1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/stat.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/sched/cputime.h> 15 #include <linux/interrupt.h> 16 #include <linux/module.h> 17 #include <linux/capability.h> 18 #include <linux/completion.h> 19 #include <linux/personality.h> 20 #include <linux/tty.h> 21 #include <linux/iocontext.h> 22 #include <linux/key.h> 23 #include <linux/cpu.h> 24 #include <linux/acct.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/blkdev.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/random.h> 63 #include <linux/rcuwait.h> 64 #include <linux/compat.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/unistd.h> 68 #include <asm/pgtable.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_TGID); 77 detach_pid(p, PIDTYPE_PGID); 78 detach_pid(p, PIDTYPE_SID); 79 80 list_del_rcu(&p->tasks); 81 list_del_init(&p->sibling); 82 __this_cpu_dec(process_counts); 83 } 84 list_del_rcu(&p->thread_group); 85 list_del_rcu(&p->thread_node); 86 } 87 88 /* 89 * This function expects the tasklist_lock write-locked. 90 */ 91 static void __exit_signal(struct task_struct *tsk) 92 { 93 struct signal_struct *sig = tsk->signal; 94 bool group_dead = thread_group_leader(tsk); 95 struct sighand_struct *sighand; 96 struct tty_struct *uninitialized_var(tty); 97 u64 utime, stime; 98 99 sighand = rcu_dereference_check(tsk->sighand, 100 lockdep_tasklist_lock_is_held()); 101 spin_lock(&sighand->siglock); 102 103 #ifdef CONFIG_POSIX_TIMERS 104 posix_cpu_timers_exit(tsk); 105 if (group_dead) { 106 posix_cpu_timers_exit_group(tsk); 107 } else { 108 /* 109 * This can only happen if the caller is de_thread(). 110 * FIXME: this is the temporary hack, we should teach 111 * posix-cpu-timers to handle this case correctly. 112 */ 113 if (unlikely(has_group_leader_pid(tsk))) 114 posix_cpu_timers_exit_group(tsk); 115 } 116 #endif 117 118 if (group_dead) { 119 tty = sig->tty; 120 sig->tty = NULL; 121 } else { 122 /* 123 * If there is any task waiting for the group exit 124 * then notify it: 125 */ 126 if (sig->notify_count > 0 && !--sig->notify_count) 127 wake_up_process(sig->group_exit_task); 128 129 if (tsk == sig->curr_target) 130 sig->curr_target = next_thread(tsk); 131 } 132 133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 134 sizeof(unsigned long long)); 135 136 /* 137 * Accumulate here the counters for all threads as they die. We could 138 * skip the group leader because it is the last user of signal_struct, 139 * but we want to avoid the race with thread_group_cputime() which can 140 * see the empty ->thread_head list. 141 */ 142 task_cputime(tsk, &utime, &stime); 143 write_seqlock(&sig->stats_lock); 144 sig->utime += utime; 145 sig->stime += stime; 146 sig->gtime += task_gtime(tsk); 147 sig->min_flt += tsk->min_flt; 148 sig->maj_flt += tsk->maj_flt; 149 sig->nvcsw += tsk->nvcsw; 150 sig->nivcsw += tsk->nivcsw; 151 sig->inblock += task_io_get_inblock(tsk); 152 sig->oublock += task_io_get_oublock(tsk); 153 task_io_accounting_add(&sig->ioac, &tsk->ioac); 154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 155 sig->nr_threads--; 156 __unhash_process(tsk, group_dead); 157 write_sequnlock(&sig->stats_lock); 158 159 /* 160 * Do this under ->siglock, we can race with another thread 161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 162 */ 163 flush_sigqueue(&tsk->pending); 164 tsk->sighand = NULL; 165 spin_unlock(&sighand->siglock); 166 167 __cleanup_sighand(sighand); 168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 169 if (group_dead) { 170 flush_sigqueue(&sig->shared_pending); 171 tty_kref_put(tty); 172 } 173 } 174 175 static void delayed_put_task_struct(struct rcu_head *rhp) 176 { 177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 178 179 perf_event_delayed_put(tsk); 180 trace_sched_process_free(tsk); 181 put_task_struct(tsk); 182 } 183 184 185 void release_task(struct task_struct *p) 186 { 187 struct task_struct *leader; 188 int zap_leader; 189 repeat: 190 /* don't need to get the RCU readlock here - the process is dead and 191 * can't be modifying its own credentials. But shut RCU-lockdep up */ 192 rcu_read_lock(); 193 atomic_dec(&__task_cred(p)->user->processes); 194 rcu_read_unlock(); 195 196 proc_flush_task(p); 197 198 write_lock_irq(&tasklist_lock); 199 ptrace_release_task(p); 200 __exit_signal(p); 201 202 /* 203 * If we are the last non-leader member of the thread 204 * group, and the leader is zombie, then notify the 205 * group leader's parent process. (if it wants notification.) 206 */ 207 zap_leader = 0; 208 leader = p->group_leader; 209 if (leader != p && thread_group_empty(leader) 210 && leader->exit_state == EXIT_ZOMBIE) { 211 /* 212 * If we were the last child thread and the leader has 213 * exited already, and the leader's parent ignores SIGCHLD, 214 * then we are the one who should release the leader. 215 */ 216 zap_leader = do_notify_parent(leader, leader->exit_signal); 217 if (zap_leader) 218 leader->exit_state = EXIT_DEAD; 219 } 220 221 write_unlock_irq(&tasklist_lock); 222 release_thread(p); 223 call_rcu(&p->rcu, delayed_put_task_struct); 224 225 p = leader; 226 if (unlikely(zap_leader)) 227 goto repeat; 228 } 229 230 /* 231 * Note that if this function returns a valid task_struct pointer (!NULL) 232 * task->usage must remain >0 for the duration of the RCU critical section. 233 */ 234 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 235 { 236 struct sighand_struct *sighand; 237 struct task_struct *task; 238 239 /* 240 * We need to verify that release_task() was not called and thus 241 * delayed_put_task_struct() can't run and drop the last reference 242 * before rcu_read_unlock(). We check task->sighand != NULL, 243 * but we can read the already freed and reused memory. 244 */ 245 retry: 246 task = rcu_dereference(*ptask); 247 if (!task) 248 return NULL; 249 250 probe_kernel_address(&task->sighand, sighand); 251 252 /* 253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 254 * was already freed we can not miss the preceding update of this 255 * pointer. 256 */ 257 smp_rmb(); 258 if (unlikely(task != READ_ONCE(*ptask))) 259 goto retry; 260 261 /* 262 * We've re-checked that "task == *ptask", now we have two different 263 * cases: 264 * 265 * 1. This is actually the same task/task_struct. In this case 266 * sighand != NULL tells us it is still alive. 267 * 268 * 2. This is another task which got the same memory for task_struct. 269 * We can't know this of course, and we can not trust 270 * sighand != NULL. 271 * 272 * In this case we actually return a random value, but this is 273 * correct. 274 * 275 * If we return NULL - we can pretend that we actually noticed that 276 * *ptask was updated when the previous task has exited. Or pretend 277 * that probe_slab_address(&sighand) reads NULL. 278 * 279 * If we return the new task (because sighand is not NULL for any 280 * reason) - this is fine too. This (new) task can't go away before 281 * another gp pass. 282 * 283 * And note: We could even eliminate the false positive if re-read 284 * task->sighand once again to avoid the falsely NULL. But this case 285 * is very unlikely so we don't care. 286 */ 287 if (!sighand) 288 return NULL; 289 290 return task; 291 } 292 293 void rcuwait_wake_up(struct rcuwait *w) 294 { 295 struct task_struct *task; 296 297 rcu_read_lock(); 298 299 /* 300 * Order condition vs @task, such that everything prior to the load 301 * of @task is visible. This is the condition as to why the user called 302 * rcuwait_trywake() in the first place. Pairs with set_current_state() 303 * barrier (A) in rcuwait_wait_event(). 304 * 305 * WAIT WAKE 306 * [S] tsk = current [S] cond = true 307 * MB (A) MB (B) 308 * [L] cond [L] tsk 309 */ 310 smp_rmb(); /* (B) */ 311 312 /* 313 * Avoid using task_rcu_dereference() magic as long as we are careful, 314 * see comment in rcuwait_wait_event() regarding ->exit_state. 315 */ 316 task = rcu_dereference(w->task); 317 if (task) 318 wake_up_process(task); 319 rcu_read_unlock(); 320 } 321 322 /* 323 * Determine if a process group is "orphaned", according to the POSIX 324 * definition in 2.2.2.52. Orphaned process groups are not to be affected 325 * by terminal-generated stop signals. Newly orphaned process groups are 326 * to receive a SIGHUP and a SIGCONT. 327 * 328 * "I ask you, have you ever known what it is to be an orphan?" 329 */ 330 static int will_become_orphaned_pgrp(struct pid *pgrp, 331 struct task_struct *ignored_task) 332 { 333 struct task_struct *p; 334 335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 336 if ((p == ignored_task) || 337 (p->exit_state && thread_group_empty(p)) || 338 is_global_init(p->real_parent)) 339 continue; 340 341 if (task_pgrp(p->real_parent) != pgrp && 342 task_session(p->real_parent) == task_session(p)) 343 return 0; 344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 345 346 return 1; 347 } 348 349 int is_current_pgrp_orphaned(void) 350 { 351 int retval; 352 353 read_lock(&tasklist_lock); 354 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 355 read_unlock(&tasklist_lock); 356 357 return retval; 358 } 359 360 static bool has_stopped_jobs(struct pid *pgrp) 361 { 362 struct task_struct *p; 363 364 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 365 if (p->signal->flags & SIGNAL_STOP_STOPPED) 366 return true; 367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 368 369 return false; 370 } 371 372 /* 373 * Check to see if any process groups have become orphaned as 374 * a result of our exiting, and if they have any stopped jobs, 375 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 376 */ 377 static void 378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 379 { 380 struct pid *pgrp = task_pgrp(tsk); 381 struct task_struct *ignored_task = tsk; 382 383 if (!parent) 384 /* exit: our father is in a different pgrp than 385 * we are and we were the only connection outside. 386 */ 387 parent = tsk->real_parent; 388 else 389 /* reparent: our child is in a different pgrp than 390 * we are, and it was the only connection outside. 391 */ 392 ignored_task = NULL; 393 394 if (task_pgrp(parent) != pgrp && 395 task_session(parent) == task_session(tsk) && 396 will_become_orphaned_pgrp(pgrp, ignored_task) && 397 has_stopped_jobs(pgrp)) { 398 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 399 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 400 } 401 } 402 403 #ifdef CONFIG_MEMCG 404 /* 405 * A task is exiting. If it owned this mm, find a new owner for the mm. 406 */ 407 void mm_update_next_owner(struct mm_struct *mm) 408 { 409 struct task_struct *c, *g, *p = current; 410 411 retry: 412 /* 413 * If the exiting or execing task is not the owner, it's 414 * someone else's problem. 415 */ 416 if (mm->owner != p) 417 return; 418 /* 419 * The current owner is exiting/execing and there are no other 420 * candidates. Do not leave the mm pointing to a possibly 421 * freed task structure. 422 */ 423 if (atomic_read(&mm->mm_users) <= 1) { 424 mm->owner = NULL; 425 return; 426 } 427 428 read_lock(&tasklist_lock); 429 /* 430 * Search in the children 431 */ 432 list_for_each_entry(c, &p->children, sibling) { 433 if (c->mm == mm) 434 goto assign_new_owner; 435 } 436 437 /* 438 * Search in the siblings 439 */ 440 list_for_each_entry(c, &p->real_parent->children, sibling) { 441 if (c->mm == mm) 442 goto assign_new_owner; 443 } 444 445 /* 446 * Search through everything else, we should not get here often. 447 */ 448 for_each_process(g) { 449 if (g->flags & PF_KTHREAD) 450 continue; 451 for_each_thread(g, c) { 452 if (c->mm == mm) 453 goto assign_new_owner; 454 if (c->mm) 455 break; 456 } 457 } 458 read_unlock(&tasklist_lock); 459 /* 460 * We found no owner yet mm_users > 1: this implies that we are 461 * most likely racing with swapoff (try_to_unuse()) or /proc or 462 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 463 */ 464 mm->owner = NULL; 465 return; 466 467 assign_new_owner: 468 BUG_ON(c == p); 469 get_task_struct(c); 470 /* 471 * The task_lock protects c->mm from changing. 472 * We always want mm->owner->mm == mm 473 */ 474 task_lock(c); 475 /* 476 * Delay read_unlock() till we have the task_lock() 477 * to ensure that c does not slip away underneath us 478 */ 479 read_unlock(&tasklist_lock); 480 if (c->mm != mm) { 481 task_unlock(c); 482 put_task_struct(c); 483 goto retry; 484 } 485 mm->owner = c; 486 task_unlock(c); 487 put_task_struct(c); 488 } 489 #endif /* CONFIG_MEMCG */ 490 491 /* 492 * Turn us into a lazy TLB process if we 493 * aren't already.. 494 */ 495 static void exit_mm(void) 496 { 497 struct mm_struct *mm = current->mm; 498 struct core_state *core_state; 499 500 mm_release(current, mm); 501 if (!mm) 502 return; 503 sync_mm_rss(mm); 504 /* 505 * Serialize with any possible pending coredump. 506 * We must hold mmap_sem around checking core_state 507 * and clearing tsk->mm. The core-inducing thread 508 * will increment ->nr_threads for each thread in the 509 * group with ->mm != NULL. 510 */ 511 down_read(&mm->mmap_sem); 512 core_state = mm->core_state; 513 if (core_state) { 514 struct core_thread self; 515 516 up_read(&mm->mmap_sem); 517 518 self.task = current; 519 self.next = xchg(&core_state->dumper.next, &self); 520 /* 521 * Implies mb(), the result of xchg() must be visible 522 * to core_state->dumper. 523 */ 524 if (atomic_dec_and_test(&core_state->nr_threads)) 525 complete(&core_state->startup); 526 527 for (;;) { 528 set_current_state(TASK_UNINTERRUPTIBLE); 529 if (!self.task) /* see coredump_finish() */ 530 break; 531 freezable_schedule(); 532 } 533 __set_current_state(TASK_RUNNING); 534 down_read(&mm->mmap_sem); 535 } 536 mmgrab(mm); 537 BUG_ON(mm != current->active_mm); 538 /* more a memory barrier than a real lock */ 539 task_lock(current); 540 current->mm = NULL; 541 up_read(&mm->mmap_sem); 542 enter_lazy_tlb(mm, current); 543 task_unlock(current); 544 mm_update_next_owner(mm); 545 mmput(mm); 546 if (test_thread_flag(TIF_MEMDIE)) 547 exit_oom_victim(); 548 } 549 550 static struct task_struct *find_alive_thread(struct task_struct *p) 551 { 552 struct task_struct *t; 553 554 for_each_thread(p, t) { 555 if (!(t->flags & PF_EXITING)) 556 return t; 557 } 558 return NULL; 559 } 560 561 static struct task_struct *find_child_reaper(struct task_struct *father) 562 __releases(&tasklist_lock) 563 __acquires(&tasklist_lock) 564 { 565 struct pid_namespace *pid_ns = task_active_pid_ns(father); 566 struct task_struct *reaper = pid_ns->child_reaper; 567 568 if (likely(reaper != father)) 569 return reaper; 570 571 reaper = find_alive_thread(father); 572 if (reaper) { 573 pid_ns->child_reaper = reaper; 574 return reaper; 575 } 576 577 write_unlock_irq(&tasklist_lock); 578 if (unlikely(pid_ns == &init_pid_ns)) { 579 panic("Attempted to kill init! exitcode=0x%08x\n", 580 father->signal->group_exit_code ?: father->exit_code); 581 } 582 zap_pid_ns_processes(pid_ns); 583 write_lock_irq(&tasklist_lock); 584 585 return father; 586 } 587 588 /* 589 * When we die, we re-parent all our children, and try to: 590 * 1. give them to another thread in our thread group, if such a member exists 591 * 2. give it to the first ancestor process which prctl'd itself as a 592 * child_subreaper for its children (like a service manager) 593 * 3. give it to the init process (PID 1) in our pid namespace 594 */ 595 static struct task_struct *find_new_reaper(struct task_struct *father, 596 struct task_struct *child_reaper) 597 { 598 struct task_struct *thread, *reaper; 599 600 thread = find_alive_thread(father); 601 if (thread) 602 return thread; 603 604 if (father->signal->has_child_subreaper) { 605 unsigned int ns_level = task_pid(father)->level; 606 /* 607 * Find the first ->is_child_subreaper ancestor in our pid_ns. 608 * We can't check reaper != child_reaper to ensure we do not 609 * cross the namespaces, the exiting parent could be injected 610 * by setns() + fork(). 611 * We check pid->level, this is slightly more efficient than 612 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 613 */ 614 for (reaper = father->real_parent; 615 task_pid(reaper)->level == ns_level; 616 reaper = reaper->real_parent) { 617 if (reaper == &init_task) 618 break; 619 if (!reaper->signal->is_child_subreaper) 620 continue; 621 thread = find_alive_thread(reaper); 622 if (thread) 623 return thread; 624 } 625 } 626 627 return child_reaper; 628 } 629 630 /* 631 * Any that need to be release_task'd are put on the @dead list. 632 */ 633 static void reparent_leader(struct task_struct *father, struct task_struct *p, 634 struct list_head *dead) 635 { 636 if (unlikely(p->exit_state == EXIT_DEAD)) 637 return; 638 639 /* We don't want people slaying init. */ 640 p->exit_signal = SIGCHLD; 641 642 /* If it has exited notify the new parent about this child's death. */ 643 if (!p->ptrace && 644 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 645 if (do_notify_parent(p, p->exit_signal)) { 646 p->exit_state = EXIT_DEAD; 647 list_add(&p->ptrace_entry, dead); 648 } 649 } 650 651 kill_orphaned_pgrp(p, father); 652 } 653 654 /* 655 * This does two things: 656 * 657 * A. Make init inherit all the child processes 658 * B. Check to see if any process groups have become orphaned 659 * as a result of our exiting, and if they have any stopped 660 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 661 */ 662 static void forget_original_parent(struct task_struct *father, 663 struct list_head *dead) 664 { 665 struct task_struct *p, *t, *reaper; 666 667 if (unlikely(!list_empty(&father->ptraced))) 668 exit_ptrace(father, dead); 669 670 /* Can drop and reacquire tasklist_lock */ 671 reaper = find_child_reaper(father); 672 if (list_empty(&father->children)) 673 return; 674 675 reaper = find_new_reaper(father, reaper); 676 list_for_each_entry(p, &father->children, sibling) { 677 for_each_thread(p, t) { 678 t->real_parent = reaper; 679 BUG_ON((!t->ptrace) != (t->parent == father)); 680 if (likely(!t->ptrace)) 681 t->parent = t->real_parent; 682 if (t->pdeath_signal) 683 group_send_sig_info(t->pdeath_signal, 684 SEND_SIG_NOINFO, t, 685 PIDTYPE_TGID); 686 } 687 /* 688 * If this is a threaded reparent there is no need to 689 * notify anyone anything has happened. 690 */ 691 if (!same_thread_group(reaper, father)) 692 reparent_leader(father, p, dead); 693 } 694 list_splice_tail_init(&father->children, &reaper->children); 695 } 696 697 /* 698 * Send signals to all our closest relatives so that they know 699 * to properly mourn us.. 700 */ 701 static void exit_notify(struct task_struct *tsk, int group_dead) 702 { 703 bool autoreap; 704 struct task_struct *p, *n; 705 LIST_HEAD(dead); 706 707 write_lock_irq(&tasklist_lock); 708 forget_original_parent(tsk, &dead); 709 710 if (group_dead) 711 kill_orphaned_pgrp(tsk->group_leader, NULL); 712 713 if (unlikely(tsk->ptrace)) { 714 int sig = thread_group_leader(tsk) && 715 thread_group_empty(tsk) && 716 !ptrace_reparented(tsk) ? 717 tsk->exit_signal : SIGCHLD; 718 autoreap = do_notify_parent(tsk, sig); 719 } else if (thread_group_leader(tsk)) { 720 autoreap = thread_group_empty(tsk) && 721 do_notify_parent(tsk, tsk->exit_signal); 722 } else { 723 autoreap = true; 724 } 725 726 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 727 if (tsk->exit_state == EXIT_DEAD) 728 list_add(&tsk->ptrace_entry, &dead); 729 730 /* mt-exec, de_thread() is waiting for group leader */ 731 if (unlikely(tsk->signal->notify_count < 0)) 732 wake_up_process(tsk->signal->group_exit_task); 733 write_unlock_irq(&tasklist_lock); 734 735 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 736 list_del_init(&p->ptrace_entry); 737 release_task(p); 738 } 739 } 740 741 #ifdef CONFIG_DEBUG_STACK_USAGE 742 static void check_stack_usage(void) 743 { 744 static DEFINE_SPINLOCK(low_water_lock); 745 static int lowest_to_date = THREAD_SIZE; 746 unsigned long free; 747 748 free = stack_not_used(current); 749 750 if (free >= lowest_to_date) 751 return; 752 753 spin_lock(&low_water_lock); 754 if (free < lowest_to_date) { 755 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 756 current->comm, task_pid_nr(current), free); 757 lowest_to_date = free; 758 } 759 spin_unlock(&low_water_lock); 760 } 761 #else 762 static inline void check_stack_usage(void) {} 763 #endif 764 765 void __noreturn do_exit(long code) 766 { 767 struct task_struct *tsk = current; 768 int group_dead; 769 770 profile_task_exit(tsk); 771 kcov_task_exit(tsk); 772 773 WARN_ON(blk_needs_flush_plug(tsk)); 774 775 if (unlikely(in_interrupt())) 776 panic("Aiee, killing interrupt handler!"); 777 if (unlikely(!tsk->pid)) 778 panic("Attempted to kill the idle task!"); 779 780 /* 781 * If do_exit is called because this processes oopsed, it's possible 782 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 783 * continuing. Amongst other possible reasons, this is to prevent 784 * mm_release()->clear_child_tid() from writing to a user-controlled 785 * kernel address. 786 */ 787 set_fs(USER_DS); 788 789 ptrace_event(PTRACE_EVENT_EXIT, code); 790 791 validate_creds_for_do_exit(tsk); 792 793 /* 794 * We're taking recursive faults here in do_exit. Safest is to just 795 * leave this task alone and wait for reboot. 796 */ 797 if (unlikely(tsk->flags & PF_EXITING)) { 798 pr_alert("Fixing recursive fault but reboot is needed!\n"); 799 /* 800 * We can do this unlocked here. The futex code uses 801 * this flag just to verify whether the pi state 802 * cleanup has been done or not. In the worst case it 803 * loops once more. We pretend that the cleanup was 804 * done as there is no way to return. Either the 805 * OWNER_DIED bit is set by now or we push the blocked 806 * task into the wait for ever nirwana as well. 807 */ 808 tsk->flags |= PF_EXITPIDONE; 809 set_current_state(TASK_UNINTERRUPTIBLE); 810 schedule(); 811 } 812 813 exit_signals(tsk); /* sets PF_EXITING */ 814 /* 815 * Ensure that all new tsk->pi_lock acquisitions must observe 816 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 817 */ 818 smp_mb(); 819 /* 820 * Ensure that we must observe the pi_state in exit_mm() -> 821 * mm_release() -> exit_pi_state_list(). 822 */ 823 raw_spin_lock_irq(&tsk->pi_lock); 824 raw_spin_unlock_irq(&tsk->pi_lock); 825 826 if (unlikely(in_atomic())) { 827 pr_info("note: %s[%d] exited with preempt_count %d\n", 828 current->comm, task_pid_nr(current), 829 preempt_count()); 830 preempt_count_set(PREEMPT_ENABLED); 831 } 832 833 /* sync mm's RSS info before statistics gathering */ 834 if (tsk->mm) 835 sync_mm_rss(tsk->mm); 836 acct_update_integrals(tsk); 837 group_dead = atomic_dec_and_test(&tsk->signal->live); 838 if (group_dead) { 839 #ifdef CONFIG_POSIX_TIMERS 840 hrtimer_cancel(&tsk->signal->real_timer); 841 exit_itimers(tsk->signal); 842 #endif 843 if (tsk->mm) 844 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 845 } 846 acct_collect(code, group_dead); 847 if (group_dead) 848 tty_audit_exit(); 849 audit_free(tsk); 850 851 tsk->exit_code = code; 852 taskstats_exit(tsk, group_dead); 853 854 exit_mm(); 855 856 if (group_dead) 857 acct_process(); 858 trace_sched_process_exit(tsk); 859 860 exit_sem(tsk); 861 exit_shm(tsk); 862 exit_files(tsk); 863 exit_fs(tsk); 864 if (group_dead) 865 disassociate_ctty(1); 866 exit_task_namespaces(tsk); 867 exit_task_work(tsk); 868 exit_thread(tsk); 869 870 /* 871 * Flush inherited counters to the parent - before the parent 872 * gets woken up by child-exit notifications. 873 * 874 * because of cgroup mode, must be called before cgroup_exit() 875 */ 876 perf_event_exit_task(tsk); 877 878 sched_autogroup_exit_task(tsk); 879 cgroup_exit(tsk); 880 881 /* 882 * FIXME: do that only when needed, using sched_exit tracepoint 883 */ 884 flush_ptrace_hw_breakpoint(tsk); 885 886 exit_tasks_rcu_start(); 887 exit_notify(tsk, group_dead); 888 proc_exit_connector(tsk); 889 mpol_put_task_policy(tsk); 890 #ifdef CONFIG_FUTEX 891 if (unlikely(current->pi_state_cache)) 892 kfree(current->pi_state_cache); 893 #endif 894 /* 895 * Make sure we are holding no locks: 896 */ 897 debug_check_no_locks_held(); 898 /* 899 * We can do this unlocked here. The futex code uses this flag 900 * just to verify whether the pi state cleanup has been done 901 * or not. In the worst case it loops once more. 902 */ 903 tsk->flags |= PF_EXITPIDONE; 904 905 if (tsk->io_context) 906 exit_io_context(tsk); 907 908 if (tsk->splice_pipe) 909 free_pipe_info(tsk->splice_pipe); 910 911 if (tsk->task_frag.page) 912 put_page(tsk->task_frag.page); 913 914 validate_creds_for_do_exit(tsk); 915 916 check_stack_usage(); 917 preempt_disable(); 918 if (tsk->nr_dirtied) 919 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 920 exit_rcu(); 921 exit_tasks_rcu_finish(); 922 923 lockdep_free_task(tsk); 924 do_task_dead(); 925 } 926 EXPORT_SYMBOL_GPL(do_exit); 927 928 void complete_and_exit(struct completion *comp, long code) 929 { 930 if (comp) 931 complete(comp); 932 933 do_exit(code); 934 } 935 EXPORT_SYMBOL(complete_and_exit); 936 937 SYSCALL_DEFINE1(exit, int, error_code) 938 { 939 do_exit((error_code&0xff)<<8); 940 } 941 942 /* 943 * Take down every thread in the group. This is called by fatal signals 944 * as well as by sys_exit_group (below). 945 */ 946 void 947 do_group_exit(int exit_code) 948 { 949 struct signal_struct *sig = current->signal; 950 951 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 952 953 if (signal_group_exit(sig)) 954 exit_code = sig->group_exit_code; 955 else if (!thread_group_empty(current)) { 956 struct sighand_struct *const sighand = current->sighand; 957 958 spin_lock_irq(&sighand->siglock); 959 if (signal_group_exit(sig)) 960 /* Another thread got here before we took the lock. */ 961 exit_code = sig->group_exit_code; 962 else { 963 sig->group_exit_code = exit_code; 964 sig->flags = SIGNAL_GROUP_EXIT; 965 zap_other_threads(current); 966 } 967 spin_unlock_irq(&sighand->siglock); 968 } 969 970 do_exit(exit_code); 971 /* NOTREACHED */ 972 } 973 974 /* 975 * this kills every thread in the thread group. Note that any externally 976 * wait4()-ing process will get the correct exit code - even if this 977 * thread is not the thread group leader. 978 */ 979 SYSCALL_DEFINE1(exit_group, int, error_code) 980 { 981 do_group_exit((error_code & 0xff) << 8); 982 /* NOTREACHED */ 983 return 0; 984 } 985 986 struct waitid_info { 987 pid_t pid; 988 uid_t uid; 989 int status; 990 int cause; 991 }; 992 993 struct wait_opts { 994 enum pid_type wo_type; 995 int wo_flags; 996 struct pid *wo_pid; 997 998 struct waitid_info *wo_info; 999 int wo_stat; 1000 struct rusage *wo_rusage; 1001 1002 wait_queue_entry_t child_wait; 1003 int notask_error; 1004 }; 1005 1006 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1007 { 1008 return wo->wo_type == PIDTYPE_MAX || 1009 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1010 } 1011 1012 static int 1013 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1014 { 1015 if (!eligible_pid(wo, p)) 1016 return 0; 1017 1018 /* 1019 * Wait for all children (clone and not) if __WALL is set or 1020 * if it is traced by us. 1021 */ 1022 if (ptrace || (wo->wo_flags & __WALL)) 1023 return 1; 1024 1025 /* 1026 * Otherwise, wait for clone children *only* if __WCLONE is set; 1027 * otherwise, wait for non-clone children *only*. 1028 * 1029 * Note: a "clone" child here is one that reports to its parent 1030 * using a signal other than SIGCHLD, or a non-leader thread which 1031 * we can only see if it is traced by us. 1032 */ 1033 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1034 return 0; 1035 1036 return 1; 1037 } 1038 1039 /* 1040 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1041 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1042 * the lock and this task is uninteresting. If we return nonzero, we have 1043 * released the lock and the system call should return. 1044 */ 1045 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1046 { 1047 int state, status; 1048 pid_t pid = task_pid_vnr(p); 1049 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1050 struct waitid_info *infop; 1051 1052 if (!likely(wo->wo_flags & WEXITED)) 1053 return 0; 1054 1055 if (unlikely(wo->wo_flags & WNOWAIT)) { 1056 status = p->exit_code; 1057 get_task_struct(p); 1058 read_unlock(&tasklist_lock); 1059 sched_annotate_sleep(); 1060 if (wo->wo_rusage) 1061 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1062 put_task_struct(p); 1063 goto out_info; 1064 } 1065 /* 1066 * Move the task's state to DEAD/TRACE, only one thread can do this. 1067 */ 1068 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1069 EXIT_TRACE : EXIT_DEAD; 1070 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1071 return 0; 1072 /* 1073 * We own this thread, nobody else can reap it. 1074 */ 1075 read_unlock(&tasklist_lock); 1076 sched_annotate_sleep(); 1077 1078 /* 1079 * Check thread_group_leader() to exclude the traced sub-threads. 1080 */ 1081 if (state == EXIT_DEAD && thread_group_leader(p)) { 1082 struct signal_struct *sig = p->signal; 1083 struct signal_struct *psig = current->signal; 1084 unsigned long maxrss; 1085 u64 tgutime, tgstime; 1086 1087 /* 1088 * The resource counters for the group leader are in its 1089 * own task_struct. Those for dead threads in the group 1090 * are in its signal_struct, as are those for the child 1091 * processes it has previously reaped. All these 1092 * accumulate in the parent's signal_struct c* fields. 1093 * 1094 * We don't bother to take a lock here to protect these 1095 * p->signal fields because the whole thread group is dead 1096 * and nobody can change them. 1097 * 1098 * psig->stats_lock also protects us from our sub-theads 1099 * which can reap other children at the same time. Until 1100 * we change k_getrusage()-like users to rely on this lock 1101 * we have to take ->siglock as well. 1102 * 1103 * We use thread_group_cputime_adjusted() to get times for 1104 * the thread group, which consolidates times for all threads 1105 * in the group including the group leader. 1106 */ 1107 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1108 spin_lock_irq(¤t->sighand->siglock); 1109 write_seqlock(&psig->stats_lock); 1110 psig->cutime += tgutime + sig->cutime; 1111 psig->cstime += tgstime + sig->cstime; 1112 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1113 psig->cmin_flt += 1114 p->min_flt + sig->min_flt + sig->cmin_flt; 1115 psig->cmaj_flt += 1116 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1117 psig->cnvcsw += 1118 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1119 psig->cnivcsw += 1120 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1121 psig->cinblock += 1122 task_io_get_inblock(p) + 1123 sig->inblock + sig->cinblock; 1124 psig->coublock += 1125 task_io_get_oublock(p) + 1126 sig->oublock + sig->coublock; 1127 maxrss = max(sig->maxrss, sig->cmaxrss); 1128 if (psig->cmaxrss < maxrss) 1129 psig->cmaxrss = maxrss; 1130 task_io_accounting_add(&psig->ioac, &p->ioac); 1131 task_io_accounting_add(&psig->ioac, &sig->ioac); 1132 write_sequnlock(&psig->stats_lock); 1133 spin_unlock_irq(¤t->sighand->siglock); 1134 } 1135 1136 if (wo->wo_rusage) 1137 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1138 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1139 ? p->signal->group_exit_code : p->exit_code; 1140 wo->wo_stat = status; 1141 1142 if (state == EXIT_TRACE) { 1143 write_lock_irq(&tasklist_lock); 1144 /* We dropped tasklist, ptracer could die and untrace */ 1145 ptrace_unlink(p); 1146 1147 /* If parent wants a zombie, don't release it now */ 1148 state = EXIT_ZOMBIE; 1149 if (do_notify_parent(p, p->exit_signal)) 1150 state = EXIT_DEAD; 1151 p->exit_state = state; 1152 write_unlock_irq(&tasklist_lock); 1153 } 1154 if (state == EXIT_DEAD) 1155 release_task(p); 1156 1157 out_info: 1158 infop = wo->wo_info; 1159 if (infop) { 1160 if ((status & 0x7f) == 0) { 1161 infop->cause = CLD_EXITED; 1162 infop->status = status >> 8; 1163 } else { 1164 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1165 infop->status = status & 0x7f; 1166 } 1167 infop->pid = pid; 1168 infop->uid = uid; 1169 } 1170 1171 return pid; 1172 } 1173 1174 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1175 { 1176 if (ptrace) { 1177 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1178 return &p->exit_code; 1179 } else { 1180 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1181 return &p->signal->group_exit_code; 1182 } 1183 return NULL; 1184 } 1185 1186 /** 1187 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1188 * @wo: wait options 1189 * @ptrace: is the wait for ptrace 1190 * @p: task to wait for 1191 * 1192 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1193 * 1194 * CONTEXT: 1195 * read_lock(&tasklist_lock), which is released if return value is 1196 * non-zero. Also, grabs and releases @p->sighand->siglock. 1197 * 1198 * RETURNS: 1199 * 0 if wait condition didn't exist and search for other wait conditions 1200 * should continue. Non-zero return, -errno on failure and @p's pid on 1201 * success, implies that tasklist_lock is released and wait condition 1202 * search should terminate. 1203 */ 1204 static int wait_task_stopped(struct wait_opts *wo, 1205 int ptrace, struct task_struct *p) 1206 { 1207 struct waitid_info *infop; 1208 int exit_code, *p_code, why; 1209 uid_t uid = 0; /* unneeded, required by compiler */ 1210 pid_t pid; 1211 1212 /* 1213 * Traditionally we see ptrace'd stopped tasks regardless of options. 1214 */ 1215 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1216 return 0; 1217 1218 if (!task_stopped_code(p, ptrace)) 1219 return 0; 1220 1221 exit_code = 0; 1222 spin_lock_irq(&p->sighand->siglock); 1223 1224 p_code = task_stopped_code(p, ptrace); 1225 if (unlikely(!p_code)) 1226 goto unlock_sig; 1227 1228 exit_code = *p_code; 1229 if (!exit_code) 1230 goto unlock_sig; 1231 1232 if (!unlikely(wo->wo_flags & WNOWAIT)) 1233 *p_code = 0; 1234 1235 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1236 unlock_sig: 1237 spin_unlock_irq(&p->sighand->siglock); 1238 if (!exit_code) 1239 return 0; 1240 1241 /* 1242 * Now we are pretty sure this task is interesting. 1243 * Make sure it doesn't get reaped out from under us while we 1244 * give up the lock and then examine it below. We don't want to 1245 * keep holding onto the tasklist_lock while we call getrusage and 1246 * possibly take page faults for user memory. 1247 */ 1248 get_task_struct(p); 1249 pid = task_pid_vnr(p); 1250 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1251 read_unlock(&tasklist_lock); 1252 sched_annotate_sleep(); 1253 if (wo->wo_rusage) 1254 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1255 put_task_struct(p); 1256 1257 if (likely(!(wo->wo_flags & WNOWAIT))) 1258 wo->wo_stat = (exit_code << 8) | 0x7f; 1259 1260 infop = wo->wo_info; 1261 if (infop) { 1262 infop->cause = why; 1263 infop->status = exit_code; 1264 infop->pid = pid; 1265 infop->uid = uid; 1266 } 1267 return pid; 1268 } 1269 1270 /* 1271 * Handle do_wait work for one task in a live, non-stopped state. 1272 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1273 * the lock and this task is uninteresting. If we return nonzero, we have 1274 * released the lock and the system call should return. 1275 */ 1276 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1277 { 1278 struct waitid_info *infop; 1279 pid_t pid; 1280 uid_t uid; 1281 1282 if (!unlikely(wo->wo_flags & WCONTINUED)) 1283 return 0; 1284 1285 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1286 return 0; 1287 1288 spin_lock_irq(&p->sighand->siglock); 1289 /* Re-check with the lock held. */ 1290 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1291 spin_unlock_irq(&p->sighand->siglock); 1292 return 0; 1293 } 1294 if (!unlikely(wo->wo_flags & WNOWAIT)) 1295 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1296 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1297 spin_unlock_irq(&p->sighand->siglock); 1298 1299 pid = task_pid_vnr(p); 1300 get_task_struct(p); 1301 read_unlock(&tasklist_lock); 1302 sched_annotate_sleep(); 1303 if (wo->wo_rusage) 1304 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1305 put_task_struct(p); 1306 1307 infop = wo->wo_info; 1308 if (!infop) { 1309 wo->wo_stat = 0xffff; 1310 } else { 1311 infop->cause = CLD_CONTINUED; 1312 infop->pid = pid; 1313 infop->uid = uid; 1314 infop->status = SIGCONT; 1315 } 1316 return pid; 1317 } 1318 1319 /* 1320 * Consider @p for a wait by @parent. 1321 * 1322 * -ECHILD should be in ->notask_error before the first call. 1323 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1324 * Returns zero if the search for a child should continue; 1325 * then ->notask_error is 0 if @p is an eligible child, 1326 * or still -ECHILD. 1327 */ 1328 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1329 struct task_struct *p) 1330 { 1331 /* 1332 * We can race with wait_task_zombie() from another thread. 1333 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1334 * can't confuse the checks below. 1335 */ 1336 int exit_state = READ_ONCE(p->exit_state); 1337 int ret; 1338 1339 if (unlikely(exit_state == EXIT_DEAD)) 1340 return 0; 1341 1342 ret = eligible_child(wo, ptrace, p); 1343 if (!ret) 1344 return ret; 1345 1346 if (unlikely(exit_state == EXIT_TRACE)) { 1347 /* 1348 * ptrace == 0 means we are the natural parent. In this case 1349 * we should clear notask_error, debugger will notify us. 1350 */ 1351 if (likely(!ptrace)) 1352 wo->notask_error = 0; 1353 return 0; 1354 } 1355 1356 if (likely(!ptrace) && unlikely(p->ptrace)) { 1357 /* 1358 * If it is traced by its real parent's group, just pretend 1359 * the caller is ptrace_do_wait() and reap this child if it 1360 * is zombie. 1361 * 1362 * This also hides group stop state from real parent; otherwise 1363 * a single stop can be reported twice as group and ptrace stop. 1364 * If a ptracer wants to distinguish these two events for its 1365 * own children it should create a separate process which takes 1366 * the role of real parent. 1367 */ 1368 if (!ptrace_reparented(p)) 1369 ptrace = 1; 1370 } 1371 1372 /* slay zombie? */ 1373 if (exit_state == EXIT_ZOMBIE) { 1374 /* we don't reap group leaders with subthreads */ 1375 if (!delay_group_leader(p)) { 1376 /* 1377 * A zombie ptracee is only visible to its ptracer. 1378 * Notification and reaping will be cascaded to the 1379 * real parent when the ptracer detaches. 1380 */ 1381 if (unlikely(ptrace) || likely(!p->ptrace)) 1382 return wait_task_zombie(wo, p); 1383 } 1384 1385 /* 1386 * Allow access to stopped/continued state via zombie by 1387 * falling through. Clearing of notask_error is complex. 1388 * 1389 * When !@ptrace: 1390 * 1391 * If WEXITED is set, notask_error should naturally be 1392 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1393 * so, if there are live subthreads, there are events to 1394 * wait for. If all subthreads are dead, it's still safe 1395 * to clear - this function will be called again in finite 1396 * amount time once all the subthreads are released and 1397 * will then return without clearing. 1398 * 1399 * When @ptrace: 1400 * 1401 * Stopped state is per-task and thus can't change once the 1402 * target task dies. Only continued and exited can happen. 1403 * Clear notask_error if WCONTINUED | WEXITED. 1404 */ 1405 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1406 wo->notask_error = 0; 1407 } else { 1408 /* 1409 * @p is alive and it's gonna stop, continue or exit, so 1410 * there always is something to wait for. 1411 */ 1412 wo->notask_error = 0; 1413 } 1414 1415 /* 1416 * Wait for stopped. Depending on @ptrace, different stopped state 1417 * is used and the two don't interact with each other. 1418 */ 1419 ret = wait_task_stopped(wo, ptrace, p); 1420 if (ret) 1421 return ret; 1422 1423 /* 1424 * Wait for continued. There's only one continued state and the 1425 * ptracer can consume it which can confuse the real parent. Don't 1426 * use WCONTINUED from ptracer. You don't need or want it. 1427 */ 1428 return wait_task_continued(wo, p); 1429 } 1430 1431 /* 1432 * Do the work of do_wait() for one thread in the group, @tsk. 1433 * 1434 * -ECHILD should be in ->notask_error before the first call. 1435 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1436 * Returns zero if the search for a child should continue; then 1437 * ->notask_error is 0 if there were any eligible children, 1438 * or still -ECHILD. 1439 */ 1440 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1441 { 1442 struct task_struct *p; 1443 1444 list_for_each_entry(p, &tsk->children, sibling) { 1445 int ret = wait_consider_task(wo, 0, p); 1446 1447 if (ret) 1448 return ret; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1455 { 1456 struct task_struct *p; 1457 1458 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1459 int ret = wait_consider_task(wo, 1, p); 1460 1461 if (ret) 1462 return ret; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1469 int sync, void *key) 1470 { 1471 struct wait_opts *wo = container_of(wait, struct wait_opts, 1472 child_wait); 1473 struct task_struct *p = key; 1474 1475 if (!eligible_pid(wo, p)) 1476 return 0; 1477 1478 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1479 return 0; 1480 1481 return default_wake_function(wait, mode, sync, key); 1482 } 1483 1484 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1485 { 1486 __wake_up_sync_key(&parent->signal->wait_chldexit, 1487 TASK_INTERRUPTIBLE, 1, p); 1488 } 1489 1490 static long do_wait(struct wait_opts *wo) 1491 { 1492 struct task_struct *tsk; 1493 int retval; 1494 1495 trace_sched_process_wait(wo->wo_pid); 1496 1497 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1498 wo->child_wait.private = current; 1499 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1500 repeat: 1501 /* 1502 * If there is nothing that can match our criteria, just get out. 1503 * We will clear ->notask_error to zero if we see any child that 1504 * might later match our criteria, even if we are not able to reap 1505 * it yet. 1506 */ 1507 wo->notask_error = -ECHILD; 1508 if ((wo->wo_type < PIDTYPE_MAX) && 1509 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1510 goto notask; 1511 1512 set_current_state(TASK_INTERRUPTIBLE); 1513 read_lock(&tasklist_lock); 1514 tsk = current; 1515 do { 1516 retval = do_wait_thread(wo, tsk); 1517 if (retval) 1518 goto end; 1519 1520 retval = ptrace_do_wait(wo, tsk); 1521 if (retval) 1522 goto end; 1523 1524 if (wo->wo_flags & __WNOTHREAD) 1525 break; 1526 } while_each_thread(current, tsk); 1527 read_unlock(&tasklist_lock); 1528 1529 notask: 1530 retval = wo->notask_error; 1531 if (!retval && !(wo->wo_flags & WNOHANG)) { 1532 retval = -ERESTARTSYS; 1533 if (!signal_pending(current)) { 1534 schedule(); 1535 goto repeat; 1536 } 1537 } 1538 end: 1539 __set_current_state(TASK_RUNNING); 1540 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1541 return retval; 1542 } 1543 1544 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1545 int options, struct rusage *ru) 1546 { 1547 struct wait_opts wo; 1548 struct pid *pid = NULL; 1549 enum pid_type type; 1550 long ret; 1551 1552 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1553 __WNOTHREAD|__WCLONE|__WALL)) 1554 return -EINVAL; 1555 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1556 return -EINVAL; 1557 1558 switch (which) { 1559 case P_ALL: 1560 type = PIDTYPE_MAX; 1561 break; 1562 case P_PID: 1563 type = PIDTYPE_PID; 1564 if (upid <= 0) 1565 return -EINVAL; 1566 break; 1567 case P_PGID: 1568 type = PIDTYPE_PGID; 1569 if (upid <= 0) 1570 return -EINVAL; 1571 break; 1572 default: 1573 return -EINVAL; 1574 } 1575 1576 if (type < PIDTYPE_MAX) 1577 pid = find_get_pid(upid); 1578 1579 wo.wo_type = type; 1580 wo.wo_pid = pid; 1581 wo.wo_flags = options; 1582 wo.wo_info = infop; 1583 wo.wo_rusage = ru; 1584 ret = do_wait(&wo); 1585 1586 put_pid(pid); 1587 return ret; 1588 } 1589 1590 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1591 infop, int, options, struct rusage __user *, ru) 1592 { 1593 struct rusage r; 1594 struct waitid_info info = {.status = 0}; 1595 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1596 int signo = 0; 1597 1598 if (err > 0) { 1599 signo = SIGCHLD; 1600 err = 0; 1601 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1602 return -EFAULT; 1603 } 1604 if (!infop) 1605 return err; 1606 1607 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop))) 1608 return -EFAULT; 1609 1610 user_access_begin(); 1611 unsafe_put_user(signo, &infop->si_signo, Efault); 1612 unsafe_put_user(0, &infop->si_errno, Efault); 1613 unsafe_put_user(info.cause, &infop->si_code, Efault); 1614 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1615 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1616 unsafe_put_user(info.status, &infop->si_status, Efault); 1617 user_access_end(); 1618 return err; 1619 Efault: 1620 user_access_end(); 1621 return -EFAULT; 1622 } 1623 1624 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1625 struct rusage *ru) 1626 { 1627 struct wait_opts wo; 1628 struct pid *pid = NULL; 1629 enum pid_type type; 1630 long ret; 1631 1632 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1633 __WNOTHREAD|__WCLONE|__WALL)) 1634 return -EINVAL; 1635 1636 /* -INT_MIN is not defined */ 1637 if (upid == INT_MIN) 1638 return -ESRCH; 1639 1640 if (upid == -1) 1641 type = PIDTYPE_MAX; 1642 else if (upid < 0) { 1643 type = PIDTYPE_PGID; 1644 pid = find_get_pid(-upid); 1645 } else if (upid == 0) { 1646 type = PIDTYPE_PGID; 1647 pid = get_task_pid(current, PIDTYPE_PGID); 1648 } else /* upid > 0 */ { 1649 type = PIDTYPE_PID; 1650 pid = find_get_pid(upid); 1651 } 1652 1653 wo.wo_type = type; 1654 wo.wo_pid = pid; 1655 wo.wo_flags = options | WEXITED; 1656 wo.wo_info = NULL; 1657 wo.wo_stat = 0; 1658 wo.wo_rusage = ru; 1659 ret = do_wait(&wo); 1660 put_pid(pid); 1661 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1662 ret = -EFAULT; 1663 1664 return ret; 1665 } 1666 1667 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1668 int, options, struct rusage __user *, ru) 1669 { 1670 struct rusage r; 1671 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1672 1673 if (err > 0) { 1674 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1675 return -EFAULT; 1676 } 1677 return err; 1678 } 1679 1680 #ifdef __ARCH_WANT_SYS_WAITPID 1681 1682 /* 1683 * sys_waitpid() remains for compatibility. waitpid() should be 1684 * implemented by calling sys_wait4() from libc.a. 1685 */ 1686 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1687 { 1688 return kernel_wait4(pid, stat_addr, options, NULL); 1689 } 1690 1691 #endif 1692 1693 #ifdef CONFIG_COMPAT 1694 COMPAT_SYSCALL_DEFINE4(wait4, 1695 compat_pid_t, pid, 1696 compat_uint_t __user *, stat_addr, 1697 int, options, 1698 struct compat_rusage __user *, ru) 1699 { 1700 struct rusage r; 1701 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1702 if (err > 0) { 1703 if (ru && put_compat_rusage(&r, ru)) 1704 return -EFAULT; 1705 } 1706 return err; 1707 } 1708 1709 COMPAT_SYSCALL_DEFINE5(waitid, 1710 int, which, compat_pid_t, pid, 1711 struct compat_siginfo __user *, infop, int, options, 1712 struct compat_rusage __user *, uru) 1713 { 1714 struct rusage ru; 1715 struct waitid_info info = {.status = 0}; 1716 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1717 int signo = 0; 1718 if (err > 0) { 1719 signo = SIGCHLD; 1720 err = 0; 1721 if (uru) { 1722 /* kernel_waitid() overwrites everything in ru */ 1723 if (COMPAT_USE_64BIT_TIME) 1724 err = copy_to_user(uru, &ru, sizeof(ru)); 1725 else 1726 err = put_compat_rusage(&ru, uru); 1727 if (err) 1728 return -EFAULT; 1729 } 1730 } 1731 1732 if (!infop) 1733 return err; 1734 1735 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop))) 1736 return -EFAULT; 1737 1738 user_access_begin(); 1739 unsafe_put_user(signo, &infop->si_signo, Efault); 1740 unsafe_put_user(0, &infop->si_errno, Efault); 1741 unsafe_put_user(info.cause, &infop->si_code, Efault); 1742 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1743 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1744 unsafe_put_user(info.status, &infop->si_status, Efault); 1745 user_access_end(); 1746 return err; 1747 Efault: 1748 user_access_end(); 1749 return -EFAULT; 1750 } 1751 #endif 1752 1753 __weak void abort(void) 1754 { 1755 BUG(); 1756 1757 /* if that doesn't kill us, halt */ 1758 panic("Oops failed to kill thread"); 1759 } 1760 EXPORT_SYMBOL(abort); 1761