.exit_signal, 3114 .stack = args.stack, 3115 .stack_size = args.stack_size, 3116 .tls = args.tls, 3117 .set_tid_size = args.set_tid_size, 3118 .cgroup = args.cgroup, 3119 }; 3120 3121 if (args.set_tid && 3122 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3123 (kargs->set_tid_size * sizeof(pid_t)))) 3124 return -EFAULT; 3125 3126 kargs->set_tid = kset_tid; 3127 3128 return 0; 3129 } 3130 3131 /** 3132 * clone3_stack_valid - check and prepare stack 3133 * @kargs: kernel clone args 3134 * 3135 * Verify that the stack arguments userspace gave us are sane. 3136 * In addition, set the stack direction for userspace since it's easy for us to 3137 * determine. 3138 */ 3139 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3140 { 3141 if (kargs->stack == 0) { 3142 if (kargs->stack_size > 0) 3143 return false; 3144 } else { 3145 if (kargs->stack_size == 0) 3146 return false; 3147 3148 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3149 return false; 3150 3151 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3152 kargs->stack += kargs->stack_size; 3153 #endif 3154 } 3155 3156 return true; 3157 } 3158 3159 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3160 { 3161 /* Verify that no unknown flags are passed along. */ 3162 if (kargs->flags & 3163 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3164 return false; 3165 3166 /* 3167 * - make the CLONE_DETACHED bit reusable for clone3 3168 * - make the CSIGNAL bits reusable for clone3 3169 */ 3170 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3171 return false; 3172 3173 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3174 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3175 return false; 3176 3177 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3178 kargs->exit_signal) 3179 return false; 3180 3181 if (!clone3_stack_valid(kargs)) 3182 return false; 3183 3184 return true; 3185 } 3186 3187 /** 3188 * clone3 - create a new process with specific properties 3189 * @uargs: argument structure 3190 * @size: size of @uargs 3191 * 3192 * clone3() is the extensible successor to clone()/clone2(). 3193 * It takes a struct as argument that is versioned by its size. 3194 * 3195 * Return: On success, a positive PID for the child process. 3196 * On error, a negative errno number. 3197 */ 3198 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3199 { 3200 int err; 3201 3202 struct kernel_clone_args kargs; 3203 pid_t set_tid[MAX_PID_NS_LEVEL]; 3204 3205 kargs.set_tid = set_tid; 3206 3207 err = copy_clone_args_from_user(&kargs, uargs, size); 3208 if (err) 3209 return err; 3210 3211 if (!clone3_args_valid(&kargs)) 3212 return -EINVAL; 3213 3214 return kernel_clone(&kargs); 3215 } 3216 #endif 3217 3218 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3219 { 3220 struct task_struct *leader, *parent, *child; 3221 int res; 3222 3223 read_lock(&tasklist_lock); 3224 leader = top = top->group_leader; 3225 down: 3226 for_each_thread(leader, parent) { 3227 list_for_each_entry(child, &parent->children, sibling) { 3228 res = visitor(child, data); 3229 if (res) { 3230 if (res < 0) 3231 goto out; 3232 leader = child; 3233 goto down; 3234 } 3235 up: 3236 ; 3237 } 3238 } 3239 3240 if (leader != top) { 3241 child = leader; 3242 parent = child->real_parent; 3243 leader = parent->group_leader; 3244 goto up; 3245 } 3246 out: 3247 read_unlock(&tasklist_lock); 3248 } 3249 3250 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3251 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3252 #endif 3253 3254 static void sighand_ctor(void *data) 3255 { 3256 struct sighand_struct *sighand = data; 3257 3258 spin_lock_init(&sighand->siglock); 3259 init_waitqueue_head(&sighand->signalfd_wqh); 3260 } 3261 3262 void __init mm_cache_init(void) 3263 { 3264 unsigned int mm_size; 3265 3266 /* 3267 * The mm_cpumask is located at the end of mm_struct, and is 3268 * dynamically sized based on the maximum CPU number this system 3269 * can have, taking hotplug into account (nr_cpu_ids). 3270 */ 3271 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3272 3273 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3274 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3276 offsetof(struct mm_struct, saved_auxv), 3277 sizeof_field(struct mm_struct, saved_auxv), 3278 NULL); 3279 } 3280 3281 void __init proc_caches_init(void) 3282 { 3283 sighand_cachep = kmem_cache_create("sighand_cache", 3284 sizeof(struct sighand_struct), 0, 3285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3286 SLAB_ACCOUNT, sighand_ctor); 3287 signal_cachep = kmem_cache_create("signal_cache", 3288 sizeof(struct signal_struct), 0, 3289 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3290 NULL); 3291 files_cachep = kmem_cache_create("files_cache", 3292 sizeof(struct files_struct), 0, 3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3294 NULL); 3295 fs_cachep = kmem_cache_create("fs_cache", 3296 sizeof(struct fs_struct), 0, 3297 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3298 NULL); 3299 3300 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3301 #ifdef CONFIG_PER_VMA_LOCK 3302 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3303 #endif 3304 mmap_init(); 3305 nsproxy_cache_init(); 3306 } 3307 3308 /* 3309 * Check constraints on flags passed to the unshare system call. 3310 */ 3311 static int check_unshare_flags(unsigned long unshare_flags) 3312 { 3313 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3314 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3315 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3316 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3317 CLONE_NEWTIME)) 3318 return -EINVAL; 3319 /* 3320 * Not implemented, but pretend it works if there is nothing 3321 * to unshare. Note that unsharing the address space or the 3322 * signal handlers also need to unshare the signal queues (aka 3323 * CLONE_THREAD). 3324 */ 3325 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3326 if (!thread_group_empty(current)) 3327 return -EINVAL; 3328 } 3329 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3330 if (refcount_read(¤t->sighand->count) > 1) 3331 return -EINVAL; 3332 } 3333 if (unshare_flags & CLONE_VM) { 3334 if (!current_is_single_threaded()) 3335 return -EINVAL; 3336 } 3337 3338 return 0; 3339 } 3340 3341 /* 3342 * Unshare the filesystem structure if it is being shared 3343 */ 3344 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3345 { 3346 struct fs_struct *fs = current->fs; 3347 3348 if (!(unshare_flags & CLONE_FS) || !fs) 3349 return 0; 3350 3351 /* don't need lock here; in the worst case we'll do useless copy */ 3352 if (fs->users == 1) 3353 return 0; 3354 3355 *new_fsp = copy_fs_struct(fs); 3356 if (!*new_fsp) 3357 return -ENOMEM; 3358 3359 return 0; 3360 } 3361 3362 /* 3363 * Unshare file descriptor table if it is being shared 3364 */ 3365 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3366 { 3367 struct files_struct *fd = current->files; 3368 3369 if ((unshare_flags & CLONE_FILES) && 3370 (fd && atomic_read(&fd->count) > 1)) { 3371 fd = dup_fd(fd, NULL); 3372 if (IS_ERR(fd)) 3373 return PTR_ERR(fd); 3374 *new_fdp = fd; 3375 } 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * unshare allows a process to 'unshare' part of the process 3382 * context which was originally shared using clone. copy_* 3383 * functions used by kernel_clone() cannot be used here directly 3384 * because they modify an inactive task_struct that is being 3385 * constructed. Here we are modifying the current, active, 3386 * task_struct. 3387 */ 3388 int ksys_unshare(unsigned long unshare_flags) 3389 { 3390 struct fs_struct *fs, *new_fs = NULL; 3391 struct files_struct *new_fd = NULL; 3392 struct cred *new_cred = NULL; 3393 struct nsproxy *new_nsproxy = NULL; 3394 int do_sysvsem = 0; 3395 int err; 3396 3397 /* 3398 * If unsharing a user namespace must also unshare the thread group 3399 * and unshare the filesystem root and working directories. 3400 */ 3401 if (unshare_flags & CLONE_NEWUSER) 3402 unshare_flags |= CLONE_THREAD | CLONE_FS; 3403 /* 3404 * If unsharing vm, must also unshare signal handlers. 3405 */ 3406 if (unshare_flags & CLONE_VM) 3407 unshare_flags |= CLONE_SIGHAND; 3408 /* 3409 * If unsharing a signal handlers, must also unshare the signal queues. 3410 */ 3411 if (unshare_flags & CLONE_SIGHAND) 3412 unshare_flags |= CLONE_THREAD; 3413 /* 3414 * If unsharing namespace, must also unshare filesystem information. 3415 */ 3416 if (unshare_flags & CLONE_NEWNS) 3417 unshare_flags |= CLONE_FS; 3418 3419 err = check_unshare_flags(unshare_flags); 3420 if (err) 3421 goto bad_unshare_out; 3422 /* 3423 * CLONE_NEWIPC must also detach from the undolist: after switching 3424 * to a new ipc namespace, the semaphore arrays from the old 3425 * namespace are unreachable. 3426 */ 3427 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3428 do_sysvsem = 1; 3429 err = unshare_fs(unshare_flags, &new_fs); 3430 if (err) 3431 goto bad_unshare_out; 3432 err = unshare_fd(unshare_flags, &new_fd); 3433 if (err) 3434 goto bad_unshare_cleanup_fs; 3435 err = unshare_userns(unshare_flags, &new_cred); 3436 if (err) 3437 goto bad_unshare_cleanup_fd; 3438 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3439 new_cred, new_fs); 3440 if (err) 3441 goto bad_unshare_cleanup_cred; 3442 3443 if (new_cred) { 3444 err = set_cred_ucounts(new_cred); 3445 if (err) 3446 goto bad_unshare_cleanup_cred; 3447 } 3448 3449 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3450 if (do_sysvsem) { 3451 /* 3452 * CLONE_SYSVSEM is equivalent to sys_exit(). 3453 */ 3454 exit_sem(current); 3455 } 3456 if (unshare_flags & CLONE_NEWIPC) { 3457 /* Orphan segments in old ns (see sem above). */ 3458 exit_shm(current); 3459 shm_init_task(current); 3460 } 3461 3462 if (new_nsproxy) 3463 switch_task_namespaces(current, new_nsproxy); 3464 3465 task_lock(current); 3466 3467 if (new_fs) { 3468 fs = current->fs; 3469 spin_lock(&fs->lock); 3470 current->fs = new_fs; 3471 if (--fs->users) 3472 new_fs = NULL; 3473 else 3474 new_fs = fs; 3475 spin_unlock(&fs->lock); 3476 } 3477 3478 if (new_fd) 3479 swap(current->files, new_fd); 3480 3481 task_unlock(current); 3482 3483 if (new_cred) { 3484 /* Install the new user namespace */ 3485 commit_creds(new_cred); 3486 new_cred = NULL; 3487 } 3488 } 3489 3490 perf_event_namespaces(current); 3491 3492 bad_unshare_cleanup_cred: 3493 if (new_cred) 3494 put_cred(new_cred); 3495 bad_unshare_cleanup_fd: 3496 if (new_fd) 3497 put_files_struct(new_fd); 3498 3499 bad_unshare_cleanup_fs: 3500 if (new_fs) 3501 free_fs_struct(new_fs); 3502 3503 bad_unshare_out: 3504 return err; 3505 } 3506 3507 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3508 { 3509 return ksys_unshare(unshare_flags); 3510 } 3511 3512 /* 3513 * Helper to unshare the files of the current task. 3514 * We don't want to expose copy_files internals to 3515 * the exec layer of the kernel. 3516 */ 3517 3518 int unshare_files(void) 3519 { 3520 struct task_struct *task = current; 3521 struct files_struct *old, *copy = NULL; 3522 int error; 3523 3524 error = unshare_fd(CLONE_FILES, ©); 3525 if (error || !copy) 3526 return error; 3527 3528 old = task->files; 3529 task_lock(task); 3530 task->files = copy; 3531 task_unlock(task); 3532 put_files_struct(old); 3533 return 0; 3534 } 3535 3536 int sysctl_max_threads(struct ctl_table *table, int write, 3537 void *buffer, size_t *lenp, loff_t *ppos) 3538 { 3539 struct ctl_table t; 3540 int ret; 3541 int threads = max_threads; 3542 int min = 1; 3543 int max = MAX_THREADS; 3544 3545 t = *table; 3546 t.data = &threads; 3547 t.extra1 = &min; 3548 t.extra2 = &max; 3549 3550 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3551 if (ret || !write) 3552 return ret; 3553 3554 max_threads = threads; 3555 3556 return 0; 3557 } 3558