xref: /openbmc/linux/kernel/fork.c (revision 01a6e126)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 #ifdef CONFIG_DEBUG_KMEMLEAK
220 		/* Clear stale pointers from reused stack. */
221 		memset(s->addr, 0, THREAD_SIZE);
222 #endif
223 		tsk->stack_vm_area = s;
224 		return s->addr;
225 	}
226 
227 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
228 				     VMALLOC_START, VMALLOC_END,
229 				     THREADINFO_GFP,
230 				     PAGE_KERNEL,
231 				     0, node, __builtin_return_address(0));
232 
233 	/*
234 	 * We can't call find_vm_area() in interrupt context, and
235 	 * free_thread_stack() can be called in interrupt context,
236 	 * so cache the vm_struct.
237 	 */
238 	if (stack)
239 		tsk->stack_vm_area = find_vm_area(stack);
240 	return stack;
241 #else
242 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
243 					     THREAD_SIZE_ORDER);
244 
245 	return page ? page_address(page) : NULL;
246 #endif
247 }
248 
249 static inline void free_thread_stack(struct task_struct *tsk)
250 {
251 #ifdef CONFIG_VMAP_STACK
252 	if (task_stack_vm_area(tsk)) {
253 		int i;
254 
255 		for (i = 0; i < NR_CACHED_STACKS; i++) {
256 			if (this_cpu_cmpxchg(cached_stacks[i],
257 					NULL, tsk->stack_vm_area) != NULL)
258 				continue;
259 
260 			return;
261 		}
262 
263 		vfree_atomic(tsk->stack);
264 		return;
265 	}
266 #endif
267 
268 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 }
270 # else
271 static struct kmem_cache *thread_stack_cache;
272 
273 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
274 						  int node)
275 {
276 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
277 }
278 
279 static void free_thread_stack(struct task_struct *tsk)
280 {
281 	kmem_cache_free(thread_stack_cache, tsk->stack);
282 }
283 
284 void thread_stack_cache_init(void)
285 {
286 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
287 					THREAD_SIZE, THREAD_SIZE, 0, 0,
288 					THREAD_SIZE, NULL);
289 	BUG_ON(thread_stack_cache == NULL);
290 }
291 # endif
292 #endif
293 
294 /* SLAB cache for signal_struct structures (tsk->signal) */
295 static struct kmem_cache *signal_cachep;
296 
297 /* SLAB cache for sighand_struct structures (tsk->sighand) */
298 struct kmem_cache *sighand_cachep;
299 
300 /* SLAB cache for files_struct structures (tsk->files) */
301 struct kmem_cache *files_cachep;
302 
303 /* SLAB cache for fs_struct structures (tsk->fs) */
304 struct kmem_cache *fs_cachep;
305 
306 /* SLAB cache for vm_area_struct structures */
307 struct kmem_cache *vm_area_cachep;
308 
309 /* SLAB cache for mm_struct structures (tsk->mm) */
310 static struct kmem_cache *mm_cachep;
311 
312 static void account_kernel_stack(struct task_struct *tsk, int account)
313 {
314 	void *stack = task_stack_page(tsk);
315 	struct vm_struct *vm = task_stack_vm_area(tsk);
316 
317 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
318 
319 	if (vm) {
320 		int i;
321 
322 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
323 
324 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
325 			mod_zone_page_state(page_zone(vm->pages[i]),
326 					    NR_KERNEL_STACK_KB,
327 					    PAGE_SIZE / 1024 * account);
328 		}
329 
330 		/* All stack pages belong to the same memcg. */
331 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
332 				     account * (THREAD_SIZE / 1024));
333 	} else {
334 		/*
335 		 * All stack pages are in the same zone and belong to the
336 		 * same memcg.
337 		 */
338 		struct page *first_page = virt_to_page(stack);
339 
340 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
341 				    THREAD_SIZE / 1024 * account);
342 
343 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
344 				     account * (THREAD_SIZE / 1024));
345 	}
346 }
347 
348 static void release_task_stack(struct task_struct *tsk)
349 {
350 	if (WARN_ON(tsk->state != TASK_DEAD))
351 		return;  /* Better to leak the stack than to free prematurely */
352 
353 	account_kernel_stack(tsk, -1);
354 	arch_release_thread_stack(tsk->stack);
355 	free_thread_stack(tsk);
356 	tsk->stack = NULL;
357 #ifdef CONFIG_VMAP_STACK
358 	tsk->stack_vm_area = NULL;
359 #endif
360 }
361 
362 #ifdef CONFIG_THREAD_INFO_IN_TASK
363 void put_task_stack(struct task_struct *tsk)
364 {
365 	if (atomic_dec_and_test(&tsk->stack_refcount))
366 		release_task_stack(tsk);
367 }
368 #endif
369 
370 void free_task(struct task_struct *tsk)
371 {
372 #ifndef CONFIG_THREAD_INFO_IN_TASK
373 	/*
374 	 * The task is finally done with both the stack and thread_info,
375 	 * so free both.
376 	 */
377 	release_task_stack(tsk);
378 #else
379 	/*
380 	 * If the task had a separate stack allocation, it should be gone
381 	 * by now.
382 	 */
383 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
384 #endif
385 	rt_mutex_debug_task_free(tsk);
386 	ftrace_graph_exit_task(tsk);
387 	put_seccomp_filter(tsk);
388 	arch_release_task_struct(tsk);
389 	if (tsk->flags & PF_KTHREAD)
390 		free_kthread_struct(tsk);
391 	free_task_struct(tsk);
392 }
393 EXPORT_SYMBOL(free_task);
394 
395 #ifdef CONFIG_MMU
396 static __latent_entropy int dup_mmap(struct mm_struct *mm,
397 					struct mm_struct *oldmm)
398 {
399 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400 	struct rb_node **rb_link, *rb_parent;
401 	int retval;
402 	unsigned long charge;
403 	LIST_HEAD(uf);
404 
405 	uprobe_start_dup_mmap();
406 	if (down_write_killable(&oldmm->mmap_sem)) {
407 		retval = -EINTR;
408 		goto fail_uprobe_end;
409 	}
410 	flush_cache_dup_mm(oldmm);
411 	uprobe_dup_mmap(oldmm, mm);
412 	/*
413 	 * Not linked in yet - no deadlock potential:
414 	 */
415 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
416 
417 	/* No ordering required: file already has been exposed. */
418 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
419 
420 	mm->total_vm = oldmm->total_vm;
421 	mm->data_vm = oldmm->data_vm;
422 	mm->exec_vm = oldmm->exec_vm;
423 	mm->stack_vm = oldmm->stack_vm;
424 
425 	rb_link = &mm->mm_rb.rb_node;
426 	rb_parent = NULL;
427 	pprev = &mm->mmap;
428 	retval = ksm_fork(mm, oldmm);
429 	if (retval)
430 		goto out;
431 	retval = khugepaged_fork(mm, oldmm);
432 	if (retval)
433 		goto out;
434 
435 	prev = NULL;
436 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
437 		struct file *file;
438 
439 		if (mpnt->vm_flags & VM_DONTCOPY) {
440 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
441 			continue;
442 		}
443 		charge = 0;
444 		if (mpnt->vm_flags & VM_ACCOUNT) {
445 			unsigned long len = vma_pages(mpnt);
446 
447 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
448 				goto fail_nomem;
449 			charge = len;
450 		}
451 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
452 		if (!tmp)
453 			goto fail_nomem;
454 		*tmp = *mpnt;
455 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
456 		retval = vma_dup_policy(mpnt, tmp);
457 		if (retval)
458 			goto fail_nomem_policy;
459 		tmp->vm_mm = mm;
460 		retval = dup_userfaultfd(tmp, &uf);
461 		if (retval)
462 			goto fail_nomem_anon_vma_fork;
463 		if (tmp->vm_flags & VM_WIPEONFORK) {
464 			/* VM_WIPEONFORK gets a clean slate in the child. */
465 			tmp->anon_vma = NULL;
466 			if (anon_vma_prepare(tmp))
467 				goto fail_nomem_anon_vma_fork;
468 		} else if (anon_vma_fork(tmp, mpnt))
469 			goto fail_nomem_anon_vma_fork;
470 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
471 		tmp->vm_next = tmp->vm_prev = NULL;
472 		file = tmp->vm_file;
473 		if (file) {
474 			struct inode *inode = file_inode(file);
475 			struct address_space *mapping = file->f_mapping;
476 
477 			get_file(file);
478 			if (tmp->vm_flags & VM_DENYWRITE)
479 				atomic_dec(&inode->i_writecount);
480 			i_mmap_lock_write(mapping);
481 			if (tmp->vm_flags & VM_SHARED)
482 				atomic_inc(&mapping->i_mmap_writable);
483 			flush_dcache_mmap_lock(mapping);
484 			/* insert tmp into the share list, just after mpnt */
485 			vma_interval_tree_insert_after(tmp, mpnt,
486 					&mapping->i_mmap);
487 			flush_dcache_mmap_unlock(mapping);
488 			i_mmap_unlock_write(mapping);
489 		}
490 
491 		/*
492 		 * Clear hugetlb-related page reserves for children. This only
493 		 * affects MAP_PRIVATE mappings. Faults generated by the child
494 		 * are not guaranteed to succeed, even if read-only
495 		 */
496 		if (is_vm_hugetlb_page(tmp))
497 			reset_vma_resv_huge_pages(tmp);
498 
499 		/*
500 		 * Link in the new vma and copy the page table entries.
501 		 */
502 		*pprev = tmp;
503 		pprev = &tmp->vm_next;
504 		tmp->vm_prev = prev;
505 		prev = tmp;
506 
507 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
508 		rb_link = &tmp->vm_rb.rb_right;
509 		rb_parent = &tmp->vm_rb;
510 
511 		mm->map_count++;
512 		if (!(tmp->vm_flags & VM_WIPEONFORK))
513 			retval = copy_page_range(mm, oldmm, mpnt);
514 
515 		if (tmp->vm_ops && tmp->vm_ops->open)
516 			tmp->vm_ops->open(tmp);
517 
518 		if (retval)
519 			goto out;
520 	}
521 	/* a new mm has just been created */
522 	arch_dup_mmap(oldmm, mm);
523 	retval = 0;
524 out:
525 	up_write(&mm->mmap_sem);
526 	flush_tlb_mm(oldmm);
527 	up_write(&oldmm->mmap_sem);
528 	dup_userfaultfd_complete(&uf);
529 fail_uprobe_end:
530 	uprobe_end_dup_mmap();
531 	return retval;
532 fail_nomem_anon_vma_fork:
533 	mpol_put(vma_policy(tmp));
534 fail_nomem_policy:
535 	kmem_cache_free(vm_area_cachep, tmp);
536 fail_nomem:
537 	retval = -ENOMEM;
538 	vm_unacct_memory(charge);
539 	goto out;
540 }
541 
542 static inline int mm_alloc_pgd(struct mm_struct *mm)
543 {
544 	mm->pgd = pgd_alloc(mm);
545 	if (unlikely(!mm->pgd))
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 static inline void mm_free_pgd(struct mm_struct *mm)
551 {
552 	pgd_free(mm, mm->pgd);
553 }
554 #else
555 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
556 {
557 	down_write(&oldmm->mmap_sem);
558 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
559 	up_write(&oldmm->mmap_sem);
560 	return 0;
561 }
562 #define mm_alloc_pgd(mm)	(0)
563 #define mm_free_pgd(mm)
564 #endif /* CONFIG_MMU */
565 
566 static void check_mm(struct mm_struct *mm)
567 {
568 	int i;
569 
570 	for (i = 0; i < NR_MM_COUNTERS; i++) {
571 		long x = atomic_long_read(&mm->rss_stat.count[i]);
572 
573 		if (unlikely(x))
574 			printk(KERN_ALERT "BUG: Bad rss-counter state "
575 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
576 	}
577 
578 	if (mm_pgtables_bytes(mm))
579 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
580 				mm_pgtables_bytes(mm));
581 
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
584 #endif
585 }
586 
587 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
588 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
589 
590 /*
591  * Called when the last reference to the mm
592  * is dropped: either by a lazy thread or by
593  * mmput. Free the page directory and the mm.
594  */
595 static void __mmdrop(struct mm_struct *mm)
596 {
597 	BUG_ON(mm == &init_mm);
598 	mm_free_pgd(mm);
599 	destroy_context(mm);
600 	hmm_mm_destroy(mm);
601 	mmu_notifier_mm_destroy(mm);
602 	check_mm(mm);
603 	put_user_ns(mm->user_ns);
604 	free_mm(mm);
605 }
606 
607 void mmdrop(struct mm_struct *mm)
608 {
609 	/*
610 	 * The implicit full barrier implied by atomic_dec_and_test() is
611 	 * required by the membarrier system call before returning to
612 	 * user-space, after storing to rq->curr.
613 	 */
614 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
615 		__mmdrop(mm);
616 }
617 EXPORT_SYMBOL_GPL(mmdrop);
618 
619 static void mmdrop_async_fn(struct work_struct *work)
620 {
621 	struct mm_struct *mm;
622 
623 	mm = container_of(work, struct mm_struct, async_put_work);
624 	__mmdrop(mm);
625 }
626 
627 static void mmdrop_async(struct mm_struct *mm)
628 {
629 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
630 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
631 		schedule_work(&mm->async_put_work);
632 	}
633 }
634 
635 static inline void free_signal_struct(struct signal_struct *sig)
636 {
637 	taskstats_tgid_free(sig);
638 	sched_autogroup_exit(sig);
639 	/*
640 	 * __mmdrop is not safe to call from softirq context on x86 due to
641 	 * pgd_dtor so postpone it to the async context
642 	 */
643 	if (sig->oom_mm)
644 		mmdrop_async(sig->oom_mm);
645 	kmem_cache_free(signal_cachep, sig);
646 }
647 
648 static inline void put_signal_struct(struct signal_struct *sig)
649 {
650 	if (atomic_dec_and_test(&sig->sigcnt))
651 		free_signal_struct(sig);
652 }
653 
654 void __put_task_struct(struct task_struct *tsk)
655 {
656 	WARN_ON(!tsk->exit_state);
657 	WARN_ON(atomic_read(&tsk->usage));
658 	WARN_ON(tsk == current);
659 
660 	cgroup_free(tsk);
661 	task_numa_free(tsk);
662 	security_task_free(tsk);
663 	exit_creds(tsk);
664 	delayacct_tsk_free(tsk);
665 	put_signal_struct(tsk->signal);
666 
667 	if (!profile_handoff_task(tsk))
668 		free_task(tsk);
669 }
670 EXPORT_SYMBOL_GPL(__put_task_struct);
671 
672 void __init __weak arch_task_cache_init(void) { }
673 
674 /*
675  * set_max_threads
676  */
677 static void set_max_threads(unsigned int max_threads_suggested)
678 {
679 	u64 threads;
680 
681 	/*
682 	 * The number of threads shall be limited such that the thread
683 	 * structures may only consume a small part of the available memory.
684 	 */
685 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
686 		threads = MAX_THREADS;
687 	else
688 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
689 				    (u64) THREAD_SIZE * 8UL);
690 
691 	if (threads > max_threads_suggested)
692 		threads = max_threads_suggested;
693 
694 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
695 }
696 
697 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
698 /* Initialized by the architecture: */
699 int arch_task_struct_size __read_mostly;
700 #endif
701 
702 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
703 {
704 	/* Fetch thread_struct whitelist for the architecture. */
705 	arch_thread_struct_whitelist(offset, size);
706 
707 	/*
708 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
709 	 * adjust offset to position of thread_struct in task_struct.
710 	 */
711 	if (unlikely(*size == 0))
712 		*offset = 0;
713 	else
714 		*offset += offsetof(struct task_struct, thread);
715 }
716 
717 void __init fork_init(void)
718 {
719 	int i;
720 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
721 #ifndef ARCH_MIN_TASKALIGN
722 #define ARCH_MIN_TASKALIGN	0
723 #endif
724 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
725 	unsigned long useroffset, usersize;
726 
727 	/* create a slab on which task_structs can be allocated */
728 	task_struct_whitelist(&useroffset, &usersize);
729 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
730 			arch_task_struct_size, align,
731 			SLAB_PANIC|SLAB_ACCOUNT,
732 			useroffset, usersize, NULL);
733 #endif
734 
735 	/* do the arch specific task caches init */
736 	arch_task_cache_init();
737 
738 	set_max_threads(MAX_THREADS);
739 
740 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
741 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
742 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
743 		init_task.signal->rlim[RLIMIT_NPROC];
744 
745 	for (i = 0; i < UCOUNT_COUNTS; i++) {
746 		init_user_ns.ucount_max[i] = max_threads/2;
747 	}
748 
749 #ifdef CONFIG_VMAP_STACK
750 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
751 			  NULL, free_vm_stack_cache);
752 #endif
753 
754 	lockdep_init_task(&init_task);
755 }
756 
757 int __weak arch_dup_task_struct(struct task_struct *dst,
758 					       struct task_struct *src)
759 {
760 	*dst = *src;
761 	return 0;
762 }
763 
764 void set_task_stack_end_magic(struct task_struct *tsk)
765 {
766 	unsigned long *stackend;
767 
768 	stackend = end_of_stack(tsk);
769 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
770 }
771 
772 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
773 {
774 	struct task_struct *tsk;
775 	unsigned long *stack;
776 	struct vm_struct *stack_vm_area;
777 	int err;
778 
779 	if (node == NUMA_NO_NODE)
780 		node = tsk_fork_get_node(orig);
781 	tsk = alloc_task_struct_node(node);
782 	if (!tsk)
783 		return NULL;
784 
785 	stack = alloc_thread_stack_node(tsk, node);
786 	if (!stack)
787 		goto free_tsk;
788 
789 	stack_vm_area = task_stack_vm_area(tsk);
790 
791 	err = arch_dup_task_struct(tsk, orig);
792 
793 	/*
794 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
795 	 * sure they're properly initialized before using any stack-related
796 	 * functions again.
797 	 */
798 	tsk->stack = stack;
799 #ifdef CONFIG_VMAP_STACK
800 	tsk->stack_vm_area = stack_vm_area;
801 #endif
802 #ifdef CONFIG_THREAD_INFO_IN_TASK
803 	atomic_set(&tsk->stack_refcount, 1);
804 #endif
805 
806 	if (err)
807 		goto free_stack;
808 
809 #ifdef CONFIG_SECCOMP
810 	/*
811 	 * We must handle setting up seccomp filters once we're under
812 	 * the sighand lock in case orig has changed between now and
813 	 * then. Until then, filter must be NULL to avoid messing up
814 	 * the usage counts on the error path calling free_task.
815 	 */
816 	tsk->seccomp.filter = NULL;
817 #endif
818 
819 	setup_thread_stack(tsk, orig);
820 	clear_user_return_notifier(tsk);
821 	clear_tsk_need_resched(tsk);
822 	set_task_stack_end_magic(tsk);
823 
824 #ifdef CONFIG_CC_STACKPROTECTOR
825 	tsk->stack_canary = get_random_canary();
826 #endif
827 
828 	/*
829 	 * One for us, one for whoever does the "release_task()" (usually
830 	 * parent)
831 	 */
832 	atomic_set(&tsk->usage, 2);
833 #ifdef CONFIG_BLK_DEV_IO_TRACE
834 	tsk->btrace_seq = 0;
835 #endif
836 	tsk->splice_pipe = NULL;
837 	tsk->task_frag.page = NULL;
838 	tsk->wake_q.next = NULL;
839 
840 	account_kernel_stack(tsk, 1);
841 
842 	kcov_task_init(tsk);
843 
844 #ifdef CONFIG_FAULT_INJECTION
845 	tsk->fail_nth = 0;
846 #endif
847 
848 	return tsk;
849 
850 free_stack:
851 	free_thread_stack(tsk);
852 free_tsk:
853 	free_task_struct(tsk);
854 	return NULL;
855 }
856 
857 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
858 
859 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
860 
861 static int __init coredump_filter_setup(char *s)
862 {
863 	default_dump_filter =
864 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
865 		MMF_DUMP_FILTER_MASK;
866 	return 1;
867 }
868 
869 __setup("coredump_filter=", coredump_filter_setup);
870 
871 #include <linux/init_task.h>
872 
873 static void mm_init_aio(struct mm_struct *mm)
874 {
875 #ifdef CONFIG_AIO
876 	spin_lock_init(&mm->ioctx_lock);
877 	mm->ioctx_table = NULL;
878 #endif
879 }
880 
881 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
882 {
883 #ifdef CONFIG_MEMCG
884 	mm->owner = p;
885 #endif
886 }
887 
888 static void mm_init_uprobes_state(struct mm_struct *mm)
889 {
890 #ifdef CONFIG_UPROBES
891 	mm->uprobes_state.xol_area = NULL;
892 #endif
893 }
894 
895 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
896 	struct user_namespace *user_ns)
897 {
898 	mm->mmap = NULL;
899 	mm->mm_rb = RB_ROOT;
900 	mm->vmacache_seqnum = 0;
901 	atomic_set(&mm->mm_users, 1);
902 	atomic_set(&mm->mm_count, 1);
903 	init_rwsem(&mm->mmap_sem);
904 	INIT_LIST_HEAD(&mm->mmlist);
905 	mm->core_state = NULL;
906 	mm_pgtables_bytes_init(mm);
907 	mm->map_count = 0;
908 	mm->locked_vm = 0;
909 	mm->pinned_vm = 0;
910 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
911 	spin_lock_init(&mm->page_table_lock);
912 	mm_init_cpumask(mm);
913 	mm_init_aio(mm);
914 	mm_init_owner(mm, p);
915 	RCU_INIT_POINTER(mm->exe_file, NULL);
916 	mmu_notifier_mm_init(mm);
917 	hmm_mm_init(mm);
918 	init_tlb_flush_pending(mm);
919 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
920 	mm->pmd_huge_pte = NULL;
921 #endif
922 	mm_init_uprobes_state(mm);
923 
924 	if (current->mm) {
925 		mm->flags = current->mm->flags & MMF_INIT_MASK;
926 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
927 	} else {
928 		mm->flags = default_dump_filter;
929 		mm->def_flags = 0;
930 	}
931 
932 	if (mm_alloc_pgd(mm))
933 		goto fail_nopgd;
934 
935 	if (init_new_context(p, mm))
936 		goto fail_nocontext;
937 
938 	mm->user_ns = get_user_ns(user_ns);
939 	return mm;
940 
941 fail_nocontext:
942 	mm_free_pgd(mm);
943 fail_nopgd:
944 	free_mm(mm);
945 	return NULL;
946 }
947 
948 /*
949  * Allocate and initialize an mm_struct.
950  */
951 struct mm_struct *mm_alloc(void)
952 {
953 	struct mm_struct *mm;
954 
955 	mm = allocate_mm();
956 	if (!mm)
957 		return NULL;
958 
959 	memset(mm, 0, sizeof(*mm));
960 	return mm_init(mm, current, current_user_ns());
961 }
962 
963 static inline void __mmput(struct mm_struct *mm)
964 {
965 	VM_BUG_ON(atomic_read(&mm->mm_users));
966 
967 	uprobe_clear_state(mm);
968 	exit_aio(mm);
969 	ksm_exit(mm);
970 	khugepaged_exit(mm); /* must run before exit_mmap */
971 	exit_mmap(mm);
972 	mm_put_huge_zero_page(mm);
973 	set_mm_exe_file(mm, NULL);
974 	if (!list_empty(&mm->mmlist)) {
975 		spin_lock(&mmlist_lock);
976 		list_del(&mm->mmlist);
977 		spin_unlock(&mmlist_lock);
978 	}
979 	if (mm->binfmt)
980 		module_put(mm->binfmt->module);
981 	mmdrop(mm);
982 }
983 
984 /*
985  * Decrement the use count and release all resources for an mm.
986  */
987 void mmput(struct mm_struct *mm)
988 {
989 	might_sleep();
990 
991 	if (atomic_dec_and_test(&mm->mm_users))
992 		__mmput(mm);
993 }
994 EXPORT_SYMBOL_GPL(mmput);
995 
996 #ifdef CONFIG_MMU
997 static void mmput_async_fn(struct work_struct *work)
998 {
999 	struct mm_struct *mm = container_of(work, struct mm_struct,
1000 					    async_put_work);
1001 
1002 	__mmput(mm);
1003 }
1004 
1005 void mmput_async(struct mm_struct *mm)
1006 {
1007 	if (atomic_dec_and_test(&mm->mm_users)) {
1008 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1009 		schedule_work(&mm->async_put_work);
1010 	}
1011 }
1012 #endif
1013 
1014 /**
1015  * set_mm_exe_file - change a reference to the mm's executable file
1016  *
1017  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1018  *
1019  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1020  * invocations: in mmput() nobody alive left, in execve task is single
1021  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1022  * mm->exe_file, but does so without using set_mm_exe_file() in order
1023  * to do avoid the need for any locks.
1024  */
1025 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1026 {
1027 	struct file *old_exe_file;
1028 
1029 	/*
1030 	 * It is safe to dereference the exe_file without RCU as
1031 	 * this function is only called if nobody else can access
1032 	 * this mm -- see comment above for justification.
1033 	 */
1034 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1035 
1036 	if (new_exe_file)
1037 		get_file(new_exe_file);
1038 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1039 	if (old_exe_file)
1040 		fput(old_exe_file);
1041 }
1042 
1043 /**
1044  * get_mm_exe_file - acquire a reference to the mm's executable file
1045  *
1046  * Returns %NULL if mm has no associated executable file.
1047  * User must release file via fput().
1048  */
1049 struct file *get_mm_exe_file(struct mm_struct *mm)
1050 {
1051 	struct file *exe_file;
1052 
1053 	rcu_read_lock();
1054 	exe_file = rcu_dereference(mm->exe_file);
1055 	if (exe_file && !get_file_rcu(exe_file))
1056 		exe_file = NULL;
1057 	rcu_read_unlock();
1058 	return exe_file;
1059 }
1060 EXPORT_SYMBOL(get_mm_exe_file);
1061 
1062 /**
1063  * get_task_exe_file - acquire a reference to the task's executable file
1064  *
1065  * Returns %NULL if task's mm (if any) has no associated executable file or
1066  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1067  * User must release file via fput().
1068  */
1069 struct file *get_task_exe_file(struct task_struct *task)
1070 {
1071 	struct file *exe_file = NULL;
1072 	struct mm_struct *mm;
1073 
1074 	task_lock(task);
1075 	mm = task->mm;
1076 	if (mm) {
1077 		if (!(task->flags & PF_KTHREAD))
1078 			exe_file = get_mm_exe_file(mm);
1079 	}
1080 	task_unlock(task);
1081 	return exe_file;
1082 }
1083 EXPORT_SYMBOL(get_task_exe_file);
1084 
1085 /**
1086  * get_task_mm - acquire a reference to the task's mm
1087  *
1088  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1089  * this kernel workthread has transiently adopted a user mm with use_mm,
1090  * to do its AIO) is not set and if so returns a reference to it, after
1091  * bumping up the use count.  User must release the mm via mmput()
1092  * after use.  Typically used by /proc and ptrace.
1093  */
1094 struct mm_struct *get_task_mm(struct task_struct *task)
1095 {
1096 	struct mm_struct *mm;
1097 
1098 	task_lock(task);
1099 	mm = task->mm;
1100 	if (mm) {
1101 		if (task->flags & PF_KTHREAD)
1102 			mm = NULL;
1103 		else
1104 			mmget(mm);
1105 	}
1106 	task_unlock(task);
1107 	return mm;
1108 }
1109 EXPORT_SYMBOL_GPL(get_task_mm);
1110 
1111 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1112 {
1113 	struct mm_struct *mm;
1114 	int err;
1115 
1116 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1117 	if (err)
1118 		return ERR_PTR(err);
1119 
1120 	mm = get_task_mm(task);
1121 	if (mm && mm != current->mm &&
1122 			!ptrace_may_access(task, mode)) {
1123 		mmput(mm);
1124 		mm = ERR_PTR(-EACCES);
1125 	}
1126 	mutex_unlock(&task->signal->cred_guard_mutex);
1127 
1128 	return mm;
1129 }
1130 
1131 static void complete_vfork_done(struct task_struct *tsk)
1132 {
1133 	struct completion *vfork;
1134 
1135 	task_lock(tsk);
1136 	vfork = tsk->vfork_done;
1137 	if (likely(vfork)) {
1138 		tsk->vfork_done = NULL;
1139 		complete(vfork);
1140 	}
1141 	task_unlock(tsk);
1142 }
1143 
1144 static int wait_for_vfork_done(struct task_struct *child,
1145 				struct completion *vfork)
1146 {
1147 	int killed;
1148 
1149 	freezer_do_not_count();
1150 	killed = wait_for_completion_killable(vfork);
1151 	freezer_count();
1152 
1153 	if (killed) {
1154 		task_lock(child);
1155 		child->vfork_done = NULL;
1156 		task_unlock(child);
1157 	}
1158 
1159 	put_task_struct(child);
1160 	return killed;
1161 }
1162 
1163 /* Please note the differences between mmput and mm_release.
1164  * mmput is called whenever we stop holding onto a mm_struct,
1165  * error success whatever.
1166  *
1167  * mm_release is called after a mm_struct has been removed
1168  * from the current process.
1169  *
1170  * This difference is important for error handling, when we
1171  * only half set up a mm_struct for a new process and need to restore
1172  * the old one.  Because we mmput the new mm_struct before
1173  * restoring the old one. . .
1174  * Eric Biederman 10 January 1998
1175  */
1176 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1177 {
1178 	/* Get rid of any futexes when releasing the mm */
1179 #ifdef CONFIG_FUTEX
1180 	if (unlikely(tsk->robust_list)) {
1181 		exit_robust_list(tsk);
1182 		tsk->robust_list = NULL;
1183 	}
1184 #ifdef CONFIG_COMPAT
1185 	if (unlikely(tsk->compat_robust_list)) {
1186 		compat_exit_robust_list(tsk);
1187 		tsk->compat_robust_list = NULL;
1188 	}
1189 #endif
1190 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1191 		exit_pi_state_list(tsk);
1192 #endif
1193 
1194 	uprobe_free_utask(tsk);
1195 
1196 	/* Get rid of any cached register state */
1197 	deactivate_mm(tsk, mm);
1198 
1199 	/*
1200 	 * Signal userspace if we're not exiting with a core dump
1201 	 * because we want to leave the value intact for debugging
1202 	 * purposes.
1203 	 */
1204 	if (tsk->clear_child_tid) {
1205 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1206 		    atomic_read(&mm->mm_users) > 1) {
1207 			/*
1208 			 * We don't check the error code - if userspace has
1209 			 * not set up a proper pointer then tough luck.
1210 			 */
1211 			put_user(0, tsk->clear_child_tid);
1212 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1213 					1, NULL, NULL, 0);
1214 		}
1215 		tsk->clear_child_tid = NULL;
1216 	}
1217 
1218 	/*
1219 	 * All done, finally we can wake up parent and return this mm to him.
1220 	 * Also kthread_stop() uses this completion for synchronization.
1221 	 */
1222 	if (tsk->vfork_done)
1223 		complete_vfork_done(tsk);
1224 }
1225 
1226 /*
1227  * Allocate a new mm structure and copy contents from the
1228  * mm structure of the passed in task structure.
1229  */
1230 static struct mm_struct *dup_mm(struct task_struct *tsk)
1231 {
1232 	struct mm_struct *mm, *oldmm = current->mm;
1233 	int err;
1234 
1235 	mm = allocate_mm();
1236 	if (!mm)
1237 		goto fail_nomem;
1238 
1239 	memcpy(mm, oldmm, sizeof(*mm));
1240 
1241 	if (!mm_init(mm, tsk, mm->user_ns))
1242 		goto fail_nomem;
1243 
1244 	err = dup_mmap(mm, oldmm);
1245 	if (err)
1246 		goto free_pt;
1247 
1248 	mm->hiwater_rss = get_mm_rss(mm);
1249 	mm->hiwater_vm = mm->total_vm;
1250 
1251 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1252 		goto free_pt;
1253 
1254 	return mm;
1255 
1256 free_pt:
1257 	/* don't put binfmt in mmput, we haven't got module yet */
1258 	mm->binfmt = NULL;
1259 	mmput(mm);
1260 
1261 fail_nomem:
1262 	return NULL;
1263 }
1264 
1265 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1266 {
1267 	struct mm_struct *mm, *oldmm;
1268 	int retval;
1269 
1270 	tsk->min_flt = tsk->maj_flt = 0;
1271 	tsk->nvcsw = tsk->nivcsw = 0;
1272 #ifdef CONFIG_DETECT_HUNG_TASK
1273 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1274 #endif
1275 
1276 	tsk->mm = NULL;
1277 	tsk->active_mm = NULL;
1278 
1279 	/*
1280 	 * Are we cloning a kernel thread?
1281 	 *
1282 	 * We need to steal a active VM for that..
1283 	 */
1284 	oldmm = current->mm;
1285 	if (!oldmm)
1286 		return 0;
1287 
1288 	/* initialize the new vmacache entries */
1289 	vmacache_flush(tsk);
1290 
1291 	if (clone_flags & CLONE_VM) {
1292 		mmget(oldmm);
1293 		mm = oldmm;
1294 		goto good_mm;
1295 	}
1296 
1297 	retval = -ENOMEM;
1298 	mm = dup_mm(tsk);
1299 	if (!mm)
1300 		goto fail_nomem;
1301 
1302 good_mm:
1303 	tsk->mm = mm;
1304 	tsk->active_mm = mm;
1305 	return 0;
1306 
1307 fail_nomem:
1308 	return retval;
1309 }
1310 
1311 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1312 {
1313 	struct fs_struct *fs = current->fs;
1314 	if (clone_flags & CLONE_FS) {
1315 		/* tsk->fs is already what we want */
1316 		spin_lock(&fs->lock);
1317 		if (fs->in_exec) {
1318 			spin_unlock(&fs->lock);
1319 			return -EAGAIN;
1320 		}
1321 		fs->users++;
1322 		spin_unlock(&fs->lock);
1323 		return 0;
1324 	}
1325 	tsk->fs = copy_fs_struct(fs);
1326 	if (!tsk->fs)
1327 		return -ENOMEM;
1328 	return 0;
1329 }
1330 
1331 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1332 {
1333 	struct files_struct *oldf, *newf;
1334 	int error = 0;
1335 
1336 	/*
1337 	 * A background process may not have any files ...
1338 	 */
1339 	oldf = current->files;
1340 	if (!oldf)
1341 		goto out;
1342 
1343 	if (clone_flags & CLONE_FILES) {
1344 		atomic_inc(&oldf->count);
1345 		goto out;
1346 	}
1347 
1348 	newf = dup_fd(oldf, &error);
1349 	if (!newf)
1350 		goto out;
1351 
1352 	tsk->files = newf;
1353 	error = 0;
1354 out:
1355 	return error;
1356 }
1357 
1358 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1359 {
1360 #ifdef CONFIG_BLOCK
1361 	struct io_context *ioc = current->io_context;
1362 	struct io_context *new_ioc;
1363 
1364 	if (!ioc)
1365 		return 0;
1366 	/*
1367 	 * Share io context with parent, if CLONE_IO is set
1368 	 */
1369 	if (clone_flags & CLONE_IO) {
1370 		ioc_task_link(ioc);
1371 		tsk->io_context = ioc;
1372 	} else if (ioprio_valid(ioc->ioprio)) {
1373 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1374 		if (unlikely(!new_ioc))
1375 			return -ENOMEM;
1376 
1377 		new_ioc->ioprio = ioc->ioprio;
1378 		put_io_context(new_ioc);
1379 	}
1380 #endif
1381 	return 0;
1382 }
1383 
1384 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1385 {
1386 	struct sighand_struct *sig;
1387 
1388 	if (clone_flags & CLONE_SIGHAND) {
1389 		atomic_inc(&current->sighand->count);
1390 		return 0;
1391 	}
1392 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1393 	rcu_assign_pointer(tsk->sighand, sig);
1394 	if (!sig)
1395 		return -ENOMEM;
1396 
1397 	atomic_set(&sig->count, 1);
1398 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1399 	return 0;
1400 }
1401 
1402 void __cleanup_sighand(struct sighand_struct *sighand)
1403 {
1404 	if (atomic_dec_and_test(&sighand->count)) {
1405 		signalfd_cleanup(sighand);
1406 		/*
1407 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1408 		 * without an RCU grace period, see __lock_task_sighand().
1409 		 */
1410 		kmem_cache_free(sighand_cachep, sighand);
1411 	}
1412 }
1413 
1414 #ifdef CONFIG_POSIX_TIMERS
1415 /*
1416  * Initialize POSIX timer handling for a thread group.
1417  */
1418 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1419 {
1420 	unsigned long cpu_limit;
1421 
1422 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1423 	if (cpu_limit != RLIM_INFINITY) {
1424 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1425 		sig->cputimer.running = true;
1426 	}
1427 
1428 	/* The timer lists. */
1429 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1430 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1431 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1432 }
1433 #else
1434 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1435 #endif
1436 
1437 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 	struct signal_struct *sig;
1440 
1441 	if (clone_flags & CLONE_THREAD)
1442 		return 0;
1443 
1444 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1445 	tsk->signal = sig;
1446 	if (!sig)
1447 		return -ENOMEM;
1448 
1449 	sig->nr_threads = 1;
1450 	atomic_set(&sig->live, 1);
1451 	atomic_set(&sig->sigcnt, 1);
1452 
1453 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1454 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1455 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1456 
1457 	init_waitqueue_head(&sig->wait_chldexit);
1458 	sig->curr_target = tsk;
1459 	init_sigpending(&sig->shared_pending);
1460 	seqlock_init(&sig->stats_lock);
1461 	prev_cputime_init(&sig->prev_cputime);
1462 
1463 #ifdef CONFIG_POSIX_TIMERS
1464 	INIT_LIST_HEAD(&sig->posix_timers);
1465 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1466 	sig->real_timer.function = it_real_fn;
1467 #endif
1468 
1469 	task_lock(current->group_leader);
1470 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1471 	task_unlock(current->group_leader);
1472 
1473 	posix_cpu_timers_init_group(sig);
1474 
1475 	tty_audit_fork(sig);
1476 	sched_autogroup_fork(sig);
1477 
1478 	sig->oom_score_adj = current->signal->oom_score_adj;
1479 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1480 
1481 	mutex_init(&sig->cred_guard_mutex);
1482 
1483 	return 0;
1484 }
1485 
1486 static void copy_seccomp(struct task_struct *p)
1487 {
1488 #ifdef CONFIG_SECCOMP
1489 	/*
1490 	 * Must be called with sighand->lock held, which is common to
1491 	 * all threads in the group. Holding cred_guard_mutex is not
1492 	 * needed because this new task is not yet running and cannot
1493 	 * be racing exec.
1494 	 */
1495 	assert_spin_locked(&current->sighand->siglock);
1496 
1497 	/* Ref-count the new filter user, and assign it. */
1498 	get_seccomp_filter(current);
1499 	p->seccomp = current->seccomp;
1500 
1501 	/*
1502 	 * Explicitly enable no_new_privs here in case it got set
1503 	 * between the task_struct being duplicated and holding the
1504 	 * sighand lock. The seccomp state and nnp must be in sync.
1505 	 */
1506 	if (task_no_new_privs(current))
1507 		task_set_no_new_privs(p);
1508 
1509 	/*
1510 	 * If the parent gained a seccomp mode after copying thread
1511 	 * flags and between before we held the sighand lock, we have
1512 	 * to manually enable the seccomp thread flag here.
1513 	 */
1514 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1515 		set_tsk_thread_flag(p, TIF_SECCOMP);
1516 #endif
1517 }
1518 
1519 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1520 {
1521 	current->clear_child_tid = tidptr;
1522 
1523 	return task_pid_vnr(current);
1524 }
1525 
1526 static void rt_mutex_init_task(struct task_struct *p)
1527 {
1528 	raw_spin_lock_init(&p->pi_lock);
1529 #ifdef CONFIG_RT_MUTEXES
1530 	p->pi_waiters = RB_ROOT_CACHED;
1531 	p->pi_top_task = NULL;
1532 	p->pi_blocked_on = NULL;
1533 #endif
1534 }
1535 
1536 #ifdef CONFIG_POSIX_TIMERS
1537 /*
1538  * Initialize POSIX timer handling for a single task.
1539  */
1540 static void posix_cpu_timers_init(struct task_struct *tsk)
1541 {
1542 	tsk->cputime_expires.prof_exp = 0;
1543 	tsk->cputime_expires.virt_exp = 0;
1544 	tsk->cputime_expires.sched_exp = 0;
1545 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1546 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1547 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1548 }
1549 #else
1550 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1551 #endif
1552 
1553 static inline void
1554 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1555 {
1556 	 task->pids[type].pid = pid;
1557 }
1558 
1559 static inline void rcu_copy_process(struct task_struct *p)
1560 {
1561 #ifdef CONFIG_PREEMPT_RCU
1562 	p->rcu_read_lock_nesting = 0;
1563 	p->rcu_read_unlock_special.s = 0;
1564 	p->rcu_blocked_node = NULL;
1565 	INIT_LIST_HEAD(&p->rcu_node_entry);
1566 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1567 #ifdef CONFIG_TASKS_RCU
1568 	p->rcu_tasks_holdout = false;
1569 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1570 	p->rcu_tasks_idle_cpu = -1;
1571 #endif /* #ifdef CONFIG_TASKS_RCU */
1572 }
1573 
1574 /*
1575  * This creates a new process as a copy of the old one,
1576  * but does not actually start it yet.
1577  *
1578  * It copies the registers, and all the appropriate
1579  * parts of the process environment (as per the clone
1580  * flags). The actual kick-off is left to the caller.
1581  */
1582 static __latent_entropy struct task_struct *copy_process(
1583 					unsigned long clone_flags,
1584 					unsigned long stack_start,
1585 					unsigned long stack_size,
1586 					int __user *child_tidptr,
1587 					struct pid *pid,
1588 					int trace,
1589 					unsigned long tls,
1590 					int node)
1591 {
1592 	int retval;
1593 	struct task_struct *p;
1594 
1595 	/*
1596 	 * Don't allow sharing the root directory with processes in a different
1597 	 * namespace
1598 	 */
1599 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1600 		return ERR_PTR(-EINVAL);
1601 
1602 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1603 		return ERR_PTR(-EINVAL);
1604 
1605 	/*
1606 	 * Thread groups must share signals as well, and detached threads
1607 	 * can only be started up within the thread group.
1608 	 */
1609 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1610 		return ERR_PTR(-EINVAL);
1611 
1612 	/*
1613 	 * Shared signal handlers imply shared VM. By way of the above,
1614 	 * thread groups also imply shared VM. Blocking this case allows
1615 	 * for various simplifications in other code.
1616 	 */
1617 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1618 		return ERR_PTR(-EINVAL);
1619 
1620 	/*
1621 	 * Siblings of global init remain as zombies on exit since they are
1622 	 * not reaped by their parent (swapper). To solve this and to avoid
1623 	 * multi-rooted process trees, prevent global and container-inits
1624 	 * from creating siblings.
1625 	 */
1626 	if ((clone_flags & CLONE_PARENT) &&
1627 				current->signal->flags & SIGNAL_UNKILLABLE)
1628 		return ERR_PTR(-EINVAL);
1629 
1630 	/*
1631 	 * If the new process will be in a different pid or user namespace
1632 	 * do not allow it to share a thread group with the forking task.
1633 	 */
1634 	if (clone_flags & CLONE_THREAD) {
1635 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1636 		    (task_active_pid_ns(current) !=
1637 				current->nsproxy->pid_ns_for_children))
1638 			return ERR_PTR(-EINVAL);
1639 	}
1640 
1641 	retval = -ENOMEM;
1642 	p = dup_task_struct(current, node);
1643 	if (!p)
1644 		goto fork_out;
1645 
1646 	/*
1647 	 * This _must_ happen before we call free_task(), i.e. before we jump
1648 	 * to any of the bad_fork_* labels. This is to avoid freeing
1649 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1650 	 * kernel threads (PF_KTHREAD).
1651 	 */
1652 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1653 	/*
1654 	 * Clear TID on mm_release()?
1655 	 */
1656 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1657 
1658 	ftrace_graph_init_task(p);
1659 
1660 	rt_mutex_init_task(p);
1661 
1662 #ifdef CONFIG_PROVE_LOCKING
1663 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1664 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1665 #endif
1666 	retval = -EAGAIN;
1667 	if (atomic_read(&p->real_cred->user->processes) >=
1668 			task_rlimit(p, RLIMIT_NPROC)) {
1669 		if (p->real_cred->user != INIT_USER &&
1670 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1671 			goto bad_fork_free;
1672 	}
1673 	current->flags &= ~PF_NPROC_EXCEEDED;
1674 
1675 	retval = copy_creds(p, clone_flags);
1676 	if (retval < 0)
1677 		goto bad_fork_free;
1678 
1679 	/*
1680 	 * If multiple threads are within copy_process(), then this check
1681 	 * triggers too late. This doesn't hurt, the check is only there
1682 	 * to stop root fork bombs.
1683 	 */
1684 	retval = -EAGAIN;
1685 	if (nr_threads >= max_threads)
1686 		goto bad_fork_cleanup_count;
1687 
1688 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1689 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1690 	p->flags |= PF_FORKNOEXEC;
1691 	INIT_LIST_HEAD(&p->children);
1692 	INIT_LIST_HEAD(&p->sibling);
1693 	rcu_copy_process(p);
1694 	p->vfork_done = NULL;
1695 	spin_lock_init(&p->alloc_lock);
1696 
1697 	init_sigpending(&p->pending);
1698 
1699 	p->utime = p->stime = p->gtime = 0;
1700 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1701 	p->utimescaled = p->stimescaled = 0;
1702 #endif
1703 	prev_cputime_init(&p->prev_cputime);
1704 
1705 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1706 	seqcount_init(&p->vtime.seqcount);
1707 	p->vtime.starttime = 0;
1708 	p->vtime.state = VTIME_INACTIVE;
1709 #endif
1710 
1711 #if defined(SPLIT_RSS_COUNTING)
1712 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1713 #endif
1714 
1715 	p->default_timer_slack_ns = current->timer_slack_ns;
1716 
1717 	task_io_accounting_init(&p->ioac);
1718 	acct_clear_integrals(p);
1719 
1720 	posix_cpu_timers_init(p);
1721 
1722 	p->start_time = ktime_get_ns();
1723 	p->real_start_time = ktime_get_boot_ns();
1724 	p->io_context = NULL;
1725 	p->audit_context = NULL;
1726 	cgroup_fork(p);
1727 #ifdef CONFIG_NUMA
1728 	p->mempolicy = mpol_dup(p->mempolicy);
1729 	if (IS_ERR(p->mempolicy)) {
1730 		retval = PTR_ERR(p->mempolicy);
1731 		p->mempolicy = NULL;
1732 		goto bad_fork_cleanup_threadgroup_lock;
1733 	}
1734 #endif
1735 #ifdef CONFIG_CPUSETS
1736 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1737 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1738 	seqcount_init(&p->mems_allowed_seq);
1739 #endif
1740 #ifdef CONFIG_TRACE_IRQFLAGS
1741 	p->irq_events = 0;
1742 	p->hardirqs_enabled = 0;
1743 	p->hardirq_enable_ip = 0;
1744 	p->hardirq_enable_event = 0;
1745 	p->hardirq_disable_ip = _THIS_IP_;
1746 	p->hardirq_disable_event = 0;
1747 	p->softirqs_enabled = 1;
1748 	p->softirq_enable_ip = _THIS_IP_;
1749 	p->softirq_enable_event = 0;
1750 	p->softirq_disable_ip = 0;
1751 	p->softirq_disable_event = 0;
1752 	p->hardirq_context = 0;
1753 	p->softirq_context = 0;
1754 #endif
1755 
1756 	p->pagefault_disabled = 0;
1757 
1758 #ifdef CONFIG_LOCKDEP
1759 	p->lockdep_depth = 0; /* no locks held yet */
1760 	p->curr_chain_key = 0;
1761 	p->lockdep_recursion = 0;
1762 	lockdep_init_task(p);
1763 #endif
1764 
1765 #ifdef CONFIG_DEBUG_MUTEXES
1766 	p->blocked_on = NULL; /* not blocked yet */
1767 #endif
1768 #ifdef CONFIG_BCACHE
1769 	p->sequential_io	= 0;
1770 	p->sequential_io_avg	= 0;
1771 #endif
1772 
1773 	/* Perform scheduler related setup. Assign this task to a CPU. */
1774 	retval = sched_fork(clone_flags, p);
1775 	if (retval)
1776 		goto bad_fork_cleanup_policy;
1777 
1778 	retval = perf_event_init_task(p);
1779 	if (retval)
1780 		goto bad_fork_cleanup_policy;
1781 	retval = audit_alloc(p);
1782 	if (retval)
1783 		goto bad_fork_cleanup_perf;
1784 	/* copy all the process information */
1785 	shm_init_task(p);
1786 	retval = security_task_alloc(p, clone_flags);
1787 	if (retval)
1788 		goto bad_fork_cleanup_audit;
1789 	retval = copy_semundo(clone_flags, p);
1790 	if (retval)
1791 		goto bad_fork_cleanup_security;
1792 	retval = copy_files(clone_flags, p);
1793 	if (retval)
1794 		goto bad_fork_cleanup_semundo;
1795 	retval = copy_fs(clone_flags, p);
1796 	if (retval)
1797 		goto bad_fork_cleanup_files;
1798 	retval = copy_sighand(clone_flags, p);
1799 	if (retval)
1800 		goto bad_fork_cleanup_fs;
1801 	retval = copy_signal(clone_flags, p);
1802 	if (retval)
1803 		goto bad_fork_cleanup_sighand;
1804 	retval = copy_mm(clone_flags, p);
1805 	if (retval)
1806 		goto bad_fork_cleanup_signal;
1807 	retval = copy_namespaces(clone_flags, p);
1808 	if (retval)
1809 		goto bad_fork_cleanup_mm;
1810 	retval = copy_io(clone_flags, p);
1811 	if (retval)
1812 		goto bad_fork_cleanup_namespaces;
1813 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1814 	if (retval)
1815 		goto bad_fork_cleanup_io;
1816 
1817 	if (pid != &init_struct_pid) {
1818 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1819 		if (IS_ERR(pid)) {
1820 			retval = PTR_ERR(pid);
1821 			goto bad_fork_cleanup_thread;
1822 		}
1823 	}
1824 
1825 #ifdef CONFIG_BLOCK
1826 	p->plug = NULL;
1827 #endif
1828 #ifdef CONFIG_FUTEX
1829 	p->robust_list = NULL;
1830 #ifdef CONFIG_COMPAT
1831 	p->compat_robust_list = NULL;
1832 #endif
1833 	INIT_LIST_HEAD(&p->pi_state_list);
1834 	p->pi_state_cache = NULL;
1835 #endif
1836 	/*
1837 	 * sigaltstack should be cleared when sharing the same VM
1838 	 */
1839 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1840 		sas_ss_reset(p);
1841 
1842 	/*
1843 	 * Syscall tracing and stepping should be turned off in the
1844 	 * child regardless of CLONE_PTRACE.
1845 	 */
1846 	user_disable_single_step(p);
1847 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1848 #ifdef TIF_SYSCALL_EMU
1849 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1850 #endif
1851 	clear_all_latency_tracing(p);
1852 
1853 	/* ok, now we should be set up.. */
1854 	p->pid = pid_nr(pid);
1855 	if (clone_flags & CLONE_THREAD) {
1856 		p->exit_signal = -1;
1857 		p->group_leader = current->group_leader;
1858 		p->tgid = current->tgid;
1859 	} else {
1860 		if (clone_flags & CLONE_PARENT)
1861 			p->exit_signal = current->group_leader->exit_signal;
1862 		else
1863 			p->exit_signal = (clone_flags & CSIGNAL);
1864 		p->group_leader = p;
1865 		p->tgid = p->pid;
1866 	}
1867 
1868 	p->nr_dirtied = 0;
1869 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1870 	p->dirty_paused_when = 0;
1871 
1872 	p->pdeath_signal = 0;
1873 	INIT_LIST_HEAD(&p->thread_group);
1874 	p->task_works = NULL;
1875 
1876 	cgroup_threadgroup_change_begin(current);
1877 	/*
1878 	 * Ensure that the cgroup subsystem policies allow the new process to be
1879 	 * forked. It should be noted the the new process's css_set can be changed
1880 	 * between here and cgroup_post_fork() if an organisation operation is in
1881 	 * progress.
1882 	 */
1883 	retval = cgroup_can_fork(p);
1884 	if (retval)
1885 		goto bad_fork_free_pid;
1886 
1887 	/*
1888 	 * Make it visible to the rest of the system, but dont wake it up yet.
1889 	 * Need tasklist lock for parent etc handling!
1890 	 */
1891 	write_lock_irq(&tasklist_lock);
1892 
1893 	/* CLONE_PARENT re-uses the old parent */
1894 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1895 		p->real_parent = current->real_parent;
1896 		p->parent_exec_id = current->parent_exec_id;
1897 	} else {
1898 		p->real_parent = current;
1899 		p->parent_exec_id = current->self_exec_id;
1900 	}
1901 
1902 	klp_copy_process(p);
1903 
1904 	spin_lock(&current->sighand->siglock);
1905 
1906 	/*
1907 	 * Copy seccomp details explicitly here, in case they were changed
1908 	 * before holding sighand lock.
1909 	 */
1910 	copy_seccomp(p);
1911 
1912 	/*
1913 	 * Process group and session signals need to be delivered to just the
1914 	 * parent before the fork or both the parent and the child after the
1915 	 * fork. Restart if a signal comes in before we add the new process to
1916 	 * it's process group.
1917 	 * A fatal signal pending means that current will exit, so the new
1918 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1919 	*/
1920 	recalc_sigpending();
1921 	if (signal_pending(current)) {
1922 		retval = -ERESTARTNOINTR;
1923 		goto bad_fork_cancel_cgroup;
1924 	}
1925 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1926 		retval = -ENOMEM;
1927 		goto bad_fork_cancel_cgroup;
1928 	}
1929 
1930 	if (likely(p->pid)) {
1931 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1932 
1933 		init_task_pid(p, PIDTYPE_PID, pid);
1934 		if (thread_group_leader(p)) {
1935 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1936 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1937 
1938 			if (is_child_reaper(pid)) {
1939 				ns_of_pid(pid)->child_reaper = p;
1940 				p->signal->flags |= SIGNAL_UNKILLABLE;
1941 			}
1942 
1943 			p->signal->leader_pid = pid;
1944 			p->signal->tty = tty_kref_get(current->signal->tty);
1945 			/*
1946 			 * Inherit has_child_subreaper flag under the same
1947 			 * tasklist_lock with adding child to the process tree
1948 			 * for propagate_has_child_subreaper optimization.
1949 			 */
1950 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1951 							 p->real_parent->signal->is_child_subreaper;
1952 			list_add_tail(&p->sibling, &p->real_parent->children);
1953 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1954 			attach_pid(p, PIDTYPE_PGID);
1955 			attach_pid(p, PIDTYPE_SID);
1956 			__this_cpu_inc(process_counts);
1957 		} else {
1958 			current->signal->nr_threads++;
1959 			atomic_inc(&current->signal->live);
1960 			atomic_inc(&current->signal->sigcnt);
1961 			list_add_tail_rcu(&p->thread_group,
1962 					  &p->group_leader->thread_group);
1963 			list_add_tail_rcu(&p->thread_node,
1964 					  &p->signal->thread_head);
1965 		}
1966 		attach_pid(p, PIDTYPE_PID);
1967 		nr_threads++;
1968 	}
1969 
1970 	total_forks++;
1971 	spin_unlock(&current->sighand->siglock);
1972 	syscall_tracepoint_update(p);
1973 	write_unlock_irq(&tasklist_lock);
1974 
1975 	proc_fork_connector(p);
1976 	cgroup_post_fork(p);
1977 	cgroup_threadgroup_change_end(current);
1978 	perf_event_fork(p);
1979 
1980 	trace_task_newtask(p, clone_flags);
1981 	uprobe_copy_process(p, clone_flags);
1982 
1983 	return p;
1984 
1985 bad_fork_cancel_cgroup:
1986 	spin_unlock(&current->sighand->siglock);
1987 	write_unlock_irq(&tasklist_lock);
1988 	cgroup_cancel_fork(p);
1989 bad_fork_free_pid:
1990 	cgroup_threadgroup_change_end(current);
1991 	if (pid != &init_struct_pid)
1992 		free_pid(pid);
1993 bad_fork_cleanup_thread:
1994 	exit_thread(p);
1995 bad_fork_cleanup_io:
1996 	if (p->io_context)
1997 		exit_io_context(p);
1998 bad_fork_cleanup_namespaces:
1999 	exit_task_namespaces(p);
2000 bad_fork_cleanup_mm:
2001 	if (p->mm)
2002 		mmput(p->mm);
2003 bad_fork_cleanup_signal:
2004 	if (!(clone_flags & CLONE_THREAD))
2005 		free_signal_struct(p->signal);
2006 bad_fork_cleanup_sighand:
2007 	__cleanup_sighand(p->sighand);
2008 bad_fork_cleanup_fs:
2009 	exit_fs(p); /* blocking */
2010 bad_fork_cleanup_files:
2011 	exit_files(p); /* blocking */
2012 bad_fork_cleanup_semundo:
2013 	exit_sem(p);
2014 bad_fork_cleanup_security:
2015 	security_task_free(p);
2016 bad_fork_cleanup_audit:
2017 	audit_free(p);
2018 bad_fork_cleanup_perf:
2019 	perf_event_free_task(p);
2020 bad_fork_cleanup_policy:
2021 	lockdep_free_task(p);
2022 #ifdef CONFIG_NUMA
2023 	mpol_put(p->mempolicy);
2024 bad_fork_cleanup_threadgroup_lock:
2025 #endif
2026 	delayacct_tsk_free(p);
2027 bad_fork_cleanup_count:
2028 	atomic_dec(&p->cred->user->processes);
2029 	exit_creds(p);
2030 bad_fork_free:
2031 	p->state = TASK_DEAD;
2032 	put_task_stack(p);
2033 	free_task(p);
2034 fork_out:
2035 	return ERR_PTR(retval);
2036 }
2037 
2038 static inline void init_idle_pids(struct pid_link *links)
2039 {
2040 	enum pid_type type;
2041 
2042 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2043 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2044 		links[type].pid = &init_struct_pid;
2045 	}
2046 }
2047 
2048 struct task_struct *fork_idle(int cpu)
2049 {
2050 	struct task_struct *task;
2051 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2052 			    cpu_to_node(cpu));
2053 	if (!IS_ERR(task)) {
2054 		init_idle_pids(task->pids);
2055 		init_idle(task, cpu);
2056 	}
2057 
2058 	return task;
2059 }
2060 
2061 /*
2062  *  Ok, this is the main fork-routine.
2063  *
2064  * It copies the process, and if successful kick-starts
2065  * it and waits for it to finish using the VM if required.
2066  */
2067 long _do_fork(unsigned long clone_flags,
2068 	      unsigned long stack_start,
2069 	      unsigned long stack_size,
2070 	      int __user *parent_tidptr,
2071 	      int __user *child_tidptr,
2072 	      unsigned long tls)
2073 {
2074 	struct completion vfork;
2075 	struct pid *pid;
2076 	struct task_struct *p;
2077 	int trace = 0;
2078 	long nr;
2079 
2080 	/*
2081 	 * Determine whether and which event to report to ptracer.  When
2082 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2083 	 * requested, no event is reported; otherwise, report if the event
2084 	 * for the type of forking is enabled.
2085 	 */
2086 	if (!(clone_flags & CLONE_UNTRACED)) {
2087 		if (clone_flags & CLONE_VFORK)
2088 			trace = PTRACE_EVENT_VFORK;
2089 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2090 			trace = PTRACE_EVENT_CLONE;
2091 		else
2092 			trace = PTRACE_EVENT_FORK;
2093 
2094 		if (likely(!ptrace_event_enabled(current, trace)))
2095 			trace = 0;
2096 	}
2097 
2098 	p = copy_process(clone_flags, stack_start, stack_size,
2099 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2100 	add_latent_entropy();
2101 
2102 	if (IS_ERR(p))
2103 		return PTR_ERR(p);
2104 
2105 	/*
2106 	 * Do this prior waking up the new thread - the thread pointer
2107 	 * might get invalid after that point, if the thread exits quickly.
2108 	 */
2109 	trace_sched_process_fork(current, p);
2110 
2111 	pid = get_task_pid(p, PIDTYPE_PID);
2112 	nr = pid_vnr(pid);
2113 
2114 	if (clone_flags & CLONE_PARENT_SETTID)
2115 		put_user(nr, parent_tidptr);
2116 
2117 	if (clone_flags & CLONE_VFORK) {
2118 		p->vfork_done = &vfork;
2119 		init_completion(&vfork);
2120 		get_task_struct(p);
2121 	}
2122 
2123 	wake_up_new_task(p);
2124 
2125 	/* forking complete and child started to run, tell ptracer */
2126 	if (unlikely(trace))
2127 		ptrace_event_pid(trace, pid);
2128 
2129 	if (clone_flags & CLONE_VFORK) {
2130 		if (!wait_for_vfork_done(p, &vfork))
2131 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2132 	}
2133 
2134 	put_pid(pid);
2135 	return nr;
2136 }
2137 
2138 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2139 /* For compatibility with architectures that call do_fork directly rather than
2140  * using the syscall entry points below. */
2141 long do_fork(unsigned long clone_flags,
2142 	      unsigned long stack_start,
2143 	      unsigned long stack_size,
2144 	      int __user *parent_tidptr,
2145 	      int __user *child_tidptr)
2146 {
2147 	return _do_fork(clone_flags, stack_start, stack_size,
2148 			parent_tidptr, child_tidptr, 0);
2149 }
2150 #endif
2151 
2152 /*
2153  * Create a kernel thread.
2154  */
2155 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2156 {
2157 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2158 		(unsigned long)arg, NULL, NULL, 0);
2159 }
2160 
2161 #ifdef __ARCH_WANT_SYS_FORK
2162 SYSCALL_DEFINE0(fork)
2163 {
2164 #ifdef CONFIG_MMU
2165 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2166 #else
2167 	/* can not support in nommu mode */
2168 	return -EINVAL;
2169 #endif
2170 }
2171 #endif
2172 
2173 #ifdef __ARCH_WANT_SYS_VFORK
2174 SYSCALL_DEFINE0(vfork)
2175 {
2176 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2177 			0, NULL, NULL, 0);
2178 }
2179 #endif
2180 
2181 #ifdef __ARCH_WANT_SYS_CLONE
2182 #ifdef CONFIG_CLONE_BACKWARDS
2183 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2184 		 int __user *, parent_tidptr,
2185 		 unsigned long, tls,
2186 		 int __user *, child_tidptr)
2187 #elif defined(CONFIG_CLONE_BACKWARDS2)
2188 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2189 		 int __user *, parent_tidptr,
2190 		 int __user *, child_tidptr,
2191 		 unsigned long, tls)
2192 #elif defined(CONFIG_CLONE_BACKWARDS3)
2193 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2194 		int, stack_size,
2195 		int __user *, parent_tidptr,
2196 		int __user *, child_tidptr,
2197 		unsigned long, tls)
2198 #else
2199 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2200 		 int __user *, parent_tidptr,
2201 		 int __user *, child_tidptr,
2202 		 unsigned long, tls)
2203 #endif
2204 {
2205 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2206 }
2207 #endif
2208 
2209 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2210 {
2211 	struct task_struct *leader, *parent, *child;
2212 	int res;
2213 
2214 	read_lock(&tasklist_lock);
2215 	leader = top = top->group_leader;
2216 down:
2217 	for_each_thread(leader, parent) {
2218 		list_for_each_entry(child, &parent->children, sibling) {
2219 			res = visitor(child, data);
2220 			if (res) {
2221 				if (res < 0)
2222 					goto out;
2223 				leader = child;
2224 				goto down;
2225 			}
2226 up:
2227 			;
2228 		}
2229 	}
2230 
2231 	if (leader != top) {
2232 		child = leader;
2233 		parent = child->real_parent;
2234 		leader = parent->group_leader;
2235 		goto up;
2236 	}
2237 out:
2238 	read_unlock(&tasklist_lock);
2239 }
2240 
2241 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2242 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2243 #endif
2244 
2245 static void sighand_ctor(void *data)
2246 {
2247 	struct sighand_struct *sighand = data;
2248 
2249 	spin_lock_init(&sighand->siglock);
2250 	init_waitqueue_head(&sighand->signalfd_wqh);
2251 }
2252 
2253 void __init proc_caches_init(void)
2254 {
2255 	sighand_cachep = kmem_cache_create("sighand_cache",
2256 			sizeof(struct sighand_struct), 0,
2257 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2258 			SLAB_ACCOUNT, sighand_ctor);
2259 	signal_cachep = kmem_cache_create("signal_cache",
2260 			sizeof(struct signal_struct), 0,
2261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2262 			NULL);
2263 	files_cachep = kmem_cache_create("files_cache",
2264 			sizeof(struct files_struct), 0,
2265 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2266 			NULL);
2267 	fs_cachep = kmem_cache_create("fs_cache",
2268 			sizeof(struct fs_struct), 0,
2269 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2270 			NULL);
2271 	/*
2272 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2273 	 * whole struct cpumask for the OFFSTACK case. We could change
2274 	 * this to *only* allocate as much of it as required by the
2275 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2276 	 * is at the end of the structure, exactly for that reason.
2277 	 */
2278 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2279 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2280 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2281 			offsetof(struct mm_struct, saved_auxv),
2282 			sizeof_field(struct mm_struct, saved_auxv),
2283 			NULL);
2284 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2285 	mmap_init();
2286 	nsproxy_cache_init();
2287 }
2288 
2289 /*
2290  * Check constraints on flags passed to the unshare system call.
2291  */
2292 static int check_unshare_flags(unsigned long unshare_flags)
2293 {
2294 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2295 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2296 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2297 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2298 		return -EINVAL;
2299 	/*
2300 	 * Not implemented, but pretend it works if there is nothing
2301 	 * to unshare.  Note that unsharing the address space or the
2302 	 * signal handlers also need to unshare the signal queues (aka
2303 	 * CLONE_THREAD).
2304 	 */
2305 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2306 		if (!thread_group_empty(current))
2307 			return -EINVAL;
2308 	}
2309 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2310 		if (atomic_read(&current->sighand->count) > 1)
2311 			return -EINVAL;
2312 	}
2313 	if (unshare_flags & CLONE_VM) {
2314 		if (!current_is_single_threaded())
2315 			return -EINVAL;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * Unshare the filesystem structure if it is being shared
2323  */
2324 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2325 {
2326 	struct fs_struct *fs = current->fs;
2327 
2328 	if (!(unshare_flags & CLONE_FS) || !fs)
2329 		return 0;
2330 
2331 	/* don't need lock here; in the worst case we'll do useless copy */
2332 	if (fs->users == 1)
2333 		return 0;
2334 
2335 	*new_fsp = copy_fs_struct(fs);
2336 	if (!*new_fsp)
2337 		return -ENOMEM;
2338 
2339 	return 0;
2340 }
2341 
2342 /*
2343  * Unshare file descriptor table if it is being shared
2344  */
2345 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2346 {
2347 	struct files_struct *fd = current->files;
2348 	int error = 0;
2349 
2350 	if ((unshare_flags & CLONE_FILES) &&
2351 	    (fd && atomic_read(&fd->count) > 1)) {
2352 		*new_fdp = dup_fd(fd, &error);
2353 		if (!*new_fdp)
2354 			return error;
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 /*
2361  * unshare allows a process to 'unshare' part of the process
2362  * context which was originally shared using clone.  copy_*
2363  * functions used by do_fork() cannot be used here directly
2364  * because they modify an inactive task_struct that is being
2365  * constructed. Here we are modifying the current, active,
2366  * task_struct.
2367  */
2368 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2369 {
2370 	struct fs_struct *fs, *new_fs = NULL;
2371 	struct files_struct *fd, *new_fd = NULL;
2372 	struct cred *new_cred = NULL;
2373 	struct nsproxy *new_nsproxy = NULL;
2374 	int do_sysvsem = 0;
2375 	int err;
2376 
2377 	/*
2378 	 * If unsharing a user namespace must also unshare the thread group
2379 	 * and unshare the filesystem root and working directories.
2380 	 */
2381 	if (unshare_flags & CLONE_NEWUSER)
2382 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2383 	/*
2384 	 * If unsharing vm, must also unshare signal handlers.
2385 	 */
2386 	if (unshare_flags & CLONE_VM)
2387 		unshare_flags |= CLONE_SIGHAND;
2388 	/*
2389 	 * If unsharing a signal handlers, must also unshare the signal queues.
2390 	 */
2391 	if (unshare_flags & CLONE_SIGHAND)
2392 		unshare_flags |= CLONE_THREAD;
2393 	/*
2394 	 * If unsharing namespace, must also unshare filesystem information.
2395 	 */
2396 	if (unshare_flags & CLONE_NEWNS)
2397 		unshare_flags |= CLONE_FS;
2398 
2399 	err = check_unshare_flags(unshare_flags);
2400 	if (err)
2401 		goto bad_unshare_out;
2402 	/*
2403 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2404 	 * to a new ipc namespace, the semaphore arrays from the old
2405 	 * namespace are unreachable.
2406 	 */
2407 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2408 		do_sysvsem = 1;
2409 	err = unshare_fs(unshare_flags, &new_fs);
2410 	if (err)
2411 		goto bad_unshare_out;
2412 	err = unshare_fd(unshare_flags, &new_fd);
2413 	if (err)
2414 		goto bad_unshare_cleanup_fs;
2415 	err = unshare_userns(unshare_flags, &new_cred);
2416 	if (err)
2417 		goto bad_unshare_cleanup_fd;
2418 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2419 					 new_cred, new_fs);
2420 	if (err)
2421 		goto bad_unshare_cleanup_cred;
2422 
2423 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2424 		if (do_sysvsem) {
2425 			/*
2426 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2427 			 */
2428 			exit_sem(current);
2429 		}
2430 		if (unshare_flags & CLONE_NEWIPC) {
2431 			/* Orphan segments in old ns (see sem above). */
2432 			exit_shm(current);
2433 			shm_init_task(current);
2434 		}
2435 
2436 		if (new_nsproxy)
2437 			switch_task_namespaces(current, new_nsproxy);
2438 
2439 		task_lock(current);
2440 
2441 		if (new_fs) {
2442 			fs = current->fs;
2443 			spin_lock(&fs->lock);
2444 			current->fs = new_fs;
2445 			if (--fs->users)
2446 				new_fs = NULL;
2447 			else
2448 				new_fs = fs;
2449 			spin_unlock(&fs->lock);
2450 		}
2451 
2452 		if (new_fd) {
2453 			fd = current->files;
2454 			current->files = new_fd;
2455 			new_fd = fd;
2456 		}
2457 
2458 		task_unlock(current);
2459 
2460 		if (new_cred) {
2461 			/* Install the new user namespace */
2462 			commit_creds(new_cred);
2463 			new_cred = NULL;
2464 		}
2465 	}
2466 
2467 	perf_event_namespaces(current);
2468 
2469 bad_unshare_cleanup_cred:
2470 	if (new_cred)
2471 		put_cred(new_cred);
2472 bad_unshare_cleanup_fd:
2473 	if (new_fd)
2474 		put_files_struct(new_fd);
2475 
2476 bad_unshare_cleanup_fs:
2477 	if (new_fs)
2478 		free_fs_struct(new_fs);
2479 
2480 bad_unshare_out:
2481 	return err;
2482 }
2483 
2484 /*
2485  *	Helper to unshare the files of the current task.
2486  *	We don't want to expose copy_files internals to
2487  *	the exec layer of the kernel.
2488  */
2489 
2490 int unshare_files(struct files_struct **displaced)
2491 {
2492 	struct task_struct *task = current;
2493 	struct files_struct *copy = NULL;
2494 	int error;
2495 
2496 	error = unshare_fd(CLONE_FILES, &copy);
2497 	if (error || !copy) {
2498 		*displaced = NULL;
2499 		return error;
2500 	}
2501 	*displaced = task->files;
2502 	task_lock(task);
2503 	task->files = copy;
2504 	task_unlock(task);
2505 	return 0;
2506 }
2507 
2508 int sysctl_max_threads(struct ctl_table *table, int write,
2509 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2510 {
2511 	struct ctl_table t;
2512 	int ret;
2513 	int threads = max_threads;
2514 	int min = MIN_THREADS;
2515 	int max = MAX_THREADS;
2516 
2517 	t = *table;
2518 	t.data = &threads;
2519 	t.extra1 = &min;
2520 	t.extra2 = &max;
2521 
2522 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2523 	if (ret || !write)
2524 		return ret;
2525 
2526 	set_max_threads(threads);
2527 
2528 	return 0;
2529 }
2530