1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_counter.h> 51 #include <trace/events/sched.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/pgtable.h> 56 #include <asm/mmu_context.h> 57 #include "cred-internals.h" 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (thread_group_leader(p)) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 __get_cpu_var(process_counts)--; 71 } 72 list_del_rcu(&p->thread_group); 73 list_del_init(&p->sibling); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 struct sighand_struct *sighand; 83 84 BUG_ON(!sig); 85 BUG_ON(!atomic_read(&sig->count)); 86 87 sighand = rcu_dereference(tsk->sighand); 88 spin_lock(&sighand->siglock); 89 90 posix_cpu_timers_exit(tsk); 91 if (atomic_dec_and_test(&sig->count)) 92 posix_cpu_timers_exit_group(tsk); 93 else { 94 /* 95 * If there is any task waiting for the group exit 96 * then notify it: 97 */ 98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 99 wake_up_process(sig->group_exit_task); 100 101 if (tsk == sig->curr_target) 102 sig->curr_target = next_thread(tsk); 103 /* 104 * Accumulate here the counters for all threads but the 105 * group leader as they die, so they can be added into 106 * the process-wide totals when those are taken. 107 * The group leader stays around as a zombie as long 108 * as there are other threads. When it gets reaped, 109 * the exit.c code will add its counts into these totals. 110 * We won't ever get here for the group leader, since it 111 * will have been the last reference on the signal_struct. 112 */ 113 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 114 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac); 123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 /* 145 * Make sure ->signal can't go away under rq->lock, 146 * see account_group_exec_runtime(). 147 */ 148 task_rq_unlock_wait(tsk); 149 __cleanup_signal(sig); 150 } 151 } 152 153 static void delayed_put_task_struct(struct rcu_head *rhp) 154 { 155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 156 157 #ifdef CONFIG_PERF_COUNTERS 158 WARN_ON_ONCE(tsk->perf_counter_ctxp); 159 #endif 160 trace_sched_process_free(tsk); 161 put_task_struct(tsk); 162 } 163 164 165 void release_task(struct task_struct * p) 166 { 167 struct task_struct *leader; 168 int zap_leader; 169 repeat: 170 tracehook_prepare_release_task(p); 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials */ 173 atomic_dec(&__task_cred(p)->user->processes); 174 175 proc_flush_task(p); 176 177 write_lock_irq(&tasklist_lock); 178 tracehook_finish_release_task(p); 179 __exit_signal(p); 180 181 /* 182 * If we are the last non-leader member of the thread 183 * group, and the leader is zombie, then notify the 184 * group leader's parent process. (if it wants notification.) 185 */ 186 zap_leader = 0; 187 leader = p->group_leader; 188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 189 BUG_ON(task_detached(leader)); 190 do_notify_parent(leader, leader->exit_signal); 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 * 196 * do_notify_parent() will have marked it self-reaping in 197 * that case. 198 */ 199 zap_leader = task_detached(leader); 200 201 /* 202 * This maintains the invariant that release_task() 203 * only runs on a task in EXIT_DEAD, just for sanity. 204 */ 205 if (zap_leader) 206 leader->exit_state = EXIT_DEAD; 207 } 208 209 write_unlock_irq(&tasklist_lock); 210 release_thread(p); 211 call_rcu(&p->rcu, delayed_put_task_struct); 212 213 p = leader; 214 if (unlikely(zap_leader)) 215 goto repeat; 216 } 217 218 /* 219 * This checks not only the pgrp, but falls back on the pid if no 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 221 * without this... 222 * 223 * The caller must hold rcu lock or the tasklist lock. 224 */ 225 struct pid *session_of_pgrp(struct pid *pgrp) 226 { 227 struct task_struct *p; 228 struct pid *sid = NULL; 229 230 p = pid_task(pgrp, PIDTYPE_PGID); 231 if (p == NULL) 232 p = pid_task(pgrp, PIDTYPE_PID); 233 if (p != NULL) 234 sid = task_session(p); 235 236 return sid; 237 } 238 239 /* 240 * Determine if a process group is "orphaned", according to the POSIX 241 * definition in 2.2.2.52. Orphaned process groups are not to be affected 242 * by terminal-generated stop signals. Newly orphaned process groups are 243 * to receive a SIGHUP and a SIGCONT. 244 * 245 * "I ask you, have you ever known what it is to be an orphan?" 246 */ 247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static int has_stopped_jobs(struct pid *pgrp) 277 { 278 int retval = 0; 279 struct task_struct *p; 280 281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 282 if (!task_is_stopped(p)) 283 continue; 284 retval = 1; 285 break; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 return retval; 288 } 289 290 /* 291 * Check to see if any process groups have become orphaned as 292 * a result of our exiting, and if they have any stopped jobs, 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 294 */ 295 static void 296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 297 { 298 struct pid *pgrp = task_pgrp(tsk); 299 struct task_struct *ignored_task = tsk; 300 301 if (!parent) 302 /* exit: our father is in a different pgrp than 303 * we are and we were the only connection outside. 304 */ 305 parent = tsk->real_parent; 306 else 307 /* reparent: our child is in a different pgrp than 308 * we are, and it was the only connection outside. 309 */ 310 ignored_task = NULL; 311 312 if (task_pgrp(parent) != pgrp && 313 task_session(parent) == task_session(tsk) && 314 will_become_orphaned_pgrp(pgrp, ignored_task) && 315 has_stopped_jobs(pgrp)) { 316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 318 } 319 } 320 321 /** 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 323 * 324 * If a kernel thread is launched as a result of a system call, or if 325 * it ever exits, it should generally reparent itself to kthreadd so it 326 * isn't in the way of other processes and is correctly cleaned up on exit. 327 * 328 * The various task state such as scheduling policy and priority may have 329 * been inherited from a user process, so we reset them to sane values here. 330 * 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 332 */ 333 static void reparent_to_kthreadd(void) 334 { 335 write_lock_irq(&tasklist_lock); 336 337 ptrace_unlink(current); 338 /* Reparent to init */ 339 current->real_parent = current->parent = kthreadd_task; 340 list_move_tail(¤t->sibling, ¤t->real_parent->children); 341 342 /* Set the exit signal to SIGCHLD so we signal init on exit */ 343 current->exit_signal = SIGCHLD; 344 345 if (task_nice(current) < 0) 346 set_user_nice(current, 0); 347 /* cpus_allowed? */ 348 /* rt_priority? */ 349 /* signals? */ 350 memcpy(current->signal->rlim, init_task.signal->rlim, 351 sizeof(current->signal->rlim)); 352 353 atomic_inc(&init_cred.usage); 354 commit_creds(&init_cred); 355 write_unlock_irq(&tasklist_lock); 356 } 357 358 void __set_special_pids(struct pid *pid) 359 { 360 struct task_struct *curr = current->group_leader; 361 362 if (task_session(curr) != pid) 363 change_pid(curr, PIDTYPE_SID, pid); 364 365 if (task_pgrp(curr) != pid) 366 change_pid(curr, PIDTYPE_PGID, pid); 367 } 368 369 static void set_special_pids(struct pid *pid) 370 { 371 write_lock_irq(&tasklist_lock); 372 __set_special_pids(pid); 373 write_unlock_irq(&tasklist_lock); 374 } 375 376 /* 377 * Let kernel threads use this to say that they allow a certain signal. 378 * Must not be used if kthread was cloned with CLONE_SIGHAND. 379 */ 380 int allow_signal(int sig) 381 { 382 if (!valid_signal(sig) || sig < 1) 383 return -EINVAL; 384 385 spin_lock_irq(¤t->sighand->siglock); 386 /* This is only needed for daemonize()'ed kthreads */ 387 sigdelset(¤t->blocked, sig); 388 /* 389 * Kernel threads handle their own signals. Let the signal code 390 * know it'll be handled, so that they don't get converted to 391 * SIGKILL or just silently dropped. 392 */ 393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 394 recalc_sigpending(); 395 spin_unlock_irq(¤t->sighand->siglock); 396 return 0; 397 } 398 399 EXPORT_SYMBOL(allow_signal); 400 401 int disallow_signal(int sig) 402 { 403 if (!valid_signal(sig) || sig < 1) 404 return -EINVAL; 405 406 spin_lock_irq(¤t->sighand->siglock); 407 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 408 recalc_sigpending(); 409 spin_unlock_irq(¤t->sighand->siglock); 410 return 0; 411 } 412 413 EXPORT_SYMBOL(disallow_signal); 414 415 /* 416 * Put all the gunge required to become a kernel thread without 417 * attached user resources in one place where it belongs. 418 */ 419 420 void daemonize(const char *name, ...) 421 { 422 va_list args; 423 sigset_t blocked; 424 425 va_start(args, name); 426 vsnprintf(current->comm, sizeof(current->comm), name, args); 427 va_end(args); 428 429 /* 430 * If we were started as result of loading a module, close all of the 431 * user space pages. We don't need them, and if we didn't close them 432 * they would be locked into memory. 433 */ 434 exit_mm(current); 435 /* 436 * We don't want to have TIF_FREEZE set if the system-wide hibernation 437 * or suspend transition begins right now. 438 */ 439 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 440 441 if (current->nsproxy != &init_nsproxy) { 442 get_nsproxy(&init_nsproxy); 443 switch_task_namespaces(current, &init_nsproxy); 444 } 445 set_special_pids(&init_struct_pid); 446 proc_clear_tty(current); 447 448 /* Block and flush all signals */ 449 sigfillset(&blocked); 450 sigprocmask(SIG_BLOCK, &blocked, NULL); 451 flush_signals(current); 452 453 /* Become as one with the init task */ 454 455 daemonize_fs_struct(); 456 exit_files(current); 457 current->files = init_task.files; 458 atomic_inc(¤t->files->count); 459 460 reparent_to_kthreadd(); 461 } 462 463 EXPORT_SYMBOL(daemonize); 464 465 static void close_files(struct files_struct * files) 466 { 467 int i, j; 468 struct fdtable *fdt; 469 470 j = 0; 471 472 /* 473 * It is safe to dereference the fd table without RCU or 474 * ->file_lock because this is the last reference to the 475 * files structure. 476 */ 477 fdt = files_fdtable(files); 478 for (;;) { 479 unsigned long set; 480 i = j * __NFDBITS; 481 if (i >= fdt->max_fds) 482 break; 483 set = fdt->open_fds->fds_bits[j++]; 484 while (set) { 485 if (set & 1) { 486 struct file * file = xchg(&fdt->fd[i], NULL); 487 if (file) { 488 filp_close(file, files); 489 cond_resched(); 490 } 491 } 492 i++; 493 set >>= 1; 494 } 495 } 496 } 497 498 struct files_struct *get_files_struct(struct task_struct *task) 499 { 500 struct files_struct *files; 501 502 task_lock(task); 503 files = task->files; 504 if (files) 505 atomic_inc(&files->count); 506 task_unlock(task); 507 508 return files; 509 } 510 511 void put_files_struct(struct files_struct *files) 512 { 513 struct fdtable *fdt; 514 515 if (atomic_dec_and_test(&files->count)) { 516 close_files(files); 517 /* 518 * Free the fd and fdset arrays if we expanded them. 519 * If the fdtable was embedded, pass files for freeing 520 * at the end of the RCU grace period. Otherwise, 521 * you can free files immediately. 522 */ 523 fdt = files_fdtable(files); 524 if (fdt != &files->fdtab) 525 kmem_cache_free(files_cachep, files); 526 free_fdtable(fdt); 527 } 528 } 529 530 void reset_files_struct(struct files_struct *files) 531 { 532 struct task_struct *tsk = current; 533 struct files_struct *old; 534 535 old = tsk->files; 536 task_lock(tsk); 537 tsk->files = files; 538 task_unlock(tsk); 539 put_files_struct(old); 540 } 541 542 void exit_files(struct task_struct *tsk) 543 { 544 struct files_struct * files = tsk->files; 545 546 if (files) { 547 task_lock(tsk); 548 tsk->files = NULL; 549 task_unlock(tsk); 550 put_files_struct(files); 551 } 552 } 553 554 #ifdef CONFIG_MM_OWNER 555 /* 556 * Task p is exiting and it owned mm, lets find a new owner for it 557 */ 558 static inline int 559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 560 { 561 /* 562 * If there are other users of the mm and the owner (us) is exiting 563 * we need to find a new owner to take on the responsibility. 564 */ 565 if (atomic_read(&mm->mm_users) <= 1) 566 return 0; 567 if (mm->owner != p) 568 return 0; 569 return 1; 570 } 571 572 void mm_update_next_owner(struct mm_struct *mm) 573 { 574 struct task_struct *c, *g, *p = current; 575 576 retry: 577 if (!mm_need_new_owner(mm, p)) 578 return; 579 580 read_lock(&tasklist_lock); 581 /* 582 * Search in the children 583 */ 584 list_for_each_entry(c, &p->children, sibling) { 585 if (c->mm == mm) 586 goto assign_new_owner; 587 } 588 589 /* 590 * Search in the siblings 591 */ 592 list_for_each_entry(c, &p->real_parent->children, sibling) { 593 if (c->mm == mm) 594 goto assign_new_owner; 595 } 596 597 /* 598 * Search through everything else. We should not get 599 * here often 600 */ 601 do_each_thread(g, c) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } while_each_thread(g, c); 605 606 read_unlock(&tasklist_lock); 607 /* 608 * We found no owner yet mm_users > 1: this implies that we are 609 * most likely racing with swapoff (try_to_unuse()) or /proc or 610 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 611 */ 612 mm->owner = NULL; 613 return; 614 615 assign_new_owner: 616 BUG_ON(c == p); 617 get_task_struct(c); 618 /* 619 * The task_lock protects c->mm from changing. 620 * We always want mm->owner->mm == mm 621 */ 622 task_lock(c); 623 /* 624 * Delay read_unlock() till we have the task_lock() 625 * to ensure that c does not slip away underneath us 626 */ 627 read_unlock(&tasklist_lock); 628 if (c->mm != mm) { 629 task_unlock(c); 630 put_task_struct(c); 631 goto retry; 632 } 633 mm->owner = c; 634 task_unlock(c); 635 put_task_struct(c); 636 } 637 #endif /* CONFIG_MM_OWNER */ 638 639 /* 640 * Turn us into a lazy TLB process if we 641 * aren't already.. 642 */ 643 static void exit_mm(struct task_struct * tsk) 644 { 645 struct mm_struct *mm = tsk->mm; 646 struct core_state *core_state; 647 648 mm_release(tsk, mm); 649 if (!mm) 650 return; 651 /* 652 * Serialize with any possible pending coredump. 653 * We must hold mmap_sem around checking core_state 654 * and clearing tsk->mm. The core-inducing thread 655 * will increment ->nr_threads for each thread in the 656 * group with ->mm != NULL. 657 */ 658 down_read(&mm->mmap_sem); 659 core_state = mm->core_state; 660 if (core_state) { 661 struct core_thread self; 662 up_read(&mm->mmap_sem); 663 664 self.task = tsk; 665 self.next = xchg(&core_state->dumper.next, &self); 666 /* 667 * Implies mb(), the result of xchg() must be visible 668 * to core_state->dumper. 669 */ 670 if (atomic_dec_and_test(&core_state->nr_threads)) 671 complete(&core_state->startup); 672 673 for (;;) { 674 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 675 if (!self.task) /* see coredump_finish() */ 676 break; 677 schedule(); 678 } 679 __set_task_state(tsk, TASK_RUNNING); 680 down_read(&mm->mmap_sem); 681 } 682 atomic_inc(&mm->mm_count); 683 BUG_ON(mm != tsk->active_mm); 684 /* more a memory barrier than a real lock */ 685 task_lock(tsk); 686 tsk->mm = NULL; 687 up_read(&mm->mmap_sem); 688 enter_lazy_tlb(mm, current); 689 /* We don't want this task to be frozen prematurely */ 690 clear_freeze_flag(tsk); 691 task_unlock(tsk); 692 mm_update_next_owner(mm); 693 mmput(mm); 694 } 695 696 /* 697 * When we die, we re-parent all our children. 698 * Try to give them to another thread in our thread 699 * group, and if no such member exists, give it to 700 * the child reaper process (ie "init") in our pid 701 * space. 702 */ 703 static struct task_struct *find_new_reaper(struct task_struct *father) 704 { 705 struct pid_namespace *pid_ns = task_active_pid_ns(father); 706 struct task_struct *thread; 707 708 thread = father; 709 while_each_thread(father, thread) { 710 if (thread->flags & PF_EXITING) 711 continue; 712 if (unlikely(pid_ns->child_reaper == father)) 713 pid_ns->child_reaper = thread; 714 return thread; 715 } 716 717 if (unlikely(pid_ns->child_reaper == father)) { 718 write_unlock_irq(&tasklist_lock); 719 if (unlikely(pid_ns == &init_pid_ns)) 720 panic("Attempted to kill init!"); 721 722 zap_pid_ns_processes(pid_ns); 723 write_lock_irq(&tasklist_lock); 724 /* 725 * We can not clear ->child_reaper or leave it alone. 726 * There may by stealth EXIT_DEAD tasks on ->children, 727 * forget_original_parent() must move them somewhere. 728 */ 729 pid_ns->child_reaper = init_pid_ns.child_reaper; 730 } 731 732 return pid_ns->child_reaper; 733 } 734 735 /* 736 * Any that need to be release_task'd are put on the @dead list. 737 */ 738 static void reparent_thread(struct task_struct *father, struct task_struct *p, 739 struct list_head *dead) 740 { 741 if (p->pdeath_signal) 742 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 743 744 list_move_tail(&p->sibling, &p->real_parent->children); 745 746 if (task_detached(p)) 747 return; 748 /* 749 * If this is a threaded reparent there is no need to 750 * notify anyone anything has happened. 751 */ 752 if (same_thread_group(p->real_parent, father)) 753 return; 754 755 /* We don't want people slaying init. */ 756 p->exit_signal = SIGCHLD; 757 758 /* If it has exited notify the new parent about this child's death. */ 759 if (!task_ptrace(p) && 760 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 761 do_notify_parent(p, p->exit_signal); 762 if (task_detached(p)) { 763 p->exit_state = EXIT_DEAD; 764 list_move_tail(&p->sibling, dead); 765 } 766 } 767 768 kill_orphaned_pgrp(p, father); 769 } 770 771 static void forget_original_parent(struct task_struct *father) 772 { 773 struct task_struct *p, *n, *reaper; 774 LIST_HEAD(dead_children); 775 776 exit_ptrace(father); 777 778 write_lock_irq(&tasklist_lock); 779 reaper = find_new_reaper(father); 780 781 list_for_each_entry_safe(p, n, &father->children, sibling) { 782 p->real_parent = reaper; 783 if (p->parent == father) { 784 BUG_ON(task_ptrace(p)); 785 p->parent = p->real_parent; 786 } 787 reparent_thread(father, p, &dead_children); 788 } 789 write_unlock_irq(&tasklist_lock); 790 791 BUG_ON(!list_empty(&father->children)); 792 793 list_for_each_entry_safe(p, n, &dead_children, sibling) { 794 list_del_init(&p->sibling); 795 release_task(p); 796 } 797 } 798 799 /* 800 * Send signals to all our closest relatives so that they know 801 * to properly mourn us.. 802 */ 803 static void exit_notify(struct task_struct *tsk, int group_dead) 804 { 805 int signal; 806 void *cookie; 807 808 /* 809 * This does two things: 810 * 811 * A. Make init inherit all the child processes 812 * B. Check to see if any process groups have become orphaned 813 * as a result of our exiting, and if they have any stopped 814 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 815 */ 816 forget_original_parent(tsk); 817 exit_task_namespaces(tsk); 818 819 write_lock_irq(&tasklist_lock); 820 if (group_dead) 821 kill_orphaned_pgrp(tsk->group_leader, NULL); 822 823 /* Let father know we died 824 * 825 * Thread signals are configurable, but you aren't going to use 826 * that to send signals to arbitary processes. 827 * That stops right now. 828 * 829 * If the parent exec id doesn't match the exec id we saved 830 * when we started then we know the parent has changed security 831 * domain. 832 * 833 * If our self_exec id doesn't match our parent_exec_id then 834 * we have changed execution domain as these two values started 835 * the same after a fork. 836 */ 837 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 838 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 839 tsk->self_exec_id != tsk->parent_exec_id)) 840 tsk->exit_signal = SIGCHLD; 841 842 signal = tracehook_notify_death(tsk, &cookie, group_dead); 843 if (signal >= 0) 844 signal = do_notify_parent(tsk, signal); 845 846 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 847 848 /* mt-exec, de_thread() is waiting for us */ 849 if (thread_group_leader(tsk) && 850 tsk->signal->group_exit_task && 851 tsk->signal->notify_count < 0) 852 wake_up_process(tsk->signal->group_exit_task); 853 854 write_unlock_irq(&tasklist_lock); 855 856 tracehook_report_death(tsk, signal, cookie, group_dead); 857 858 /* If the process is dead, release it - nobody will wait for it */ 859 if (signal == DEATH_REAP) 860 release_task(tsk); 861 } 862 863 #ifdef CONFIG_DEBUG_STACK_USAGE 864 static void check_stack_usage(void) 865 { 866 static DEFINE_SPINLOCK(low_water_lock); 867 static int lowest_to_date = THREAD_SIZE; 868 unsigned long free; 869 870 free = stack_not_used(current); 871 872 if (free >= lowest_to_date) 873 return; 874 875 spin_lock(&low_water_lock); 876 if (free < lowest_to_date) { 877 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 878 "left\n", 879 current->comm, free); 880 lowest_to_date = free; 881 } 882 spin_unlock(&low_water_lock); 883 } 884 #else 885 static inline void check_stack_usage(void) {} 886 #endif 887 888 NORET_TYPE void do_exit(long code) 889 { 890 struct task_struct *tsk = current; 891 int group_dead; 892 893 profile_task_exit(tsk); 894 895 WARN_ON(atomic_read(&tsk->fs_excl)); 896 897 if (unlikely(in_interrupt())) 898 panic("Aiee, killing interrupt handler!"); 899 if (unlikely(!tsk->pid)) 900 panic("Attempted to kill the idle task!"); 901 902 tracehook_report_exit(&code); 903 904 validate_creds_for_do_exit(tsk); 905 906 /* 907 * We're taking recursive faults here in do_exit. Safest is to just 908 * leave this task alone and wait for reboot. 909 */ 910 if (unlikely(tsk->flags & PF_EXITING)) { 911 printk(KERN_ALERT 912 "Fixing recursive fault but reboot is needed!\n"); 913 /* 914 * We can do this unlocked here. The futex code uses 915 * this flag just to verify whether the pi state 916 * cleanup has been done or not. In the worst case it 917 * loops once more. We pretend that the cleanup was 918 * done as there is no way to return. Either the 919 * OWNER_DIED bit is set by now or we push the blocked 920 * task into the wait for ever nirwana as well. 921 */ 922 tsk->flags |= PF_EXITPIDONE; 923 set_current_state(TASK_UNINTERRUPTIBLE); 924 schedule(); 925 } 926 927 exit_irq_thread(); 928 929 exit_signals(tsk); /* sets PF_EXITING */ 930 /* 931 * tsk->flags are checked in the futex code to protect against 932 * an exiting task cleaning up the robust pi futexes. 933 */ 934 smp_mb(); 935 spin_unlock_wait(&tsk->pi_lock); 936 937 if (unlikely(in_atomic())) 938 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 939 current->comm, task_pid_nr(current), 940 preempt_count()); 941 942 acct_update_integrals(tsk); 943 944 group_dead = atomic_dec_and_test(&tsk->signal->live); 945 if (group_dead) { 946 hrtimer_cancel(&tsk->signal->real_timer); 947 exit_itimers(tsk->signal); 948 } 949 acct_collect(code, group_dead); 950 if (group_dead) 951 tty_audit_exit(); 952 if (unlikely(tsk->audit_context)) 953 audit_free(tsk); 954 955 tsk->exit_code = code; 956 taskstats_exit(tsk, group_dead); 957 958 exit_mm(tsk); 959 960 if (group_dead) 961 acct_process(); 962 trace_sched_process_exit(tsk); 963 964 exit_sem(tsk); 965 exit_files(tsk); 966 exit_fs(tsk); 967 check_stack_usage(); 968 exit_thread(); 969 cgroup_exit(tsk, 1); 970 971 if (group_dead && tsk->signal->leader) 972 disassociate_ctty(1); 973 974 module_put(task_thread_info(tsk)->exec_domain->module); 975 if (tsk->binfmt) 976 module_put(tsk->binfmt->module); 977 978 proc_exit_connector(tsk); 979 980 /* 981 * Flush inherited counters to the parent - before the parent 982 * gets woken up by child-exit notifications. 983 */ 984 perf_counter_exit_task(tsk); 985 986 exit_notify(tsk, group_dead); 987 #ifdef CONFIG_NUMA 988 mpol_put(tsk->mempolicy); 989 tsk->mempolicy = NULL; 990 #endif 991 #ifdef CONFIG_FUTEX 992 if (unlikely(!list_empty(&tsk->pi_state_list))) 993 exit_pi_state_list(tsk); 994 if (unlikely(current->pi_state_cache)) 995 kfree(current->pi_state_cache); 996 #endif 997 /* 998 * Make sure we are holding no locks: 999 */ 1000 debug_check_no_locks_held(tsk); 1001 /* 1002 * We can do this unlocked here. The futex code uses this flag 1003 * just to verify whether the pi state cleanup has been done 1004 * or not. In the worst case it loops once more. 1005 */ 1006 tsk->flags |= PF_EXITPIDONE; 1007 1008 if (tsk->io_context) 1009 exit_io_context(); 1010 1011 if (tsk->splice_pipe) 1012 __free_pipe_info(tsk->splice_pipe); 1013 1014 validate_creds_for_do_exit(tsk); 1015 1016 preempt_disable(); 1017 exit_rcu(); 1018 /* causes final put_task_struct in finish_task_switch(). */ 1019 tsk->state = TASK_DEAD; 1020 schedule(); 1021 BUG(); 1022 /* Avoid "noreturn function does return". */ 1023 for (;;) 1024 cpu_relax(); /* For when BUG is null */ 1025 } 1026 1027 EXPORT_SYMBOL_GPL(do_exit); 1028 1029 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1030 { 1031 if (comp) 1032 complete(comp); 1033 1034 do_exit(code); 1035 } 1036 1037 EXPORT_SYMBOL(complete_and_exit); 1038 1039 SYSCALL_DEFINE1(exit, int, error_code) 1040 { 1041 do_exit((error_code&0xff)<<8); 1042 } 1043 1044 /* 1045 * Take down every thread in the group. This is called by fatal signals 1046 * as well as by sys_exit_group (below). 1047 */ 1048 NORET_TYPE void 1049 do_group_exit(int exit_code) 1050 { 1051 struct signal_struct *sig = current->signal; 1052 1053 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1054 1055 if (signal_group_exit(sig)) 1056 exit_code = sig->group_exit_code; 1057 else if (!thread_group_empty(current)) { 1058 struct sighand_struct *const sighand = current->sighand; 1059 spin_lock_irq(&sighand->siglock); 1060 if (signal_group_exit(sig)) 1061 /* Another thread got here before we took the lock. */ 1062 exit_code = sig->group_exit_code; 1063 else { 1064 sig->group_exit_code = exit_code; 1065 sig->flags = SIGNAL_GROUP_EXIT; 1066 zap_other_threads(current); 1067 } 1068 spin_unlock_irq(&sighand->siglock); 1069 } 1070 1071 do_exit(exit_code); 1072 /* NOTREACHED */ 1073 } 1074 1075 /* 1076 * this kills every thread in the thread group. Note that any externally 1077 * wait4()-ing process will get the correct exit code - even if this 1078 * thread is not the thread group leader. 1079 */ 1080 SYSCALL_DEFINE1(exit_group, int, error_code) 1081 { 1082 do_group_exit((error_code & 0xff) << 8); 1083 /* NOTREACHED */ 1084 return 0; 1085 } 1086 1087 struct wait_opts { 1088 enum pid_type wo_type; 1089 int wo_flags; 1090 struct pid *wo_pid; 1091 1092 struct siginfo __user *wo_info; 1093 int __user *wo_stat; 1094 struct rusage __user *wo_rusage; 1095 1096 int notask_error; 1097 }; 1098 1099 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1100 { 1101 struct pid *pid = NULL; 1102 if (type == PIDTYPE_PID) 1103 pid = task->pids[type].pid; 1104 else if (type < PIDTYPE_MAX) 1105 pid = task->group_leader->pids[type].pid; 1106 return pid; 1107 } 1108 1109 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1110 { 1111 int err; 1112 1113 if (wo->wo_type < PIDTYPE_MAX) { 1114 if (task_pid_type(p, wo->wo_type) != wo->wo_pid) 1115 return 0; 1116 } 1117 1118 /* Wait for all children (clone and not) if __WALL is set; 1119 * otherwise, wait for clone children *only* if __WCLONE is 1120 * set; otherwise, wait for non-clone children *only*. (Note: 1121 * A "clone" child here is one that reports to its parent 1122 * using a signal other than SIGCHLD.) */ 1123 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1124 && !(wo->wo_flags & __WALL)) 1125 return 0; 1126 1127 err = security_task_wait(p); 1128 if (err) 1129 return err; 1130 1131 return 1; 1132 } 1133 1134 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1135 pid_t pid, uid_t uid, int why, int status) 1136 { 1137 struct siginfo __user *infop; 1138 int retval = wo->wo_rusage 1139 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1140 1141 put_task_struct(p); 1142 infop = wo->wo_info; 1143 if (!retval) 1144 retval = put_user(SIGCHLD, &infop->si_signo); 1145 if (!retval) 1146 retval = put_user(0, &infop->si_errno); 1147 if (!retval) 1148 retval = put_user((short)why, &infop->si_code); 1149 if (!retval) 1150 retval = put_user(pid, &infop->si_pid); 1151 if (!retval) 1152 retval = put_user(uid, &infop->si_uid); 1153 if (!retval) 1154 retval = put_user(status, &infop->si_status); 1155 if (!retval) 1156 retval = pid; 1157 return retval; 1158 } 1159 1160 /* 1161 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1162 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1163 * the lock and this task is uninteresting. If we return nonzero, we have 1164 * released the lock and the system call should return. 1165 */ 1166 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1167 { 1168 unsigned long state; 1169 int retval, status, traced; 1170 pid_t pid = task_pid_vnr(p); 1171 uid_t uid = __task_cred(p)->uid; 1172 struct siginfo __user *infop; 1173 1174 if (!likely(wo->wo_flags & WEXITED)) 1175 return 0; 1176 1177 if (unlikely(wo->wo_flags & WNOWAIT)) { 1178 int exit_code = p->exit_code; 1179 int why, status; 1180 1181 get_task_struct(p); 1182 read_unlock(&tasklist_lock); 1183 if ((exit_code & 0x7f) == 0) { 1184 why = CLD_EXITED; 1185 status = exit_code >> 8; 1186 } else { 1187 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1188 status = exit_code & 0x7f; 1189 } 1190 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1191 } 1192 1193 /* 1194 * Try to move the task's state to DEAD 1195 * only one thread is allowed to do this: 1196 */ 1197 state = xchg(&p->exit_state, EXIT_DEAD); 1198 if (state != EXIT_ZOMBIE) { 1199 BUG_ON(state != EXIT_DEAD); 1200 return 0; 1201 } 1202 1203 traced = ptrace_reparented(p); 1204 /* 1205 * It can be ptraced but not reparented, check 1206 * !task_detached() to filter out sub-threads. 1207 */ 1208 if (likely(!traced) && likely(!task_detached(p))) { 1209 struct signal_struct *psig; 1210 struct signal_struct *sig; 1211 1212 /* 1213 * The resource counters for the group leader are in its 1214 * own task_struct. Those for dead threads in the group 1215 * are in its signal_struct, as are those for the child 1216 * processes it has previously reaped. All these 1217 * accumulate in the parent's signal_struct c* fields. 1218 * 1219 * We don't bother to take a lock here to protect these 1220 * p->signal fields, because they are only touched by 1221 * __exit_signal, which runs with tasklist_lock 1222 * write-locked anyway, and so is excluded here. We do 1223 * need to protect the access to parent->signal fields, 1224 * as other threads in the parent group can be right 1225 * here reaping other children at the same time. 1226 */ 1227 spin_lock_irq(&p->real_parent->sighand->siglock); 1228 psig = p->real_parent->signal; 1229 sig = p->signal; 1230 psig->cutime = 1231 cputime_add(psig->cutime, 1232 cputime_add(p->utime, 1233 cputime_add(sig->utime, 1234 sig->cutime))); 1235 psig->cstime = 1236 cputime_add(psig->cstime, 1237 cputime_add(p->stime, 1238 cputime_add(sig->stime, 1239 sig->cstime))); 1240 psig->cgtime = 1241 cputime_add(psig->cgtime, 1242 cputime_add(p->gtime, 1243 cputime_add(sig->gtime, 1244 sig->cgtime))); 1245 psig->cmin_flt += 1246 p->min_flt + sig->min_flt + sig->cmin_flt; 1247 psig->cmaj_flt += 1248 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1249 psig->cnvcsw += 1250 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1251 psig->cnivcsw += 1252 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1253 psig->cinblock += 1254 task_io_get_inblock(p) + 1255 sig->inblock + sig->cinblock; 1256 psig->coublock += 1257 task_io_get_oublock(p) + 1258 sig->oublock + sig->coublock; 1259 task_io_accounting_add(&psig->ioac, &p->ioac); 1260 task_io_accounting_add(&psig->ioac, &sig->ioac); 1261 spin_unlock_irq(&p->real_parent->sighand->siglock); 1262 } 1263 1264 /* 1265 * Now we are sure this task is interesting, and no other 1266 * thread can reap it because we set its state to EXIT_DEAD. 1267 */ 1268 read_unlock(&tasklist_lock); 1269 1270 retval = wo->wo_rusage 1271 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1272 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1273 ? p->signal->group_exit_code : p->exit_code; 1274 if (!retval && wo->wo_stat) 1275 retval = put_user(status, wo->wo_stat); 1276 1277 infop = wo->wo_info; 1278 if (!retval && infop) 1279 retval = put_user(SIGCHLD, &infop->si_signo); 1280 if (!retval && infop) 1281 retval = put_user(0, &infop->si_errno); 1282 if (!retval && infop) { 1283 int why; 1284 1285 if ((status & 0x7f) == 0) { 1286 why = CLD_EXITED; 1287 status >>= 8; 1288 } else { 1289 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1290 status &= 0x7f; 1291 } 1292 retval = put_user((short)why, &infop->si_code); 1293 if (!retval) 1294 retval = put_user(status, &infop->si_status); 1295 } 1296 if (!retval && infop) 1297 retval = put_user(pid, &infop->si_pid); 1298 if (!retval && infop) 1299 retval = put_user(uid, &infop->si_uid); 1300 if (!retval) 1301 retval = pid; 1302 1303 if (traced) { 1304 write_lock_irq(&tasklist_lock); 1305 /* We dropped tasklist, ptracer could die and untrace */ 1306 ptrace_unlink(p); 1307 /* 1308 * If this is not a detached task, notify the parent. 1309 * If it's still not detached after that, don't release 1310 * it now. 1311 */ 1312 if (!task_detached(p)) { 1313 do_notify_parent(p, p->exit_signal); 1314 if (!task_detached(p)) { 1315 p->exit_state = EXIT_ZOMBIE; 1316 p = NULL; 1317 } 1318 } 1319 write_unlock_irq(&tasklist_lock); 1320 } 1321 if (p != NULL) 1322 release_task(p); 1323 1324 return retval; 1325 } 1326 1327 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1328 { 1329 if (ptrace) { 1330 if (task_is_stopped_or_traced(p)) 1331 return &p->exit_code; 1332 } else { 1333 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1334 return &p->signal->group_exit_code; 1335 } 1336 return NULL; 1337 } 1338 1339 /* 1340 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1341 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1342 * the lock and this task is uninteresting. If we return nonzero, we have 1343 * released the lock and the system call should return. 1344 */ 1345 static int wait_task_stopped(struct wait_opts *wo, 1346 int ptrace, struct task_struct *p) 1347 { 1348 struct siginfo __user *infop; 1349 int retval, exit_code, *p_code, why; 1350 uid_t uid = 0; /* unneeded, required by compiler */ 1351 pid_t pid; 1352 1353 /* 1354 * Traditionally we see ptrace'd stopped tasks regardless of options. 1355 */ 1356 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1357 return 0; 1358 1359 exit_code = 0; 1360 spin_lock_irq(&p->sighand->siglock); 1361 1362 p_code = task_stopped_code(p, ptrace); 1363 if (unlikely(!p_code)) 1364 goto unlock_sig; 1365 1366 exit_code = *p_code; 1367 if (!exit_code) 1368 goto unlock_sig; 1369 1370 if (!unlikely(wo->wo_flags & WNOWAIT)) 1371 *p_code = 0; 1372 1373 /* don't need the RCU readlock here as we're holding a spinlock */ 1374 uid = __task_cred(p)->uid; 1375 unlock_sig: 1376 spin_unlock_irq(&p->sighand->siglock); 1377 if (!exit_code) 1378 return 0; 1379 1380 /* 1381 * Now we are pretty sure this task is interesting. 1382 * Make sure it doesn't get reaped out from under us while we 1383 * give up the lock and then examine it below. We don't want to 1384 * keep holding onto the tasklist_lock while we call getrusage and 1385 * possibly take page faults for user memory. 1386 */ 1387 get_task_struct(p); 1388 pid = task_pid_vnr(p); 1389 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1390 read_unlock(&tasklist_lock); 1391 1392 if (unlikely(wo->wo_flags & WNOWAIT)) 1393 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1394 1395 retval = wo->wo_rusage 1396 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1397 if (!retval && wo->wo_stat) 1398 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1399 1400 infop = wo->wo_info; 1401 if (!retval && infop) 1402 retval = put_user(SIGCHLD, &infop->si_signo); 1403 if (!retval && infop) 1404 retval = put_user(0, &infop->si_errno); 1405 if (!retval && infop) 1406 retval = put_user((short)why, &infop->si_code); 1407 if (!retval && infop) 1408 retval = put_user(exit_code, &infop->si_status); 1409 if (!retval && infop) 1410 retval = put_user(pid, &infop->si_pid); 1411 if (!retval && infop) 1412 retval = put_user(uid, &infop->si_uid); 1413 if (!retval) 1414 retval = pid; 1415 put_task_struct(p); 1416 1417 BUG_ON(!retval); 1418 return retval; 1419 } 1420 1421 /* 1422 * Handle do_wait work for one task in a live, non-stopped state. 1423 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1424 * the lock and this task is uninteresting. If we return nonzero, we have 1425 * released the lock and the system call should return. 1426 */ 1427 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1428 { 1429 int retval; 1430 pid_t pid; 1431 uid_t uid; 1432 1433 if (!unlikely(wo->wo_flags & WCONTINUED)) 1434 return 0; 1435 1436 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1437 return 0; 1438 1439 spin_lock_irq(&p->sighand->siglock); 1440 /* Re-check with the lock held. */ 1441 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1442 spin_unlock_irq(&p->sighand->siglock); 1443 return 0; 1444 } 1445 if (!unlikely(wo->wo_flags & WNOWAIT)) 1446 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1447 uid = __task_cred(p)->uid; 1448 spin_unlock_irq(&p->sighand->siglock); 1449 1450 pid = task_pid_vnr(p); 1451 get_task_struct(p); 1452 read_unlock(&tasklist_lock); 1453 1454 if (!wo->wo_info) { 1455 retval = wo->wo_rusage 1456 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1457 put_task_struct(p); 1458 if (!retval && wo->wo_stat) 1459 retval = put_user(0xffff, wo->wo_stat); 1460 if (!retval) 1461 retval = pid; 1462 } else { 1463 retval = wait_noreap_copyout(wo, p, pid, uid, 1464 CLD_CONTINUED, SIGCONT); 1465 BUG_ON(retval == 0); 1466 } 1467 1468 return retval; 1469 } 1470 1471 /* 1472 * Consider @p for a wait by @parent. 1473 * 1474 * -ECHILD should be in ->notask_error before the first call. 1475 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1476 * Returns zero if the search for a child should continue; 1477 * then ->notask_error is 0 if @p is an eligible child, 1478 * or another error from security_task_wait(), or still -ECHILD. 1479 */ 1480 static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, 1481 int ptrace, struct task_struct *p) 1482 { 1483 int ret = eligible_child(wo, p); 1484 if (!ret) 1485 return ret; 1486 1487 if (unlikely(ret < 0)) { 1488 /* 1489 * If we have not yet seen any eligible child, 1490 * then let this error code replace -ECHILD. 1491 * A permission error will give the user a clue 1492 * to look for security policy problems, rather 1493 * than for mysterious wait bugs. 1494 */ 1495 if (wo->notask_error) 1496 wo->notask_error = ret; 1497 return 0; 1498 } 1499 1500 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1501 /* 1502 * This child is hidden by ptrace. 1503 * We aren't allowed to see it now, but eventually we will. 1504 */ 1505 wo->notask_error = 0; 1506 return 0; 1507 } 1508 1509 if (p->exit_state == EXIT_DEAD) 1510 return 0; 1511 1512 /* 1513 * We don't reap group leaders with subthreads. 1514 */ 1515 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1516 return wait_task_zombie(wo, p); 1517 1518 /* 1519 * It's stopped or running now, so it might 1520 * later continue, exit, or stop again. 1521 */ 1522 wo->notask_error = 0; 1523 1524 if (task_stopped_code(p, ptrace)) 1525 return wait_task_stopped(wo, ptrace, p); 1526 1527 return wait_task_continued(wo, p); 1528 } 1529 1530 /* 1531 * Do the work of do_wait() for one thread in the group, @tsk. 1532 * 1533 * -ECHILD should be in ->notask_error before the first call. 1534 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1535 * Returns zero if the search for a child should continue; then 1536 * ->notask_error is 0 if there were any eligible children, 1537 * or another error from security_task_wait(), or still -ECHILD. 1538 */ 1539 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1540 { 1541 struct task_struct *p; 1542 1543 list_for_each_entry(p, &tsk->children, sibling) { 1544 /* 1545 * Do not consider detached threads. 1546 */ 1547 if (!task_detached(p)) { 1548 int ret = wait_consider_task(wo, tsk, 0, p); 1549 if (ret) 1550 return ret; 1551 } 1552 } 1553 1554 return 0; 1555 } 1556 1557 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1558 { 1559 struct task_struct *p; 1560 1561 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1562 int ret = wait_consider_task(wo, tsk, 1, p); 1563 if (ret) 1564 return ret; 1565 } 1566 1567 return 0; 1568 } 1569 1570 static long do_wait(struct wait_opts *wo) 1571 { 1572 DECLARE_WAITQUEUE(wait, current); 1573 struct task_struct *tsk; 1574 int retval; 1575 1576 trace_sched_process_wait(wo->wo_pid); 1577 1578 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1579 repeat: 1580 /* 1581 * If there is nothing that can match our critiera just get out. 1582 * We will clear ->notask_error to zero if we see any child that 1583 * might later match our criteria, even if we are not able to reap 1584 * it yet. 1585 */ 1586 wo->notask_error = -ECHILD; 1587 if ((wo->wo_type < PIDTYPE_MAX) && 1588 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1589 goto notask; 1590 1591 set_current_state(TASK_INTERRUPTIBLE); 1592 read_lock(&tasklist_lock); 1593 tsk = current; 1594 do { 1595 retval = do_wait_thread(wo, tsk); 1596 if (retval) 1597 goto end; 1598 1599 retval = ptrace_do_wait(wo, tsk); 1600 if (retval) 1601 goto end; 1602 1603 if (wo->wo_flags & __WNOTHREAD) 1604 break; 1605 } while_each_thread(current, tsk); 1606 read_unlock(&tasklist_lock); 1607 1608 notask: 1609 retval = wo->notask_error; 1610 if (!retval && !(wo->wo_flags & WNOHANG)) { 1611 retval = -ERESTARTSYS; 1612 if (!signal_pending(current)) { 1613 schedule(); 1614 goto repeat; 1615 } 1616 } 1617 end: 1618 __set_current_state(TASK_RUNNING); 1619 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1620 if (wo->wo_info) { 1621 struct siginfo __user *infop = wo->wo_info; 1622 1623 if (retval > 0) 1624 retval = 0; 1625 else { 1626 /* 1627 * For a WNOHANG return, clear out all the fields 1628 * we would set so the user can easily tell the 1629 * difference. 1630 */ 1631 if (!retval) 1632 retval = put_user(0, &infop->si_signo); 1633 if (!retval) 1634 retval = put_user(0, &infop->si_errno); 1635 if (!retval) 1636 retval = put_user(0, &infop->si_code); 1637 if (!retval) 1638 retval = put_user(0, &infop->si_pid); 1639 if (!retval) 1640 retval = put_user(0, &infop->si_uid); 1641 if (!retval) 1642 retval = put_user(0, &infop->si_status); 1643 } 1644 } 1645 return retval; 1646 } 1647 1648 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1649 infop, int, options, struct rusage __user *, ru) 1650 { 1651 struct wait_opts wo; 1652 struct pid *pid = NULL; 1653 enum pid_type type; 1654 long ret; 1655 1656 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1657 return -EINVAL; 1658 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1659 return -EINVAL; 1660 1661 switch (which) { 1662 case P_ALL: 1663 type = PIDTYPE_MAX; 1664 break; 1665 case P_PID: 1666 type = PIDTYPE_PID; 1667 if (upid <= 0) 1668 return -EINVAL; 1669 break; 1670 case P_PGID: 1671 type = PIDTYPE_PGID; 1672 if (upid <= 0) 1673 return -EINVAL; 1674 break; 1675 default: 1676 return -EINVAL; 1677 } 1678 1679 if (type < PIDTYPE_MAX) 1680 pid = find_get_pid(upid); 1681 1682 wo.wo_type = type; 1683 wo.wo_pid = pid; 1684 wo.wo_flags = options; 1685 wo.wo_info = infop; 1686 wo.wo_stat = NULL; 1687 wo.wo_rusage = ru; 1688 ret = do_wait(&wo); 1689 put_pid(pid); 1690 1691 /* avoid REGPARM breakage on x86: */ 1692 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1693 return ret; 1694 } 1695 1696 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1697 int, options, struct rusage __user *, ru) 1698 { 1699 struct wait_opts wo; 1700 struct pid *pid = NULL; 1701 enum pid_type type; 1702 long ret; 1703 1704 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1705 __WNOTHREAD|__WCLONE|__WALL)) 1706 return -EINVAL; 1707 1708 if (upid == -1) 1709 type = PIDTYPE_MAX; 1710 else if (upid < 0) { 1711 type = PIDTYPE_PGID; 1712 pid = find_get_pid(-upid); 1713 } else if (upid == 0) { 1714 type = PIDTYPE_PGID; 1715 pid = get_task_pid(current, PIDTYPE_PGID); 1716 } else /* upid > 0 */ { 1717 type = PIDTYPE_PID; 1718 pid = find_get_pid(upid); 1719 } 1720 1721 wo.wo_type = type; 1722 wo.wo_pid = pid; 1723 wo.wo_flags = options | WEXITED; 1724 wo.wo_info = NULL; 1725 wo.wo_stat = stat_addr; 1726 wo.wo_rusage = ru; 1727 ret = do_wait(&wo); 1728 put_pid(pid); 1729 1730 /* avoid REGPARM breakage on x86: */ 1731 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1732 return ret; 1733 } 1734 1735 #ifdef __ARCH_WANT_SYS_WAITPID 1736 1737 /* 1738 * sys_waitpid() remains for compatibility. waitpid() should be 1739 * implemented by calling sys_wait4() from libc.a. 1740 */ 1741 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1742 { 1743 return sys_wait4(pid, stat_addr, options, NULL); 1744 } 1745 1746 #endif 1747