xref: /openbmc/linux/kernel/exit.c (revision fe998f4c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76 
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83 
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 	{
87 		.procname       = "oops_limit",
88 		.data           = &oops_limit,
89 		.maxlen         = sizeof(oops_limit),
90 		.mode           = 0644,
91 		.proc_handler   = proc_douintvec,
92 	},
93 	{ }
94 };
95 
96 static __init int kernel_exit_sysctls_init(void)
97 {
98 	register_sysctl_init("kernel", kern_exit_table);
99 	return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103 
104 static atomic_t oops_count = ATOMIC_INIT(0);
105 
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 			       char *page)
109 {
110 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112 
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114 
115 static __init int kernel_exit_sysfs_init(void)
116 {
117 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 	return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122 
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 	nr_threads--;
126 	detach_pid(p, PIDTYPE_PID);
127 	if (group_dead) {
128 		detach_pid(p, PIDTYPE_TGID);
129 		detach_pid(p, PIDTYPE_PGID);
130 		detach_pid(p, PIDTYPE_SID);
131 
132 		list_del_rcu(&p->tasks);
133 		list_del_init(&p->sibling);
134 		__this_cpu_dec(process_counts);
135 	}
136 	list_del_rcu(&p->thread_group);
137 	list_del_rcu(&p->thread_node);
138 }
139 
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
143 static void __exit_signal(struct task_struct *tsk)
144 {
145 	struct signal_struct *sig = tsk->signal;
146 	bool group_dead = thread_group_leader(tsk);
147 	struct sighand_struct *sighand;
148 	struct tty_struct *tty;
149 	u64 utime, stime;
150 
151 	sighand = rcu_dereference_check(tsk->sighand,
152 					lockdep_tasklist_lock_is_held());
153 	spin_lock(&sighand->siglock);
154 
155 #ifdef CONFIG_POSIX_TIMERS
156 	posix_cpu_timers_exit(tsk);
157 	if (group_dead)
158 		posix_cpu_timers_exit_group(tsk);
159 #endif
160 
161 	if (group_dead) {
162 		tty = sig->tty;
163 		sig->tty = NULL;
164 	} else {
165 		/*
166 		 * If there is any task waiting for the group exit
167 		 * then notify it:
168 		 */
169 		if (sig->notify_count > 0 && !--sig->notify_count)
170 			wake_up_process(sig->group_exec_task);
171 
172 		if (tsk == sig->curr_target)
173 			sig->curr_target = next_thread(tsk);
174 	}
175 
176 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 			      sizeof(unsigned long long));
178 
179 	/*
180 	 * Accumulate here the counters for all threads as they die. We could
181 	 * skip the group leader because it is the last user of signal_struct,
182 	 * but we want to avoid the race with thread_group_cputime() which can
183 	 * see the empty ->thread_head list.
184 	 */
185 	task_cputime(tsk, &utime, &stime);
186 	write_seqlock(&sig->stats_lock);
187 	sig->utime += utime;
188 	sig->stime += stime;
189 	sig->gtime += task_gtime(tsk);
190 	sig->min_flt += tsk->min_flt;
191 	sig->maj_flt += tsk->maj_flt;
192 	sig->nvcsw += tsk->nvcsw;
193 	sig->nivcsw += tsk->nivcsw;
194 	sig->inblock += task_io_get_inblock(tsk);
195 	sig->oublock += task_io_get_oublock(tsk);
196 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 	sig->nr_threads--;
199 	__unhash_process(tsk, group_dead);
200 	write_sequnlock(&sig->stats_lock);
201 
202 	/*
203 	 * Do this under ->siglock, we can race with another thread
204 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 	 */
206 	flush_sigqueue(&tsk->pending);
207 	tsk->sighand = NULL;
208 	spin_unlock(&sighand->siglock);
209 
210 	__cleanup_sighand(sighand);
211 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 	if (group_dead) {
213 		flush_sigqueue(&sig->shared_pending);
214 		tty_kref_put(tty);
215 	}
216 }
217 
218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221 
222 	kprobe_flush_task(tsk);
223 	rethook_flush_task(tsk);
224 	perf_event_delayed_put(tsk);
225 	trace_sched_process_free(tsk);
226 	put_task_struct(tsk);
227 }
228 
229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 	if (refcount_dec_and_test(&task->rcu_users))
232 		call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234 
235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238 
239 void release_task(struct task_struct *p)
240 {
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	/* don't need to get the RCU readlock here - the process is dead and
246 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 	rcu_read_lock();
248 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 	rcu_read_unlock();
250 
251 	cgroup_release(p);
252 
253 	write_lock_irq(&tasklist_lock);
254 	ptrace_release_task(p);
255 	thread_pid = get_pid(p->thread_pid);
256 	__exit_signal(p);
257 
258 	/*
259 	 * If we are the last non-leader member of the thread
260 	 * group, and the leader is zombie, then notify the
261 	 * group leader's parent process. (if it wants notification.)
262 	 */
263 	zap_leader = 0;
264 	leader = p->group_leader;
265 	if (leader != p && thread_group_empty(leader)
266 			&& leader->exit_state == EXIT_ZOMBIE) {
267 		/*
268 		 * If we were the last child thread and the leader has
269 		 * exited already, and the leader's parent ignores SIGCHLD,
270 		 * then we are the one who should release the leader.
271 		 */
272 		zap_leader = do_notify_parent(leader, leader->exit_signal);
273 		if (zap_leader)
274 			leader->exit_state = EXIT_DEAD;
275 	}
276 
277 	write_unlock_irq(&tasklist_lock);
278 	seccomp_filter_release(p);
279 	proc_flush_pid(thread_pid);
280 	put_pid(thread_pid);
281 	release_thread(p);
282 	put_task_struct_rcu_user(p);
283 
284 	p = leader;
285 	if (unlikely(zap_leader))
286 		goto repeat;
287 }
288 
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 	int ret = 0;
292 	struct task_struct *task;
293 
294 	rcu_read_lock();
295 
296 	/*
297 	 * Order condition vs @task, such that everything prior to the load
298 	 * of @task is visible. This is the condition as to why the user called
299 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 	 * barrier (A) in rcuwait_wait_event().
301 	 *
302 	 *    WAIT                WAKE
303 	 *    [S] tsk = current	  [S] cond = true
304 	 *        MB (A)	      MB (B)
305 	 *    [L] cond		  [L] tsk
306 	 */
307 	smp_mb(); /* (B) */
308 
309 	task = rcu_dereference(w->task);
310 	if (task)
311 		ret = wake_up_process(task);
312 	rcu_read_unlock();
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317 
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 					struct task_struct *ignored_task)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if ((p == ignored_task) ||
333 		    (p->exit_state && thread_group_empty(p)) ||
334 		    is_global_init(p->real_parent))
335 			continue;
336 
337 		if (task_pgrp(p->real_parent) != pgrp &&
338 		    task_session(p->real_parent) == task_session(p))
339 			return 0;
340 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341 
342 	return 1;
343 }
344 
345 int is_current_pgrp_orphaned(void)
346 {
347 	int retval;
348 
349 	read_lock(&tasklist_lock);
350 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 	read_unlock(&tasklist_lock);
352 
353 	return retval;
354 }
355 
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 	struct task_struct *p;
359 
360 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 			return true;
363 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364 
365 	return false;
366 }
367 
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 	struct pid *pgrp = task_pgrp(tsk);
377 	struct task_struct *ignored_task = tsk;
378 
379 	if (!parent)
380 		/* exit: our father is in a different pgrp than
381 		 * we are and we were the only connection outside.
382 		 */
383 		parent = tsk->real_parent;
384 	else
385 		/* reparent: our child is in a different pgrp than
386 		 * we are, and it was the only connection outside.
387 		 */
388 		ignored_task = NULL;
389 
390 	if (task_pgrp(parent) != pgrp &&
391 	    task_session(parent) == task_session(tsk) &&
392 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 	    has_stopped_jobs(pgrp)) {
394 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 	}
397 }
398 
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 	struct core_state *core_state;
402 
403 	/*
404 	 * Serialize with any possible pending coredump.
405 	 * We must hold siglock around checking core_state
406 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
407 	 * will increment ->nr_threads for each thread in the
408 	 * group without PF_POSTCOREDUMP set.
409 	 */
410 	spin_lock_irq(&tsk->sighand->siglock);
411 	tsk->flags |= PF_POSTCOREDUMP;
412 	core_state = tsk->signal->core_state;
413 	spin_unlock_irq(&tsk->sighand->siglock);
414 
415 	/* The vhost_worker does not particpate in coredumps */
416 	if (core_state &&
417 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 	struct task_struct *c, *g, *p = current;
449 
450 retry:
451 	/*
452 	 * If the exiting or execing task is not the owner, it's
453 	 * someone else's problem.
454 	 */
455 	if (mm->owner != p)
456 		return;
457 	/*
458 	 * The current owner is exiting/execing and there are no other
459 	 * candidates.  Do not leave the mm pointing to a possibly
460 	 * freed task structure.
461 	 */
462 	if (atomic_read(&mm->mm_users) <= 1) {
463 		WRITE_ONCE(mm->owner, NULL);
464 		return;
465 	}
466 
467 	read_lock(&tasklist_lock);
468 	/*
469 	 * Search in the children
470 	 */
471 	list_for_each_entry(c, &p->children, sibling) {
472 		if (c->mm == mm)
473 			goto assign_new_owner;
474 	}
475 
476 	/*
477 	 * Search in the siblings
478 	 */
479 	list_for_each_entry(c, &p->real_parent->children, sibling) {
480 		if (c->mm == mm)
481 			goto assign_new_owner;
482 	}
483 
484 	/*
485 	 * Search through everything else, we should not get here often.
486 	 */
487 	for_each_process(g) {
488 		if (g->flags & PF_KTHREAD)
489 			continue;
490 		for_each_thread(g, c) {
491 			if (c->mm == mm)
492 				goto assign_new_owner;
493 			if (c->mm)
494 				break;
495 		}
496 	}
497 	read_unlock(&tasklist_lock);
498 	/*
499 	 * We found no owner yet mm_users > 1: this implies that we are
500 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
501 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
502 	 */
503 	WRITE_ONCE(mm->owner, NULL);
504 	return;
505 
506 assign_new_owner:
507 	BUG_ON(c == p);
508 	get_task_struct(c);
509 	/*
510 	 * The task_lock protects c->mm from changing.
511 	 * We always want mm->owner->mm == mm
512 	 */
513 	task_lock(c);
514 	/*
515 	 * Delay read_unlock() till we have the task_lock()
516 	 * to ensure that c does not slip away underneath us
517 	 */
518 	read_unlock(&tasklist_lock);
519 	if (c->mm != mm) {
520 		task_unlock(c);
521 		put_task_struct(c);
522 		goto retry;
523 	}
524 	WRITE_ONCE(mm->owner, c);
525 	lru_gen_migrate_mm(mm);
526 	task_unlock(c);
527 	put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530 
531 /*
532  * Turn us into a lazy TLB process if we
533  * aren't already..
534  */
535 static void exit_mm(void)
536 {
537 	struct mm_struct *mm = current->mm;
538 
539 	exit_mm_release(current, mm);
540 	if (!mm)
541 		return;
542 	sync_mm_rss(mm);
543 	mmap_read_lock(mm);
544 	mmgrab_lazy_tlb(mm);
545 	BUG_ON(mm != current->active_mm);
546 	/* more a memory barrier than a real lock */
547 	task_lock(current);
548 	/*
549 	 * When a thread stops operating on an address space, the loop
550 	 * in membarrier_private_expedited() may not observe that
551 	 * tsk->mm, and the loop in membarrier_global_expedited() may
552 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553 	 * rq->membarrier_state, so those would not issue an IPI.
554 	 * Membarrier requires a memory barrier after accessing
555 	 * user-space memory, before clearing tsk->mm or the
556 	 * rq->membarrier_state.
557 	 */
558 	smp_mb__after_spinlock();
559 	local_irq_disable();
560 	current->mm = NULL;
561 	membarrier_update_current_mm(NULL);
562 	enter_lazy_tlb(mm, current);
563 	local_irq_enable();
564 	task_unlock(current);
565 	mmap_read_unlock(mm);
566 	mm_update_next_owner(mm);
567 	mmput(mm);
568 	if (test_thread_flag(TIF_MEMDIE))
569 		exit_oom_victim();
570 }
571 
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574 	struct task_struct *t;
575 
576 	for_each_thread(p, t) {
577 		if (!(t->flags & PF_EXITING))
578 			return t;
579 	}
580 	return NULL;
581 }
582 
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584 						struct list_head *dead)
585 	__releases(&tasklist_lock)
586 	__acquires(&tasklist_lock)
587 {
588 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
589 	struct task_struct *reaper = pid_ns->child_reaper;
590 	struct task_struct *p, *n;
591 
592 	if (likely(reaper != father))
593 		return reaper;
594 
595 	reaper = find_alive_thread(father);
596 	if (reaper) {
597 		pid_ns->child_reaper = reaper;
598 		return reaper;
599 	}
600 
601 	write_unlock_irq(&tasklist_lock);
602 
603 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604 		list_del_init(&p->ptrace_entry);
605 		release_task(p);
606 	}
607 
608 	zap_pid_ns_processes(pid_ns);
609 	write_lock_irq(&tasklist_lock);
610 
611 	return father;
612 }
613 
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622 					   struct task_struct *child_reaper)
623 {
624 	struct task_struct *thread, *reaper;
625 
626 	thread = find_alive_thread(father);
627 	if (thread)
628 		return thread;
629 
630 	if (father->signal->has_child_subreaper) {
631 		unsigned int ns_level = task_pid(father)->level;
632 		/*
633 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
634 		 * We can't check reaper != child_reaper to ensure we do not
635 		 * cross the namespaces, the exiting parent could be injected
636 		 * by setns() + fork().
637 		 * We check pid->level, this is slightly more efficient than
638 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639 		 */
640 		for (reaper = father->real_parent;
641 		     task_pid(reaper)->level == ns_level;
642 		     reaper = reaper->real_parent) {
643 			if (reaper == &init_task)
644 				break;
645 			if (!reaper->signal->is_child_subreaper)
646 				continue;
647 			thread = find_alive_thread(reaper);
648 			if (thread)
649 				return thread;
650 		}
651 	}
652 
653 	return child_reaper;
654 }
655 
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660 				struct list_head *dead)
661 {
662 	if (unlikely(p->exit_state == EXIT_DEAD))
663 		return;
664 
665 	/* We don't want people slaying init. */
666 	p->exit_signal = SIGCHLD;
667 
668 	/* If it has exited notify the new parent about this child's death. */
669 	if (!p->ptrace &&
670 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671 		if (do_notify_parent(p, p->exit_signal)) {
672 			p->exit_state = EXIT_DEAD;
673 			list_add(&p->ptrace_entry, dead);
674 		}
675 	}
676 
677 	kill_orphaned_pgrp(p, father);
678 }
679 
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *	as a result of our exiting, and if they have any stopped
686  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689 					struct list_head *dead)
690 {
691 	struct task_struct *p, *t, *reaper;
692 
693 	if (unlikely(!list_empty(&father->ptraced)))
694 		exit_ptrace(father, dead);
695 
696 	/* Can drop and reacquire tasklist_lock */
697 	reaper = find_child_reaper(father, dead);
698 	if (list_empty(&father->children))
699 		return;
700 
701 	reaper = find_new_reaper(father, reaper);
702 	list_for_each_entry(p, &father->children, sibling) {
703 		for_each_thread(p, t) {
704 			RCU_INIT_POINTER(t->real_parent, reaper);
705 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706 			if (likely(!t->ptrace))
707 				t->parent = t->real_parent;
708 			if (t->pdeath_signal)
709 				group_send_sig_info(t->pdeath_signal,
710 						    SEND_SIG_NOINFO, t,
711 						    PIDTYPE_TGID);
712 		}
713 		/*
714 		 * If this is a threaded reparent there is no need to
715 		 * notify anyone anything has happened.
716 		 */
717 		if (!same_thread_group(reaper, father))
718 			reparent_leader(father, p, dead);
719 	}
720 	list_splice_tail_init(&father->children, &reaper->children);
721 }
722 
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729 	bool autoreap;
730 	struct task_struct *p, *n;
731 	LIST_HEAD(dead);
732 
733 	write_lock_irq(&tasklist_lock);
734 	forget_original_parent(tsk, &dead);
735 
736 	if (group_dead)
737 		kill_orphaned_pgrp(tsk->group_leader, NULL);
738 
739 	tsk->exit_state = EXIT_ZOMBIE;
740 	if (unlikely(tsk->ptrace)) {
741 		int sig = thread_group_leader(tsk) &&
742 				thread_group_empty(tsk) &&
743 				!ptrace_reparented(tsk) ?
744 			tsk->exit_signal : SIGCHLD;
745 		autoreap = do_notify_parent(tsk, sig);
746 	} else if (thread_group_leader(tsk)) {
747 		autoreap = thread_group_empty(tsk) &&
748 			do_notify_parent(tsk, tsk->exit_signal);
749 	} else {
750 		autoreap = true;
751 	}
752 
753 	if (autoreap) {
754 		tsk->exit_state = EXIT_DEAD;
755 		list_add(&tsk->ptrace_entry, &dead);
756 	}
757 
758 	/* mt-exec, de_thread() is waiting for group leader */
759 	if (unlikely(tsk->signal->notify_count < 0))
760 		wake_up_process(tsk->signal->group_exec_task);
761 	write_unlock_irq(&tasklist_lock);
762 
763 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764 		list_del_init(&p->ptrace_entry);
765 		release_task(p);
766 	}
767 }
768 
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
771 {
772 	static DEFINE_SPINLOCK(low_water_lock);
773 	static int lowest_to_date = THREAD_SIZE;
774 	unsigned long free;
775 
776 	free = stack_not_used(current);
777 
778 	if (free >= lowest_to_date)
779 		return;
780 
781 	spin_lock(&low_water_lock);
782 	if (free < lowest_to_date) {
783 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784 			current->comm, task_pid_nr(current), free);
785 		lowest_to_date = free;
786 	}
787 	spin_unlock(&low_water_lock);
788 }
789 #else
790 static inline void check_stack_usage(void) {}
791 #endif
792 
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795 	struct sighand_struct *sighand = tsk->sighand;
796 	struct signal_struct *signal = tsk->signal;
797 
798 	spin_lock_irq(&sighand->siglock);
799 	signal->quick_threads--;
800 	if ((signal->quick_threads == 0) &&
801 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
802 		signal->flags = SIGNAL_GROUP_EXIT;
803 		signal->group_exit_code = code;
804 		signal->group_stop_count = 0;
805 	}
806 	spin_unlock_irq(&sighand->siglock);
807 }
808 
809 void __noreturn do_exit(long code)
810 {
811 	struct task_struct *tsk = current;
812 	int group_dead;
813 
814 	WARN_ON(irqs_disabled());
815 
816 	synchronize_group_exit(tsk, code);
817 
818 	WARN_ON(tsk->plug);
819 
820 	kcov_task_exit(tsk);
821 	kmsan_task_exit(tsk);
822 
823 	coredump_task_exit(tsk);
824 	ptrace_event(PTRACE_EVENT_EXIT, code);
825 	user_events_exit(tsk);
826 
827 	validate_creds_for_do_exit(tsk);
828 
829 	io_uring_files_cancel();
830 	exit_signals(tsk);  /* sets PF_EXITING */
831 
832 	/* sync mm's RSS info before statistics gathering */
833 	if (tsk->mm)
834 		sync_mm_rss(tsk->mm);
835 	acct_update_integrals(tsk);
836 	group_dead = atomic_dec_and_test(&tsk->signal->live);
837 	if (group_dead) {
838 		/*
839 		 * If the last thread of global init has exited, panic
840 		 * immediately to get a useable coredump.
841 		 */
842 		if (unlikely(is_global_init(tsk)))
843 			panic("Attempted to kill init! exitcode=0x%08x\n",
844 				tsk->signal->group_exit_code ?: (int)code);
845 
846 #ifdef CONFIG_POSIX_TIMERS
847 		hrtimer_cancel(&tsk->signal->real_timer);
848 		exit_itimers(tsk);
849 #endif
850 		if (tsk->mm)
851 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852 	}
853 	acct_collect(code, group_dead);
854 	if (group_dead)
855 		tty_audit_exit();
856 	audit_free(tsk);
857 
858 	tsk->exit_code = code;
859 	taskstats_exit(tsk, group_dead);
860 
861 	exit_mm();
862 
863 	if (group_dead)
864 		acct_process();
865 	trace_sched_process_exit(tsk);
866 
867 	exit_sem(tsk);
868 	exit_shm(tsk);
869 	exit_files(tsk);
870 	exit_fs(tsk);
871 	if (group_dead)
872 		disassociate_ctty(1);
873 	exit_task_namespaces(tsk);
874 	exit_task_work(tsk);
875 	exit_thread(tsk);
876 
877 	/*
878 	 * Flush inherited counters to the parent - before the parent
879 	 * gets woken up by child-exit notifications.
880 	 *
881 	 * because of cgroup mode, must be called before cgroup_exit()
882 	 */
883 	perf_event_exit_task(tsk);
884 
885 	sched_autogroup_exit_task(tsk);
886 	cgroup_exit(tsk);
887 
888 	/*
889 	 * FIXME: do that only when needed, using sched_exit tracepoint
890 	 */
891 	flush_ptrace_hw_breakpoint(tsk);
892 
893 	exit_tasks_rcu_start();
894 	exit_notify(tsk, group_dead);
895 	proc_exit_connector(tsk);
896 	mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898 	if (unlikely(current->pi_state_cache))
899 		kfree(current->pi_state_cache);
900 #endif
901 	/*
902 	 * Make sure we are holding no locks:
903 	 */
904 	debug_check_no_locks_held();
905 
906 	if (tsk->io_context)
907 		exit_io_context(tsk);
908 
909 	if (tsk->splice_pipe)
910 		free_pipe_info(tsk->splice_pipe);
911 
912 	if (tsk->task_frag.page)
913 		put_page(tsk->task_frag.page);
914 
915 	validate_creds_for_do_exit(tsk);
916 	exit_task_stack_account(tsk);
917 
918 	check_stack_usage();
919 	preempt_disable();
920 	if (tsk->nr_dirtied)
921 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 	exit_rcu();
923 	exit_tasks_rcu_finish();
924 
925 	lockdep_free_task(tsk);
926 	do_task_dead();
927 }
928 
929 void __noreturn make_task_dead(int signr)
930 {
931 	/*
932 	 * Take the task off the cpu after something catastrophic has
933 	 * happened.
934 	 *
935 	 * We can get here from a kernel oops, sometimes with preemption off.
936 	 * Start by checking for critical errors.
937 	 * Then fix up important state like USER_DS and preemption.
938 	 * Then do everything else.
939 	 */
940 	struct task_struct *tsk = current;
941 	unsigned int limit;
942 
943 	if (unlikely(in_interrupt()))
944 		panic("Aiee, killing interrupt handler!");
945 	if (unlikely(!tsk->pid))
946 		panic("Attempted to kill the idle task!");
947 
948 	if (unlikely(irqs_disabled())) {
949 		pr_info("note: %s[%d] exited with irqs disabled\n",
950 			current->comm, task_pid_nr(current));
951 		local_irq_enable();
952 	}
953 	if (unlikely(in_atomic())) {
954 		pr_info("note: %s[%d] exited with preempt_count %d\n",
955 			current->comm, task_pid_nr(current),
956 			preempt_count());
957 		preempt_count_set(PREEMPT_ENABLED);
958 	}
959 
960 	/*
961 	 * Every time the system oopses, if the oops happens while a reference
962 	 * to an object was held, the reference leaks.
963 	 * If the oops doesn't also leak memory, repeated oopsing can cause
964 	 * reference counters to wrap around (if they're not using refcount_t).
965 	 * This means that repeated oopsing can make unexploitable-looking bugs
966 	 * exploitable through repeated oopsing.
967 	 * To make sure this can't happen, place an upper bound on how often the
968 	 * kernel may oops without panic().
969 	 */
970 	limit = READ_ONCE(oops_limit);
971 	if (atomic_inc_return(&oops_count) >= limit && limit)
972 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
973 
974 	/*
975 	 * We're taking recursive faults here in make_task_dead. Safest is to just
976 	 * leave this task alone and wait for reboot.
977 	 */
978 	if (unlikely(tsk->flags & PF_EXITING)) {
979 		pr_alert("Fixing recursive fault but reboot is needed!\n");
980 		futex_exit_recursive(tsk);
981 		tsk->exit_state = EXIT_DEAD;
982 		refcount_inc(&tsk->rcu_users);
983 		do_task_dead();
984 	}
985 
986 	do_exit(signr);
987 }
988 
989 SYSCALL_DEFINE1(exit, int, error_code)
990 {
991 	do_exit((error_code&0xff)<<8);
992 }
993 
994 /*
995  * Take down every thread in the group.  This is called by fatal signals
996  * as well as by sys_exit_group (below).
997  */
998 void __noreturn
999 do_group_exit(int exit_code)
1000 {
1001 	struct signal_struct *sig = current->signal;
1002 
1003 	if (sig->flags & SIGNAL_GROUP_EXIT)
1004 		exit_code = sig->group_exit_code;
1005 	else if (sig->group_exec_task)
1006 		exit_code = 0;
1007 	else {
1008 		struct sighand_struct *const sighand = current->sighand;
1009 
1010 		spin_lock_irq(&sighand->siglock);
1011 		if (sig->flags & SIGNAL_GROUP_EXIT)
1012 			/* Another thread got here before we took the lock.  */
1013 			exit_code = sig->group_exit_code;
1014 		else if (sig->group_exec_task)
1015 			exit_code = 0;
1016 		else {
1017 			sig->group_exit_code = exit_code;
1018 			sig->flags = SIGNAL_GROUP_EXIT;
1019 			zap_other_threads(current);
1020 		}
1021 		spin_unlock_irq(&sighand->siglock);
1022 	}
1023 
1024 	do_exit(exit_code);
1025 	/* NOTREACHED */
1026 }
1027 
1028 /*
1029  * this kills every thread in the thread group. Note that any externally
1030  * wait4()-ing process will get the correct exit code - even if this
1031  * thread is not the thread group leader.
1032  */
1033 SYSCALL_DEFINE1(exit_group, int, error_code)
1034 {
1035 	do_group_exit((error_code & 0xff) << 8);
1036 	/* NOTREACHED */
1037 	return 0;
1038 }
1039 
1040 struct waitid_info {
1041 	pid_t pid;
1042 	uid_t uid;
1043 	int status;
1044 	int cause;
1045 };
1046 
1047 struct wait_opts {
1048 	enum pid_type		wo_type;
1049 	int			wo_flags;
1050 	struct pid		*wo_pid;
1051 
1052 	struct waitid_info	*wo_info;
1053 	int			wo_stat;
1054 	struct rusage		*wo_rusage;
1055 
1056 	wait_queue_entry_t		child_wait;
1057 	int			notask_error;
1058 };
1059 
1060 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1061 {
1062 	return	wo->wo_type == PIDTYPE_MAX ||
1063 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1064 }
1065 
1066 static int
1067 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1068 {
1069 	if (!eligible_pid(wo, p))
1070 		return 0;
1071 
1072 	/*
1073 	 * Wait for all children (clone and not) if __WALL is set or
1074 	 * if it is traced by us.
1075 	 */
1076 	if (ptrace || (wo->wo_flags & __WALL))
1077 		return 1;
1078 
1079 	/*
1080 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1081 	 * otherwise, wait for non-clone children *only*.
1082 	 *
1083 	 * Note: a "clone" child here is one that reports to its parent
1084 	 * using a signal other than SIGCHLD, or a non-leader thread which
1085 	 * we can only see if it is traced by us.
1086 	 */
1087 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1088 		return 0;
1089 
1090 	return 1;
1091 }
1092 
1093 /*
1094  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1095  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1096  * the lock and this task is uninteresting.  If we return nonzero, we have
1097  * released the lock and the system call should return.
1098  */
1099 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1100 {
1101 	int state, status;
1102 	pid_t pid = task_pid_vnr(p);
1103 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1104 	struct waitid_info *infop;
1105 
1106 	if (!likely(wo->wo_flags & WEXITED))
1107 		return 0;
1108 
1109 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1110 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1111 			? p->signal->group_exit_code : p->exit_code;
1112 		get_task_struct(p);
1113 		read_unlock(&tasklist_lock);
1114 		sched_annotate_sleep();
1115 		if (wo->wo_rusage)
1116 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1117 		put_task_struct(p);
1118 		goto out_info;
1119 	}
1120 	/*
1121 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1122 	 */
1123 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1124 		EXIT_TRACE : EXIT_DEAD;
1125 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1126 		return 0;
1127 	/*
1128 	 * We own this thread, nobody else can reap it.
1129 	 */
1130 	read_unlock(&tasklist_lock);
1131 	sched_annotate_sleep();
1132 
1133 	/*
1134 	 * Check thread_group_leader() to exclude the traced sub-threads.
1135 	 */
1136 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1137 		struct signal_struct *sig = p->signal;
1138 		struct signal_struct *psig = current->signal;
1139 		unsigned long maxrss;
1140 		u64 tgutime, tgstime;
1141 
1142 		/*
1143 		 * The resource counters for the group leader are in its
1144 		 * own task_struct.  Those for dead threads in the group
1145 		 * are in its signal_struct, as are those for the child
1146 		 * processes it has previously reaped.  All these
1147 		 * accumulate in the parent's signal_struct c* fields.
1148 		 *
1149 		 * We don't bother to take a lock here to protect these
1150 		 * p->signal fields because the whole thread group is dead
1151 		 * and nobody can change them.
1152 		 *
1153 		 * psig->stats_lock also protects us from our sub-threads
1154 		 * which can reap other children at the same time. Until
1155 		 * we change k_getrusage()-like users to rely on this lock
1156 		 * we have to take ->siglock as well.
1157 		 *
1158 		 * We use thread_group_cputime_adjusted() to get times for
1159 		 * the thread group, which consolidates times for all threads
1160 		 * in the group including the group leader.
1161 		 */
1162 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1163 		spin_lock_irq(&current->sighand->siglock);
1164 		write_seqlock(&psig->stats_lock);
1165 		psig->cutime += tgutime + sig->cutime;
1166 		psig->cstime += tgstime + sig->cstime;
1167 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1168 		psig->cmin_flt +=
1169 			p->min_flt + sig->min_flt + sig->cmin_flt;
1170 		psig->cmaj_flt +=
1171 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1172 		psig->cnvcsw +=
1173 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1174 		psig->cnivcsw +=
1175 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1176 		psig->cinblock +=
1177 			task_io_get_inblock(p) +
1178 			sig->inblock + sig->cinblock;
1179 		psig->coublock +=
1180 			task_io_get_oublock(p) +
1181 			sig->oublock + sig->coublock;
1182 		maxrss = max(sig->maxrss, sig->cmaxrss);
1183 		if (psig->cmaxrss < maxrss)
1184 			psig->cmaxrss = maxrss;
1185 		task_io_accounting_add(&psig->ioac, &p->ioac);
1186 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1187 		write_sequnlock(&psig->stats_lock);
1188 		spin_unlock_irq(&current->sighand->siglock);
1189 	}
1190 
1191 	if (wo->wo_rusage)
1192 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1193 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1194 		? p->signal->group_exit_code : p->exit_code;
1195 	wo->wo_stat = status;
1196 
1197 	if (state == EXIT_TRACE) {
1198 		write_lock_irq(&tasklist_lock);
1199 		/* We dropped tasklist, ptracer could die and untrace */
1200 		ptrace_unlink(p);
1201 
1202 		/* If parent wants a zombie, don't release it now */
1203 		state = EXIT_ZOMBIE;
1204 		if (do_notify_parent(p, p->exit_signal))
1205 			state = EXIT_DEAD;
1206 		p->exit_state = state;
1207 		write_unlock_irq(&tasklist_lock);
1208 	}
1209 	if (state == EXIT_DEAD)
1210 		release_task(p);
1211 
1212 out_info:
1213 	infop = wo->wo_info;
1214 	if (infop) {
1215 		if ((status & 0x7f) == 0) {
1216 			infop->cause = CLD_EXITED;
1217 			infop->status = status >> 8;
1218 		} else {
1219 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 			infop->status = status & 0x7f;
1221 		}
1222 		infop->pid = pid;
1223 		infop->uid = uid;
1224 	}
1225 
1226 	return pid;
1227 }
1228 
1229 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1230 {
1231 	if (ptrace) {
1232 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1233 			return &p->exit_code;
1234 	} else {
1235 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1236 			return &p->signal->group_exit_code;
1237 	}
1238 	return NULL;
1239 }
1240 
1241 /**
1242  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1243  * @wo: wait options
1244  * @ptrace: is the wait for ptrace
1245  * @p: task to wait for
1246  *
1247  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1248  *
1249  * CONTEXT:
1250  * read_lock(&tasklist_lock), which is released if return value is
1251  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1252  *
1253  * RETURNS:
1254  * 0 if wait condition didn't exist and search for other wait conditions
1255  * should continue.  Non-zero return, -errno on failure and @p's pid on
1256  * success, implies that tasklist_lock is released and wait condition
1257  * search should terminate.
1258  */
1259 static int wait_task_stopped(struct wait_opts *wo,
1260 				int ptrace, struct task_struct *p)
1261 {
1262 	struct waitid_info *infop;
1263 	int exit_code, *p_code, why;
1264 	uid_t uid = 0; /* unneeded, required by compiler */
1265 	pid_t pid;
1266 
1267 	/*
1268 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1269 	 */
1270 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1271 		return 0;
1272 
1273 	if (!task_stopped_code(p, ptrace))
1274 		return 0;
1275 
1276 	exit_code = 0;
1277 	spin_lock_irq(&p->sighand->siglock);
1278 
1279 	p_code = task_stopped_code(p, ptrace);
1280 	if (unlikely(!p_code))
1281 		goto unlock_sig;
1282 
1283 	exit_code = *p_code;
1284 	if (!exit_code)
1285 		goto unlock_sig;
1286 
1287 	if (!unlikely(wo->wo_flags & WNOWAIT))
1288 		*p_code = 0;
1289 
1290 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1291 unlock_sig:
1292 	spin_unlock_irq(&p->sighand->siglock);
1293 	if (!exit_code)
1294 		return 0;
1295 
1296 	/*
1297 	 * Now we are pretty sure this task is interesting.
1298 	 * Make sure it doesn't get reaped out from under us while we
1299 	 * give up the lock and then examine it below.  We don't want to
1300 	 * keep holding onto the tasklist_lock while we call getrusage and
1301 	 * possibly take page faults for user memory.
1302 	 */
1303 	get_task_struct(p);
1304 	pid = task_pid_vnr(p);
1305 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1306 	read_unlock(&tasklist_lock);
1307 	sched_annotate_sleep();
1308 	if (wo->wo_rusage)
1309 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1310 	put_task_struct(p);
1311 
1312 	if (likely(!(wo->wo_flags & WNOWAIT)))
1313 		wo->wo_stat = (exit_code << 8) | 0x7f;
1314 
1315 	infop = wo->wo_info;
1316 	if (infop) {
1317 		infop->cause = why;
1318 		infop->status = exit_code;
1319 		infop->pid = pid;
1320 		infop->uid = uid;
1321 	}
1322 	return pid;
1323 }
1324 
1325 /*
1326  * Handle do_wait work for one task in a live, non-stopped state.
1327  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1328  * the lock and this task is uninteresting.  If we return nonzero, we have
1329  * released the lock and the system call should return.
1330  */
1331 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1332 {
1333 	struct waitid_info *infop;
1334 	pid_t pid;
1335 	uid_t uid;
1336 
1337 	if (!unlikely(wo->wo_flags & WCONTINUED))
1338 		return 0;
1339 
1340 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1341 		return 0;
1342 
1343 	spin_lock_irq(&p->sighand->siglock);
1344 	/* Re-check with the lock held.  */
1345 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1346 		spin_unlock_irq(&p->sighand->siglock);
1347 		return 0;
1348 	}
1349 	if (!unlikely(wo->wo_flags & WNOWAIT))
1350 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1351 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1352 	spin_unlock_irq(&p->sighand->siglock);
1353 
1354 	pid = task_pid_vnr(p);
1355 	get_task_struct(p);
1356 	read_unlock(&tasklist_lock);
1357 	sched_annotate_sleep();
1358 	if (wo->wo_rusage)
1359 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1360 	put_task_struct(p);
1361 
1362 	infop = wo->wo_info;
1363 	if (!infop) {
1364 		wo->wo_stat = 0xffff;
1365 	} else {
1366 		infop->cause = CLD_CONTINUED;
1367 		infop->pid = pid;
1368 		infop->uid = uid;
1369 		infop->status = SIGCONT;
1370 	}
1371 	return pid;
1372 }
1373 
1374 /*
1375  * Consider @p for a wait by @parent.
1376  *
1377  * -ECHILD should be in ->notask_error before the first call.
1378  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1379  * Returns zero if the search for a child should continue;
1380  * then ->notask_error is 0 if @p is an eligible child,
1381  * or still -ECHILD.
1382  */
1383 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1384 				struct task_struct *p)
1385 {
1386 	/*
1387 	 * We can race with wait_task_zombie() from another thread.
1388 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1389 	 * can't confuse the checks below.
1390 	 */
1391 	int exit_state = READ_ONCE(p->exit_state);
1392 	int ret;
1393 
1394 	if (unlikely(exit_state == EXIT_DEAD))
1395 		return 0;
1396 
1397 	ret = eligible_child(wo, ptrace, p);
1398 	if (!ret)
1399 		return ret;
1400 
1401 	if (unlikely(exit_state == EXIT_TRACE)) {
1402 		/*
1403 		 * ptrace == 0 means we are the natural parent. In this case
1404 		 * we should clear notask_error, debugger will notify us.
1405 		 */
1406 		if (likely(!ptrace))
1407 			wo->notask_error = 0;
1408 		return 0;
1409 	}
1410 
1411 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1412 		/*
1413 		 * If it is traced by its real parent's group, just pretend
1414 		 * the caller is ptrace_do_wait() and reap this child if it
1415 		 * is zombie.
1416 		 *
1417 		 * This also hides group stop state from real parent; otherwise
1418 		 * a single stop can be reported twice as group and ptrace stop.
1419 		 * If a ptracer wants to distinguish these two events for its
1420 		 * own children it should create a separate process which takes
1421 		 * the role of real parent.
1422 		 */
1423 		if (!ptrace_reparented(p))
1424 			ptrace = 1;
1425 	}
1426 
1427 	/* slay zombie? */
1428 	if (exit_state == EXIT_ZOMBIE) {
1429 		/* we don't reap group leaders with subthreads */
1430 		if (!delay_group_leader(p)) {
1431 			/*
1432 			 * A zombie ptracee is only visible to its ptracer.
1433 			 * Notification and reaping will be cascaded to the
1434 			 * real parent when the ptracer detaches.
1435 			 */
1436 			if (unlikely(ptrace) || likely(!p->ptrace))
1437 				return wait_task_zombie(wo, p);
1438 		}
1439 
1440 		/*
1441 		 * Allow access to stopped/continued state via zombie by
1442 		 * falling through.  Clearing of notask_error is complex.
1443 		 *
1444 		 * When !@ptrace:
1445 		 *
1446 		 * If WEXITED is set, notask_error should naturally be
1447 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1448 		 * so, if there are live subthreads, there are events to
1449 		 * wait for.  If all subthreads are dead, it's still safe
1450 		 * to clear - this function will be called again in finite
1451 		 * amount time once all the subthreads are released and
1452 		 * will then return without clearing.
1453 		 *
1454 		 * When @ptrace:
1455 		 *
1456 		 * Stopped state is per-task and thus can't change once the
1457 		 * target task dies.  Only continued and exited can happen.
1458 		 * Clear notask_error if WCONTINUED | WEXITED.
1459 		 */
1460 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1461 			wo->notask_error = 0;
1462 	} else {
1463 		/*
1464 		 * @p is alive and it's gonna stop, continue or exit, so
1465 		 * there always is something to wait for.
1466 		 */
1467 		wo->notask_error = 0;
1468 	}
1469 
1470 	/*
1471 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1472 	 * is used and the two don't interact with each other.
1473 	 */
1474 	ret = wait_task_stopped(wo, ptrace, p);
1475 	if (ret)
1476 		return ret;
1477 
1478 	/*
1479 	 * Wait for continued.  There's only one continued state and the
1480 	 * ptracer can consume it which can confuse the real parent.  Don't
1481 	 * use WCONTINUED from ptracer.  You don't need or want it.
1482 	 */
1483 	return wait_task_continued(wo, p);
1484 }
1485 
1486 /*
1487  * Do the work of do_wait() for one thread in the group, @tsk.
1488  *
1489  * -ECHILD should be in ->notask_error before the first call.
1490  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491  * Returns zero if the search for a child should continue; then
1492  * ->notask_error is 0 if there were any eligible children,
1493  * or still -ECHILD.
1494  */
1495 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1496 {
1497 	struct task_struct *p;
1498 
1499 	list_for_each_entry(p, &tsk->children, sibling) {
1500 		int ret = wait_consider_task(wo, 0, p);
1501 
1502 		if (ret)
1503 			return ret;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1510 {
1511 	struct task_struct *p;
1512 
1513 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1514 		int ret = wait_consider_task(wo, 1, p);
1515 
1516 		if (ret)
1517 			return ret;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1524 				int sync, void *key)
1525 {
1526 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1527 						child_wait);
1528 	struct task_struct *p = key;
1529 
1530 	if (!eligible_pid(wo, p))
1531 		return 0;
1532 
1533 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1534 		return 0;
1535 
1536 	return default_wake_function(wait, mode, sync, key);
1537 }
1538 
1539 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1540 {
1541 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1542 			   TASK_INTERRUPTIBLE, p);
1543 }
1544 
1545 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1546 				 struct task_struct *target)
1547 {
1548 	struct task_struct *parent =
1549 		!ptrace ? target->real_parent : target->parent;
1550 
1551 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1552 				     same_thread_group(current, parent));
1553 }
1554 
1555 /*
1556  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1557  * and tracee lists to find the target task.
1558  */
1559 static int do_wait_pid(struct wait_opts *wo)
1560 {
1561 	bool ptrace;
1562 	struct task_struct *target;
1563 	int retval;
1564 
1565 	ptrace = false;
1566 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1567 	if (target && is_effectively_child(wo, ptrace, target)) {
1568 		retval = wait_consider_task(wo, ptrace, target);
1569 		if (retval)
1570 			return retval;
1571 	}
1572 
1573 	ptrace = true;
1574 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1575 	if (target && target->ptrace &&
1576 	    is_effectively_child(wo, ptrace, target)) {
1577 		retval = wait_consider_task(wo, ptrace, target);
1578 		if (retval)
1579 			return retval;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static long do_wait(struct wait_opts *wo)
1586 {
1587 	int retval;
1588 
1589 	trace_sched_process_wait(wo->wo_pid);
1590 
1591 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1592 	wo->child_wait.private = current;
1593 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1594 repeat:
1595 	/*
1596 	 * If there is nothing that can match our criteria, just get out.
1597 	 * We will clear ->notask_error to zero if we see any child that
1598 	 * might later match our criteria, even if we are not able to reap
1599 	 * it yet.
1600 	 */
1601 	wo->notask_error = -ECHILD;
1602 	if ((wo->wo_type < PIDTYPE_MAX) &&
1603 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1604 		goto notask;
1605 
1606 	set_current_state(TASK_INTERRUPTIBLE);
1607 	read_lock(&tasklist_lock);
1608 
1609 	if (wo->wo_type == PIDTYPE_PID) {
1610 		retval = do_wait_pid(wo);
1611 		if (retval)
1612 			goto end;
1613 	} else {
1614 		struct task_struct *tsk = current;
1615 
1616 		do {
1617 			retval = do_wait_thread(wo, tsk);
1618 			if (retval)
1619 				goto end;
1620 
1621 			retval = ptrace_do_wait(wo, tsk);
1622 			if (retval)
1623 				goto end;
1624 
1625 			if (wo->wo_flags & __WNOTHREAD)
1626 				break;
1627 		} while_each_thread(current, tsk);
1628 	}
1629 	read_unlock(&tasklist_lock);
1630 
1631 notask:
1632 	retval = wo->notask_error;
1633 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1634 		retval = -ERESTARTSYS;
1635 		if (!signal_pending(current)) {
1636 			schedule();
1637 			goto repeat;
1638 		}
1639 	}
1640 end:
1641 	__set_current_state(TASK_RUNNING);
1642 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1643 	return retval;
1644 }
1645 
1646 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1647 			  int options, struct rusage *ru)
1648 {
1649 	struct wait_opts wo;
1650 	struct pid *pid = NULL;
1651 	enum pid_type type;
1652 	long ret;
1653 	unsigned int f_flags = 0;
1654 
1655 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1656 			__WNOTHREAD|__WCLONE|__WALL))
1657 		return -EINVAL;
1658 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1659 		return -EINVAL;
1660 
1661 	switch (which) {
1662 	case P_ALL:
1663 		type = PIDTYPE_MAX;
1664 		break;
1665 	case P_PID:
1666 		type = PIDTYPE_PID;
1667 		if (upid <= 0)
1668 			return -EINVAL;
1669 
1670 		pid = find_get_pid(upid);
1671 		break;
1672 	case P_PGID:
1673 		type = PIDTYPE_PGID;
1674 		if (upid < 0)
1675 			return -EINVAL;
1676 
1677 		if (upid)
1678 			pid = find_get_pid(upid);
1679 		else
1680 			pid = get_task_pid(current, PIDTYPE_PGID);
1681 		break;
1682 	case P_PIDFD:
1683 		type = PIDTYPE_PID;
1684 		if (upid < 0)
1685 			return -EINVAL;
1686 
1687 		pid = pidfd_get_pid(upid, &f_flags);
1688 		if (IS_ERR(pid))
1689 			return PTR_ERR(pid);
1690 
1691 		break;
1692 	default:
1693 		return -EINVAL;
1694 	}
1695 
1696 	wo.wo_type	= type;
1697 	wo.wo_pid	= pid;
1698 	wo.wo_flags	= options;
1699 	wo.wo_info	= infop;
1700 	wo.wo_rusage	= ru;
1701 	if (f_flags & O_NONBLOCK)
1702 		wo.wo_flags |= WNOHANG;
1703 
1704 	ret = do_wait(&wo);
1705 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1706 		ret = -EAGAIN;
1707 
1708 	put_pid(pid);
1709 	return ret;
1710 }
1711 
1712 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1713 		infop, int, options, struct rusage __user *, ru)
1714 {
1715 	struct rusage r;
1716 	struct waitid_info info = {.status = 0};
1717 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1718 	int signo = 0;
1719 
1720 	if (err > 0) {
1721 		signo = SIGCHLD;
1722 		err = 0;
1723 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724 			return -EFAULT;
1725 	}
1726 	if (!infop)
1727 		return err;
1728 
1729 	if (!user_write_access_begin(infop, sizeof(*infop)))
1730 		return -EFAULT;
1731 
1732 	unsafe_put_user(signo, &infop->si_signo, Efault);
1733 	unsafe_put_user(0, &infop->si_errno, Efault);
1734 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1735 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737 	unsafe_put_user(info.status, &infop->si_status, Efault);
1738 	user_write_access_end();
1739 	return err;
1740 Efault:
1741 	user_write_access_end();
1742 	return -EFAULT;
1743 }
1744 
1745 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1746 		  struct rusage *ru)
1747 {
1748 	struct wait_opts wo;
1749 	struct pid *pid = NULL;
1750 	enum pid_type type;
1751 	long ret;
1752 
1753 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1754 			__WNOTHREAD|__WCLONE|__WALL))
1755 		return -EINVAL;
1756 
1757 	/* -INT_MIN is not defined */
1758 	if (upid == INT_MIN)
1759 		return -ESRCH;
1760 
1761 	if (upid == -1)
1762 		type = PIDTYPE_MAX;
1763 	else if (upid < 0) {
1764 		type = PIDTYPE_PGID;
1765 		pid = find_get_pid(-upid);
1766 	} else if (upid == 0) {
1767 		type = PIDTYPE_PGID;
1768 		pid = get_task_pid(current, PIDTYPE_PGID);
1769 	} else /* upid > 0 */ {
1770 		type = PIDTYPE_PID;
1771 		pid = find_get_pid(upid);
1772 	}
1773 
1774 	wo.wo_type	= type;
1775 	wo.wo_pid	= pid;
1776 	wo.wo_flags	= options | WEXITED;
1777 	wo.wo_info	= NULL;
1778 	wo.wo_stat	= 0;
1779 	wo.wo_rusage	= ru;
1780 	ret = do_wait(&wo);
1781 	put_pid(pid);
1782 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1783 		ret = -EFAULT;
1784 
1785 	return ret;
1786 }
1787 
1788 int kernel_wait(pid_t pid, int *stat)
1789 {
1790 	struct wait_opts wo = {
1791 		.wo_type	= PIDTYPE_PID,
1792 		.wo_pid		= find_get_pid(pid),
1793 		.wo_flags	= WEXITED,
1794 	};
1795 	int ret;
1796 
1797 	ret = do_wait(&wo);
1798 	if (ret > 0 && wo.wo_stat)
1799 		*stat = wo.wo_stat;
1800 	put_pid(wo.wo_pid);
1801 	return ret;
1802 }
1803 
1804 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1805 		int, options, struct rusage __user *, ru)
1806 {
1807 	struct rusage r;
1808 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1809 
1810 	if (err > 0) {
1811 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1812 			return -EFAULT;
1813 	}
1814 	return err;
1815 }
1816 
1817 #ifdef __ARCH_WANT_SYS_WAITPID
1818 
1819 /*
1820  * sys_waitpid() remains for compatibility. waitpid() should be
1821  * implemented by calling sys_wait4() from libc.a.
1822  */
1823 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1824 {
1825 	return kernel_wait4(pid, stat_addr, options, NULL);
1826 }
1827 
1828 #endif
1829 
1830 #ifdef CONFIG_COMPAT
1831 COMPAT_SYSCALL_DEFINE4(wait4,
1832 	compat_pid_t, pid,
1833 	compat_uint_t __user *, stat_addr,
1834 	int, options,
1835 	struct compat_rusage __user *, ru)
1836 {
1837 	struct rusage r;
1838 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1839 	if (err > 0) {
1840 		if (ru && put_compat_rusage(&r, ru))
1841 			return -EFAULT;
1842 	}
1843 	return err;
1844 }
1845 
1846 COMPAT_SYSCALL_DEFINE5(waitid,
1847 		int, which, compat_pid_t, pid,
1848 		struct compat_siginfo __user *, infop, int, options,
1849 		struct compat_rusage __user *, uru)
1850 {
1851 	struct rusage ru;
1852 	struct waitid_info info = {.status = 0};
1853 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1854 	int signo = 0;
1855 	if (err > 0) {
1856 		signo = SIGCHLD;
1857 		err = 0;
1858 		if (uru) {
1859 			/* kernel_waitid() overwrites everything in ru */
1860 			if (COMPAT_USE_64BIT_TIME)
1861 				err = copy_to_user(uru, &ru, sizeof(ru));
1862 			else
1863 				err = put_compat_rusage(&ru, uru);
1864 			if (err)
1865 				return -EFAULT;
1866 		}
1867 	}
1868 
1869 	if (!infop)
1870 		return err;
1871 
1872 	if (!user_write_access_begin(infop, sizeof(*infop)))
1873 		return -EFAULT;
1874 
1875 	unsafe_put_user(signo, &infop->si_signo, Efault);
1876 	unsafe_put_user(0, &infop->si_errno, Efault);
1877 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1878 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1879 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1880 	unsafe_put_user(info.status, &infop->si_status, Efault);
1881 	user_write_access_end();
1882 	return err;
1883 Efault:
1884 	user_write_access_end();
1885 	return -EFAULT;
1886 }
1887 #endif
1888 
1889 /**
1890  * thread_group_exited - check that a thread group has exited
1891  * @pid: tgid of thread group to be checked.
1892  *
1893  * Test if the thread group represented by tgid has exited (all
1894  * threads are zombies, dead or completely gone).
1895  *
1896  * Return: true if the thread group has exited. false otherwise.
1897  */
1898 bool thread_group_exited(struct pid *pid)
1899 {
1900 	struct task_struct *task;
1901 	bool exited;
1902 
1903 	rcu_read_lock();
1904 	task = pid_task(pid, PIDTYPE_PID);
1905 	exited = !task ||
1906 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1907 	rcu_read_unlock();
1908 
1909 	return exited;
1910 }
1911 EXPORT_SYMBOL(thread_group_exited);
1912 
1913 /*
1914  * This needs to be __function_aligned as GCC implicitly makes any
1915  * implementation of abort() cold and drops alignment specified by
1916  * -falign-functions=N.
1917  *
1918  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1919  */
1920 __weak __function_aligned void abort(void)
1921 {
1922 	BUG();
1923 
1924 	/* if that doesn't kill us, halt */
1925 	panic("Oops failed to kill thread");
1926 }
1927 EXPORT_SYMBOL(abort);
1928