1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 #include <linux/tick.h> 103 104 #include <asm/pgalloc.h> 105 #include <linux/uaccess.h> 106 #include <asm/mmu_context.h> 107 #include <asm/cacheflush.h> 108 #include <asm/tlbflush.h> 109 110 #include <trace/events/sched.h> 111 112 #define CREATE_TRACE_POINTS 113 #include <trace/events/task.h> 114 115 /* 116 * Minimum number of threads to boot the kernel 117 */ 118 #define MIN_THREADS 20 119 120 /* 121 * Maximum number of threads 122 */ 123 #define MAX_THREADS FUTEX_TID_MASK 124 125 /* 126 * Protected counters by write_lock_irq(&tasklist_lock) 127 */ 128 unsigned long total_forks; /* Handle normal Linux uptimes. */ 129 int nr_threads; /* The idle threads do not count.. */ 130 131 static int max_threads; /* tunable limit on nr_threads */ 132 133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 134 135 static const char * const resident_page_types[] = { 136 NAMED_ARRAY_INDEX(MM_FILEPAGES), 137 NAMED_ARRAY_INDEX(MM_ANONPAGES), 138 NAMED_ARRAY_INDEX(MM_SWAPENTS), 139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 140 }; 141 142 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 143 144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 145 146 #ifdef CONFIG_PROVE_RCU 147 int lockdep_tasklist_lock_is_held(void) 148 { 149 return lockdep_is_held(&tasklist_lock); 150 } 151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 152 #endif /* #ifdef CONFIG_PROVE_RCU */ 153 154 int nr_processes(void) 155 { 156 int cpu; 157 int total = 0; 158 159 for_each_possible_cpu(cpu) 160 total += per_cpu(process_counts, cpu); 161 162 return total; 163 } 164 165 void __weak arch_release_task_struct(struct task_struct *tsk) 166 { 167 } 168 169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 170 static struct kmem_cache *task_struct_cachep; 171 172 static inline struct task_struct *alloc_task_struct_node(int node) 173 { 174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 175 } 176 177 static inline void free_task_struct(struct task_struct *tsk) 178 { 179 kmem_cache_free(task_struct_cachep, tsk); 180 } 181 #endif 182 183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 184 185 /* 186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 187 * kmemcache based allocator. 188 */ 189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 190 191 # ifdef CONFIG_VMAP_STACK 192 /* 193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 194 * flush. Try to minimize the number of calls by caching stacks. 195 */ 196 #define NR_CACHED_STACKS 2 197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 198 199 struct vm_stack { 200 struct rcu_head rcu; 201 struct vm_struct *stack_vm_area; 202 }; 203 204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 205 { 206 unsigned int i; 207 208 for (i = 0; i < NR_CACHED_STACKS; i++) { 209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 210 continue; 211 return true; 212 } 213 return false; 214 } 215 216 static void thread_stack_free_rcu(struct rcu_head *rh) 217 { 218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 219 220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 221 return; 222 223 vfree(vm_stack); 224 } 225 226 static void thread_stack_delayed_free(struct task_struct *tsk) 227 { 228 struct vm_stack *vm_stack = tsk->stack; 229 230 vm_stack->stack_vm_area = tsk->stack_vm_area; 231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 232 } 233 234 static int free_vm_stack_cache(unsigned int cpu) 235 { 236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 237 int i; 238 239 for (i = 0; i < NR_CACHED_STACKS; i++) { 240 struct vm_struct *vm_stack = cached_vm_stacks[i]; 241 242 if (!vm_stack) 243 continue; 244 245 vfree(vm_stack->addr); 246 cached_vm_stacks[i] = NULL; 247 } 248 249 return 0; 250 } 251 252 static int memcg_charge_kernel_stack(struct vm_struct *vm) 253 { 254 int i; 255 int ret; 256 int nr_charged = 0; 257 258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 259 260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 262 if (ret) 263 goto err; 264 nr_charged++; 265 } 266 return 0; 267 err: 268 for (i = 0; i < nr_charged; i++) 269 memcg_kmem_uncharge_page(vm->pages[i], 0); 270 return ret; 271 } 272 273 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 274 { 275 struct vm_struct *vm; 276 void *stack; 277 int i; 278 279 for (i = 0; i < NR_CACHED_STACKS; i++) { 280 struct vm_struct *s; 281 282 s = this_cpu_xchg(cached_stacks[i], NULL); 283 284 if (!s) 285 continue; 286 287 /* Reset stack metadata. */ 288 kasan_unpoison_range(s->addr, THREAD_SIZE); 289 290 stack = kasan_reset_tag(s->addr); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(stack, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = stack; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 stack = kasan_reset_tag(stack); 330 tsk->stack = stack; 331 return 0; 332 } 333 334 static void free_thread_stack(struct task_struct *tsk) 335 { 336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 337 thread_stack_delayed_free(tsk); 338 339 tsk->stack = NULL; 340 tsk->stack_vm_area = NULL; 341 } 342 343 # else /* !CONFIG_VMAP_STACK */ 344 345 static void thread_stack_free_rcu(struct rcu_head *rh) 346 { 347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 348 } 349 350 static void thread_stack_delayed_free(struct task_struct *tsk) 351 { 352 struct rcu_head *rh = tsk->stack; 353 354 call_rcu(rh, thread_stack_free_rcu); 355 } 356 357 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 358 { 359 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 360 THREAD_SIZE_ORDER); 361 362 if (likely(page)) { 363 tsk->stack = kasan_reset_tag(page_address(page)); 364 return 0; 365 } 366 return -ENOMEM; 367 } 368 369 static void free_thread_stack(struct task_struct *tsk) 370 { 371 thread_stack_delayed_free(tsk); 372 tsk->stack = NULL; 373 } 374 375 # endif /* CONFIG_VMAP_STACK */ 376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 377 378 static struct kmem_cache *thread_stack_cache; 379 380 static void thread_stack_free_rcu(struct rcu_head *rh) 381 { 382 kmem_cache_free(thread_stack_cache, rh); 383 } 384 385 static void thread_stack_delayed_free(struct task_struct *tsk) 386 { 387 struct rcu_head *rh = tsk->stack; 388 389 call_rcu(rh, thread_stack_free_rcu); 390 } 391 392 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 393 { 394 unsigned long *stack; 395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 396 stack = kasan_reset_tag(stack); 397 tsk->stack = stack; 398 return stack ? 0 : -ENOMEM; 399 } 400 401 static void free_thread_stack(struct task_struct *tsk) 402 { 403 thread_stack_delayed_free(tsk); 404 tsk->stack = NULL; 405 } 406 407 void thread_stack_cache_init(void) 408 { 409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 410 THREAD_SIZE, THREAD_SIZE, 0, 0, 411 THREAD_SIZE, NULL); 412 BUG_ON(thread_stack_cache == NULL); 413 } 414 415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 417 418 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 419 { 420 unsigned long *stack; 421 422 stack = arch_alloc_thread_stack_node(tsk, node); 423 tsk->stack = stack; 424 return stack ? 0 : -ENOMEM; 425 } 426 427 static void free_thread_stack(struct task_struct *tsk) 428 { 429 arch_free_thread_stack(tsk); 430 tsk->stack = NULL; 431 } 432 433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 434 435 /* SLAB cache for signal_struct structures (tsk->signal) */ 436 static struct kmem_cache *signal_cachep; 437 438 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 439 struct kmem_cache *sighand_cachep; 440 441 /* SLAB cache for files_struct structures (tsk->files) */ 442 struct kmem_cache *files_cachep; 443 444 /* SLAB cache for fs_struct structures (tsk->fs) */ 445 struct kmem_cache *fs_cachep; 446 447 /* SLAB cache for vm_area_struct structures */ 448 static struct kmem_cache *vm_area_cachep; 449 450 /* SLAB cache for mm_struct structures (tsk->mm) */ 451 static struct kmem_cache *mm_cachep; 452 453 #ifdef CONFIG_PER_VMA_LOCK 454 455 /* SLAB cache for vm_area_struct.lock */ 456 static struct kmem_cache *vma_lock_cachep; 457 458 static bool vma_lock_alloc(struct vm_area_struct *vma) 459 { 460 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 461 if (!vma->vm_lock) 462 return false; 463 464 init_rwsem(&vma->vm_lock->lock); 465 vma->vm_lock_seq = -1; 466 467 return true; 468 } 469 470 static inline void vma_lock_free(struct vm_area_struct *vma) 471 { 472 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 473 } 474 475 #else /* CONFIG_PER_VMA_LOCK */ 476 477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 478 static inline void vma_lock_free(struct vm_area_struct *vma) {} 479 480 #endif /* CONFIG_PER_VMA_LOCK */ 481 482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 483 { 484 struct vm_area_struct *vma; 485 486 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 487 if (!vma) 488 return NULL; 489 490 vma_init(vma, mm); 491 if (!vma_lock_alloc(vma)) { 492 kmem_cache_free(vm_area_cachep, vma); 493 return NULL; 494 } 495 496 return vma; 497 } 498 499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 500 { 501 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 502 503 if (!new) 504 return NULL; 505 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 507 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 508 /* 509 * orig->shared.rb may be modified concurrently, but the clone 510 * will be reinitialized. 511 */ 512 data_race(memcpy(new, orig, sizeof(*new))); 513 if (!vma_lock_alloc(new)) { 514 kmem_cache_free(vm_area_cachep, new); 515 return NULL; 516 } 517 INIT_LIST_HEAD(&new->anon_vma_chain); 518 vma_numab_state_init(new); 519 dup_anon_vma_name(orig, new); 520 521 return new; 522 } 523 524 void __vm_area_free(struct vm_area_struct *vma) 525 { 526 vma_numab_state_free(vma); 527 free_anon_vma_name(vma); 528 vma_lock_free(vma); 529 kmem_cache_free(vm_area_cachep, vma); 530 } 531 532 #ifdef CONFIG_PER_VMA_LOCK 533 static void vm_area_free_rcu_cb(struct rcu_head *head) 534 { 535 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 536 vm_rcu); 537 538 /* The vma should not be locked while being destroyed. */ 539 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 540 __vm_area_free(vma); 541 } 542 #endif 543 544 void vm_area_free(struct vm_area_struct *vma) 545 { 546 #ifdef CONFIG_PER_VMA_LOCK 547 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 548 #else 549 __vm_area_free(vma); 550 #endif 551 } 552 553 static void account_kernel_stack(struct task_struct *tsk, int account) 554 { 555 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 556 struct vm_struct *vm = task_stack_vm_area(tsk); 557 int i; 558 559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 560 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 561 account * (PAGE_SIZE / 1024)); 562 } else { 563 void *stack = task_stack_page(tsk); 564 565 /* All stack pages are in the same node. */ 566 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 567 account * (THREAD_SIZE / 1024)); 568 } 569 } 570 571 void exit_task_stack_account(struct task_struct *tsk) 572 { 573 account_kernel_stack(tsk, -1); 574 575 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 576 struct vm_struct *vm; 577 int i; 578 579 vm = task_stack_vm_area(tsk); 580 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 581 memcg_kmem_uncharge_page(vm->pages[i], 0); 582 } 583 } 584 585 static void release_task_stack(struct task_struct *tsk) 586 { 587 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 588 return; /* Better to leak the stack than to free prematurely */ 589 590 free_thread_stack(tsk); 591 } 592 593 #ifdef CONFIG_THREAD_INFO_IN_TASK 594 void put_task_stack(struct task_struct *tsk) 595 { 596 if (refcount_dec_and_test(&tsk->stack_refcount)) 597 release_task_stack(tsk); 598 } 599 #endif 600 601 void free_task(struct task_struct *tsk) 602 { 603 #ifdef CONFIG_SECCOMP 604 WARN_ON_ONCE(tsk->seccomp.filter); 605 #endif 606 release_user_cpus_ptr(tsk); 607 scs_release(tsk); 608 609 #ifndef CONFIG_THREAD_INFO_IN_TASK 610 /* 611 * The task is finally done with both the stack and thread_info, 612 * so free both. 613 */ 614 release_task_stack(tsk); 615 #else 616 /* 617 * If the task had a separate stack allocation, it should be gone 618 * by now. 619 */ 620 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 621 #endif 622 rt_mutex_debug_task_free(tsk); 623 ftrace_graph_exit_task(tsk); 624 arch_release_task_struct(tsk); 625 if (tsk->flags & PF_KTHREAD) 626 free_kthread_struct(tsk); 627 bpf_task_storage_free(tsk); 628 free_task_struct(tsk); 629 } 630 EXPORT_SYMBOL(free_task); 631 632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 633 { 634 struct file *exe_file; 635 636 exe_file = get_mm_exe_file(oldmm); 637 RCU_INIT_POINTER(mm->exe_file, exe_file); 638 /* 639 * We depend on the oldmm having properly denied write access to the 640 * exe_file already. 641 */ 642 if (exe_file && deny_write_access(exe_file)) 643 pr_warn_once("deny_write_access() failed in %s\n", __func__); 644 } 645 646 #ifdef CONFIG_MMU 647 static __latent_entropy int dup_mmap(struct mm_struct *mm, 648 struct mm_struct *oldmm) 649 { 650 struct vm_area_struct *mpnt, *tmp; 651 int retval; 652 unsigned long charge = 0; 653 LIST_HEAD(uf); 654 VMA_ITERATOR(old_vmi, oldmm, 0); 655 VMA_ITERATOR(vmi, mm, 0); 656 657 uprobe_start_dup_mmap(); 658 if (mmap_write_lock_killable(oldmm)) { 659 retval = -EINTR; 660 goto fail_uprobe_end; 661 } 662 flush_cache_dup_mm(oldmm); 663 uprobe_dup_mmap(oldmm, mm); 664 /* 665 * Not linked in yet - no deadlock potential: 666 */ 667 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 668 669 /* No ordering required: file already has been exposed. */ 670 dup_mm_exe_file(mm, oldmm); 671 672 mm->total_vm = oldmm->total_vm; 673 mm->data_vm = oldmm->data_vm; 674 mm->exec_vm = oldmm->exec_vm; 675 mm->stack_vm = oldmm->stack_vm; 676 677 retval = ksm_fork(mm, oldmm); 678 if (retval) 679 goto out; 680 khugepaged_fork(mm, oldmm); 681 682 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 683 if (retval) 684 goto out; 685 686 mt_clear_in_rcu(vmi.mas.tree); 687 for_each_vma(old_vmi, mpnt) { 688 struct file *file; 689 690 vma_start_write(mpnt); 691 if (mpnt->vm_flags & VM_DONTCOPY) { 692 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 693 continue; 694 } 695 charge = 0; 696 /* 697 * Don't duplicate many vmas if we've been oom-killed (for 698 * example) 699 */ 700 if (fatal_signal_pending(current)) { 701 retval = -EINTR; 702 goto loop_out; 703 } 704 if (mpnt->vm_flags & VM_ACCOUNT) { 705 unsigned long len = vma_pages(mpnt); 706 707 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 708 goto fail_nomem; 709 charge = len; 710 } 711 tmp = vm_area_dup(mpnt); 712 if (!tmp) 713 goto fail_nomem; 714 retval = vma_dup_policy(mpnt, tmp); 715 if (retval) 716 goto fail_nomem_policy; 717 tmp->vm_mm = mm; 718 retval = dup_userfaultfd(tmp, &uf); 719 if (retval) 720 goto fail_nomem_anon_vma_fork; 721 if (tmp->vm_flags & VM_WIPEONFORK) { 722 /* 723 * VM_WIPEONFORK gets a clean slate in the child. 724 * Don't prepare anon_vma until fault since we don't 725 * copy page for current vma. 726 */ 727 tmp->anon_vma = NULL; 728 } else if (anon_vma_fork(tmp, mpnt)) 729 goto fail_nomem_anon_vma_fork; 730 vm_flags_clear(tmp, VM_LOCKED_MASK); 731 file = tmp->vm_file; 732 if (file) { 733 struct address_space *mapping = file->f_mapping; 734 735 get_file(file); 736 i_mmap_lock_write(mapping); 737 if (tmp->vm_flags & VM_SHARED) 738 mapping_allow_writable(mapping); 739 flush_dcache_mmap_lock(mapping); 740 /* insert tmp into the share list, just after mpnt */ 741 vma_interval_tree_insert_after(tmp, mpnt, 742 &mapping->i_mmap); 743 flush_dcache_mmap_unlock(mapping); 744 i_mmap_unlock_write(mapping); 745 } 746 747 /* 748 * Copy/update hugetlb private vma information. 749 */ 750 if (is_vm_hugetlb_page(tmp)) 751 hugetlb_dup_vma_private(tmp); 752 753 /* Link the vma into the MT */ 754 if (vma_iter_bulk_store(&vmi, tmp)) 755 goto fail_nomem_vmi_store; 756 757 mm->map_count++; 758 if (!(tmp->vm_flags & VM_WIPEONFORK)) 759 retval = copy_page_range(tmp, mpnt); 760 761 if (tmp->vm_ops && tmp->vm_ops->open) 762 tmp->vm_ops->open(tmp); 763 764 if (retval) 765 goto loop_out; 766 } 767 /* a new mm has just been created */ 768 retval = arch_dup_mmap(oldmm, mm); 769 loop_out: 770 vma_iter_free(&vmi); 771 if (!retval) 772 mt_set_in_rcu(vmi.mas.tree); 773 out: 774 mmap_write_unlock(mm); 775 flush_tlb_mm(oldmm); 776 mmap_write_unlock(oldmm); 777 dup_userfaultfd_complete(&uf); 778 fail_uprobe_end: 779 uprobe_end_dup_mmap(); 780 return retval; 781 782 fail_nomem_vmi_store: 783 unlink_anon_vmas(tmp); 784 fail_nomem_anon_vma_fork: 785 mpol_put(vma_policy(tmp)); 786 fail_nomem_policy: 787 vm_area_free(tmp); 788 fail_nomem: 789 retval = -ENOMEM; 790 vm_unacct_memory(charge); 791 goto loop_out; 792 } 793 794 static inline int mm_alloc_pgd(struct mm_struct *mm) 795 { 796 mm->pgd = pgd_alloc(mm); 797 if (unlikely(!mm->pgd)) 798 return -ENOMEM; 799 return 0; 800 } 801 802 static inline void mm_free_pgd(struct mm_struct *mm) 803 { 804 pgd_free(mm, mm->pgd); 805 } 806 #else 807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 808 { 809 mmap_write_lock(oldmm); 810 dup_mm_exe_file(mm, oldmm); 811 mmap_write_unlock(oldmm); 812 return 0; 813 } 814 #define mm_alloc_pgd(mm) (0) 815 #define mm_free_pgd(mm) 816 #endif /* CONFIG_MMU */ 817 818 static void check_mm(struct mm_struct *mm) 819 { 820 int i; 821 822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 823 "Please make sure 'struct resident_page_types[]' is updated as well"); 824 825 for (i = 0; i < NR_MM_COUNTERS; i++) { 826 long x = percpu_counter_sum(&mm->rss_stat[i]); 827 828 if (unlikely(x)) 829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 830 mm, resident_page_types[i], x); 831 } 832 833 if (mm_pgtables_bytes(mm)) 834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 835 mm_pgtables_bytes(mm)); 836 837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 839 #endif 840 } 841 842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 844 845 static void do_check_lazy_tlb(void *arg) 846 { 847 struct mm_struct *mm = arg; 848 849 WARN_ON_ONCE(current->active_mm == mm); 850 } 851 852 static void do_shoot_lazy_tlb(void *arg) 853 { 854 struct mm_struct *mm = arg; 855 856 if (current->active_mm == mm) { 857 WARN_ON_ONCE(current->mm); 858 current->active_mm = &init_mm; 859 switch_mm(mm, &init_mm, current); 860 } 861 } 862 863 static void cleanup_lazy_tlbs(struct mm_struct *mm) 864 { 865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 866 /* 867 * In this case, lazy tlb mms are refounted and would not reach 868 * __mmdrop until all CPUs have switched away and mmdrop()ed. 869 */ 870 return; 871 } 872 873 /* 874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 875 * requires lazy mm users to switch to another mm when the refcount 876 * drops to zero, before the mm is freed. This requires IPIs here to 877 * switch kernel threads to init_mm. 878 * 879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 880 * switch with the final userspace teardown TLB flush which leaves the 881 * mm lazy on this CPU but no others, reducing the need for additional 882 * IPIs here. There are cases where a final IPI is still required here, 883 * such as the final mmdrop being performed on a different CPU than the 884 * one exiting, or kernel threads using the mm when userspace exits. 885 * 886 * IPI overheads have not found to be expensive, but they could be 887 * reduced in a number of possible ways, for example (roughly 888 * increasing order of complexity): 889 * - The last lazy reference created by exit_mm() could instead switch 890 * to init_mm, however it's probable this will run on the same CPU 891 * immediately afterwards, so this may not reduce IPIs much. 892 * - A batch of mms requiring IPIs could be gathered and freed at once. 893 * - CPUs store active_mm where it can be remotely checked without a 894 * lock, to filter out false-positives in the cpumask. 895 * - After mm_users or mm_count reaches zero, switching away from the 896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 897 * with some batching or delaying of the final IPIs. 898 * - A delayed freeing and RCU-like quiescing sequence based on mm 899 * switching to avoid IPIs completely. 900 */ 901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 904 } 905 906 /* 907 * Called when the last reference to the mm 908 * is dropped: either by a lazy thread or by 909 * mmput. Free the page directory and the mm. 910 */ 911 void __mmdrop(struct mm_struct *mm) 912 { 913 BUG_ON(mm == &init_mm); 914 WARN_ON_ONCE(mm == current->mm); 915 916 /* Ensure no CPUs are using this as their lazy tlb mm */ 917 cleanup_lazy_tlbs(mm); 918 919 WARN_ON_ONCE(mm == current->active_mm); 920 mm_free_pgd(mm); 921 destroy_context(mm); 922 mmu_notifier_subscriptions_destroy(mm); 923 check_mm(mm); 924 put_user_ns(mm->user_ns); 925 mm_pasid_drop(mm); 926 mm_destroy_cid(mm); 927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 928 929 free_mm(mm); 930 } 931 EXPORT_SYMBOL_GPL(__mmdrop); 932 933 static void mmdrop_async_fn(struct work_struct *work) 934 { 935 struct mm_struct *mm; 936 937 mm = container_of(work, struct mm_struct, async_put_work); 938 __mmdrop(mm); 939 } 940 941 static void mmdrop_async(struct mm_struct *mm) 942 { 943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 945 schedule_work(&mm->async_put_work); 946 } 947 } 948 949 static inline void free_signal_struct(struct signal_struct *sig) 950 { 951 taskstats_tgid_free(sig); 952 sched_autogroup_exit(sig); 953 /* 954 * __mmdrop is not safe to call from softirq context on x86 due to 955 * pgd_dtor so postpone it to the async context 956 */ 957 if (sig->oom_mm) 958 mmdrop_async(sig->oom_mm); 959 kmem_cache_free(signal_cachep, sig); 960 } 961 962 static inline void put_signal_struct(struct signal_struct *sig) 963 { 964 if (refcount_dec_and_test(&sig->sigcnt)) 965 free_signal_struct(sig); 966 } 967 968 void __put_task_struct(struct task_struct *tsk) 969 { 970 WARN_ON(!tsk->exit_state); 971 WARN_ON(refcount_read(&tsk->usage)); 972 WARN_ON(tsk == current); 973 974 io_uring_free(tsk); 975 cgroup_free(tsk); 976 task_numa_free(tsk, true); 977 security_task_free(tsk); 978 exit_creds(tsk); 979 delayacct_tsk_free(tsk); 980 put_signal_struct(tsk->signal); 981 sched_core_free(tsk); 982 free_task(tsk); 983 } 984 EXPORT_SYMBOL_GPL(__put_task_struct); 985 986 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 987 { 988 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 989 990 __put_task_struct(task); 991 } 992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 993 994 void __init __weak arch_task_cache_init(void) { } 995 996 /* 997 * set_max_threads 998 */ 999 static void set_max_threads(unsigned int max_threads_suggested) 1000 { 1001 u64 threads; 1002 unsigned long nr_pages = totalram_pages(); 1003 1004 /* 1005 * The number of threads shall be limited such that the thread 1006 * structures may only consume a small part of the available memory. 1007 */ 1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1009 threads = MAX_THREADS; 1010 else 1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1012 (u64) THREAD_SIZE * 8UL); 1013 1014 if (threads > max_threads_suggested) 1015 threads = max_threads_suggested; 1016 1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1018 } 1019 1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1021 /* Initialized by the architecture: */ 1022 int arch_task_struct_size __read_mostly; 1023 #endif 1024 1025 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1026 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1027 { 1028 /* Fetch thread_struct whitelist for the architecture. */ 1029 arch_thread_struct_whitelist(offset, size); 1030 1031 /* 1032 * Handle zero-sized whitelist or empty thread_struct, otherwise 1033 * adjust offset to position of thread_struct in task_struct. 1034 */ 1035 if (unlikely(*size == 0)) 1036 *offset = 0; 1037 else 1038 *offset += offsetof(struct task_struct, thread); 1039 } 1040 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1041 1042 void __init fork_init(void) 1043 { 1044 int i; 1045 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1046 #ifndef ARCH_MIN_TASKALIGN 1047 #define ARCH_MIN_TASKALIGN 0 1048 #endif 1049 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1050 unsigned long useroffset, usersize; 1051 1052 /* create a slab on which task_structs can be allocated */ 1053 task_struct_whitelist(&useroffset, &usersize); 1054 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1055 arch_task_struct_size, align, 1056 SLAB_PANIC|SLAB_ACCOUNT, 1057 useroffset, usersize, NULL); 1058 #endif 1059 1060 /* do the arch specific task caches init */ 1061 arch_task_cache_init(); 1062 1063 set_max_threads(MAX_THREADS); 1064 1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1066 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1067 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1068 init_task.signal->rlim[RLIMIT_NPROC]; 1069 1070 for (i = 0; i < UCOUNT_COUNTS; i++) 1071 init_user_ns.ucount_max[i] = max_threads/2; 1072 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1077 1078 #ifdef CONFIG_VMAP_STACK 1079 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1080 NULL, free_vm_stack_cache); 1081 #endif 1082 1083 scs_init(); 1084 1085 lockdep_init_task(&init_task); 1086 uprobes_init(); 1087 } 1088 1089 int __weak arch_dup_task_struct(struct task_struct *dst, 1090 struct task_struct *src) 1091 { 1092 *dst = *src; 1093 return 0; 1094 } 1095 1096 void set_task_stack_end_magic(struct task_struct *tsk) 1097 { 1098 unsigned long *stackend; 1099 1100 stackend = end_of_stack(tsk); 1101 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1102 } 1103 1104 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1105 { 1106 struct task_struct *tsk; 1107 int err; 1108 1109 if (node == NUMA_NO_NODE) 1110 node = tsk_fork_get_node(orig); 1111 tsk = alloc_task_struct_node(node); 1112 if (!tsk) 1113 return NULL; 1114 1115 err = arch_dup_task_struct(tsk, orig); 1116 if (err) 1117 goto free_tsk; 1118 1119 err = alloc_thread_stack_node(tsk, node); 1120 if (err) 1121 goto free_tsk; 1122 1123 #ifdef CONFIG_THREAD_INFO_IN_TASK 1124 refcount_set(&tsk->stack_refcount, 1); 1125 #endif 1126 account_kernel_stack(tsk, 1); 1127 1128 err = scs_prepare(tsk, node); 1129 if (err) 1130 goto free_stack; 1131 1132 #ifdef CONFIG_SECCOMP 1133 /* 1134 * We must handle setting up seccomp filters once we're under 1135 * the sighand lock in case orig has changed between now and 1136 * then. Until then, filter must be NULL to avoid messing up 1137 * the usage counts on the error path calling free_task. 1138 */ 1139 tsk->seccomp.filter = NULL; 1140 #endif 1141 1142 setup_thread_stack(tsk, orig); 1143 clear_user_return_notifier(tsk); 1144 clear_tsk_need_resched(tsk); 1145 set_task_stack_end_magic(tsk); 1146 clear_syscall_work_syscall_user_dispatch(tsk); 1147 1148 #ifdef CONFIG_STACKPROTECTOR 1149 tsk->stack_canary = get_random_canary(); 1150 #endif 1151 if (orig->cpus_ptr == &orig->cpus_mask) 1152 tsk->cpus_ptr = &tsk->cpus_mask; 1153 dup_user_cpus_ptr(tsk, orig, node); 1154 1155 /* 1156 * One for the user space visible state that goes away when reaped. 1157 * One for the scheduler. 1158 */ 1159 refcount_set(&tsk->rcu_users, 2); 1160 /* One for the rcu users */ 1161 refcount_set(&tsk->usage, 1); 1162 #ifdef CONFIG_BLK_DEV_IO_TRACE 1163 tsk->btrace_seq = 0; 1164 #endif 1165 tsk->splice_pipe = NULL; 1166 tsk->task_frag.page = NULL; 1167 tsk->wake_q.next = NULL; 1168 tsk->worker_private = NULL; 1169 1170 kcov_task_init(tsk); 1171 kmsan_task_create(tsk); 1172 kmap_local_fork(tsk); 1173 1174 #ifdef CONFIG_FAULT_INJECTION 1175 tsk->fail_nth = 0; 1176 #endif 1177 1178 #ifdef CONFIG_BLK_CGROUP 1179 tsk->throttle_disk = NULL; 1180 tsk->use_memdelay = 0; 1181 #endif 1182 1183 #ifdef CONFIG_IOMMU_SVA 1184 tsk->pasid_activated = 0; 1185 #endif 1186 1187 #ifdef CONFIG_MEMCG 1188 tsk->active_memcg = NULL; 1189 #endif 1190 1191 #ifdef CONFIG_CPU_SUP_INTEL 1192 tsk->reported_split_lock = 0; 1193 #endif 1194 1195 #ifdef CONFIG_SCHED_MM_CID 1196 tsk->mm_cid = -1; 1197 tsk->last_mm_cid = -1; 1198 tsk->mm_cid_active = 0; 1199 tsk->migrate_from_cpu = -1; 1200 #endif 1201 return tsk; 1202 1203 free_stack: 1204 exit_task_stack_account(tsk); 1205 free_thread_stack(tsk); 1206 free_tsk: 1207 free_task_struct(tsk); 1208 return NULL; 1209 } 1210 1211 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1212 1213 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1214 1215 static int __init coredump_filter_setup(char *s) 1216 { 1217 default_dump_filter = 1218 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1219 MMF_DUMP_FILTER_MASK; 1220 return 1; 1221 } 1222 1223 __setup("coredump_filter=", coredump_filter_setup); 1224 1225 #include <linux/init_task.h> 1226 1227 static void mm_init_aio(struct mm_struct *mm) 1228 { 1229 #ifdef CONFIG_AIO 1230 spin_lock_init(&mm->ioctx_lock); 1231 mm->ioctx_table = NULL; 1232 #endif 1233 } 1234 1235 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1236 struct task_struct *p) 1237 { 1238 #ifdef CONFIG_MEMCG 1239 if (mm->owner == p) 1240 WRITE_ONCE(mm->owner, NULL); 1241 #endif 1242 } 1243 1244 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1245 { 1246 #ifdef CONFIG_MEMCG 1247 mm->owner = p; 1248 #endif 1249 } 1250 1251 static void mm_init_uprobes_state(struct mm_struct *mm) 1252 { 1253 #ifdef CONFIG_UPROBES 1254 mm->uprobes_state.xol_area = NULL; 1255 #endif 1256 } 1257 1258 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1259 struct user_namespace *user_ns) 1260 { 1261 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1262 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1263 atomic_set(&mm->mm_users, 1); 1264 atomic_set(&mm->mm_count, 1); 1265 seqcount_init(&mm->write_protect_seq); 1266 mmap_init_lock(mm); 1267 INIT_LIST_HEAD(&mm->mmlist); 1268 #ifdef CONFIG_PER_VMA_LOCK 1269 mm->mm_lock_seq = 0; 1270 #endif 1271 mm_pgtables_bytes_init(mm); 1272 mm->map_count = 0; 1273 mm->locked_vm = 0; 1274 atomic64_set(&mm->pinned_vm, 0); 1275 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1276 spin_lock_init(&mm->page_table_lock); 1277 spin_lock_init(&mm->arg_lock); 1278 mm_init_cpumask(mm); 1279 mm_init_aio(mm); 1280 mm_init_owner(mm, p); 1281 mm_pasid_init(mm); 1282 RCU_INIT_POINTER(mm->exe_file, NULL); 1283 mmu_notifier_subscriptions_init(mm); 1284 init_tlb_flush_pending(mm); 1285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1286 mm->pmd_huge_pte = NULL; 1287 #endif 1288 mm_init_uprobes_state(mm); 1289 hugetlb_count_init(mm); 1290 1291 if (current->mm) { 1292 mm->flags = mmf_init_flags(current->mm->flags); 1293 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1294 } else { 1295 mm->flags = default_dump_filter; 1296 mm->def_flags = 0; 1297 } 1298 1299 if (mm_alloc_pgd(mm)) 1300 goto fail_nopgd; 1301 1302 if (init_new_context(p, mm)) 1303 goto fail_nocontext; 1304 1305 if (mm_alloc_cid(mm)) 1306 goto fail_cid; 1307 1308 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1309 NR_MM_COUNTERS)) 1310 goto fail_pcpu; 1311 1312 mm->user_ns = get_user_ns(user_ns); 1313 lru_gen_init_mm(mm); 1314 return mm; 1315 1316 fail_pcpu: 1317 mm_destroy_cid(mm); 1318 fail_cid: 1319 destroy_context(mm); 1320 fail_nocontext: 1321 mm_free_pgd(mm); 1322 fail_nopgd: 1323 free_mm(mm); 1324 return NULL; 1325 } 1326 1327 /* 1328 * Allocate and initialize an mm_struct. 1329 */ 1330 struct mm_struct *mm_alloc(void) 1331 { 1332 struct mm_struct *mm; 1333 1334 mm = allocate_mm(); 1335 if (!mm) 1336 return NULL; 1337 1338 memset(mm, 0, sizeof(*mm)); 1339 return mm_init(mm, current, current_user_ns()); 1340 } 1341 1342 static inline void __mmput(struct mm_struct *mm) 1343 { 1344 VM_BUG_ON(atomic_read(&mm->mm_users)); 1345 1346 uprobe_clear_state(mm); 1347 exit_aio(mm); 1348 ksm_exit(mm); 1349 khugepaged_exit(mm); /* must run before exit_mmap */ 1350 exit_mmap(mm); 1351 mm_put_huge_zero_page(mm); 1352 set_mm_exe_file(mm, NULL); 1353 if (!list_empty(&mm->mmlist)) { 1354 spin_lock(&mmlist_lock); 1355 list_del(&mm->mmlist); 1356 spin_unlock(&mmlist_lock); 1357 } 1358 if (mm->binfmt) 1359 module_put(mm->binfmt->module); 1360 lru_gen_del_mm(mm); 1361 mmdrop(mm); 1362 } 1363 1364 /* 1365 * Decrement the use count and release all resources for an mm. 1366 */ 1367 void mmput(struct mm_struct *mm) 1368 { 1369 might_sleep(); 1370 1371 if (atomic_dec_and_test(&mm->mm_users)) 1372 __mmput(mm); 1373 } 1374 EXPORT_SYMBOL_GPL(mmput); 1375 1376 #ifdef CONFIG_MMU 1377 static void mmput_async_fn(struct work_struct *work) 1378 { 1379 struct mm_struct *mm = container_of(work, struct mm_struct, 1380 async_put_work); 1381 1382 __mmput(mm); 1383 } 1384 1385 void mmput_async(struct mm_struct *mm) 1386 { 1387 if (atomic_dec_and_test(&mm->mm_users)) { 1388 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1389 schedule_work(&mm->async_put_work); 1390 } 1391 } 1392 EXPORT_SYMBOL_GPL(mmput_async); 1393 #endif 1394 1395 /** 1396 * set_mm_exe_file - change a reference to the mm's executable file 1397 * 1398 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1399 * 1400 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1401 * invocations: in mmput() nobody alive left, in execve it happens before 1402 * the new mm is made visible to anyone. 1403 * 1404 * Can only fail if new_exe_file != NULL. 1405 */ 1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1407 { 1408 struct file *old_exe_file; 1409 1410 /* 1411 * It is safe to dereference the exe_file without RCU as 1412 * this function is only called if nobody else can access 1413 * this mm -- see comment above for justification. 1414 */ 1415 old_exe_file = rcu_dereference_raw(mm->exe_file); 1416 1417 if (new_exe_file) { 1418 /* 1419 * We expect the caller (i.e., sys_execve) to already denied 1420 * write access, so this is unlikely to fail. 1421 */ 1422 if (unlikely(deny_write_access(new_exe_file))) 1423 return -EACCES; 1424 get_file(new_exe_file); 1425 } 1426 rcu_assign_pointer(mm->exe_file, new_exe_file); 1427 if (old_exe_file) { 1428 allow_write_access(old_exe_file); 1429 fput(old_exe_file); 1430 } 1431 return 0; 1432 } 1433 1434 /** 1435 * replace_mm_exe_file - replace a reference to the mm's executable file 1436 * 1437 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1438 * 1439 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1440 */ 1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1442 { 1443 struct vm_area_struct *vma; 1444 struct file *old_exe_file; 1445 int ret = 0; 1446 1447 /* Forbid mm->exe_file change if old file still mapped. */ 1448 old_exe_file = get_mm_exe_file(mm); 1449 if (old_exe_file) { 1450 VMA_ITERATOR(vmi, mm, 0); 1451 mmap_read_lock(mm); 1452 for_each_vma(vmi, vma) { 1453 if (!vma->vm_file) 1454 continue; 1455 if (path_equal(&vma->vm_file->f_path, 1456 &old_exe_file->f_path)) { 1457 ret = -EBUSY; 1458 break; 1459 } 1460 } 1461 mmap_read_unlock(mm); 1462 fput(old_exe_file); 1463 if (ret) 1464 return ret; 1465 } 1466 1467 ret = deny_write_access(new_exe_file); 1468 if (ret) 1469 return -EACCES; 1470 get_file(new_exe_file); 1471 1472 /* set the new file */ 1473 mmap_write_lock(mm); 1474 old_exe_file = rcu_dereference_raw(mm->exe_file); 1475 rcu_assign_pointer(mm->exe_file, new_exe_file); 1476 mmap_write_unlock(mm); 1477 1478 if (old_exe_file) { 1479 allow_write_access(old_exe_file); 1480 fput(old_exe_file); 1481 } 1482 return 0; 1483 } 1484 1485 /** 1486 * get_mm_exe_file - acquire a reference to the mm's executable file 1487 * 1488 * Returns %NULL if mm has no associated executable file. 1489 * User must release file via fput(). 1490 */ 1491 struct file *get_mm_exe_file(struct mm_struct *mm) 1492 { 1493 struct file *exe_file; 1494 1495 rcu_read_lock(); 1496 exe_file = rcu_dereference(mm->exe_file); 1497 if (exe_file && !get_file_rcu(exe_file)) 1498 exe_file = NULL; 1499 rcu_read_unlock(); 1500 return exe_file; 1501 } 1502 1503 /** 1504 * get_task_exe_file - acquire a reference to the task's executable file 1505 * 1506 * Returns %NULL if task's mm (if any) has no associated executable file or 1507 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1508 * User must release file via fput(). 1509 */ 1510 struct file *get_task_exe_file(struct task_struct *task) 1511 { 1512 struct file *exe_file = NULL; 1513 struct mm_struct *mm; 1514 1515 task_lock(task); 1516 mm = task->mm; 1517 if (mm) { 1518 if (!(task->flags & PF_KTHREAD)) 1519 exe_file = get_mm_exe_file(mm); 1520 } 1521 task_unlock(task); 1522 return exe_file; 1523 } 1524 1525 /** 1526 * get_task_mm - acquire a reference to the task's mm 1527 * 1528 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1529 * this kernel workthread has transiently adopted a user mm with use_mm, 1530 * to do its AIO) is not set and if so returns a reference to it, after 1531 * bumping up the use count. User must release the mm via mmput() 1532 * after use. Typically used by /proc and ptrace. 1533 */ 1534 struct mm_struct *get_task_mm(struct task_struct *task) 1535 { 1536 struct mm_struct *mm; 1537 1538 task_lock(task); 1539 mm = task->mm; 1540 if (mm) { 1541 if (task->flags & PF_KTHREAD) 1542 mm = NULL; 1543 else 1544 mmget(mm); 1545 } 1546 task_unlock(task); 1547 return mm; 1548 } 1549 EXPORT_SYMBOL_GPL(get_task_mm); 1550 1551 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1552 { 1553 struct mm_struct *mm; 1554 int err; 1555 1556 err = down_read_killable(&task->signal->exec_update_lock); 1557 if (err) 1558 return ERR_PTR(err); 1559 1560 mm = get_task_mm(task); 1561 if (mm && mm != current->mm && 1562 !ptrace_may_access(task, mode)) { 1563 mmput(mm); 1564 mm = ERR_PTR(-EACCES); 1565 } 1566 up_read(&task->signal->exec_update_lock); 1567 1568 return mm; 1569 } 1570 1571 static void complete_vfork_done(struct task_struct *tsk) 1572 { 1573 struct completion *vfork; 1574 1575 task_lock(tsk); 1576 vfork = tsk->vfork_done; 1577 if (likely(vfork)) { 1578 tsk->vfork_done = NULL; 1579 complete(vfork); 1580 } 1581 task_unlock(tsk); 1582 } 1583 1584 static int wait_for_vfork_done(struct task_struct *child, 1585 struct completion *vfork) 1586 { 1587 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1588 int killed; 1589 1590 cgroup_enter_frozen(); 1591 killed = wait_for_completion_state(vfork, state); 1592 cgroup_leave_frozen(false); 1593 1594 if (killed) { 1595 task_lock(child); 1596 child->vfork_done = NULL; 1597 task_unlock(child); 1598 } 1599 1600 put_task_struct(child); 1601 return killed; 1602 } 1603 1604 /* Please note the differences between mmput and mm_release. 1605 * mmput is called whenever we stop holding onto a mm_struct, 1606 * error success whatever. 1607 * 1608 * mm_release is called after a mm_struct has been removed 1609 * from the current process. 1610 * 1611 * This difference is important for error handling, when we 1612 * only half set up a mm_struct for a new process and need to restore 1613 * the old one. Because we mmput the new mm_struct before 1614 * restoring the old one. . . 1615 * Eric Biederman 10 January 1998 1616 */ 1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1618 { 1619 uprobe_free_utask(tsk); 1620 1621 /* Get rid of any cached register state */ 1622 deactivate_mm(tsk, mm); 1623 1624 /* 1625 * Signal userspace if we're not exiting with a core dump 1626 * because we want to leave the value intact for debugging 1627 * purposes. 1628 */ 1629 if (tsk->clear_child_tid) { 1630 if (atomic_read(&mm->mm_users) > 1) { 1631 /* 1632 * We don't check the error code - if userspace has 1633 * not set up a proper pointer then tough luck. 1634 */ 1635 put_user(0, tsk->clear_child_tid); 1636 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1637 1, NULL, NULL, 0, 0); 1638 } 1639 tsk->clear_child_tid = NULL; 1640 } 1641 1642 /* 1643 * All done, finally we can wake up parent and return this mm to him. 1644 * Also kthread_stop() uses this completion for synchronization. 1645 */ 1646 if (tsk->vfork_done) 1647 complete_vfork_done(tsk); 1648 } 1649 1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1651 { 1652 futex_exit_release(tsk); 1653 mm_release(tsk, mm); 1654 } 1655 1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1657 { 1658 futex_exec_release(tsk); 1659 mm_release(tsk, mm); 1660 } 1661 1662 /** 1663 * dup_mm() - duplicates an existing mm structure 1664 * @tsk: the task_struct with which the new mm will be associated. 1665 * @oldmm: the mm to duplicate. 1666 * 1667 * Allocates a new mm structure and duplicates the provided @oldmm structure 1668 * content into it. 1669 * 1670 * Return: the duplicated mm or NULL on failure. 1671 */ 1672 static struct mm_struct *dup_mm(struct task_struct *tsk, 1673 struct mm_struct *oldmm) 1674 { 1675 struct mm_struct *mm; 1676 int err; 1677 1678 mm = allocate_mm(); 1679 if (!mm) 1680 goto fail_nomem; 1681 1682 memcpy(mm, oldmm, sizeof(*mm)); 1683 1684 if (!mm_init(mm, tsk, mm->user_ns)) 1685 goto fail_nomem; 1686 1687 err = dup_mmap(mm, oldmm); 1688 if (err) 1689 goto free_pt; 1690 1691 mm->hiwater_rss = get_mm_rss(mm); 1692 mm->hiwater_vm = mm->total_vm; 1693 1694 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1695 goto free_pt; 1696 1697 return mm; 1698 1699 free_pt: 1700 /* don't put binfmt in mmput, we haven't got module yet */ 1701 mm->binfmt = NULL; 1702 mm_init_owner(mm, NULL); 1703 mmput(mm); 1704 1705 fail_nomem: 1706 return NULL; 1707 } 1708 1709 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1710 { 1711 struct mm_struct *mm, *oldmm; 1712 1713 tsk->min_flt = tsk->maj_flt = 0; 1714 tsk->nvcsw = tsk->nivcsw = 0; 1715 #ifdef CONFIG_DETECT_HUNG_TASK 1716 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1717 tsk->last_switch_time = 0; 1718 #endif 1719 1720 tsk->mm = NULL; 1721 tsk->active_mm = NULL; 1722 1723 /* 1724 * Are we cloning a kernel thread? 1725 * 1726 * We need to steal a active VM for that.. 1727 */ 1728 oldmm = current->mm; 1729 if (!oldmm) 1730 return 0; 1731 1732 if (clone_flags & CLONE_VM) { 1733 mmget(oldmm); 1734 mm = oldmm; 1735 } else { 1736 mm = dup_mm(tsk, current->mm); 1737 if (!mm) 1738 return -ENOMEM; 1739 } 1740 1741 tsk->mm = mm; 1742 tsk->active_mm = mm; 1743 sched_mm_cid_fork(tsk); 1744 return 0; 1745 } 1746 1747 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1748 { 1749 struct fs_struct *fs = current->fs; 1750 if (clone_flags & CLONE_FS) { 1751 /* tsk->fs is already what we want */ 1752 spin_lock(&fs->lock); 1753 if (fs->in_exec) { 1754 spin_unlock(&fs->lock); 1755 return -EAGAIN; 1756 } 1757 fs->users++; 1758 spin_unlock(&fs->lock); 1759 return 0; 1760 } 1761 tsk->fs = copy_fs_struct(fs); 1762 if (!tsk->fs) 1763 return -ENOMEM; 1764 return 0; 1765 } 1766 1767 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1768 int no_files) 1769 { 1770 struct files_struct *oldf, *newf; 1771 1772 /* 1773 * A background process may not have any files ... 1774 */ 1775 oldf = current->files; 1776 if (!oldf) 1777 return 0; 1778 1779 if (no_files) { 1780 tsk->files = NULL; 1781 return 0; 1782 } 1783 1784 if (clone_flags & CLONE_FILES) { 1785 atomic_inc(&oldf->count); 1786 return 0; 1787 } 1788 1789 newf = dup_fd(oldf, NULL); 1790 if (IS_ERR(newf)) 1791 return PTR_ERR(newf); 1792 1793 tsk->files = newf; 1794 return 0; 1795 } 1796 1797 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1798 { 1799 struct sighand_struct *sig; 1800 1801 if (clone_flags & CLONE_SIGHAND) { 1802 refcount_inc(¤t->sighand->count); 1803 return 0; 1804 } 1805 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1806 RCU_INIT_POINTER(tsk->sighand, sig); 1807 if (!sig) 1808 return -ENOMEM; 1809 1810 refcount_set(&sig->count, 1); 1811 spin_lock_irq(¤t->sighand->siglock); 1812 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1813 spin_unlock_irq(¤t->sighand->siglock); 1814 1815 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1816 if (clone_flags & CLONE_CLEAR_SIGHAND) 1817 flush_signal_handlers(tsk, 0); 1818 1819 return 0; 1820 } 1821 1822 void __cleanup_sighand(struct sighand_struct *sighand) 1823 { 1824 if (refcount_dec_and_test(&sighand->count)) { 1825 signalfd_cleanup(sighand); 1826 /* 1827 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1828 * without an RCU grace period, see __lock_task_sighand(). 1829 */ 1830 kmem_cache_free(sighand_cachep, sighand); 1831 } 1832 } 1833 1834 /* 1835 * Initialize POSIX timer handling for a thread group. 1836 */ 1837 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1838 { 1839 struct posix_cputimers *pct = &sig->posix_cputimers; 1840 unsigned long cpu_limit; 1841 1842 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1843 posix_cputimers_group_init(pct, cpu_limit); 1844 } 1845 1846 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1847 { 1848 struct signal_struct *sig; 1849 1850 if (clone_flags & CLONE_THREAD) 1851 return 0; 1852 1853 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1854 tsk->signal = sig; 1855 if (!sig) 1856 return -ENOMEM; 1857 1858 sig->nr_threads = 1; 1859 sig->quick_threads = 1; 1860 atomic_set(&sig->live, 1); 1861 refcount_set(&sig->sigcnt, 1); 1862 1863 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1864 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1865 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1866 1867 init_waitqueue_head(&sig->wait_chldexit); 1868 sig->curr_target = tsk; 1869 init_sigpending(&sig->shared_pending); 1870 INIT_HLIST_HEAD(&sig->multiprocess); 1871 seqlock_init(&sig->stats_lock); 1872 prev_cputime_init(&sig->prev_cputime); 1873 1874 #ifdef CONFIG_POSIX_TIMERS 1875 INIT_LIST_HEAD(&sig->posix_timers); 1876 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1877 sig->real_timer.function = it_real_fn; 1878 #endif 1879 1880 task_lock(current->group_leader); 1881 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1882 task_unlock(current->group_leader); 1883 1884 posix_cpu_timers_init_group(sig); 1885 1886 tty_audit_fork(sig); 1887 sched_autogroup_fork(sig); 1888 1889 sig->oom_score_adj = current->signal->oom_score_adj; 1890 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1891 1892 mutex_init(&sig->cred_guard_mutex); 1893 init_rwsem(&sig->exec_update_lock); 1894 1895 return 0; 1896 } 1897 1898 static void copy_seccomp(struct task_struct *p) 1899 { 1900 #ifdef CONFIG_SECCOMP 1901 /* 1902 * Must be called with sighand->lock held, which is common to 1903 * all threads in the group. Holding cred_guard_mutex is not 1904 * needed because this new task is not yet running and cannot 1905 * be racing exec. 1906 */ 1907 assert_spin_locked(¤t->sighand->siglock); 1908 1909 /* Ref-count the new filter user, and assign it. */ 1910 get_seccomp_filter(current); 1911 p->seccomp = current->seccomp; 1912 1913 /* 1914 * Explicitly enable no_new_privs here in case it got set 1915 * between the task_struct being duplicated and holding the 1916 * sighand lock. The seccomp state and nnp must be in sync. 1917 */ 1918 if (task_no_new_privs(current)) 1919 task_set_no_new_privs(p); 1920 1921 /* 1922 * If the parent gained a seccomp mode after copying thread 1923 * flags and between before we held the sighand lock, we have 1924 * to manually enable the seccomp thread flag here. 1925 */ 1926 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1927 set_task_syscall_work(p, SECCOMP); 1928 #endif 1929 } 1930 1931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1932 { 1933 current->clear_child_tid = tidptr; 1934 1935 return task_pid_vnr(current); 1936 } 1937 1938 static void rt_mutex_init_task(struct task_struct *p) 1939 { 1940 raw_spin_lock_init(&p->pi_lock); 1941 #ifdef CONFIG_RT_MUTEXES 1942 p->pi_waiters = RB_ROOT_CACHED; 1943 p->pi_top_task = NULL; 1944 p->pi_blocked_on = NULL; 1945 #endif 1946 } 1947 1948 static inline void init_task_pid_links(struct task_struct *task) 1949 { 1950 enum pid_type type; 1951 1952 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1953 INIT_HLIST_NODE(&task->pid_links[type]); 1954 } 1955 1956 static inline void 1957 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1958 { 1959 if (type == PIDTYPE_PID) 1960 task->thread_pid = pid; 1961 else 1962 task->signal->pids[type] = pid; 1963 } 1964 1965 static inline void rcu_copy_process(struct task_struct *p) 1966 { 1967 #ifdef CONFIG_PREEMPT_RCU 1968 p->rcu_read_lock_nesting = 0; 1969 p->rcu_read_unlock_special.s = 0; 1970 p->rcu_blocked_node = NULL; 1971 INIT_LIST_HEAD(&p->rcu_node_entry); 1972 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1973 #ifdef CONFIG_TASKS_RCU 1974 p->rcu_tasks_holdout = false; 1975 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1976 p->rcu_tasks_idle_cpu = -1; 1977 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1978 #endif /* #ifdef CONFIG_TASKS_RCU */ 1979 #ifdef CONFIG_TASKS_TRACE_RCU 1980 p->trc_reader_nesting = 0; 1981 p->trc_reader_special.s = 0; 1982 INIT_LIST_HEAD(&p->trc_holdout_list); 1983 INIT_LIST_HEAD(&p->trc_blkd_node); 1984 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1985 } 1986 1987 struct pid *pidfd_pid(const struct file *file) 1988 { 1989 if (file->f_op == &pidfd_fops) 1990 return file->private_data; 1991 1992 return ERR_PTR(-EBADF); 1993 } 1994 1995 static int pidfd_release(struct inode *inode, struct file *file) 1996 { 1997 struct pid *pid = file->private_data; 1998 1999 file->private_data = NULL; 2000 put_pid(pid); 2001 return 0; 2002 } 2003 2004 #ifdef CONFIG_PROC_FS 2005 /** 2006 * pidfd_show_fdinfo - print information about a pidfd 2007 * @m: proc fdinfo file 2008 * @f: file referencing a pidfd 2009 * 2010 * Pid: 2011 * This function will print the pid that a given pidfd refers to in the 2012 * pid namespace of the procfs instance. 2013 * If the pid namespace of the process is not a descendant of the pid 2014 * namespace of the procfs instance 0 will be shown as its pid. This is 2015 * similar to calling getppid() on a process whose parent is outside of 2016 * its pid namespace. 2017 * 2018 * NSpid: 2019 * If pid namespaces are supported then this function will also print 2020 * the pid of a given pidfd refers to for all descendant pid namespaces 2021 * starting from the current pid namespace of the instance, i.e. the 2022 * Pid field and the first entry in the NSpid field will be identical. 2023 * If the pid namespace of the process is not a descendant of the pid 2024 * namespace of the procfs instance 0 will be shown as its first NSpid 2025 * entry and no others will be shown. 2026 * Note that this differs from the Pid and NSpid fields in 2027 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2028 * the pid namespace of the procfs instance. The difference becomes 2029 * obvious when sending around a pidfd between pid namespaces from a 2030 * different branch of the tree, i.e. where no ancestral relation is 2031 * present between the pid namespaces: 2032 * - create two new pid namespaces ns1 and ns2 in the initial pid 2033 * namespace (also take care to create new mount namespaces in the 2034 * new pid namespace and mount procfs) 2035 * - create a process with a pidfd in ns1 2036 * - send pidfd from ns1 to ns2 2037 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2038 * have exactly one entry, which is 0 2039 */ 2040 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2041 { 2042 struct pid *pid = f->private_data; 2043 struct pid_namespace *ns; 2044 pid_t nr = -1; 2045 2046 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2047 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2048 nr = pid_nr_ns(pid, ns); 2049 } 2050 2051 seq_put_decimal_ll(m, "Pid:\t", nr); 2052 2053 #ifdef CONFIG_PID_NS 2054 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2055 if (nr > 0) { 2056 int i; 2057 2058 /* If nr is non-zero it means that 'pid' is valid and that 2059 * ns, i.e. the pid namespace associated with the procfs 2060 * instance, is in the pid namespace hierarchy of pid. 2061 * Start at one below the already printed level. 2062 */ 2063 for (i = ns->level + 1; i <= pid->level; i++) 2064 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2065 } 2066 #endif 2067 seq_putc(m, '\n'); 2068 } 2069 #endif 2070 2071 /* 2072 * Poll support for process exit notification. 2073 */ 2074 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2075 { 2076 struct pid *pid = file->private_data; 2077 __poll_t poll_flags = 0; 2078 2079 poll_wait(file, &pid->wait_pidfd, pts); 2080 2081 /* 2082 * Inform pollers only when the whole thread group exits. 2083 * If the thread group leader exits before all other threads in the 2084 * group, then poll(2) should block, similar to the wait(2) family. 2085 */ 2086 if (thread_group_exited(pid)) 2087 poll_flags = EPOLLIN | EPOLLRDNORM; 2088 2089 return poll_flags; 2090 } 2091 2092 const struct file_operations pidfd_fops = { 2093 .release = pidfd_release, 2094 .poll = pidfd_poll, 2095 #ifdef CONFIG_PROC_FS 2096 .show_fdinfo = pidfd_show_fdinfo, 2097 #endif 2098 }; 2099 2100 /** 2101 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2102 * @pid: the struct pid for which to create a pidfd 2103 * @flags: flags of the new @pidfd 2104 * @pidfd: the pidfd to return 2105 * 2106 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2107 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2108 2109 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2110 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2111 * pidfd file are prepared. 2112 * 2113 * If this function returns successfully the caller is responsible to either 2114 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2115 * order to install the pidfd into its file descriptor table or they must use 2116 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2117 * respectively. 2118 * 2119 * This function is useful when a pidfd must already be reserved but there 2120 * might still be points of failure afterwards and the caller wants to ensure 2121 * that no pidfd is leaked into its file descriptor table. 2122 * 2123 * Return: On success, a reserved pidfd is returned from the function and a new 2124 * pidfd file is returned in the last argument to the function. On 2125 * error, a negative error code is returned from the function and the 2126 * last argument remains unchanged. 2127 */ 2128 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2129 { 2130 int pidfd; 2131 struct file *pidfd_file; 2132 2133 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2134 return -EINVAL; 2135 2136 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2137 if (pidfd < 0) 2138 return pidfd; 2139 2140 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2141 flags | O_RDWR | O_CLOEXEC); 2142 if (IS_ERR(pidfd_file)) { 2143 put_unused_fd(pidfd); 2144 return PTR_ERR(pidfd_file); 2145 } 2146 get_pid(pid); /* held by pidfd_file now */ 2147 *ret = pidfd_file; 2148 return pidfd; 2149 } 2150 2151 /** 2152 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2153 * @pid: the struct pid for which to create a pidfd 2154 * @flags: flags of the new @pidfd 2155 * @pidfd: the pidfd to return 2156 * 2157 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2158 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2159 * 2160 * The helper verifies that @pid is used as a thread group leader. 2161 * 2162 * If this function returns successfully the caller is responsible to either 2163 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2164 * order to install the pidfd into its file descriptor table or they must use 2165 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2166 * respectively. 2167 * 2168 * This function is useful when a pidfd must already be reserved but there 2169 * might still be points of failure afterwards and the caller wants to ensure 2170 * that no pidfd is leaked into its file descriptor table. 2171 * 2172 * Return: On success, a reserved pidfd is returned from the function and a new 2173 * pidfd file is returned in the last argument to the function. On 2174 * error, a negative error code is returned from the function and the 2175 * last argument remains unchanged. 2176 */ 2177 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2178 { 2179 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2180 return -EINVAL; 2181 2182 return __pidfd_prepare(pid, flags, ret); 2183 } 2184 2185 static void __delayed_free_task(struct rcu_head *rhp) 2186 { 2187 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2188 2189 free_task(tsk); 2190 } 2191 2192 static __always_inline void delayed_free_task(struct task_struct *tsk) 2193 { 2194 if (IS_ENABLED(CONFIG_MEMCG)) 2195 call_rcu(&tsk->rcu, __delayed_free_task); 2196 else 2197 free_task(tsk); 2198 } 2199 2200 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2201 { 2202 /* Skip if kernel thread */ 2203 if (!tsk->mm) 2204 return; 2205 2206 /* Skip if spawning a thread or using vfork */ 2207 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2208 return; 2209 2210 /* We need to synchronize with __set_oom_adj */ 2211 mutex_lock(&oom_adj_mutex); 2212 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2213 /* Update the values in case they were changed after copy_signal */ 2214 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2215 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2216 mutex_unlock(&oom_adj_mutex); 2217 } 2218 2219 #ifdef CONFIG_RV 2220 static void rv_task_fork(struct task_struct *p) 2221 { 2222 int i; 2223 2224 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2225 p->rv[i].da_mon.monitoring = false; 2226 } 2227 #else 2228 #define rv_task_fork(p) do {} while (0) 2229 #endif 2230 2231 /* 2232 * This creates a new process as a copy of the old one, 2233 * but does not actually start it yet. 2234 * 2235 * It copies the registers, and all the appropriate 2236 * parts of the process environment (as per the clone 2237 * flags). The actual kick-off is left to the caller. 2238 */ 2239 __latent_entropy struct task_struct *copy_process( 2240 struct pid *pid, 2241 int trace, 2242 int node, 2243 struct kernel_clone_args *args) 2244 { 2245 int pidfd = -1, retval; 2246 struct task_struct *p; 2247 struct multiprocess_signals delayed; 2248 struct file *pidfile = NULL; 2249 const u64 clone_flags = args->flags; 2250 struct nsproxy *nsp = current->nsproxy; 2251 2252 /* 2253 * Don't allow sharing the root directory with processes in a different 2254 * namespace 2255 */ 2256 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2257 return ERR_PTR(-EINVAL); 2258 2259 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2260 return ERR_PTR(-EINVAL); 2261 2262 /* 2263 * Thread groups must share signals as well, and detached threads 2264 * can only be started up within the thread group. 2265 */ 2266 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2267 return ERR_PTR(-EINVAL); 2268 2269 /* 2270 * Shared signal handlers imply shared VM. By way of the above, 2271 * thread groups also imply shared VM. Blocking this case allows 2272 * for various simplifications in other code. 2273 */ 2274 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2275 return ERR_PTR(-EINVAL); 2276 2277 /* 2278 * Siblings of global init remain as zombies on exit since they are 2279 * not reaped by their parent (swapper). To solve this and to avoid 2280 * multi-rooted process trees, prevent global and container-inits 2281 * from creating siblings. 2282 */ 2283 if ((clone_flags & CLONE_PARENT) && 2284 current->signal->flags & SIGNAL_UNKILLABLE) 2285 return ERR_PTR(-EINVAL); 2286 2287 /* 2288 * If the new process will be in a different pid or user namespace 2289 * do not allow it to share a thread group with the forking task. 2290 */ 2291 if (clone_flags & CLONE_THREAD) { 2292 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2293 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2294 return ERR_PTR(-EINVAL); 2295 } 2296 2297 if (clone_flags & CLONE_PIDFD) { 2298 /* 2299 * - CLONE_DETACHED is blocked so that we can potentially 2300 * reuse it later for CLONE_PIDFD. 2301 * - CLONE_THREAD is blocked until someone really needs it. 2302 */ 2303 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2304 return ERR_PTR(-EINVAL); 2305 } 2306 2307 /* 2308 * Force any signals received before this point to be delivered 2309 * before the fork happens. Collect up signals sent to multiple 2310 * processes that happen during the fork and delay them so that 2311 * they appear to happen after the fork. 2312 */ 2313 sigemptyset(&delayed.signal); 2314 INIT_HLIST_NODE(&delayed.node); 2315 2316 spin_lock_irq(¤t->sighand->siglock); 2317 if (!(clone_flags & CLONE_THREAD)) 2318 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2319 recalc_sigpending(); 2320 spin_unlock_irq(¤t->sighand->siglock); 2321 retval = -ERESTARTNOINTR; 2322 if (task_sigpending(current)) 2323 goto fork_out; 2324 2325 retval = -ENOMEM; 2326 p = dup_task_struct(current, node); 2327 if (!p) 2328 goto fork_out; 2329 p->flags &= ~PF_KTHREAD; 2330 if (args->kthread) 2331 p->flags |= PF_KTHREAD; 2332 if (args->user_worker) { 2333 /* 2334 * Mark us a user worker, and block any signal that isn't 2335 * fatal or STOP 2336 */ 2337 p->flags |= PF_USER_WORKER; 2338 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2339 } 2340 if (args->io_thread) 2341 p->flags |= PF_IO_WORKER; 2342 2343 if (args->name) 2344 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2345 2346 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2347 /* 2348 * Clear TID on mm_release()? 2349 */ 2350 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2351 2352 ftrace_graph_init_task(p); 2353 2354 rt_mutex_init_task(p); 2355 2356 lockdep_assert_irqs_enabled(); 2357 #ifdef CONFIG_PROVE_LOCKING 2358 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2359 #endif 2360 retval = copy_creds(p, clone_flags); 2361 if (retval < 0) 2362 goto bad_fork_free; 2363 2364 retval = -EAGAIN; 2365 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2366 if (p->real_cred->user != INIT_USER && 2367 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2368 goto bad_fork_cleanup_count; 2369 } 2370 current->flags &= ~PF_NPROC_EXCEEDED; 2371 2372 /* 2373 * If multiple threads are within copy_process(), then this check 2374 * triggers too late. This doesn't hurt, the check is only there 2375 * to stop root fork bombs. 2376 */ 2377 retval = -EAGAIN; 2378 if (data_race(nr_threads >= max_threads)) 2379 goto bad_fork_cleanup_count; 2380 2381 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2382 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2383 p->flags |= PF_FORKNOEXEC; 2384 INIT_LIST_HEAD(&p->children); 2385 INIT_LIST_HEAD(&p->sibling); 2386 rcu_copy_process(p); 2387 p->vfork_done = NULL; 2388 spin_lock_init(&p->alloc_lock); 2389 2390 init_sigpending(&p->pending); 2391 2392 p->utime = p->stime = p->gtime = 0; 2393 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2394 p->utimescaled = p->stimescaled = 0; 2395 #endif 2396 prev_cputime_init(&p->prev_cputime); 2397 2398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2399 seqcount_init(&p->vtime.seqcount); 2400 p->vtime.starttime = 0; 2401 p->vtime.state = VTIME_INACTIVE; 2402 #endif 2403 2404 #ifdef CONFIG_IO_URING 2405 p->io_uring = NULL; 2406 #endif 2407 2408 #if defined(SPLIT_RSS_COUNTING) 2409 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2410 #endif 2411 2412 p->default_timer_slack_ns = current->timer_slack_ns; 2413 2414 #ifdef CONFIG_PSI 2415 p->psi_flags = 0; 2416 #endif 2417 2418 task_io_accounting_init(&p->ioac); 2419 acct_clear_integrals(p); 2420 2421 posix_cputimers_init(&p->posix_cputimers); 2422 tick_dep_init_task(p); 2423 2424 p->io_context = NULL; 2425 audit_set_context(p, NULL); 2426 cgroup_fork(p); 2427 if (args->kthread) { 2428 if (!set_kthread_struct(p)) 2429 goto bad_fork_cleanup_delayacct; 2430 } 2431 #ifdef CONFIG_NUMA 2432 p->mempolicy = mpol_dup(p->mempolicy); 2433 if (IS_ERR(p->mempolicy)) { 2434 retval = PTR_ERR(p->mempolicy); 2435 p->mempolicy = NULL; 2436 goto bad_fork_cleanup_delayacct; 2437 } 2438 #endif 2439 #ifdef CONFIG_CPUSETS 2440 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2441 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2442 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2443 #endif 2444 #ifdef CONFIG_TRACE_IRQFLAGS 2445 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2446 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2447 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2448 p->softirqs_enabled = 1; 2449 p->softirq_context = 0; 2450 #endif 2451 2452 p->pagefault_disabled = 0; 2453 2454 #ifdef CONFIG_LOCKDEP 2455 lockdep_init_task(p); 2456 #endif 2457 2458 #ifdef CONFIG_DEBUG_MUTEXES 2459 p->blocked_on = NULL; /* not blocked yet */ 2460 #endif 2461 #ifdef CONFIG_BCACHE 2462 p->sequential_io = 0; 2463 p->sequential_io_avg = 0; 2464 #endif 2465 #ifdef CONFIG_BPF_SYSCALL 2466 RCU_INIT_POINTER(p->bpf_storage, NULL); 2467 p->bpf_ctx = NULL; 2468 #endif 2469 2470 /* Perform scheduler related setup. Assign this task to a CPU. */ 2471 retval = sched_fork(clone_flags, p); 2472 if (retval) 2473 goto bad_fork_cleanup_policy; 2474 2475 retval = perf_event_init_task(p, clone_flags); 2476 if (retval) 2477 goto bad_fork_cleanup_policy; 2478 retval = audit_alloc(p); 2479 if (retval) 2480 goto bad_fork_cleanup_perf; 2481 /* copy all the process information */ 2482 shm_init_task(p); 2483 retval = security_task_alloc(p, clone_flags); 2484 if (retval) 2485 goto bad_fork_cleanup_audit; 2486 retval = copy_semundo(clone_flags, p); 2487 if (retval) 2488 goto bad_fork_cleanup_security; 2489 retval = copy_files(clone_flags, p, args->no_files); 2490 if (retval) 2491 goto bad_fork_cleanup_semundo; 2492 retval = copy_fs(clone_flags, p); 2493 if (retval) 2494 goto bad_fork_cleanup_files; 2495 retval = copy_sighand(clone_flags, p); 2496 if (retval) 2497 goto bad_fork_cleanup_fs; 2498 retval = copy_signal(clone_flags, p); 2499 if (retval) 2500 goto bad_fork_cleanup_sighand; 2501 retval = copy_mm(clone_flags, p); 2502 if (retval) 2503 goto bad_fork_cleanup_signal; 2504 retval = copy_namespaces(clone_flags, p); 2505 if (retval) 2506 goto bad_fork_cleanup_mm; 2507 retval = copy_io(clone_flags, p); 2508 if (retval) 2509 goto bad_fork_cleanup_namespaces; 2510 retval = copy_thread(p, args); 2511 if (retval) 2512 goto bad_fork_cleanup_io; 2513 2514 stackleak_task_init(p); 2515 2516 if (pid != &init_struct_pid) { 2517 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2518 args->set_tid_size); 2519 if (IS_ERR(pid)) { 2520 retval = PTR_ERR(pid); 2521 goto bad_fork_cleanup_thread; 2522 } 2523 } 2524 2525 /* 2526 * This has to happen after we've potentially unshared the file 2527 * descriptor table (so that the pidfd doesn't leak into the child 2528 * if the fd table isn't shared). 2529 */ 2530 if (clone_flags & CLONE_PIDFD) { 2531 /* Note that no task has been attached to @pid yet. */ 2532 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2533 if (retval < 0) 2534 goto bad_fork_free_pid; 2535 pidfd = retval; 2536 2537 retval = put_user(pidfd, args->pidfd); 2538 if (retval) 2539 goto bad_fork_put_pidfd; 2540 } 2541 2542 #ifdef CONFIG_BLOCK 2543 p->plug = NULL; 2544 #endif 2545 futex_init_task(p); 2546 2547 /* 2548 * sigaltstack should be cleared when sharing the same VM 2549 */ 2550 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2551 sas_ss_reset(p); 2552 2553 /* 2554 * Syscall tracing and stepping should be turned off in the 2555 * child regardless of CLONE_PTRACE. 2556 */ 2557 user_disable_single_step(p); 2558 clear_task_syscall_work(p, SYSCALL_TRACE); 2559 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2560 clear_task_syscall_work(p, SYSCALL_EMU); 2561 #endif 2562 clear_tsk_latency_tracing(p); 2563 2564 /* ok, now we should be set up.. */ 2565 p->pid = pid_nr(pid); 2566 if (clone_flags & CLONE_THREAD) { 2567 p->group_leader = current->group_leader; 2568 p->tgid = current->tgid; 2569 } else { 2570 p->group_leader = p; 2571 p->tgid = p->pid; 2572 } 2573 2574 p->nr_dirtied = 0; 2575 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2576 p->dirty_paused_when = 0; 2577 2578 p->pdeath_signal = 0; 2579 INIT_LIST_HEAD(&p->thread_group); 2580 p->task_works = NULL; 2581 clear_posix_cputimers_work(p); 2582 2583 #ifdef CONFIG_KRETPROBES 2584 p->kretprobe_instances.first = NULL; 2585 #endif 2586 #ifdef CONFIG_RETHOOK 2587 p->rethooks.first = NULL; 2588 #endif 2589 2590 /* 2591 * Ensure that the cgroup subsystem policies allow the new process to be 2592 * forked. It should be noted that the new process's css_set can be changed 2593 * between here and cgroup_post_fork() if an organisation operation is in 2594 * progress. 2595 */ 2596 retval = cgroup_can_fork(p, args); 2597 if (retval) 2598 goto bad_fork_put_pidfd; 2599 2600 /* 2601 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2602 * the new task on the correct runqueue. All this *before* the task 2603 * becomes visible. 2604 * 2605 * This isn't part of ->can_fork() because while the re-cloning is 2606 * cgroup specific, it unconditionally needs to place the task on a 2607 * runqueue. 2608 */ 2609 sched_cgroup_fork(p, args); 2610 2611 /* 2612 * From this point on we must avoid any synchronous user-space 2613 * communication until we take the tasklist-lock. In particular, we do 2614 * not want user-space to be able to predict the process start-time by 2615 * stalling fork(2) after we recorded the start_time but before it is 2616 * visible to the system. 2617 */ 2618 2619 p->start_time = ktime_get_ns(); 2620 p->start_boottime = ktime_get_boottime_ns(); 2621 2622 /* 2623 * Make it visible to the rest of the system, but dont wake it up yet. 2624 * Need tasklist lock for parent etc handling! 2625 */ 2626 write_lock_irq(&tasklist_lock); 2627 2628 /* CLONE_PARENT re-uses the old parent */ 2629 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2630 p->real_parent = current->real_parent; 2631 p->parent_exec_id = current->parent_exec_id; 2632 if (clone_flags & CLONE_THREAD) 2633 p->exit_signal = -1; 2634 else 2635 p->exit_signal = current->group_leader->exit_signal; 2636 } else { 2637 p->real_parent = current; 2638 p->parent_exec_id = current->self_exec_id; 2639 p->exit_signal = args->exit_signal; 2640 } 2641 2642 klp_copy_process(p); 2643 2644 sched_core_fork(p); 2645 2646 spin_lock(¤t->sighand->siglock); 2647 2648 rv_task_fork(p); 2649 2650 rseq_fork(p, clone_flags); 2651 2652 /* Don't start children in a dying pid namespace */ 2653 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2654 retval = -ENOMEM; 2655 goto bad_fork_cancel_cgroup; 2656 } 2657 2658 /* Let kill terminate clone/fork in the middle */ 2659 if (fatal_signal_pending(current)) { 2660 retval = -EINTR; 2661 goto bad_fork_cancel_cgroup; 2662 } 2663 2664 /* No more failure paths after this point. */ 2665 2666 /* 2667 * Copy seccomp details explicitly here, in case they were changed 2668 * before holding sighand lock. 2669 */ 2670 copy_seccomp(p); 2671 2672 init_task_pid_links(p); 2673 if (likely(p->pid)) { 2674 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2675 2676 init_task_pid(p, PIDTYPE_PID, pid); 2677 if (thread_group_leader(p)) { 2678 init_task_pid(p, PIDTYPE_TGID, pid); 2679 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2680 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2681 2682 if (is_child_reaper(pid)) { 2683 ns_of_pid(pid)->child_reaper = p; 2684 p->signal->flags |= SIGNAL_UNKILLABLE; 2685 } 2686 p->signal->shared_pending.signal = delayed.signal; 2687 p->signal->tty = tty_kref_get(current->signal->tty); 2688 /* 2689 * Inherit has_child_subreaper flag under the same 2690 * tasklist_lock with adding child to the process tree 2691 * for propagate_has_child_subreaper optimization. 2692 */ 2693 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2694 p->real_parent->signal->is_child_subreaper; 2695 list_add_tail(&p->sibling, &p->real_parent->children); 2696 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2697 attach_pid(p, PIDTYPE_TGID); 2698 attach_pid(p, PIDTYPE_PGID); 2699 attach_pid(p, PIDTYPE_SID); 2700 __this_cpu_inc(process_counts); 2701 } else { 2702 current->signal->nr_threads++; 2703 current->signal->quick_threads++; 2704 atomic_inc(¤t->signal->live); 2705 refcount_inc(¤t->signal->sigcnt); 2706 task_join_group_stop(p); 2707 list_add_tail_rcu(&p->thread_group, 2708 &p->group_leader->thread_group); 2709 list_add_tail_rcu(&p->thread_node, 2710 &p->signal->thread_head); 2711 } 2712 attach_pid(p, PIDTYPE_PID); 2713 nr_threads++; 2714 } 2715 total_forks++; 2716 hlist_del_init(&delayed.node); 2717 spin_unlock(¤t->sighand->siglock); 2718 syscall_tracepoint_update(p); 2719 write_unlock_irq(&tasklist_lock); 2720 2721 if (pidfile) 2722 fd_install(pidfd, pidfile); 2723 2724 proc_fork_connector(p); 2725 sched_post_fork(p); 2726 cgroup_post_fork(p, args); 2727 perf_event_fork(p); 2728 2729 trace_task_newtask(p, clone_flags); 2730 uprobe_copy_process(p, clone_flags); 2731 user_events_fork(p, clone_flags); 2732 2733 copy_oom_score_adj(clone_flags, p); 2734 2735 return p; 2736 2737 bad_fork_cancel_cgroup: 2738 sched_core_free(p); 2739 spin_unlock(¤t->sighand->siglock); 2740 write_unlock_irq(&tasklist_lock); 2741 cgroup_cancel_fork(p, args); 2742 bad_fork_put_pidfd: 2743 if (clone_flags & CLONE_PIDFD) { 2744 fput(pidfile); 2745 put_unused_fd(pidfd); 2746 } 2747 bad_fork_free_pid: 2748 if (pid != &init_struct_pid) 2749 free_pid(pid); 2750 bad_fork_cleanup_thread: 2751 exit_thread(p); 2752 bad_fork_cleanup_io: 2753 if (p->io_context) 2754 exit_io_context(p); 2755 bad_fork_cleanup_namespaces: 2756 exit_task_namespaces(p); 2757 bad_fork_cleanup_mm: 2758 if (p->mm) { 2759 mm_clear_owner(p->mm, p); 2760 mmput(p->mm); 2761 } 2762 bad_fork_cleanup_signal: 2763 if (!(clone_flags & CLONE_THREAD)) 2764 free_signal_struct(p->signal); 2765 bad_fork_cleanup_sighand: 2766 __cleanup_sighand(p->sighand); 2767 bad_fork_cleanup_fs: 2768 exit_fs(p); /* blocking */ 2769 bad_fork_cleanup_files: 2770 exit_files(p); /* blocking */ 2771 bad_fork_cleanup_semundo: 2772 exit_sem(p); 2773 bad_fork_cleanup_security: 2774 security_task_free(p); 2775 bad_fork_cleanup_audit: 2776 audit_free(p); 2777 bad_fork_cleanup_perf: 2778 perf_event_free_task(p); 2779 bad_fork_cleanup_policy: 2780 lockdep_free_task(p); 2781 #ifdef CONFIG_NUMA 2782 mpol_put(p->mempolicy); 2783 #endif 2784 bad_fork_cleanup_delayacct: 2785 delayacct_tsk_free(p); 2786 bad_fork_cleanup_count: 2787 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2788 exit_creds(p); 2789 bad_fork_free: 2790 WRITE_ONCE(p->__state, TASK_DEAD); 2791 exit_task_stack_account(p); 2792 put_task_stack(p); 2793 delayed_free_task(p); 2794 fork_out: 2795 spin_lock_irq(¤t->sighand->siglock); 2796 hlist_del_init(&delayed.node); 2797 spin_unlock_irq(¤t->sighand->siglock); 2798 return ERR_PTR(retval); 2799 } 2800 2801 static inline void init_idle_pids(struct task_struct *idle) 2802 { 2803 enum pid_type type; 2804 2805 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2806 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2807 init_task_pid(idle, type, &init_struct_pid); 2808 } 2809 } 2810 2811 static int idle_dummy(void *dummy) 2812 { 2813 /* This function is never called */ 2814 return 0; 2815 } 2816 2817 struct task_struct * __init fork_idle(int cpu) 2818 { 2819 struct task_struct *task; 2820 struct kernel_clone_args args = { 2821 .flags = CLONE_VM, 2822 .fn = &idle_dummy, 2823 .fn_arg = NULL, 2824 .kthread = 1, 2825 .idle = 1, 2826 }; 2827 2828 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2829 if (!IS_ERR(task)) { 2830 init_idle_pids(task); 2831 init_idle(task, cpu); 2832 } 2833 2834 return task; 2835 } 2836 2837 /* 2838 * This is like kernel_clone(), but shaved down and tailored to just 2839 * creating io_uring workers. It returns a created task, or an error pointer. 2840 * The returned task is inactive, and the caller must fire it up through 2841 * wake_up_new_task(p). All signals are blocked in the created task. 2842 */ 2843 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2844 { 2845 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2846 CLONE_IO; 2847 struct kernel_clone_args args = { 2848 .flags = ((lower_32_bits(flags) | CLONE_VM | 2849 CLONE_UNTRACED) & ~CSIGNAL), 2850 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2851 .fn = fn, 2852 .fn_arg = arg, 2853 .io_thread = 1, 2854 .user_worker = 1, 2855 }; 2856 2857 return copy_process(NULL, 0, node, &args); 2858 } 2859 2860 /* 2861 * Ok, this is the main fork-routine. 2862 * 2863 * It copies the process, and if successful kick-starts 2864 * it and waits for it to finish using the VM if required. 2865 * 2866 * args->exit_signal is expected to be checked for sanity by the caller. 2867 */ 2868 pid_t kernel_clone(struct kernel_clone_args *args) 2869 { 2870 u64 clone_flags = args->flags; 2871 struct completion vfork; 2872 struct pid *pid; 2873 struct task_struct *p; 2874 int trace = 0; 2875 pid_t nr; 2876 2877 /* 2878 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2879 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2880 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2881 * field in struct clone_args and it still doesn't make sense to have 2882 * them both point at the same memory location. Performing this check 2883 * here has the advantage that we don't need to have a separate helper 2884 * to check for legacy clone(). 2885 */ 2886 if ((args->flags & CLONE_PIDFD) && 2887 (args->flags & CLONE_PARENT_SETTID) && 2888 (args->pidfd == args->parent_tid)) 2889 return -EINVAL; 2890 2891 /* 2892 * Determine whether and which event to report to ptracer. When 2893 * called from kernel_thread or CLONE_UNTRACED is explicitly 2894 * requested, no event is reported; otherwise, report if the event 2895 * for the type of forking is enabled. 2896 */ 2897 if (!(clone_flags & CLONE_UNTRACED)) { 2898 if (clone_flags & CLONE_VFORK) 2899 trace = PTRACE_EVENT_VFORK; 2900 else if (args->exit_signal != SIGCHLD) 2901 trace = PTRACE_EVENT_CLONE; 2902 else 2903 trace = PTRACE_EVENT_FORK; 2904 2905 if (likely(!ptrace_event_enabled(current, trace))) 2906 trace = 0; 2907 } 2908 2909 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2910 add_latent_entropy(); 2911 2912 if (IS_ERR(p)) 2913 return PTR_ERR(p); 2914 2915 /* 2916 * Do this prior waking up the new thread - the thread pointer 2917 * might get invalid after that point, if the thread exits quickly. 2918 */ 2919 trace_sched_process_fork(current, p); 2920 2921 pid = get_task_pid(p, PIDTYPE_PID); 2922 nr = pid_vnr(pid); 2923 2924 if (clone_flags & CLONE_PARENT_SETTID) 2925 put_user(nr, args->parent_tid); 2926 2927 if (clone_flags & CLONE_VFORK) { 2928 p->vfork_done = &vfork; 2929 init_completion(&vfork); 2930 get_task_struct(p); 2931 } 2932 2933 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2934 /* lock the task to synchronize with memcg migration */ 2935 task_lock(p); 2936 lru_gen_add_mm(p->mm); 2937 task_unlock(p); 2938 } 2939 2940 wake_up_new_task(p); 2941 2942 /* forking complete and child started to run, tell ptracer */ 2943 if (unlikely(trace)) 2944 ptrace_event_pid(trace, pid); 2945 2946 if (clone_flags & CLONE_VFORK) { 2947 if (!wait_for_vfork_done(p, &vfork)) 2948 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2949 } 2950 2951 put_pid(pid); 2952 return nr; 2953 } 2954 2955 /* 2956 * Create a kernel thread. 2957 */ 2958 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2959 unsigned long flags) 2960 { 2961 struct kernel_clone_args args = { 2962 .flags = ((lower_32_bits(flags) | CLONE_VM | 2963 CLONE_UNTRACED) & ~CSIGNAL), 2964 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2965 .fn = fn, 2966 .fn_arg = arg, 2967 .name = name, 2968 .kthread = 1, 2969 }; 2970 2971 return kernel_clone(&args); 2972 } 2973 2974 /* 2975 * Create a user mode thread. 2976 */ 2977 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2978 { 2979 struct kernel_clone_args args = { 2980 .flags = ((lower_32_bits(flags) | CLONE_VM | 2981 CLONE_UNTRACED) & ~CSIGNAL), 2982 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2983 .fn = fn, 2984 .fn_arg = arg, 2985 }; 2986 2987 return kernel_clone(&args); 2988 } 2989 2990 #ifdef __ARCH_WANT_SYS_FORK 2991 SYSCALL_DEFINE0(fork) 2992 { 2993 #ifdef CONFIG_MMU 2994 struct kernel_clone_args args = { 2995 .exit_signal = SIGCHLD, 2996 }; 2997 2998 return kernel_clone(&args); 2999 #else 3000 /* can not support in nommu mode */ 3001 return -EINVAL; 3002 #endif 3003 } 3004 #endif 3005 3006 #ifdef __ARCH_WANT_SYS_VFORK 3007 SYSCALL_DEFINE0(vfork) 3008 { 3009 struct kernel_clone_args args = { 3010 .flags = CLONE_VFORK | CLONE_VM, 3011 .exit_signal = SIGCHLD, 3012 }; 3013 3014 return kernel_clone(&args); 3015 } 3016 #endif 3017 3018 #ifdef __ARCH_WANT_SYS_CLONE 3019 #ifdef CONFIG_CLONE_BACKWARDS 3020 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3021 int __user *, parent_tidptr, 3022 unsigned long, tls, 3023 int __user *, child_tidptr) 3024 #elif defined(CONFIG_CLONE_BACKWARDS2) 3025 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3026 int __user *, parent_tidptr, 3027 int __user *, child_tidptr, 3028 unsigned long, tls) 3029 #elif defined(CONFIG_CLONE_BACKWARDS3) 3030 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3031 int, stack_size, 3032 int __user *, parent_tidptr, 3033 int __user *, child_tidptr, 3034 unsigned long, tls) 3035 #else 3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3037 int __user *, parent_tidptr, 3038 int __user *, child_tidptr, 3039 unsigned long, tls) 3040 #endif 3041 { 3042 struct kernel_clone_args args = { 3043 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3044 .pidfd = parent_tidptr, 3045 .child_tid = child_tidptr, 3046 .parent_tid = parent_tidptr, 3047 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3048 .stack = newsp, 3049 .tls = tls, 3050 }; 3051 3052 return kernel_clone(&args); 3053 } 3054 #endif 3055 3056 #ifdef __ARCH_WANT_SYS_CLONE3 3057 3058 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3059 struct clone_args __user *uargs, 3060 size_t usize) 3061 { 3062 int err; 3063 struct clone_args args; 3064 pid_t *kset_tid = kargs->set_tid; 3065 3066 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3067 CLONE_ARGS_SIZE_VER0); 3068 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3069 CLONE_ARGS_SIZE_VER1); 3070 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3071 CLONE_ARGS_SIZE_VER2); 3072 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3073 3074 if (unlikely(usize > PAGE_SIZE)) 3075 return -E2BIG; 3076 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3077 return -EINVAL; 3078 3079 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3080 if (err) 3081 return err; 3082 3083 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3084 return -EINVAL; 3085 3086 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3087 return -EINVAL; 3088 3089 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3090 return -EINVAL; 3091 3092 /* 3093 * Verify that higher 32bits of exit_signal are unset and that 3094 * it is a valid signal 3095 */ 3096 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3097 !valid_signal(args.exit_signal))) 3098 return -EINVAL; 3099 3100 if ((args.flags & CLONE_INTO_CGROUP) && 3101 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3102 return -EINVAL; 3103 3104 *kargs = (struct kernel_clone_args){ 3105 .flags = args.flags, 3106 .pidfd = u64_to_user_ptr(args.pidfd), 3107 .child_tid = u64_to_user_ptr(args.child_tid), 3108 .parent_tid = u64_to_user_ptr(args.parent_tid), 3109 .exit_signal = args.exit_signal, 3110 .stack = args.stack, 3111 .stack_size = args.stack_size, 3112 .tls = args.tls, 3113 .set_tid_size = args.set_tid_size, 3114 .cgroup = args.cgroup, 3115 }; 3116 3117 if (args.set_tid && 3118 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3119 (kargs->set_tid_size * sizeof(pid_t)))) 3120 return -EFAULT; 3121 3122 kargs->set_tid = kset_tid; 3123 3124 return 0; 3125 } 3126 3127 /** 3128 * clone3_stack_valid - check and prepare stack 3129 * @kargs: kernel clone args 3130 * 3131 * Verify that the stack arguments userspace gave us are sane. 3132 * In addition, set the stack direction for userspace since it's easy for us to 3133 * determine. 3134 */ 3135 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3136 { 3137 if (kargs->stack == 0) { 3138 if (kargs->stack_size > 0) 3139 return false; 3140 } else { 3141 if (kargs->stack_size == 0) 3142 return false; 3143 3144 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3145 return false; 3146 3147 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3148 kargs->stack += kargs->stack_size; 3149 #endif 3150 } 3151 3152 return true; 3153 } 3154 3155 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3156 { 3157 /* Verify that no unknown flags are passed along. */ 3158 if (kargs->flags & 3159 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3160 return false; 3161 3162 /* 3163 * - make the CLONE_DETACHED bit reusable for clone3 3164 * - make the CSIGNAL bits reusable for clone3 3165 */ 3166 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3167 return false; 3168 3169 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3170 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3171 return false; 3172 3173 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3174 kargs->exit_signal) 3175 return false; 3176 3177 if (!clone3_stack_valid(kargs)) 3178 return false; 3179 3180 return true; 3181 } 3182 3183 /** 3184 * clone3 - create a new process with specific properties 3185 * @uargs: argument structure 3186 * @size: size of @uargs 3187 * 3188 * clone3() is the extensible successor to clone()/clone2(). 3189 * It takes a struct as argument that is versioned by its size. 3190 * 3191 * Return: On success, a positive PID for the child process. 3192 * On error, a negative errno number. 3193 */ 3194 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3195 { 3196 int err; 3197 3198 struct kernel_clone_args kargs; 3199 pid_t set_tid[MAX_PID_NS_LEVEL]; 3200 3201 kargs.set_tid = set_tid; 3202 3203 err = copy_clone_args_from_user(&kargs, uargs, size); 3204 if (err) 3205 return err; 3206 3207 if (!clone3_args_valid(&kargs)) 3208 return -EINVAL; 3209 3210 return kernel_clone(&kargs); 3211 } 3212 #endif 3213 3214 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3215 { 3216 struct task_struct *leader, *parent, *child; 3217 int res; 3218 3219 read_lock(&tasklist_lock); 3220 leader = top = top->group_leader; 3221 down: 3222 for_each_thread(leader, parent) { 3223 list_for_each_entry(child, &parent->children, sibling) { 3224 res = visitor(child, data); 3225 if (res) { 3226 if (res < 0) 3227 goto out; 3228 leader = child; 3229 goto down; 3230 } 3231 up: 3232 ; 3233 } 3234 } 3235 3236 if (leader != top) { 3237 child = leader; 3238 parent = child->real_parent; 3239 leader = parent->group_leader; 3240 goto up; 3241 } 3242 out: 3243 read_unlock(&tasklist_lock); 3244 } 3245 3246 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3247 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3248 #endif 3249 3250 static void sighand_ctor(void *data) 3251 { 3252 struct sighand_struct *sighand = data; 3253 3254 spin_lock_init(&sighand->siglock); 3255 init_waitqueue_head(&sighand->signalfd_wqh); 3256 } 3257 3258 void __init mm_cache_init(void) 3259 { 3260 unsigned int mm_size; 3261 3262 /* 3263 * The mm_cpumask is located at the end of mm_struct, and is 3264 * dynamically sized based on the maximum CPU number this system 3265 * can have, taking hotplug into account (nr_cpu_ids). 3266 */ 3267 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3268 3269 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3270 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3272 offsetof(struct mm_struct, saved_auxv), 3273 sizeof_field(struct mm_struct, saved_auxv), 3274 NULL); 3275 } 3276 3277 void __init proc_caches_init(void) 3278 { 3279 sighand_cachep = kmem_cache_create("sighand_cache", 3280 sizeof(struct sighand_struct), 0, 3281 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3282 SLAB_ACCOUNT, sighand_ctor); 3283 signal_cachep = kmem_cache_create("signal_cache", 3284 sizeof(struct signal_struct), 0, 3285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3286 NULL); 3287 files_cachep = kmem_cache_create("files_cache", 3288 sizeof(struct files_struct), 0, 3289 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3290 NULL); 3291 fs_cachep = kmem_cache_create("fs_cache", 3292 sizeof(struct fs_struct), 0, 3293 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3294 NULL); 3295 3296 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3297 #ifdef CONFIG_PER_VMA_LOCK 3298 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3299 #endif 3300 mmap_init(); 3301 nsproxy_cache_init(); 3302 } 3303 3304 /* 3305 * Check constraints on flags passed to the unshare system call. 3306 */ 3307 static int check_unshare_flags(unsigned long unshare_flags) 3308 { 3309 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3310 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3311 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3312 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3313 CLONE_NEWTIME)) 3314 return -EINVAL; 3315 /* 3316 * Not implemented, but pretend it works if there is nothing 3317 * to unshare. Note that unsharing the address space or the 3318 * signal handlers also need to unshare the signal queues (aka 3319 * CLONE_THREAD). 3320 */ 3321 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3322 if (!thread_group_empty(current)) 3323 return -EINVAL; 3324 } 3325 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3326 if (refcount_read(¤t->sighand->count) > 1) 3327 return -EINVAL; 3328 } 3329 if (unshare_flags & CLONE_VM) { 3330 if (!current_is_single_threaded()) 3331 return -EINVAL; 3332 } 3333 3334 return 0; 3335 } 3336 3337 /* 3338 * Unshare the filesystem structure if it is being shared 3339 */ 3340 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3341 { 3342 struct fs_struct *fs = current->fs; 3343 3344 if (!(unshare_flags & CLONE_FS) || !fs) 3345 return 0; 3346 3347 /* don't need lock here; in the worst case we'll do useless copy */ 3348 if (fs->users == 1) 3349 return 0; 3350 3351 *new_fsp = copy_fs_struct(fs); 3352 if (!*new_fsp) 3353 return -ENOMEM; 3354 3355 return 0; 3356 } 3357 3358 /* 3359 * Unshare file descriptor table if it is being shared 3360 */ 3361 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3362 { 3363 struct files_struct *fd = current->files; 3364 3365 if ((unshare_flags & CLONE_FILES) && 3366 (fd && atomic_read(&fd->count) > 1)) { 3367 fd = dup_fd(fd, NULL); 3368 if (IS_ERR(fd)) 3369 return PTR_ERR(fd); 3370 *new_fdp = fd; 3371 } 3372 3373 return 0; 3374 } 3375 3376 /* 3377 * unshare allows a process to 'unshare' part of the process 3378 * context which was originally shared using clone. copy_* 3379 * functions used by kernel_clone() cannot be used here directly 3380 * because they modify an inactive task_struct that is being 3381 * constructed. Here we are modifying the current, active, 3382 * task_struct. 3383 */ 3384 int ksys_unshare(unsigned long unshare_flags) 3385 { 3386 struct fs_struct *fs, *new_fs = NULL; 3387 struct files_struct *new_fd = NULL; 3388 struct cred *new_cred = NULL; 3389 struct nsproxy *new_nsproxy = NULL; 3390 int do_sysvsem = 0; 3391 int err; 3392 3393 /* 3394 * If unsharing a user namespace must also unshare the thread group 3395 * and unshare the filesystem root and working directories. 3396 */ 3397 if (unshare_flags & CLONE_NEWUSER) 3398 unshare_flags |= CLONE_THREAD | CLONE_FS; 3399 /* 3400 * If unsharing vm, must also unshare signal handlers. 3401 */ 3402 if (unshare_flags & CLONE_VM) 3403 unshare_flags |= CLONE_SIGHAND; 3404 /* 3405 * If unsharing a signal handlers, must also unshare the signal queues. 3406 */ 3407 if (unshare_flags & CLONE_SIGHAND) 3408 unshare_flags |= CLONE_THREAD; 3409 /* 3410 * If unsharing namespace, must also unshare filesystem information. 3411 */ 3412 if (unshare_flags & CLONE_NEWNS) 3413 unshare_flags |= CLONE_FS; 3414 3415 err = check_unshare_flags(unshare_flags); 3416 if (err) 3417 goto bad_unshare_out; 3418 /* 3419 * CLONE_NEWIPC must also detach from the undolist: after switching 3420 * to a new ipc namespace, the semaphore arrays from the old 3421 * namespace are unreachable. 3422 */ 3423 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3424 do_sysvsem = 1; 3425 err = unshare_fs(unshare_flags, &new_fs); 3426 if (err) 3427 goto bad_unshare_out; 3428 err = unshare_fd(unshare_flags, &new_fd); 3429 if (err) 3430 goto bad_unshare_cleanup_fs; 3431 err = unshare_userns(unshare_flags, &new_cred); 3432 if (err) 3433 goto bad_unshare_cleanup_fd; 3434 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3435 new_cred, new_fs); 3436 if (err) 3437 goto bad_unshare_cleanup_cred; 3438 3439 if (new_cred) { 3440 err = set_cred_ucounts(new_cred); 3441 if (err) 3442 goto bad_unshare_cleanup_cred; 3443 } 3444 3445 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3446 if (do_sysvsem) { 3447 /* 3448 * CLONE_SYSVSEM is equivalent to sys_exit(). 3449 */ 3450 exit_sem(current); 3451 } 3452 if (unshare_flags & CLONE_NEWIPC) { 3453 /* Orphan segments in old ns (see sem above). */ 3454 exit_shm(current); 3455 shm_init_task(current); 3456 } 3457 3458 if (new_nsproxy) 3459 switch_task_namespaces(current, new_nsproxy); 3460 3461 task_lock(current); 3462 3463 if (new_fs) { 3464 fs = current->fs; 3465 spin_lock(&fs->lock); 3466 current->fs = new_fs; 3467 if (--fs->users) 3468 new_fs = NULL; 3469 else 3470 new_fs = fs; 3471 spin_unlock(&fs->lock); 3472 } 3473 3474 if (new_fd) 3475 swap(current->files, new_fd); 3476 3477 task_unlock(current); 3478 3479 if (new_cred) { 3480 /* Install the new user namespace */ 3481 commit_creds(new_cred); 3482 new_cred = NULL; 3483 } 3484 } 3485 3486 perf_event_namespaces(current); 3487 3488 bad_unshare_cleanup_cred: 3489 if (new_cred) 3490 put_cred(new_cred); 3491 bad_unshare_cleanup_fd: 3492 if (new_fd) 3493 put_files_struct(new_fd); 3494 3495 bad_unshare_cleanup_fs: 3496 if (new_fs) 3497 free_fs_struct(new_fs); 3498 3499 bad_unshare_out: 3500 return err; 3501 } 3502 3503 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3504 { 3505 return ksys_unshare(unshare_flags); 3506 } 3507 3508 /* 3509 * Helper to unshare the files of the current task. 3510 * We don't want to expose copy_files internals to 3511 * the exec layer of the kernel. 3512 */ 3513 3514 int unshare_files(void) 3515 { 3516 struct task_struct *task = current; 3517 struct files_struct *old, *copy = NULL; 3518 int error; 3519 3520 error = unshare_fd(CLONE_FILES, ©); 3521 if (error || !copy) 3522 return error; 3523 3524 old = task->files; 3525 task_lock(task); 3526 task->files = copy; 3527 task_unlock(task); 3528 put_files_struct(old); 3529 return 0; 3530 } 3531 3532 int sysctl_max_threads(struct ctl_table *table, int write, 3533 void *buffer, size_t *lenp, loff_t *ppos) 3534 { 3535 struct ctl_table t; 3536 int ret; 3537 int threads = max_threads; 3538 int min = 1; 3539 int max = MAX_THREADS; 3540 3541 t = *table; 3542 t.data = &threads; 3543 t.extra1 = &min; 3544 t.extra2 = &max; 3545 3546 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3547 if (ret || !write) 3548 return ret; 3549 3550 max_threads = threads; 3551 3552 return 0; 3553 } 3554