xref: /openbmc/linux/kernel/fork.c (revision 034f90b3)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84 
85 #include <trace/events/sched.h>
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89 
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;	/* Handle normal Linux uptimes. */
94 int nr_threads;			/* The idle threads do not count.. */
95 
96 int max_threads;		/* tunable limit on nr_threads */
97 
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101 
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 	return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109 
110 int nr_processes(void)
111 {
112 	int cpu;
113 	int total = 0;
114 
115 	for_each_possible_cpu(cpu)
116 		total += per_cpu(process_counts, cpu);
117 
118 	return total;
119 }
120 
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124 
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127 
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132 
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 	kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138 
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142 
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144 
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 						  int node)
152 {
153 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 						  THREAD_SIZE_ORDER);
155 
156 	return page ? page_address(page) : NULL;
157 }
158 
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165 
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 						  int node)
168 {
169 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171 
172 static void free_thread_info(struct thread_info *ti)
173 {
174 	kmem_cache_free(thread_info_cache, ti);
175 }
176 
177 void thread_info_cache_init(void)
178 {
179 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 					      THREAD_SIZE, 0, NULL);
181 	BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185 
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188 
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191 
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194 
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197 
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200 
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203 
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 	struct zone *zone = page_zone(virt_to_page(ti));
207 
208 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210 
211 void free_task(struct task_struct *tsk)
212 {
213 	account_kernel_stack(tsk->stack, -1);
214 	arch_release_thread_info(tsk->stack);
215 	free_thread_info(tsk->stack);
216 	rt_mutex_debug_task_free(tsk);
217 	ftrace_graph_exit_task(tsk);
218 	put_seccomp_filter(tsk);
219 	arch_release_task_struct(tsk);
220 	free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223 
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 	taskstats_tgid_free(sig);
227 	sched_autogroup_exit(sig);
228 	kmem_cache_free(signal_cachep, sig);
229 }
230 
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 	if (atomic_dec_and_test(&sig->sigcnt))
234 		free_signal_struct(sig);
235 }
236 
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 	WARN_ON(!tsk->exit_state);
240 	WARN_ON(atomic_read(&tsk->usage));
241 	WARN_ON(tsk == current);
242 
243 	task_numa_free(tsk);
244 	security_task_free(tsk);
245 	exit_creds(tsk);
246 	delayacct_tsk_free(tsk);
247 	put_signal_struct(tsk->signal);
248 
249 	if (!profile_handoff_task(tsk))
250 		free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253 
254 void __init __weak arch_task_cache_init(void) { }
255 
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
261 #endif
262 	/* create a slab on which task_structs can be allocated */
263 	task_struct_cachep =
264 		kmem_cache_create("task_struct", sizeof(struct task_struct),
265 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267 
268 	/* do the arch specific task caches init */
269 	arch_task_cache_init();
270 
271 	/*
272 	 * The default maximum number of threads is set to a safe
273 	 * value: the thread structures can take up at most half
274 	 * of memory.
275 	 */
276 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 
278 	/*
279 	 * we need to allow at least 20 threads to boot a system
280 	 */
281 	if (max_threads < 20)
282 		max_threads = 20;
283 
284 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 		init_task.signal->rlim[RLIMIT_NPROC];
288 }
289 
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 					       struct task_struct *src)
292 {
293 	*dst = *src;
294 	return 0;
295 }
296 
297 void set_task_stack_end_magic(struct task_struct *tsk)
298 {
299 	unsigned long *stackend;
300 
301 	stackend = end_of_stack(tsk);
302 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
303 }
304 
305 static struct task_struct *dup_task_struct(struct task_struct *orig)
306 {
307 	struct task_struct *tsk;
308 	struct thread_info *ti;
309 	int node = tsk_fork_get_node(orig);
310 	int err;
311 
312 	tsk = alloc_task_struct_node(node);
313 	if (!tsk)
314 		return NULL;
315 
316 	ti = alloc_thread_info_node(tsk, node);
317 	if (!ti)
318 		goto free_tsk;
319 
320 	err = arch_dup_task_struct(tsk, orig);
321 	if (err)
322 		goto free_ti;
323 
324 	tsk->stack = ti;
325 #ifdef CONFIG_SECCOMP
326 	/*
327 	 * We must handle setting up seccomp filters once we're under
328 	 * the sighand lock in case orig has changed between now and
329 	 * then. Until then, filter must be NULL to avoid messing up
330 	 * the usage counts on the error path calling free_task.
331 	 */
332 	tsk->seccomp.filter = NULL;
333 #endif
334 
335 	setup_thread_stack(tsk, orig);
336 	clear_user_return_notifier(tsk);
337 	clear_tsk_need_resched(tsk);
338 	set_task_stack_end_magic(tsk);
339 
340 #ifdef CONFIG_CC_STACKPROTECTOR
341 	tsk->stack_canary = get_random_int();
342 #endif
343 
344 	/*
345 	 * One for us, one for whoever does the "release_task()" (usually
346 	 * parent)
347 	 */
348 	atomic_set(&tsk->usage, 2);
349 #ifdef CONFIG_BLK_DEV_IO_TRACE
350 	tsk->btrace_seq = 0;
351 #endif
352 	tsk->splice_pipe = NULL;
353 	tsk->task_frag.page = NULL;
354 
355 	account_kernel_stack(ti, 1);
356 
357 	return tsk;
358 
359 free_ti:
360 	free_thread_info(ti);
361 free_tsk:
362 	free_task_struct(tsk);
363 	return NULL;
364 }
365 
366 #ifdef CONFIG_MMU
367 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
368 {
369 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
370 	struct rb_node **rb_link, *rb_parent;
371 	int retval;
372 	unsigned long charge;
373 
374 	uprobe_start_dup_mmap();
375 	down_write(&oldmm->mmap_sem);
376 	flush_cache_dup_mm(oldmm);
377 	uprobe_dup_mmap(oldmm, mm);
378 	/*
379 	 * Not linked in yet - no deadlock potential:
380 	 */
381 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
382 
383 	mm->total_vm = oldmm->total_vm;
384 	mm->shared_vm = oldmm->shared_vm;
385 	mm->exec_vm = oldmm->exec_vm;
386 	mm->stack_vm = oldmm->stack_vm;
387 
388 	rb_link = &mm->mm_rb.rb_node;
389 	rb_parent = NULL;
390 	pprev = &mm->mmap;
391 	retval = ksm_fork(mm, oldmm);
392 	if (retval)
393 		goto out;
394 	retval = khugepaged_fork(mm, oldmm);
395 	if (retval)
396 		goto out;
397 
398 	prev = NULL;
399 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
400 		struct file *file;
401 
402 		if (mpnt->vm_flags & VM_DONTCOPY) {
403 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
404 							-vma_pages(mpnt));
405 			continue;
406 		}
407 		charge = 0;
408 		if (mpnt->vm_flags & VM_ACCOUNT) {
409 			unsigned long len = vma_pages(mpnt);
410 
411 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
412 				goto fail_nomem;
413 			charge = len;
414 		}
415 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
416 		if (!tmp)
417 			goto fail_nomem;
418 		*tmp = *mpnt;
419 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
420 		retval = vma_dup_policy(mpnt, tmp);
421 		if (retval)
422 			goto fail_nomem_policy;
423 		tmp->vm_mm = mm;
424 		if (anon_vma_fork(tmp, mpnt))
425 			goto fail_nomem_anon_vma_fork;
426 		tmp->vm_flags &= ~VM_LOCKED;
427 		tmp->vm_next = tmp->vm_prev = NULL;
428 		file = tmp->vm_file;
429 		if (file) {
430 			struct inode *inode = file_inode(file);
431 			struct address_space *mapping = file->f_mapping;
432 
433 			get_file(file);
434 			if (tmp->vm_flags & VM_DENYWRITE)
435 				atomic_dec(&inode->i_writecount);
436 			i_mmap_lock_write(mapping);
437 			if (tmp->vm_flags & VM_SHARED)
438 				atomic_inc(&mapping->i_mmap_writable);
439 			flush_dcache_mmap_lock(mapping);
440 			/* insert tmp into the share list, just after mpnt */
441 			vma_interval_tree_insert_after(tmp, mpnt,
442 					&mapping->i_mmap);
443 			flush_dcache_mmap_unlock(mapping);
444 			i_mmap_unlock_write(mapping);
445 		}
446 
447 		/*
448 		 * Clear hugetlb-related page reserves for children. This only
449 		 * affects MAP_PRIVATE mappings. Faults generated by the child
450 		 * are not guaranteed to succeed, even if read-only
451 		 */
452 		if (is_vm_hugetlb_page(tmp))
453 			reset_vma_resv_huge_pages(tmp);
454 
455 		/*
456 		 * Link in the new vma and copy the page table entries.
457 		 */
458 		*pprev = tmp;
459 		pprev = &tmp->vm_next;
460 		tmp->vm_prev = prev;
461 		prev = tmp;
462 
463 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
464 		rb_link = &tmp->vm_rb.rb_right;
465 		rb_parent = &tmp->vm_rb;
466 
467 		mm->map_count++;
468 		retval = copy_page_range(mm, oldmm, mpnt);
469 
470 		if (tmp->vm_ops && tmp->vm_ops->open)
471 			tmp->vm_ops->open(tmp);
472 
473 		if (retval)
474 			goto out;
475 	}
476 	/* a new mm has just been created */
477 	arch_dup_mmap(oldmm, mm);
478 	retval = 0;
479 out:
480 	up_write(&mm->mmap_sem);
481 	flush_tlb_mm(oldmm);
482 	up_write(&oldmm->mmap_sem);
483 	uprobe_end_dup_mmap();
484 	return retval;
485 fail_nomem_anon_vma_fork:
486 	mpol_put(vma_policy(tmp));
487 fail_nomem_policy:
488 	kmem_cache_free(vm_area_cachep, tmp);
489 fail_nomem:
490 	retval = -ENOMEM;
491 	vm_unacct_memory(charge);
492 	goto out;
493 }
494 
495 static inline int mm_alloc_pgd(struct mm_struct *mm)
496 {
497 	mm->pgd = pgd_alloc(mm);
498 	if (unlikely(!mm->pgd))
499 		return -ENOMEM;
500 	return 0;
501 }
502 
503 static inline void mm_free_pgd(struct mm_struct *mm)
504 {
505 	pgd_free(mm, mm->pgd);
506 }
507 #else
508 #define dup_mmap(mm, oldmm)	(0)
509 #define mm_alloc_pgd(mm)	(0)
510 #define mm_free_pgd(mm)
511 #endif /* CONFIG_MMU */
512 
513 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
514 
515 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
516 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
517 
518 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
519 
520 static int __init coredump_filter_setup(char *s)
521 {
522 	default_dump_filter =
523 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
524 		MMF_DUMP_FILTER_MASK;
525 	return 1;
526 }
527 
528 __setup("coredump_filter=", coredump_filter_setup);
529 
530 #include <linux/init_task.h>
531 
532 static void mm_init_aio(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_AIO
535 	spin_lock_init(&mm->ioctx_lock);
536 	mm->ioctx_table = NULL;
537 #endif
538 }
539 
540 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
541 {
542 #ifdef CONFIG_MEMCG
543 	mm->owner = p;
544 #endif
545 }
546 
547 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
548 {
549 	mm->mmap = NULL;
550 	mm->mm_rb = RB_ROOT;
551 	mm->vmacache_seqnum = 0;
552 	atomic_set(&mm->mm_users, 1);
553 	atomic_set(&mm->mm_count, 1);
554 	init_rwsem(&mm->mmap_sem);
555 	INIT_LIST_HEAD(&mm->mmlist);
556 	mm->core_state = NULL;
557 	atomic_long_set(&mm->nr_ptes, 0);
558 	mm_nr_pmds_init(mm);
559 	mm->map_count = 0;
560 	mm->locked_vm = 0;
561 	mm->pinned_vm = 0;
562 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
563 	spin_lock_init(&mm->page_table_lock);
564 	mm_init_cpumask(mm);
565 	mm_init_aio(mm);
566 	mm_init_owner(mm, p);
567 	mmu_notifier_mm_init(mm);
568 	clear_tlb_flush_pending(mm);
569 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
570 	mm->pmd_huge_pte = NULL;
571 #endif
572 
573 	if (current->mm) {
574 		mm->flags = current->mm->flags & MMF_INIT_MASK;
575 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
576 	} else {
577 		mm->flags = default_dump_filter;
578 		mm->def_flags = 0;
579 	}
580 
581 	if (mm_alloc_pgd(mm))
582 		goto fail_nopgd;
583 
584 	if (init_new_context(p, mm))
585 		goto fail_nocontext;
586 
587 	return mm;
588 
589 fail_nocontext:
590 	mm_free_pgd(mm);
591 fail_nopgd:
592 	free_mm(mm);
593 	return NULL;
594 }
595 
596 static void check_mm(struct mm_struct *mm)
597 {
598 	int i;
599 
600 	for (i = 0; i < NR_MM_COUNTERS; i++) {
601 		long x = atomic_long_read(&mm->rss_stat.count[i]);
602 
603 		if (unlikely(x))
604 			printk(KERN_ALERT "BUG: Bad rss-counter state "
605 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
606 	}
607 
608 	if (atomic_long_read(&mm->nr_ptes))
609 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
610 				atomic_long_read(&mm->nr_ptes));
611 	if (mm_nr_pmds(mm))
612 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
613 				mm_nr_pmds(mm));
614 
615 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
616 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
617 #endif
618 }
619 
620 /*
621  * Allocate and initialize an mm_struct.
622  */
623 struct mm_struct *mm_alloc(void)
624 {
625 	struct mm_struct *mm;
626 
627 	mm = allocate_mm();
628 	if (!mm)
629 		return NULL;
630 
631 	memset(mm, 0, sizeof(*mm));
632 	return mm_init(mm, current);
633 }
634 
635 /*
636  * Called when the last reference to the mm
637  * is dropped: either by a lazy thread or by
638  * mmput. Free the page directory and the mm.
639  */
640 void __mmdrop(struct mm_struct *mm)
641 {
642 	BUG_ON(mm == &init_mm);
643 	mm_free_pgd(mm);
644 	destroy_context(mm);
645 	mmu_notifier_mm_destroy(mm);
646 	check_mm(mm);
647 	free_mm(mm);
648 }
649 EXPORT_SYMBOL_GPL(__mmdrop);
650 
651 /*
652  * Decrement the use count and release all resources for an mm.
653  */
654 void mmput(struct mm_struct *mm)
655 {
656 	might_sleep();
657 
658 	if (atomic_dec_and_test(&mm->mm_users)) {
659 		uprobe_clear_state(mm);
660 		exit_aio(mm);
661 		ksm_exit(mm);
662 		khugepaged_exit(mm); /* must run before exit_mmap */
663 		exit_mmap(mm);
664 		set_mm_exe_file(mm, NULL);
665 		if (!list_empty(&mm->mmlist)) {
666 			spin_lock(&mmlist_lock);
667 			list_del(&mm->mmlist);
668 			spin_unlock(&mmlist_lock);
669 		}
670 		if (mm->binfmt)
671 			module_put(mm->binfmt->module);
672 		mmdrop(mm);
673 	}
674 }
675 EXPORT_SYMBOL_GPL(mmput);
676 
677 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
678 {
679 	if (new_exe_file)
680 		get_file(new_exe_file);
681 	if (mm->exe_file)
682 		fput(mm->exe_file);
683 	mm->exe_file = new_exe_file;
684 }
685 
686 struct file *get_mm_exe_file(struct mm_struct *mm)
687 {
688 	struct file *exe_file;
689 
690 	/* We need mmap_sem to protect against races with removal of exe_file */
691 	down_read(&mm->mmap_sem);
692 	exe_file = mm->exe_file;
693 	if (exe_file)
694 		get_file(exe_file);
695 	up_read(&mm->mmap_sem);
696 	return exe_file;
697 }
698 
699 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
700 {
701 	/* It's safe to write the exe_file pointer without exe_file_lock because
702 	 * this is called during fork when the task is not yet in /proc */
703 	newmm->exe_file = get_mm_exe_file(oldmm);
704 }
705 
706 /**
707  * get_task_mm - acquire a reference to the task's mm
708  *
709  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
710  * this kernel workthread has transiently adopted a user mm with use_mm,
711  * to do its AIO) is not set and if so returns a reference to it, after
712  * bumping up the use count.  User must release the mm via mmput()
713  * after use.  Typically used by /proc and ptrace.
714  */
715 struct mm_struct *get_task_mm(struct task_struct *task)
716 {
717 	struct mm_struct *mm;
718 
719 	task_lock(task);
720 	mm = task->mm;
721 	if (mm) {
722 		if (task->flags & PF_KTHREAD)
723 			mm = NULL;
724 		else
725 			atomic_inc(&mm->mm_users);
726 	}
727 	task_unlock(task);
728 	return mm;
729 }
730 EXPORT_SYMBOL_GPL(get_task_mm);
731 
732 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
733 {
734 	struct mm_struct *mm;
735 	int err;
736 
737 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
738 	if (err)
739 		return ERR_PTR(err);
740 
741 	mm = get_task_mm(task);
742 	if (mm && mm != current->mm &&
743 			!ptrace_may_access(task, mode)) {
744 		mmput(mm);
745 		mm = ERR_PTR(-EACCES);
746 	}
747 	mutex_unlock(&task->signal->cred_guard_mutex);
748 
749 	return mm;
750 }
751 
752 static void complete_vfork_done(struct task_struct *tsk)
753 {
754 	struct completion *vfork;
755 
756 	task_lock(tsk);
757 	vfork = tsk->vfork_done;
758 	if (likely(vfork)) {
759 		tsk->vfork_done = NULL;
760 		complete(vfork);
761 	}
762 	task_unlock(tsk);
763 }
764 
765 static int wait_for_vfork_done(struct task_struct *child,
766 				struct completion *vfork)
767 {
768 	int killed;
769 
770 	freezer_do_not_count();
771 	killed = wait_for_completion_killable(vfork);
772 	freezer_count();
773 
774 	if (killed) {
775 		task_lock(child);
776 		child->vfork_done = NULL;
777 		task_unlock(child);
778 	}
779 
780 	put_task_struct(child);
781 	return killed;
782 }
783 
784 /* Please note the differences between mmput and mm_release.
785  * mmput is called whenever we stop holding onto a mm_struct,
786  * error success whatever.
787  *
788  * mm_release is called after a mm_struct has been removed
789  * from the current process.
790  *
791  * This difference is important for error handling, when we
792  * only half set up a mm_struct for a new process and need to restore
793  * the old one.  Because we mmput the new mm_struct before
794  * restoring the old one. . .
795  * Eric Biederman 10 January 1998
796  */
797 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
798 {
799 	/* Get rid of any futexes when releasing the mm */
800 #ifdef CONFIG_FUTEX
801 	if (unlikely(tsk->robust_list)) {
802 		exit_robust_list(tsk);
803 		tsk->robust_list = NULL;
804 	}
805 #ifdef CONFIG_COMPAT
806 	if (unlikely(tsk->compat_robust_list)) {
807 		compat_exit_robust_list(tsk);
808 		tsk->compat_robust_list = NULL;
809 	}
810 #endif
811 	if (unlikely(!list_empty(&tsk->pi_state_list)))
812 		exit_pi_state_list(tsk);
813 #endif
814 
815 	uprobe_free_utask(tsk);
816 
817 	/* Get rid of any cached register state */
818 	deactivate_mm(tsk, mm);
819 
820 	/*
821 	 * If we're exiting normally, clear a user-space tid field if
822 	 * requested.  We leave this alone when dying by signal, to leave
823 	 * the value intact in a core dump, and to save the unnecessary
824 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
825 	 * Userland only wants this done for a sys_exit.
826 	 */
827 	if (tsk->clear_child_tid) {
828 		if (!(tsk->flags & PF_SIGNALED) &&
829 		    atomic_read(&mm->mm_users) > 1) {
830 			/*
831 			 * We don't check the error code - if userspace has
832 			 * not set up a proper pointer then tough luck.
833 			 */
834 			put_user(0, tsk->clear_child_tid);
835 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
836 					1, NULL, NULL, 0);
837 		}
838 		tsk->clear_child_tid = NULL;
839 	}
840 
841 	/*
842 	 * All done, finally we can wake up parent and return this mm to him.
843 	 * Also kthread_stop() uses this completion for synchronization.
844 	 */
845 	if (tsk->vfork_done)
846 		complete_vfork_done(tsk);
847 }
848 
849 /*
850  * Allocate a new mm structure and copy contents from the
851  * mm structure of the passed in task structure.
852  */
853 static struct mm_struct *dup_mm(struct task_struct *tsk)
854 {
855 	struct mm_struct *mm, *oldmm = current->mm;
856 	int err;
857 
858 	mm = allocate_mm();
859 	if (!mm)
860 		goto fail_nomem;
861 
862 	memcpy(mm, oldmm, sizeof(*mm));
863 
864 	if (!mm_init(mm, tsk))
865 		goto fail_nomem;
866 
867 	dup_mm_exe_file(oldmm, mm);
868 
869 	err = dup_mmap(mm, oldmm);
870 	if (err)
871 		goto free_pt;
872 
873 	mm->hiwater_rss = get_mm_rss(mm);
874 	mm->hiwater_vm = mm->total_vm;
875 
876 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
877 		goto free_pt;
878 
879 	return mm;
880 
881 free_pt:
882 	/* don't put binfmt in mmput, we haven't got module yet */
883 	mm->binfmt = NULL;
884 	mmput(mm);
885 
886 fail_nomem:
887 	return NULL;
888 }
889 
890 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
891 {
892 	struct mm_struct *mm, *oldmm;
893 	int retval;
894 
895 	tsk->min_flt = tsk->maj_flt = 0;
896 	tsk->nvcsw = tsk->nivcsw = 0;
897 #ifdef CONFIG_DETECT_HUNG_TASK
898 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
899 #endif
900 
901 	tsk->mm = NULL;
902 	tsk->active_mm = NULL;
903 
904 	/*
905 	 * Are we cloning a kernel thread?
906 	 *
907 	 * We need to steal a active VM for that..
908 	 */
909 	oldmm = current->mm;
910 	if (!oldmm)
911 		return 0;
912 
913 	/* initialize the new vmacache entries */
914 	vmacache_flush(tsk);
915 
916 	if (clone_flags & CLONE_VM) {
917 		atomic_inc(&oldmm->mm_users);
918 		mm = oldmm;
919 		goto good_mm;
920 	}
921 
922 	retval = -ENOMEM;
923 	mm = dup_mm(tsk);
924 	if (!mm)
925 		goto fail_nomem;
926 
927 good_mm:
928 	tsk->mm = mm;
929 	tsk->active_mm = mm;
930 	return 0;
931 
932 fail_nomem:
933 	return retval;
934 }
935 
936 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
937 {
938 	struct fs_struct *fs = current->fs;
939 	if (clone_flags & CLONE_FS) {
940 		/* tsk->fs is already what we want */
941 		spin_lock(&fs->lock);
942 		if (fs->in_exec) {
943 			spin_unlock(&fs->lock);
944 			return -EAGAIN;
945 		}
946 		fs->users++;
947 		spin_unlock(&fs->lock);
948 		return 0;
949 	}
950 	tsk->fs = copy_fs_struct(fs);
951 	if (!tsk->fs)
952 		return -ENOMEM;
953 	return 0;
954 }
955 
956 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
957 {
958 	struct files_struct *oldf, *newf;
959 	int error = 0;
960 
961 	/*
962 	 * A background process may not have any files ...
963 	 */
964 	oldf = current->files;
965 	if (!oldf)
966 		goto out;
967 
968 	if (clone_flags & CLONE_FILES) {
969 		atomic_inc(&oldf->count);
970 		goto out;
971 	}
972 
973 	newf = dup_fd(oldf, &error);
974 	if (!newf)
975 		goto out;
976 
977 	tsk->files = newf;
978 	error = 0;
979 out:
980 	return error;
981 }
982 
983 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 #ifdef CONFIG_BLOCK
986 	struct io_context *ioc = current->io_context;
987 	struct io_context *new_ioc;
988 
989 	if (!ioc)
990 		return 0;
991 	/*
992 	 * Share io context with parent, if CLONE_IO is set
993 	 */
994 	if (clone_flags & CLONE_IO) {
995 		ioc_task_link(ioc);
996 		tsk->io_context = ioc;
997 	} else if (ioprio_valid(ioc->ioprio)) {
998 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
999 		if (unlikely(!new_ioc))
1000 			return -ENOMEM;
1001 
1002 		new_ioc->ioprio = ioc->ioprio;
1003 		put_io_context(new_ioc);
1004 	}
1005 #endif
1006 	return 0;
1007 }
1008 
1009 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1010 {
1011 	struct sighand_struct *sig;
1012 
1013 	if (clone_flags & CLONE_SIGHAND) {
1014 		atomic_inc(&current->sighand->count);
1015 		return 0;
1016 	}
1017 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1018 	rcu_assign_pointer(tsk->sighand, sig);
1019 	if (!sig)
1020 		return -ENOMEM;
1021 	atomic_set(&sig->count, 1);
1022 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1023 	return 0;
1024 }
1025 
1026 void __cleanup_sighand(struct sighand_struct *sighand)
1027 {
1028 	if (atomic_dec_and_test(&sighand->count)) {
1029 		signalfd_cleanup(sighand);
1030 		/*
1031 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1032 		 * without an RCU grace period, see __lock_task_sighand().
1033 		 */
1034 		kmem_cache_free(sighand_cachep, sighand);
1035 	}
1036 }
1037 
1038 /*
1039  * Initialize POSIX timer handling for a thread group.
1040  */
1041 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1042 {
1043 	unsigned long cpu_limit;
1044 
1045 	/* Thread group counters. */
1046 	thread_group_cputime_init(sig);
1047 
1048 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1049 	if (cpu_limit != RLIM_INFINITY) {
1050 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1051 		sig->cputimer.running = 1;
1052 	}
1053 
1054 	/* The timer lists. */
1055 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1056 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1057 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1058 }
1059 
1060 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1061 {
1062 	struct signal_struct *sig;
1063 
1064 	if (clone_flags & CLONE_THREAD)
1065 		return 0;
1066 
1067 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1068 	tsk->signal = sig;
1069 	if (!sig)
1070 		return -ENOMEM;
1071 
1072 	sig->nr_threads = 1;
1073 	atomic_set(&sig->live, 1);
1074 	atomic_set(&sig->sigcnt, 1);
1075 
1076 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1077 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1078 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1079 
1080 	init_waitqueue_head(&sig->wait_chldexit);
1081 	sig->curr_target = tsk;
1082 	init_sigpending(&sig->shared_pending);
1083 	INIT_LIST_HEAD(&sig->posix_timers);
1084 	seqlock_init(&sig->stats_lock);
1085 
1086 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1087 	sig->real_timer.function = it_real_fn;
1088 
1089 	task_lock(current->group_leader);
1090 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1091 	task_unlock(current->group_leader);
1092 
1093 	posix_cpu_timers_init_group(sig);
1094 
1095 	tty_audit_fork(sig);
1096 	sched_autogroup_fork(sig);
1097 
1098 #ifdef CONFIG_CGROUPS
1099 	init_rwsem(&sig->group_rwsem);
1100 #endif
1101 
1102 	sig->oom_score_adj = current->signal->oom_score_adj;
1103 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1104 
1105 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1106 				   current->signal->is_child_subreaper;
1107 
1108 	mutex_init(&sig->cred_guard_mutex);
1109 
1110 	return 0;
1111 }
1112 
1113 static void copy_seccomp(struct task_struct *p)
1114 {
1115 #ifdef CONFIG_SECCOMP
1116 	/*
1117 	 * Must be called with sighand->lock held, which is common to
1118 	 * all threads in the group. Holding cred_guard_mutex is not
1119 	 * needed because this new task is not yet running and cannot
1120 	 * be racing exec.
1121 	 */
1122 	assert_spin_locked(&current->sighand->siglock);
1123 
1124 	/* Ref-count the new filter user, and assign it. */
1125 	get_seccomp_filter(current);
1126 	p->seccomp = current->seccomp;
1127 
1128 	/*
1129 	 * Explicitly enable no_new_privs here in case it got set
1130 	 * between the task_struct being duplicated and holding the
1131 	 * sighand lock. The seccomp state and nnp must be in sync.
1132 	 */
1133 	if (task_no_new_privs(current))
1134 		task_set_no_new_privs(p);
1135 
1136 	/*
1137 	 * If the parent gained a seccomp mode after copying thread
1138 	 * flags and between before we held the sighand lock, we have
1139 	 * to manually enable the seccomp thread flag here.
1140 	 */
1141 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1142 		set_tsk_thread_flag(p, TIF_SECCOMP);
1143 #endif
1144 }
1145 
1146 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1147 {
1148 	current->clear_child_tid = tidptr;
1149 
1150 	return task_pid_vnr(current);
1151 }
1152 
1153 static void rt_mutex_init_task(struct task_struct *p)
1154 {
1155 	raw_spin_lock_init(&p->pi_lock);
1156 #ifdef CONFIG_RT_MUTEXES
1157 	p->pi_waiters = RB_ROOT;
1158 	p->pi_waiters_leftmost = NULL;
1159 	p->pi_blocked_on = NULL;
1160 #endif
1161 }
1162 
1163 /*
1164  * Initialize POSIX timer handling for a single task.
1165  */
1166 static void posix_cpu_timers_init(struct task_struct *tsk)
1167 {
1168 	tsk->cputime_expires.prof_exp = 0;
1169 	tsk->cputime_expires.virt_exp = 0;
1170 	tsk->cputime_expires.sched_exp = 0;
1171 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1172 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1173 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1174 }
1175 
1176 static inline void
1177 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1178 {
1179 	 task->pids[type].pid = pid;
1180 }
1181 
1182 /*
1183  * This creates a new process as a copy of the old one,
1184  * but does not actually start it yet.
1185  *
1186  * It copies the registers, and all the appropriate
1187  * parts of the process environment (as per the clone
1188  * flags). The actual kick-off is left to the caller.
1189  */
1190 static struct task_struct *copy_process(unsigned long clone_flags,
1191 					unsigned long stack_start,
1192 					unsigned long stack_size,
1193 					int __user *child_tidptr,
1194 					struct pid *pid,
1195 					int trace)
1196 {
1197 	int retval;
1198 	struct task_struct *p;
1199 
1200 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1201 		return ERR_PTR(-EINVAL);
1202 
1203 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1204 		return ERR_PTR(-EINVAL);
1205 
1206 	/*
1207 	 * Thread groups must share signals as well, and detached threads
1208 	 * can only be started up within the thread group.
1209 	 */
1210 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1211 		return ERR_PTR(-EINVAL);
1212 
1213 	/*
1214 	 * Shared signal handlers imply shared VM. By way of the above,
1215 	 * thread groups also imply shared VM. Blocking this case allows
1216 	 * for various simplifications in other code.
1217 	 */
1218 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1219 		return ERR_PTR(-EINVAL);
1220 
1221 	/*
1222 	 * Siblings of global init remain as zombies on exit since they are
1223 	 * not reaped by their parent (swapper). To solve this and to avoid
1224 	 * multi-rooted process trees, prevent global and container-inits
1225 	 * from creating siblings.
1226 	 */
1227 	if ((clone_flags & CLONE_PARENT) &&
1228 				current->signal->flags & SIGNAL_UNKILLABLE)
1229 		return ERR_PTR(-EINVAL);
1230 
1231 	/*
1232 	 * If the new process will be in a different pid or user namespace
1233 	 * do not allow it to share a thread group or signal handlers or
1234 	 * parent with the forking task.
1235 	 */
1236 	if (clone_flags & CLONE_SIGHAND) {
1237 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1238 		    (task_active_pid_ns(current) !=
1239 				current->nsproxy->pid_ns_for_children))
1240 			return ERR_PTR(-EINVAL);
1241 	}
1242 
1243 	retval = security_task_create(clone_flags);
1244 	if (retval)
1245 		goto fork_out;
1246 
1247 	retval = -ENOMEM;
1248 	p = dup_task_struct(current);
1249 	if (!p)
1250 		goto fork_out;
1251 
1252 	ftrace_graph_init_task(p);
1253 
1254 	rt_mutex_init_task(p);
1255 
1256 #ifdef CONFIG_PROVE_LOCKING
1257 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1258 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1259 #endif
1260 	retval = -EAGAIN;
1261 	if (atomic_read(&p->real_cred->user->processes) >=
1262 			task_rlimit(p, RLIMIT_NPROC)) {
1263 		if (p->real_cred->user != INIT_USER &&
1264 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1265 			goto bad_fork_free;
1266 	}
1267 	current->flags &= ~PF_NPROC_EXCEEDED;
1268 
1269 	retval = copy_creds(p, clone_flags);
1270 	if (retval < 0)
1271 		goto bad_fork_free;
1272 
1273 	/*
1274 	 * If multiple threads are within copy_process(), then this check
1275 	 * triggers too late. This doesn't hurt, the check is only there
1276 	 * to stop root fork bombs.
1277 	 */
1278 	retval = -EAGAIN;
1279 	if (nr_threads >= max_threads)
1280 		goto bad_fork_cleanup_count;
1281 
1282 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1283 		goto bad_fork_cleanup_count;
1284 
1285 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1286 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1287 	p->flags |= PF_FORKNOEXEC;
1288 	INIT_LIST_HEAD(&p->children);
1289 	INIT_LIST_HEAD(&p->sibling);
1290 	rcu_copy_process(p);
1291 	p->vfork_done = NULL;
1292 	spin_lock_init(&p->alloc_lock);
1293 
1294 	init_sigpending(&p->pending);
1295 
1296 	p->utime = p->stime = p->gtime = 0;
1297 	p->utimescaled = p->stimescaled = 0;
1298 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1299 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1300 #endif
1301 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1302 	seqlock_init(&p->vtime_seqlock);
1303 	p->vtime_snap = 0;
1304 	p->vtime_snap_whence = VTIME_SLEEPING;
1305 #endif
1306 
1307 #if defined(SPLIT_RSS_COUNTING)
1308 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1309 #endif
1310 
1311 	p->default_timer_slack_ns = current->timer_slack_ns;
1312 
1313 	task_io_accounting_init(&p->ioac);
1314 	acct_clear_integrals(p);
1315 
1316 	posix_cpu_timers_init(p);
1317 
1318 	p->start_time = ktime_get_ns();
1319 	p->real_start_time = ktime_get_boot_ns();
1320 	p->io_context = NULL;
1321 	p->audit_context = NULL;
1322 	if (clone_flags & CLONE_THREAD)
1323 		threadgroup_change_begin(current);
1324 	cgroup_fork(p);
1325 #ifdef CONFIG_NUMA
1326 	p->mempolicy = mpol_dup(p->mempolicy);
1327 	if (IS_ERR(p->mempolicy)) {
1328 		retval = PTR_ERR(p->mempolicy);
1329 		p->mempolicy = NULL;
1330 		goto bad_fork_cleanup_threadgroup_lock;
1331 	}
1332 #endif
1333 #ifdef CONFIG_CPUSETS
1334 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1335 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1336 	seqcount_init(&p->mems_allowed_seq);
1337 #endif
1338 #ifdef CONFIG_TRACE_IRQFLAGS
1339 	p->irq_events = 0;
1340 	p->hardirqs_enabled = 0;
1341 	p->hardirq_enable_ip = 0;
1342 	p->hardirq_enable_event = 0;
1343 	p->hardirq_disable_ip = _THIS_IP_;
1344 	p->hardirq_disable_event = 0;
1345 	p->softirqs_enabled = 1;
1346 	p->softirq_enable_ip = _THIS_IP_;
1347 	p->softirq_enable_event = 0;
1348 	p->softirq_disable_ip = 0;
1349 	p->softirq_disable_event = 0;
1350 	p->hardirq_context = 0;
1351 	p->softirq_context = 0;
1352 #endif
1353 #ifdef CONFIG_LOCKDEP
1354 	p->lockdep_depth = 0; /* no locks held yet */
1355 	p->curr_chain_key = 0;
1356 	p->lockdep_recursion = 0;
1357 #endif
1358 
1359 #ifdef CONFIG_DEBUG_MUTEXES
1360 	p->blocked_on = NULL; /* not blocked yet */
1361 #endif
1362 #ifdef CONFIG_BCACHE
1363 	p->sequential_io	= 0;
1364 	p->sequential_io_avg	= 0;
1365 #endif
1366 
1367 	/* Perform scheduler related setup. Assign this task to a CPU. */
1368 	retval = sched_fork(clone_flags, p);
1369 	if (retval)
1370 		goto bad_fork_cleanup_policy;
1371 
1372 	retval = perf_event_init_task(p);
1373 	if (retval)
1374 		goto bad_fork_cleanup_policy;
1375 	retval = audit_alloc(p);
1376 	if (retval)
1377 		goto bad_fork_cleanup_perf;
1378 	/* copy all the process information */
1379 	shm_init_task(p);
1380 	retval = copy_semundo(clone_flags, p);
1381 	if (retval)
1382 		goto bad_fork_cleanup_audit;
1383 	retval = copy_files(clone_flags, p);
1384 	if (retval)
1385 		goto bad_fork_cleanup_semundo;
1386 	retval = copy_fs(clone_flags, p);
1387 	if (retval)
1388 		goto bad_fork_cleanup_files;
1389 	retval = copy_sighand(clone_flags, p);
1390 	if (retval)
1391 		goto bad_fork_cleanup_fs;
1392 	retval = copy_signal(clone_flags, p);
1393 	if (retval)
1394 		goto bad_fork_cleanup_sighand;
1395 	retval = copy_mm(clone_flags, p);
1396 	if (retval)
1397 		goto bad_fork_cleanup_signal;
1398 	retval = copy_namespaces(clone_flags, p);
1399 	if (retval)
1400 		goto bad_fork_cleanup_mm;
1401 	retval = copy_io(clone_flags, p);
1402 	if (retval)
1403 		goto bad_fork_cleanup_namespaces;
1404 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1405 	if (retval)
1406 		goto bad_fork_cleanup_io;
1407 
1408 	if (pid != &init_struct_pid) {
1409 		retval = -ENOMEM;
1410 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1411 		if (!pid)
1412 			goto bad_fork_cleanup_io;
1413 	}
1414 
1415 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1416 	/*
1417 	 * Clear TID on mm_release()?
1418 	 */
1419 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1420 #ifdef CONFIG_BLOCK
1421 	p->plug = NULL;
1422 #endif
1423 #ifdef CONFIG_FUTEX
1424 	p->robust_list = NULL;
1425 #ifdef CONFIG_COMPAT
1426 	p->compat_robust_list = NULL;
1427 #endif
1428 	INIT_LIST_HEAD(&p->pi_state_list);
1429 	p->pi_state_cache = NULL;
1430 #endif
1431 	/*
1432 	 * sigaltstack should be cleared when sharing the same VM
1433 	 */
1434 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1435 		p->sas_ss_sp = p->sas_ss_size = 0;
1436 
1437 	/*
1438 	 * Syscall tracing and stepping should be turned off in the
1439 	 * child regardless of CLONE_PTRACE.
1440 	 */
1441 	user_disable_single_step(p);
1442 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1443 #ifdef TIF_SYSCALL_EMU
1444 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1445 #endif
1446 	clear_all_latency_tracing(p);
1447 
1448 	/* ok, now we should be set up.. */
1449 	p->pid = pid_nr(pid);
1450 	if (clone_flags & CLONE_THREAD) {
1451 		p->exit_signal = -1;
1452 		p->group_leader = current->group_leader;
1453 		p->tgid = current->tgid;
1454 	} else {
1455 		if (clone_flags & CLONE_PARENT)
1456 			p->exit_signal = current->group_leader->exit_signal;
1457 		else
1458 			p->exit_signal = (clone_flags & CSIGNAL);
1459 		p->group_leader = p;
1460 		p->tgid = p->pid;
1461 	}
1462 
1463 	p->nr_dirtied = 0;
1464 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1465 	p->dirty_paused_when = 0;
1466 
1467 	p->pdeath_signal = 0;
1468 	INIT_LIST_HEAD(&p->thread_group);
1469 	p->task_works = NULL;
1470 
1471 	/*
1472 	 * Make it visible to the rest of the system, but dont wake it up yet.
1473 	 * Need tasklist lock for parent etc handling!
1474 	 */
1475 	write_lock_irq(&tasklist_lock);
1476 
1477 	/* CLONE_PARENT re-uses the old parent */
1478 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1479 		p->real_parent = current->real_parent;
1480 		p->parent_exec_id = current->parent_exec_id;
1481 	} else {
1482 		p->real_parent = current;
1483 		p->parent_exec_id = current->self_exec_id;
1484 	}
1485 
1486 	spin_lock(&current->sighand->siglock);
1487 
1488 	/*
1489 	 * Copy seccomp details explicitly here, in case they were changed
1490 	 * before holding sighand lock.
1491 	 */
1492 	copy_seccomp(p);
1493 
1494 	/*
1495 	 * Process group and session signals need to be delivered to just the
1496 	 * parent before the fork or both the parent and the child after the
1497 	 * fork. Restart if a signal comes in before we add the new process to
1498 	 * it's process group.
1499 	 * A fatal signal pending means that current will exit, so the new
1500 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1501 	*/
1502 	recalc_sigpending();
1503 	if (signal_pending(current)) {
1504 		spin_unlock(&current->sighand->siglock);
1505 		write_unlock_irq(&tasklist_lock);
1506 		retval = -ERESTARTNOINTR;
1507 		goto bad_fork_free_pid;
1508 	}
1509 
1510 	if (likely(p->pid)) {
1511 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1512 
1513 		init_task_pid(p, PIDTYPE_PID, pid);
1514 		if (thread_group_leader(p)) {
1515 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1516 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1517 
1518 			if (is_child_reaper(pid)) {
1519 				ns_of_pid(pid)->child_reaper = p;
1520 				p->signal->flags |= SIGNAL_UNKILLABLE;
1521 			}
1522 
1523 			p->signal->leader_pid = pid;
1524 			p->signal->tty = tty_kref_get(current->signal->tty);
1525 			list_add_tail(&p->sibling, &p->real_parent->children);
1526 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1527 			attach_pid(p, PIDTYPE_PGID);
1528 			attach_pid(p, PIDTYPE_SID);
1529 			__this_cpu_inc(process_counts);
1530 		} else {
1531 			current->signal->nr_threads++;
1532 			atomic_inc(&current->signal->live);
1533 			atomic_inc(&current->signal->sigcnt);
1534 			list_add_tail_rcu(&p->thread_group,
1535 					  &p->group_leader->thread_group);
1536 			list_add_tail_rcu(&p->thread_node,
1537 					  &p->signal->thread_head);
1538 		}
1539 		attach_pid(p, PIDTYPE_PID);
1540 		nr_threads++;
1541 	}
1542 
1543 	total_forks++;
1544 	spin_unlock(&current->sighand->siglock);
1545 	syscall_tracepoint_update(p);
1546 	write_unlock_irq(&tasklist_lock);
1547 
1548 	proc_fork_connector(p);
1549 	cgroup_post_fork(p);
1550 	if (clone_flags & CLONE_THREAD)
1551 		threadgroup_change_end(current);
1552 	perf_event_fork(p);
1553 
1554 	trace_task_newtask(p, clone_flags);
1555 	uprobe_copy_process(p, clone_flags);
1556 
1557 	return p;
1558 
1559 bad_fork_free_pid:
1560 	if (pid != &init_struct_pid)
1561 		free_pid(pid);
1562 bad_fork_cleanup_io:
1563 	if (p->io_context)
1564 		exit_io_context(p);
1565 bad_fork_cleanup_namespaces:
1566 	exit_task_namespaces(p);
1567 bad_fork_cleanup_mm:
1568 	if (p->mm)
1569 		mmput(p->mm);
1570 bad_fork_cleanup_signal:
1571 	if (!(clone_flags & CLONE_THREAD))
1572 		free_signal_struct(p->signal);
1573 bad_fork_cleanup_sighand:
1574 	__cleanup_sighand(p->sighand);
1575 bad_fork_cleanup_fs:
1576 	exit_fs(p); /* blocking */
1577 bad_fork_cleanup_files:
1578 	exit_files(p); /* blocking */
1579 bad_fork_cleanup_semundo:
1580 	exit_sem(p);
1581 bad_fork_cleanup_audit:
1582 	audit_free(p);
1583 bad_fork_cleanup_perf:
1584 	perf_event_free_task(p);
1585 bad_fork_cleanup_policy:
1586 #ifdef CONFIG_NUMA
1587 	mpol_put(p->mempolicy);
1588 bad_fork_cleanup_threadgroup_lock:
1589 #endif
1590 	if (clone_flags & CLONE_THREAD)
1591 		threadgroup_change_end(current);
1592 	delayacct_tsk_free(p);
1593 	module_put(task_thread_info(p)->exec_domain->module);
1594 bad_fork_cleanup_count:
1595 	atomic_dec(&p->cred->user->processes);
1596 	exit_creds(p);
1597 bad_fork_free:
1598 	free_task(p);
1599 fork_out:
1600 	return ERR_PTR(retval);
1601 }
1602 
1603 static inline void init_idle_pids(struct pid_link *links)
1604 {
1605 	enum pid_type type;
1606 
1607 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1608 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1609 		links[type].pid = &init_struct_pid;
1610 	}
1611 }
1612 
1613 struct task_struct *fork_idle(int cpu)
1614 {
1615 	struct task_struct *task;
1616 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1617 	if (!IS_ERR(task)) {
1618 		init_idle_pids(task->pids);
1619 		init_idle(task, cpu);
1620 	}
1621 
1622 	return task;
1623 }
1624 
1625 /*
1626  *  Ok, this is the main fork-routine.
1627  *
1628  * It copies the process, and if successful kick-starts
1629  * it and waits for it to finish using the VM if required.
1630  */
1631 long do_fork(unsigned long clone_flags,
1632 	      unsigned long stack_start,
1633 	      unsigned long stack_size,
1634 	      int __user *parent_tidptr,
1635 	      int __user *child_tidptr)
1636 {
1637 	struct task_struct *p;
1638 	int trace = 0;
1639 	long nr;
1640 
1641 	/*
1642 	 * Determine whether and which event to report to ptracer.  When
1643 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1644 	 * requested, no event is reported; otherwise, report if the event
1645 	 * for the type of forking is enabled.
1646 	 */
1647 	if (!(clone_flags & CLONE_UNTRACED)) {
1648 		if (clone_flags & CLONE_VFORK)
1649 			trace = PTRACE_EVENT_VFORK;
1650 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1651 			trace = PTRACE_EVENT_CLONE;
1652 		else
1653 			trace = PTRACE_EVENT_FORK;
1654 
1655 		if (likely(!ptrace_event_enabled(current, trace)))
1656 			trace = 0;
1657 	}
1658 
1659 	p = copy_process(clone_flags, stack_start, stack_size,
1660 			 child_tidptr, NULL, trace);
1661 	/*
1662 	 * Do this prior waking up the new thread - the thread pointer
1663 	 * might get invalid after that point, if the thread exits quickly.
1664 	 */
1665 	if (!IS_ERR(p)) {
1666 		struct completion vfork;
1667 		struct pid *pid;
1668 
1669 		trace_sched_process_fork(current, p);
1670 
1671 		pid = get_task_pid(p, PIDTYPE_PID);
1672 		nr = pid_vnr(pid);
1673 
1674 		if (clone_flags & CLONE_PARENT_SETTID)
1675 			put_user(nr, parent_tidptr);
1676 
1677 		if (clone_flags & CLONE_VFORK) {
1678 			p->vfork_done = &vfork;
1679 			init_completion(&vfork);
1680 			get_task_struct(p);
1681 		}
1682 
1683 		wake_up_new_task(p);
1684 
1685 		/* forking complete and child started to run, tell ptracer */
1686 		if (unlikely(trace))
1687 			ptrace_event_pid(trace, pid);
1688 
1689 		if (clone_flags & CLONE_VFORK) {
1690 			if (!wait_for_vfork_done(p, &vfork))
1691 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1692 		}
1693 
1694 		put_pid(pid);
1695 	} else {
1696 		nr = PTR_ERR(p);
1697 	}
1698 	return nr;
1699 }
1700 
1701 /*
1702  * Create a kernel thread.
1703  */
1704 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1705 {
1706 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1707 		(unsigned long)arg, NULL, NULL);
1708 }
1709 
1710 #ifdef __ARCH_WANT_SYS_FORK
1711 SYSCALL_DEFINE0(fork)
1712 {
1713 #ifdef CONFIG_MMU
1714 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1715 #else
1716 	/* can not support in nommu mode */
1717 	return -EINVAL;
1718 #endif
1719 }
1720 #endif
1721 
1722 #ifdef __ARCH_WANT_SYS_VFORK
1723 SYSCALL_DEFINE0(vfork)
1724 {
1725 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1726 			0, NULL, NULL);
1727 }
1728 #endif
1729 
1730 #ifdef __ARCH_WANT_SYS_CLONE
1731 #ifdef CONFIG_CLONE_BACKWARDS
1732 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1733 		 int __user *, parent_tidptr,
1734 		 int, tls_val,
1735 		 int __user *, child_tidptr)
1736 #elif defined(CONFIG_CLONE_BACKWARDS2)
1737 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1738 		 int __user *, parent_tidptr,
1739 		 int __user *, child_tidptr,
1740 		 int, tls_val)
1741 #elif defined(CONFIG_CLONE_BACKWARDS3)
1742 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1743 		int, stack_size,
1744 		int __user *, parent_tidptr,
1745 		int __user *, child_tidptr,
1746 		int, tls_val)
1747 #else
1748 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1749 		 int __user *, parent_tidptr,
1750 		 int __user *, child_tidptr,
1751 		 int, tls_val)
1752 #endif
1753 {
1754 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1755 }
1756 #endif
1757 
1758 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1759 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1760 #endif
1761 
1762 static void sighand_ctor(void *data)
1763 {
1764 	struct sighand_struct *sighand = data;
1765 
1766 	spin_lock_init(&sighand->siglock);
1767 	init_waitqueue_head(&sighand->signalfd_wqh);
1768 }
1769 
1770 void __init proc_caches_init(void)
1771 {
1772 	sighand_cachep = kmem_cache_create("sighand_cache",
1773 			sizeof(struct sighand_struct), 0,
1774 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1775 			SLAB_NOTRACK, sighand_ctor);
1776 	signal_cachep = kmem_cache_create("signal_cache",
1777 			sizeof(struct signal_struct), 0,
1778 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1779 	files_cachep = kmem_cache_create("files_cache",
1780 			sizeof(struct files_struct), 0,
1781 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1782 	fs_cachep = kmem_cache_create("fs_cache",
1783 			sizeof(struct fs_struct), 0,
1784 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1785 	/*
1786 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1787 	 * whole struct cpumask for the OFFSTACK case. We could change
1788 	 * this to *only* allocate as much of it as required by the
1789 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1790 	 * is at the end of the structure, exactly for that reason.
1791 	 */
1792 	mm_cachep = kmem_cache_create("mm_struct",
1793 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1794 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1795 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1796 	mmap_init();
1797 	nsproxy_cache_init();
1798 }
1799 
1800 /*
1801  * Check constraints on flags passed to the unshare system call.
1802  */
1803 static int check_unshare_flags(unsigned long unshare_flags)
1804 {
1805 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1806 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1807 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1808 				CLONE_NEWUSER|CLONE_NEWPID))
1809 		return -EINVAL;
1810 	/*
1811 	 * Not implemented, but pretend it works if there is nothing to
1812 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1813 	 * needs to unshare vm.
1814 	 */
1815 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1816 		/* FIXME: get_task_mm() increments ->mm_users */
1817 		if (atomic_read(&current->mm->mm_users) > 1)
1818 			return -EINVAL;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Unshare the filesystem structure if it is being shared
1826  */
1827 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1828 {
1829 	struct fs_struct *fs = current->fs;
1830 
1831 	if (!(unshare_flags & CLONE_FS) || !fs)
1832 		return 0;
1833 
1834 	/* don't need lock here; in the worst case we'll do useless copy */
1835 	if (fs->users == 1)
1836 		return 0;
1837 
1838 	*new_fsp = copy_fs_struct(fs);
1839 	if (!*new_fsp)
1840 		return -ENOMEM;
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Unshare file descriptor table if it is being shared
1847  */
1848 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1849 {
1850 	struct files_struct *fd = current->files;
1851 	int error = 0;
1852 
1853 	if ((unshare_flags & CLONE_FILES) &&
1854 	    (fd && atomic_read(&fd->count) > 1)) {
1855 		*new_fdp = dup_fd(fd, &error);
1856 		if (!*new_fdp)
1857 			return error;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * unshare allows a process to 'unshare' part of the process
1865  * context which was originally shared using clone.  copy_*
1866  * functions used by do_fork() cannot be used here directly
1867  * because they modify an inactive task_struct that is being
1868  * constructed. Here we are modifying the current, active,
1869  * task_struct.
1870  */
1871 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1872 {
1873 	struct fs_struct *fs, *new_fs = NULL;
1874 	struct files_struct *fd, *new_fd = NULL;
1875 	struct cred *new_cred = NULL;
1876 	struct nsproxy *new_nsproxy = NULL;
1877 	int do_sysvsem = 0;
1878 	int err;
1879 
1880 	/*
1881 	 * If unsharing a user namespace must also unshare the thread.
1882 	 */
1883 	if (unshare_flags & CLONE_NEWUSER)
1884 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1885 	/*
1886 	 * If unsharing a thread from a thread group, must also unshare vm.
1887 	 */
1888 	if (unshare_flags & CLONE_THREAD)
1889 		unshare_flags |= CLONE_VM;
1890 	/*
1891 	 * If unsharing vm, must also unshare signal handlers.
1892 	 */
1893 	if (unshare_flags & CLONE_VM)
1894 		unshare_flags |= CLONE_SIGHAND;
1895 	/*
1896 	 * If unsharing namespace, must also unshare filesystem information.
1897 	 */
1898 	if (unshare_flags & CLONE_NEWNS)
1899 		unshare_flags |= CLONE_FS;
1900 
1901 	err = check_unshare_flags(unshare_flags);
1902 	if (err)
1903 		goto bad_unshare_out;
1904 	/*
1905 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1906 	 * to a new ipc namespace, the semaphore arrays from the old
1907 	 * namespace are unreachable.
1908 	 */
1909 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1910 		do_sysvsem = 1;
1911 	err = unshare_fs(unshare_flags, &new_fs);
1912 	if (err)
1913 		goto bad_unshare_out;
1914 	err = unshare_fd(unshare_flags, &new_fd);
1915 	if (err)
1916 		goto bad_unshare_cleanup_fs;
1917 	err = unshare_userns(unshare_flags, &new_cred);
1918 	if (err)
1919 		goto bad_unshare_cleanup_fd;
1920 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1921 					 new_cred, new_fs);
1922 	if (err)
1923 		goto bad_unshare_cleanup_cred;
1924 
1925 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1926 		if (do_sysvsem) {
1927 			/*
1928 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1929 			 */
1930 			exit_sem(current);
1931 		}
1932 		if (unshare_flags & CLONE_NEWIPC) {
1933 			/* Orphan segments in old ns (see sem above). */
1934 			exit_shm(current);
1935 			shm_init_task(current);
1936 		}
1937 
1938 		if (new_nsproxy)
1939 			switch_task_namespaces(current, new_nsproxy);
1940 
1941 		task_lock(current);
1942 
1943 		if (new_fs) {
1944 			fs = current->fs;
1945 			spin_lock(&fs->lock);
1946 			current->fs = new_fs;
1947 			if (--fs->users)
1948 				new_fs = NULL;
1949 			else
1950 				new_fs = fs;
1951 			spin_unlock(&fs->lock);
1952 		}
1953 
1954 		if (new_fd) {
1955 			fd = current->files;
1956 			current->files = new_fd;
1957 			new_fd = fd;
1958 		}
1959 
1960 		task_unlock(current);
1961 
1962 		if (new_cred) {
1963 			/* Install the new user namespace */
1964 			commit_creds(new_cred);
1965 			new_cred = NULL;
1966 		}
1967 	}
1968 
1969 bad_unshare_cleanup_cred:
1970 	if (new_cred)
1971 		put_cred(new_cred);
1972 bad_unshare_cleanup_fd:
1973 	if (new_fd)
1974 		put_files_struct(new_fd);
1975 
1976 bad_unshare_cleanup_fs:
1977 	if (new_fs)
1978 		free_fs_struct(new_fs);
1979 
1980 bad_unshare_out:
1981 	return err;
1982 }
1983 
1984 /*
1985  *	Helper to unshare the files of the current task.
1986  *	We don't want to expose copy_files internals to
1987  *	the exec layer of the kernel.
1988  */
1989 
1990 int unshare_files(struct files_struct **displaced)
1991 {
1992 	struct task_struct *task = current;
1993 	struct files_struct *copy = NULL;
1994 	int error;
1995 
1996 	error = unshare_fd(CLONE_FILES, &copy);
1997 	if (error || !copy) {
1998 		*displaced = NULL;
1999 		return error;
2000 	}
2001 	*displaced = task->files;
2002 	task_lock(task);
2003 	task->files = copy;
2004 	task_unlock(task);
2005 	return 0;
2006 }
2007