xref: /openbmc/linux/kernel/exit.c (revision ecefa105)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75 
76 /*
77  * The default value should be high enough to not crash a system that randomly
78  * crashes its kernel from time to time, but low enough to at least not permit
79  * overflowing 32-bit refcounts or the ldsem writer count.
80  */
81 static unsigned int oops_limit = 10000;
82 
83 #ifdef CONFIG_SYSCTL
84 static struct ctl_table kern_exit_table[] = {
85 	{
86 		.procname       = "oops_limit",
87 		.data           = &oops_limit,
88 		.maxlen         = sizeof(oops_limit),
89 		.mode           = 0644,
90 		.proc_handler   = proc_douintvec,
91 	},
92 	{ }
93 };
94 
95 static __init int kernel_exit_sysctls_init(void)
96 {
97 	register_sysctl_init("kernel", kern_exit_table);
98 	return 0;
99 }
100 late_initcall(kernel_exit_sysctls_init);
101 #endif
102 
103 static atomic_t oops_count = ATOMIC_INIT(0);
104 
105 #ifdef CONFIG_SYSFS
106 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107 			       char *page)
108 {
109 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 }
111 
112 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113 
114 static __init int kernel_exit_sysfs_init(void)
115 {
116 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117 	return 0;
118 }
119 late_initcall(kernel_exit_sysfs_init);
120 #endif
121 
122 static void __unhash_process(struct task_struct *p, bool group_dead)
123 {
124 	nr_threads--;
125 	detach_pid(p, PIDTYPE_PID);
126 	if (group_dead) {
127 		detach_pid(p, PIDTYPE_TGID);
128 		detach_pid(p, PIDTYPE_PGID);
129 		detach_pid(p, PIDTYPE_SID);
130 
131 		list_del_rcu(&p->tasks);
132 		list_del_init(&p->sibling);
133 		__this_cpu_dec(process_counts);
134 	}
135 	list_del_rcu(&p->thread_group);
136 	list_del_rcu(&p->thread_node);
137 }
138 
139 /*
140  * This function expects the tasklist_lock write-locked.
141  */
142 static void __exit_signal(struct task_struct *tsk)
143 {
144 	struct signal_struct *sig = tsk->signal;
145 	bool group_dead = thread_group_leader(tsk);
146 	struct sighand_struct *sighand;
147 	struct tty_struct *tty;
148 	u64 utime, stime;
149 
150 	sighand = rcu_dereference_check(tsk->sighand,
151 					lockdep_tasklist_lock_is_held());
152 	spin_lock(&sighand->siglock);
153 
154 #ifdef CONFIG_POSIX_TIMERS
155 	posix_cpu_timers_exit(tsk);
156 	if (group_dead)
157 		posix_cpu_timers_exit_group(tsk);
158 #endif
159 
160 	if (group_dead) {
161 		tty = sig->tty;
162 		sig->tty = NULL;
163 	} else {
164 		/*
165 		 * If there is any task waiting for the group exit
166 		 * then notify it:
167 		 */
168 		if (sig->notify_count > 0 && !--sig->notify_count)
169 			wake_up_process(sig->group_exec_task);
170 
171 		if (tsk == sig->curr_target)
172 			sig->curr_target = next_thread(tsk);
173 	}
174 
175 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176 			      sizeof(unsigned long long));
177 
178 	/*
179 	 * Accumulate here the counters for all threads as they die. We could
180 	 * skip the group leader because it is the last user of signal_struct,
181 	 * but we want to avoid the race with thread_group_cputime() which can
182 	 * see the empty ->thread_head list.
183 	 */
184 	task_cputime(tsk, &utime, &stime);
185 	write_seqlock(&sig->stats_lock);
186 	sig->utime += utime;
187 	sig->stime += stime;
188 	sig->gtime += task_gtime(tsk);
189 	sig->min_flt += tsk->min_flt;
190 	sig->maj_flt += tsk->maj_flt;
191 	sig->nvcsw += tsk->nvcsw;
192 	sig->nivcsw += tsk->nivcsw;
193 	sig->inblock += task_io_get_inblock(tsk);
194 	sig->oublock += task_io_get_oublock(tsk);
195 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
196 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197 	sig->nr_threads--;
198 	__unhash_process(tsk, group_dead);
199 	write_sequnlock(&sig->stats_lock);
200 
201 	/*
202 	 * Do this under ->siglock, we can race with another thread
203 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204 	 */
205 	flush_sigqueue(&tsk->pending);
206 	tsk->sighand = NULL;
207 	spin_unlock(&sighand->siglock);
208 
209 	__cleanup_sighand(sighand);
210 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211 	if (group_dead) {
212 		flush_sigqueue(&sig->shared_pending);
213 		tty_kref_put(tty);
214 	}
215 }
216 
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220 
221 	kprobe_flush_task(tsk);
222 	rethook_flush_task(tsk);
223 	perf_event_delayed_put(tsk);
224 	trace_sched_process_free(tsk);
225 	put_task_struct(tsk);
226 }
227 
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230 	if (refcount_dec_and_test(&task->rcu_users))
231 		call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233 
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237 
238 void release_task(struct task_struct *p)
239 {
240 	struct task_struct *leader;
241 	struct pid *thread_pid;
242 	int zap_leader;
243 repeat:
244 	/* don't need to get the RCU readlock here - the process is dead and
245 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
246 	rcu_read_lock();
247 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248 	rcu_read_unlock();
249 
250 	cgroup_release(p);
251 
252 	write_lock_irq(&tasklist_lock);
253 	ptrace_release_task(p);
254 	thread_pid = get_pid(p->thread_pid);
255 	__exit_signal(p);
256 
257 	/*
258 	 * If we are the last non-leader member of the thread
259 	 * group, and the leader is zombie, then notify the
260 	 * group leader's parent process. (if it wants notification.)
261 	 */
262 	zap_leader = 0;
263 	leader = p->group_leader;
264 	if (leader != p && thread_group_empty(leader)
265 			&& leader->exit_state == EXIT_ZOMBIE) {
266 		/*
267 		 * If we were the last child thread and the leader has
268 		 * exited already, and the leader's parent ignores SIGCHLD,
269 		 * then we are the one who should release the leader.
270 		 */
271 		zap_leader = do_notify_parent(leader, leader->exit_signal);
272 		if (zap_leader)
273 			leader->exit_state = EXIT_DEAD;
274 	}
275 
276 	write_unlock_irq(&tasklist_lock);
277 	seccomp_filter_release(p);
278 	proc_flush_pid(thread_pid);
279 	put_pid(thread_pid);
280 	release_thread(p);
281 	put_task_struct_rcu_user(p);
282 
283 	p = leader;
284 	if (unlikely(zap_leader))
285 		goto repeat;
286 }
287 
288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290 	int ret = 0;
291 	struct task_struct *task;
292 
293 	rcu_read_lock();
294 
295 	/*
296 	 * Order condition vs @task, such that everything prior to the load
297 	 * of @task is visible. This is the condition as to why the user called
298 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
299 	 * barrier (A) in rcuwait_wait_event().
300 	 *
301 	 *    WAIT                WAKE
302 	 *    [S] tsk = current	  [S] cond = true
303 	 *        MB (A)	      MB (B)
304 	 *    [L] cond		  [L] tsk
305 	 */
306 	smp_mb(); /* (B) */
307 
308 	task = rcu_dereference(w->task);
309 	if (task)
310 		ret = wake_up_process(task);
311 	rcu_read_unlock();
312 
313 	return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316 
317 /*
318  * Determine if a process group is "orphaned", according to the POSIX
319  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
320  * by terminal-generated stop signals.  Newly orphaned process groups are
321  * to receive a SIGHUP and a SIGCONT.
322  *
323  * "I ask you, have you ever known what it is to be an orphan?"
324  */
325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326 					struct task_struct *ignored_task)
327 {
328 	struct task_struct *p;
329 
330 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331 		if ((p == ignored_task) ||
332 		    (p->exit_state && thread_group_empty(p)) ||
333 		    is_global_init(p->real_parent))
334 			continue;
335 
336 		if (task_pgrp(p->real_parent) != pgrp &&
337 		    task_session(p->real_parent) == task_session(p))
338 			return 0;
339 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340 
341 	return 1;
342 }
343 
344 int is_current_pgrp_orphaned(void)
345 {
346 	int retval;
347 
348 	read_lock(&tasklist_lock);
349 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350 	read_unlock(&tasklist_lock);
351 
352 	return retval;
353 }
354 
355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357 	struct task_struct *p;
358 
359 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
361 			return true;
362 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363 
364 	return false;
365 }
366 
367 /*
368  * Check to see if any process groups have become orphaned as
369  * a result of our exiting, and if they have any stopped jobs,
370  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371  */
372 static void
373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375 	struct pid *pgrp = task_pgrp(tsk);
376 	struct task_struct *ignored_task = tsk;
377 
378 	if (!parent)
379 		/* exit: our father is in a different pgrp than
380 		 * we are and we were the only connection outside.
381 		 */
382 		parent = tsk->real_parent;
383 	else
384 		/* reparent: our child is in a different pgrp than
385 		 * we are, and it was the only connection outside.
386 		 */
387 		ignored_task = NULL;
388 
389 	if (task_pgrp(parent) != pgrp &&
390 	    task_session(parent) == task_session(tsk) &&
391 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
392 	    has_stopped_jobs(pgrp)) {
393 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395 	}
396 }
397 
398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400 	struct core_state *core_state;
401 
402 	/*
403 	 * Serialize with any possible pending coredump.
404 	 * We must hold siglock around checking core_state
405 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
406 	 * will increment ->nr_threads for each thread in the
407 	 * group without PF_POSTCOREDUMP set.
408 	 */
409 	spin_lock_irq(&tsk->sighand->siglock);
410 	tsk->flags |= PF_POSTCOREDUMP;
411 	core_state = tsk->signal->core_state;
412 	spin_unlock_irq(&tsk->sighand->siglock);
413 	if (core_state) {
414 		struct core_thread self;
415 
416 		self.task = current;
417 		if (self.task->flags & PF_SIGNALED)
418 			self.next = xchg(&core_state->dumper.next, &self);
419 		else
420 			self.task = NULL;
421 		/*
422 		 * Implies mb(), the result of xchg() must be visible
423 		 * to core_state->dumper.
424 		 */
425 		if (atomic_dec_and_test(&core_state->nr_threads))
426 			complete(&core_state->startup);
427 
428 		for (;;) {
429 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430 			if (!self.task) /* see coredump_finish() */
431 				break;
432 			schedule();
433 		}
434 		__set_current_state(TASK_RUNNING);
435 	}
436 }
437 
438 #ifdef CONFIG_MEMCG
439 /*
440  * A task is exiting.   If it owned this mm, find a new owner for the mm.
441  */
442 void mm_update_next_owner(struct mm_struct *mm)
443 {
444 	struct task_struct *c, *g, *p = current;
445 
446 retry:
447 	/*
448 	 * If the exiting or execing task is not the owner, it's
449 	 * someone else's problem.
450 	 */
451 	if (mm->owner != p)
452 		return;
453 	/*
454 	 * The current owner is exiting/execing and there are no other
455 	 * candidates.  Do not leave the mm pointing to a possibly
456 	 * freed task structure.
457 	 */
458 	if (atomic_read(&mm->mm_users) <= 1) {
459 		WRITE_ONCE(mm->owner, NULL);
460 		return;
461 	}
462 
463 	read_lock(&tasklist_lock);
464 	/*
465 	 * Search in the children
466 	 */
467 	list_for_each_entry(c, &p->children, sibling) {
468 		if (c->mm == mm)
469 			goto assign_new_owner;
470 	}
471 
472 	/*
473 	 * Search in the siblings
474 	 */
475 	list_for_each_entry(c, &p->real_parent->children, sibling) {
476 		if (c->mm == mm)
477 			goto assign_new_owner;
478 	}
479 
480 	/*
481 	 * Search through everything else, we should not get here often.
482 	 */
483 	for_each_process(g) {
484 		if (g->flags & PF_KTHREAD)
485 			continue;
486 		for_each_thread(g, c) {
487 			if (c->mm == mm)
488 				goto assign_new_owner;
489 			if (c->mm)
490 				break;
491 		}
492 	}
493 	read_unlock(&tasklist_lock);
494 	/*
495 	 * We found no owner yet mm_users > 1: this implies that we are
496 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
497 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
498 	 */
499 	WRITE_ONCE(mm->owner, NULL);
500 	return;
501 
502 assign_new_owner:
503 	BUG_ON(c == p);
504 	get_task_struct(c);
505 	/*
506 	 * The task_lock protects c->mm from changing.
507 	 * We always want mm->owner->mm == mm
508 	 */
509 	task_lock(c);
510 	/*
511 	 * Delay read_unlock() till we have the task_lock()
512 	 * to ensure that c does not slip away underneath us
513 	 */
514 	read_unlock(&tasklist_lock);
515 	if (c->mm != mm) {
516 		task_unlock(c);
517 		put_task_struct(c);
518 		goto retry;
519 	}
520 	WRITE_ONCE(mm->owner, c);
521 	lru_gen_migrate_mm(mm);
522 	task_unlock(c);
523 	put_task_struct(c);
524 }
525 #endif /* CONFIG_MEMCG */
526 
527 /*
528  * Turn us into a lazy TLB process if we
529  * aren't already..
530  */
531 static void exit_mm(void)
532 {
533 	struct mm_struct *mm = current->mm;
534 
535 	exit_mm_release(current, mm);
536 	if (!mm)
537 		return;
538 	sync_mm_rss(mm);
539 	mmap_read_lock(mm);
540 	mmgrab(mm);
541 	BUG_ON(mm != current->active_mm);
542 	/* more a memory barrier than a real lock */
543 	task_lock(current);
544 	/*
545 	 * When a thread stops operating on an address space, the loop
546 	 * in membarrier_private_expedited() may not observe that
547 	 * tsk->mm, and the loop in membarrier_global_expedited() may
548 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549 	 * rq->membarrier_state, so those would not issue an IPI.
550 	 * Membarrier requires a memory barrier after accessing
551 	 * user-space memory, before clearing tsk->mm or the
552 	 * rq->membarrier_state.
553 	 */
554 	smp_mb__after_spinlock();
555 	local_irq_disable();
556 	current->mm = NULL;
557 	membarrier_update_current_mm(NULL);
558 	enter_lazy_tlb(mm, current);
559 	local_irq_enable();
560 	task_unlock(current);
561 	mmap_read_unlock(mm);
562 	mm_update_next_owner(mm);
563 	mmput(mm);
564 	if (test_thread_flag(TIF_MEMDIE))
565 		exit_oom_victim();
566 }
567 
568 static struct task_struct *find_alive_thread(struct task_struct *p)
569 {
570 	struct task_struct *t;
571 
572 	for_each_thread(p, t) {
573 		if (!(t->flags & PF_EXITING))
574 			return t;
575 	}
576 	return NULL;
577 }
578 
579 static struct task_struct *find_child_reaper(struct task_struct *father,
580 						struct list_head *dead)
581 	__releases(&tasklist_lock)
582 	__acquires(&tasklist_lock)
583 {
584 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
585 	struct task_struct *reaper = pid_ns->child_reaper;
586 	struct task_struct *p, *n;
587 
588 	if (likely(reaper != father))
589 		return reaper;
590 
591 	reaper = find_alive_thread(father);
592 	if (reaper) {
593 		pid_ns->child_reaper = reaper;
594 		return reaper;
595 	}
596 
597 	write_unlock_irq(&tasklist_lock);
598 
599 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600 		list_del_init(&p->ptrace_entry);
601 		release_task(p);
602 	}
603 
604 	zap_pid_ns_processes(pid_ns);
605 	write_lock_irq(&tasklist_lock);
606 
607 	return father;
608 }
609 
610 /*
611  * When we die, we re-parent all our children, and try to:
612  * 1. give them to another thread in our thread group, if such a member exists
613  * 2. give it to the first ancestor process which prctl'd itself as a
614  *    child_subreaper for its children (like a service manager)
615  * 3. give it to the init process (PID 1) in our pid namespace
616  */
617 static struct task_struct *find_new_reaper(struct task_struct *father,
618 					   struct task_struct *child_reaper)
619 {
620 	struct task_struct *thread, *reaper;
621 
622 	thread = find_alive_thread(father);
623 	if (thread)
624 		return thread;
625 
626 	if (father->signal->has_child_subreaper) {
627 		unsigned int ns_level = task_pid(father)->level;
628 		/*
629 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
630 		 * We can't check reaper != child_reaper to ensure we do not
631 		 * cross the namespaces, the exiting parent could be injected
632 		 * by setns() + fork().
633 		 * We check pid->level, this is slightly more efficient than
634 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635 		 */
636 		for (reaper = father->real_parent;
637 		     task_pid(reaper)->level == ns_level;
638 		     reaper = reaper->real_parent) {
639 			if (reaper == &init_task)
640 				break;
641 			if (!reaper->signal->is_child_subreaper)
642 				continue;
643 			thread = find_alive_thread(reaper);
644 			if (thread)
645 				return thread;
646 		}
647 	}
648 
649 	return child_reaper;
650 }
651 
652 /*
653 * Any that need to be release_task'd are put on the @dead list.
654  */
655 static void reparent_leader(struct task_struct *father, struct task_struct *p,
656 				struct list_head *dead)
657 {
658 	if (unlikely(p->exit_state == EXIT_DEAD))
659 		return;
660 
661 	/* We don't want people slaying init. */
662 	p->exit_signal = SIGCHLD;
663 
664 	/* If it has exited notify the new parent about this child's death. */
665 	if (!p->ptrace &&
666 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667 		if (do_notify_parent(p, p->exit_signal)) {
668 			p->exit_state = EXIT_DEAD;
669 			list_add(&p->ptrace_entry, dead);
670 		}
671 	}
672 
673 	kill_orphaned_pgrp(p, father);
674 }
675 
676 /*
677  * This does two things:
678  *
679  * A.  Make init inherit all the child processes
680  * B.  Check to see if any process groups have become orphaned
681  *	as a result of our exiting, and if they have any stopped
682  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
683  */
684 static void forget_original_parent(struct task_struct *father,
685 					struct list_head *dead)
686 {
687 	struct task_struct *p, *t, *reaper;
688 
689 	if (unlikely(!list_empty(&father->ptraced)))
690 		exit_ptrace(father, dead);
691 
692 	/* Can drop and reacquire tasklist_lock */
693 	reaper = find_child_reaper(father, dead);
694 	if (list_empty(&father->children))
695 		return;
696 
697 	reaper = find_new_reaper(father, reaper);
698 	list_for_each_entry(p, &father->children, sibling) {
699 		for_each_thread(p, t) {
700 			RCU_INIT_POINTER(t->real_parent, reaper);
701 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702 			if (likely(!t->ptrace))
703 				t->parent = t->real_parent;
704 			if (t->pdeath_signal)
705 				group_send_sig_info(t->pdeath_signal,
706 						    SEND_SIG_NOINFO, t,
707 						    PIDTYPE_TGID);
708 		}
709 		/*
710 		 * If this is a threaded reparent there is no need to
711 		 * notify anyone anything has happened.
712 		 */
713 		if (!same_thread_group(reaper, father))
714 			reparent_leader(father, p, dead);
715 	}
716 	list_splice_tail_init(&father->children, &reaper->children);
717 }
718 
719 /*
720  * Send signals to all our closest relatives so that they know
721  * to properly mourn us..
722  */
723 static void exit_notify(struct task_struct *tsk, int group_dead)
724 {
725 	bool autoreap;
726 	struct task_struct *p, *n;
727 	LIST_HEAD(dead);
728 
729 	write_lock_irq(&tasklist_lock);
730 	forget_original_parent(tsk, &dead);
731 
732 	if (group_dead)
733 		kill_orphaned_pgrp(tsk->group_leader, NULL);
734 
735 	tsk->exit_state = EXIT_ZOMBIE;
736 	if (unlikely(tsk->ptrace)) {
737 		int sig = thread_group_leader(tsk) &&
738 				thread_group_empty(tsk) &&
739 				!ptrace_reparented(tsk) ?
740 			tsk->exit_signal : SIGCHLD;
741 		autoreap = do_notify_parent(tsk, sig);
742 	} else if (thread_group_leader(tsk)) {
743 		autoreap = thread_group_empty(tsk) &&
744 			do_notify_parent(tsk, tsk->exit_signal);
745 	} else {
746 		autoreap = true;
747 	}
748 
749 	if (autoreap) {
750 		tsk->exit_state = EXIT_DEAD;
751 		list_add(&tsk->ptrace_entry, &dead);
752 	}
753 
754 	/* mt-exec, de_thread() is waiting for group leader */
755 	if (unlikely(tsk->signal->notify_count < 0))
756 		wake_up_process(tsk->signal->group_exec_task);
757 	write_unlock_irq(&tasklist_lock);
758 
759 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760 		list_del_init(&p->ptrace_entry);
761 		release_task(p);
762 	}
763 }
764 
765 #ifdef CONFIG_DEBUG_STACK_USAGE
766 static void check_stack_usage(void)
767 {
768 	static DEFINE_SPINLOCK(low_water_lock);
769 	static int lowest_to_date = THREAD_SIZE;
770 	unsigned long free;
771 
772 	free = stack_not_used(current);
773 
774 	if (free >= lowest_to_date)
775 		return;
776 
777 	spin_lock(&low_water_lock);
778 	if (free < lowest_to_date) {
779 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780 			current->comm, task_pid_nr(current), free);
781 		lowest_to_date = free;
782 	}
783 	spin_unlock(&low_water_lock);
784 }
785 #else
786 static inline void check_stack_usage(void) {}
787 #endif
788 
789 static void synchronize_group_exit(struct task_struct *tsk, long code)
790 {
791 	struct sighand_struct *sighand = tsk->sighand;
792 	struct signal_struct *signal = tsk->signal;
793 
794 	spin_lock_irq(&sighand->siglock);
795 	signal->quick_threads--;
796 	if ((signal->quick_threads == 0) &&
797 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
798 		signal->flags = SIGNAL_GROUP_EXIT;
799 		signal->group_exit_code = code;
800 		signal->group_stop_count = 0;
801 	}
802 	spin_unlock_irq(&sighand->siglock);
803 }
804 
805 void __noreturn do_exit(long code)
806 {
807 	struct task_struct *tsk = current;
808 	int group_dead;
809 
810 	WARN_ON(irqs_disabled());
811 
812 	synchronize_group_exit(tsk, code);
813 
814 	WARN_ON(tsk->plug);
815 
816 	kcov_task_exit(tsk);
817 	kmsan_task_exit(tsk);
818 
819 	coredump_task_exit(tsk);
820 	ptrace_event(PTRACE_EVENT_EXIT, code);
821 
822 	validate_creds_for_do_exit(tsk);
823 
824 	io_uring_files_cancel();
825 	exit_signals(tsk);  /* sets PF_EXITING */
826 
827 	/* sync mm's RSS info before statistics gathering */
828 	if (tsk->mm)
829 		sync_mm_rss(tsk->mm);
830 	acct_update_integrals(tsk);
831 	group_dead = atomic_dec_and_test(&tsk->signal->live);
832 	if (group_dead) {
833 		/*
834 		 * If the last thread of global init has exited, panic
835 		 * immediately to get a useable coredump.
836 		 */
837 		if (unlikely(is_global_init(tsk)))
838 			panic("Attempted to kill init! exitcode=0x%08x\n",
839 				tsk->signal->group_exit_code ?: (int)code);
840 
841 #ifdef CONFIG_POSIX_TIMERS
842 		hrtimer_cancel(&tsk->signal->real_timer);
843 		exit_itimers(tsk);
844 #endif
845 		if (tsk->mm)
846 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 	}
848 	acct_collect(code, group_dead);
849 	if (group_dead)
850 		tty_audit_exit();
851 	audit_free(tsk);
852 
853 	tsk->exit_code = code;
854 	taskstats_exit(tsk, group_dead);
855 
856 	exit_mm();
857 
858 	if (group_dead)
859 		acct_process();
860 	trace_sched_process_exit(tsk);
861 
862 	exit_sem(tsk);
863 	exit_shm(tsk);
864 	exit_files(tsk);
865 	exit_fs(tsk);
866 	if (group_dead)
867 		disassociate_ctty(1);
868 	exit_task_namespaces(tsk);
869 	exit_task_work(tsk);
870 	exit_thread(tsk);
871 
872 	/*
873 	 * Flush inherited counters to the parent - before the parent
874 	 * gets woken up by child-exit notifications.
875 	 *
876 	 * because of cgroup mode, must be called before cgroup_exit()
877 	 */
878 	perf_event_exit_task(tsk);
879 
880 	sched_autogroup_exit_task(tsk);
881 	cgroup_exit(tsk);
882 
883 	/*
884 	 * FIXME: do that only when needed, using sched_exit tracepoint
885 	 */
886 	flush_ptrace_hw_breakpoint(tsk);
887 
888 	exit_tasks_rcu_start();
889 	exit_notify(tsk, group_dead);
890 	proc_exit_connector(tsk);
891 	mpol_put_task_policy(tsk);
892 #ifdef CONFIG_FUTEX
893 	if (unlikely(current->pi_state_cache))
894 		kfree(current->pi_state_cache);
895 #endif
896 	/*
897 	 * Make sure we are holding no locks:
898 	 */
899 	debug_check_no_locks_held();
900 
901 	if (tsk->io_context)
902 		exit_io_context(tsk);
903 
904 	if (tsk->splice_pipe)
905 		free_pipe_info(tsk->splice_pipe);
906 
907 	if (tsk->task_frag.page)
908 		put_page(tsk->task_frag.page);
909 
910 	validate_creds_for_do_exit(tsk);
911 	exit_task_stack_account(tsk);
912 
913 	check_stack_usage();
914 	preempt_disable();
915 	if (tsk->nr_dirtied)
916 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
917 	exit_rcu();
918 	exit_tasks_rcu_finish();
919 
920 	lockdep_free_task(tsk);
921 	do_task_dead();
922 }
923 
924 void __noreturn make_task_dead(int signr)
925 {
926 	/*
927 	 * Take the task off the cpu after something catastrophic has
928 	 * happened.
929 	 *
930 	 * We can get here from a kernel oops, sometimes with preemption off.
931 	 * Start by checking for critical errors.
932 	 * Then fix up important state like USER_DS and preemption.
933 	 * Then do everything else.
934 	 */
935 	struct task_struct *tsk = current;
936 	unsigned int limit;
937 
938 	if (unlikely(in_interrupt()))
939 		panic("Aiee, killing interrupt handler!");
940 	if (unlikely(!tsk->pid))
941 		panic("Attempted to kill the idle task!");
942 
943 	if (unlikely(irqs_disabled())) {
944 		pr_info("note: %s[%d] exited with irqs disabled\n",
945 			current->comm, task_pid_nr(current));
946 		local_irq_enable();
947 	}
948 	if (unlikely(in_atomic())) {
949 		pr_info("note: %s[%d] exited with preempt_count %d\n",
950 			current->comm, task_pid_nr(current),
951 			preempt_count());
952 		preempt_count_set(PREEMPT_ENABLED);
953 	}
954 
955 	/*
956 	 * Every time the system oopses, if the oops happens while a reference
957 	 * to an object was held, the reference leaks.
958 	 * If the oops doesn't also leak memory, repeated oopsing can cause
959 	 * reference counters to wrap around (if they're not using refcount_t).
960 	 * This means that repeated oopsing can make unexploitable-looking bugs
961 	 * exploitable through repeated oopsing.
962 	 * To make sure this can't happen, place an upper bound on how often the
963 	 * kernel may oops without panic().
964 	 */
965 	limit = READ_ONCE(oops_limit);
966 	if (atomic_inc_return(&oops_count) >= limit && limit)
967 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
968 
969 	/*
970 	 * We're taking recursive faults here in make_task_dead. Safest is to just
971 	 * leave this task alone and wait for reboot.
972 	 */
973 	if (unlikely(tsk->flags & PF_EXITING)) {
974 		pr_alert("Fixing recursive fault but reboot is needed!\n");
975 		futex_exit_recursive(tsk);
976 		tsk->exit_state = EXIT_DEAD;
977 		refcount_inc(&tsk->rcu_users);
978 		do_task_dead();
979 	}
980 
981 	do_exit(signr);
982 }
983 
984 SYSCALL_DEFINE1(exit, int, error_code)
985 {
986 	do_exit((error_code&0xff)<<8);
987 }
988 
989 /*
990  * Take down every thread in the group.  This is called by fatal signals
991  * as well as by sys_exit_group (below).
992  */
993 void __noreturn
994 do_group_exit(int exit_code)
995 {
996 	struct signal_struct *sig = current->signal;
997 
998 	if (sig->flags & SIGNAL_GROUP_EXIT)
999 		exit_code = sig->group_exit_code;
1000 	else if (sig->group_exec_task)
1001 		exit_code = 0;
1002 	else {
1003 		struct sighand_struct *const sighand = current->sighand;
1004 
1005 		spin_lock_irq(&sighand->siglock);
1006 		if (sig->flags & SIGNAL_GROUP_EXIT)
1007 			/* Another thread got here before we took the lock.  */
1008 			exit_code = sig->group_exit_code;
1009 		else if (sig->group_exec_task)
1010 			exit_code = 0;
1011 		else {
1012 			sig->group_exit_code = exit_code;
1013 			sig->flags = SIGNAL_GROUP_EXIT;
1014 			zap_other_threads(current);
1015 		}
1016 		spin_unlock_irq(&sighand->siglock);
1017 	}
1018 
1019 	do_exit(exit_code);
1020 	/* NOTREACHED */
1021 }
1022 
1023 /*
1024  * this kills every thread in the thread group. Note that any externally
1025  * wait4()-ing process will get the correct exit code - even if this
1026  * thread is not the thread group leader.
1027  */
1028 SYSCALL_DEFINE1(exit_group, int, error_code)
1029 {
1030 	do_group_exit((error_code & 0xff) << 8);
1031 	/* NOTREACHED */
1032 	return 0;
1033 }
1034 
1035 struct waitid_info {
1036 	pid_t pid;
1037 	uid_t uid;
1038 	int status;
1039 	int cause;
1040 };
1041 
1042 struct wait_opts {
1043 	enum pid_type		wo_type;
1044 	int			wo_flags;
1045 	struct pid		*wo_pid;
1046 
1047 	struct waitid_info	*wo_info;
1048 	int			wo_stat;
1049 	struct rusage		*wo_rusage;
1050 
1051 	wait_queue_entry_t		child_wait;
1052 	int			notask_error;
1053 };
1054 
1055 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1056 {
1057 	return	wo->wo_type == PIDTYPE_MAX ||
1058 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1059 }
1060 
1061 static int
1062 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1063 {
1064 	if (!eligible_pid(wo, p))
1065 		return 0;
1066 
1067 	/*
1068 	 * Wait for all children (clone and not) if __WALL is set or
1069 	 * if it is traced by us.
1070 	 */
1071 	if (ptrace || (wo->wo_flags & __WALL))
1072 		return 1;
1073 
1074 	/*
1075 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1076 	 * otherwise, wait for non-clone children *only*.
1077 	 *
1078 	 * Note: a "clone" child here is one that reports to its parent
1079 	 * using a signal other than SIGCHLD, or a non-leader thread which
1080 	 * we can only see if it is traced by us.
1081 	 */
1082 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1083 		return 0;
1084 
1085 	return 1;
1086 }
1087 
1088 /*
1089  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1090  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1091  * the lock and this task is uninteresting.  If we return nonzero, we have
1092  * released the lock and the system call should return.
1093  */
1094 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1095 {
1096 	int state, status;
1097 	pid_t pid = task_pid_vnr(p);
1098 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1099 	struct waitid_info *infop;
1100 
1101 	if (!likely(wo->wo_flags & WEXITED))
1102 		return 0;
1103 
1104 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1105 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106 			? p->signal->group_exit_code : p->exit_code;
1107 		get_task_struct(p);
1108 		read_unlock(&tasklist_lock);
1109 		sched_annotate_sleep();
1110 		if (wo->wo_rusage)
1111 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1112 		put_task_struct(p);
1113 		goto out_info;
1114 	}
1115 	/*
1116 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1117 	 */
1118 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1119 		EXIT_TRACE : EXIT_DEAD;
1120 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1121 		return 0;
1122 	/*
1123 	 * We own this thread, nobody else can reap it.
1124 	 */
1125 	read_unlock(&tasklist_lock);
1126 	sched_annotate_sleep();
1127 
1128 	/*
1129 	 * Check thread_group_leader() to exclude the traced sub-threads.
1130 	 */
1131 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1132 		struct signal_struct *sig = p->signal;
1133 		struct signal_struct *psig = current->signal;
1134 		unsigned long maxrss;
1135 		u64 tgutime, tgstime;
1136 
1137 		/*
1138 		 * The resource counters for the group leader are in its
1139 		 * own task_struct.  Those for dead threads in the group
1140 		 * are in its signal_struct, as are those for the child
1141 		 * processes it has previously reaped.  All these
1142 		 * accumulate in the parent's signal_struct c* fields.
1143 		 *
1144 		 * We don't bother to take a lock here to protect these
1145 		 * p->signal fields because the whole thread group is dead
1146 		 * and nobody can change them.
1147 		 *
1148 		 * psig->stats_lock also protects us from our sub-threads
1149 		 * which can reap other children at the same time. Until
1150 		 * we change k_getrusage()-like users to rely on this lock
1151 		 * we have to take ->siglock as well.
1152 		 *
1153 		 * We use thread_group_cputime_adjusted() to get times for
1154 		 * the thread group, which consolidates times for all threads
1155 		 * in the group including the group leader.
1156 		 */
1157 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1158 		spin_lock_irq(&current->sighand->siglock);
1159 		write_seqlock(&psig->stats_lock);
1160 		psig->cutime += tgutime + sig->cutime;
1161 		psig->cstime += tgstime + sig->cstime;
1162 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1163 		psig->cmin_flt +=
1164 			p->min_flt + sig->min_flt + sig->cmin_flt;
1165 		psig->cmaj_flt +=
1166 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1167 		psig->cnvcsw +=
1168 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1169 		psig->cnivcsw +=
1170 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1171 		psig->cinblock +=
1172 			task_io_get_inblock(p) +
1173 			sig->inblock + sig->cinblock;
1174 		psig->coublock +=
1175 			task_io_get_oublock(p) +
1176 			sig->oublock + sig->coublock;
1177 		maxrss = max(sig->maxrss, sig->cmaxrss);
1178 		if (psig->cmaxrss < maxrss)
1179 			psig->cmaxrss = maxrss;
1180 		task_io_accounting_add(&psig->ioac, &p->ioac);
1181 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1182 		write_sequnlock(&psig->stats_lock);
1183 		spin_unlock_irq(&current->sighand->siglock);
1184 	}
1185 
1186 	if (wo->wo_rusage)
1187 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1189 		? p->signal->group_exit_code : p->exit_code;
1190 	wo->wo_stat = status;
1191 
1192 	if (state == EXIT_TRACE) {
1193 		write_lock_irq(&tasklist_lock);
1194 		/* We dropped tasklist, ptracer could die and untrace */
1195 		ptrace_unlink(p);
1196 
1197 		/* If parent wants a zombie, don't release it now */
1198 		state = EXIT_ZOMBIE;
1199 		if (do_notify_parent(p, p->exit_signal))
1200 			state = EXIT_DEAD;
1201 		p->exit_state = state;
1202 		write_unlock_irq(&tasklist_lock);
1203 	}
1204 	if (state == EXIT_DEAD)
1205 		release_task(p);
1206 
1207 out_info:
1208 	infop = wo->wo_info;
1209 	if (infop) {
1210 		if ((status & 0x7f) == 0) {
1211 			infop->cause = CLD_EXITED;
1212 			infop->status = status >> 8;
1213 		} else {
1214 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 			infop->status = status & 0x7f;
1216 		}
1217 		infop->pid = pid;
1218 		infop->uid = uid;
1219 	}
1220 
1221 	return pid;
1222 }
1223 
1224 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1225 {
1226 	if (ptrace) {
1227 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1228 			return &p->exit_code;
1229 	} else {
1230 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1231 			return &p->signal->group_exit_code;
1232 	}
1233 	return NULL;
1234 }
1235 
1236 /**
1237  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1238  * @wo: wait options
1239  * @ptrace: is the wait for ptrace
1240  * @p: task to wait for
1241  *
1242  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1243  *
1244  * CONTEXT:
1245  * read_lock(&tasklist_lock), which is released if return value is
1246  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1247  *
1248  * RETURNS:
1249  * 0 if wait condition didn't exist and search for other wait conditions
1250  * should continue.  Non-zero return, -errno on failure and @p's pid on
1251  * success, implies that tasklist_lock is released and wait condition
1252  * search should terminate.
1253  */
1254 static int wait_task_stopped(struct wait_opts *wo,
1255 				int ptrace, struct task_struct *p)
1256 {
1257 	struct waitid_info *infop;
1258 	int exit_code, *p_code, why;
1259 	uid_t uid = 0; /* unneeded, required by compiler */
1260 	pid_t pid;
1261 
1262 	/*
1263 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1264 	 */
1265 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1266 		return 0;
1267 
1268 	if (!task_stopped_code(p, ptrace))
1269 		return 0;
1270 
1271 	exit_code = 0;
1272 	spin_lock_irq(&p->sighand->siglock);
1273 
1274 	p_code = task_stopped_code(p, ptrace);
1275 	if (unlikely(!p_code))
1276 		goto unlock_sig;
1277 
1278 	exit_code = *p_code;
1279 	if (!exit_code)
1280 		goto unlock_sig;
1281 
1282 	if (!unlikely(wo->wo_flags & WNOWAIT))
1283 		*p_code = 0;
1284 
1285 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1286 unlock_sig:
1287 	spin_unlock_irq(&p->sighand->siglock);
1288 	if (!exit_code)
1289 		return 0;
1290 
1291 	/*
1292 	 * Now we are pretty sure this task is interesting.
1293 	 * Make sure it doesn't get reaped out from under us while we
1294 	 * give up the lock and then examine it below.  We don't want to
1295 	 * keep holding onto the tasklist_lock while we call getrusage and
1296 	 * possibly take page faults for user memory.
1297 	 */
1298 	get_task_struct(p);
1299 	pid = task_pid_vnr(p);
1300 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1301 	read_unlock(&tasklist_lock);
1302 	sched_annotate_sleep();
1303 	if (wo->wo_rusage)
1304 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1305 	put_task_struct(p);
1306 
1307 	if (likely(!(wo->wo_flags & WNOWAIT)))
1308 		wo->wo_stat = (exit_code << 8) | 0x7f;
1309 
1310 	infop = wo->wo_info;
1311 	if (infop) {
1312 		infop->cause = why;
1313 		infop->status = exit_code;
1314 		infop->pid = pid;
1315 		infop->uid = uid;
1316 	}
1317 	return pid;
1318 }
1319 
1320 /*
1321  * Handle do_wait work for one task in a live, non-stopped state.
1322  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1323  * the lock and this task is uninteresting.  If we return nonzero, we have
1324  * released the lock and the system call should return.
1325  */
1326 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 {
1328 	struct waitid_info *infop;
1329 	pid_t pid;
1330 	uid_t uid;
1331 
1332 	if (!unlikely(wo->wo_flags & WCONTINUED))
1333 		return 0;
1334 
1335 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336 		return 0;
1337 
1338 	spin_lock_irq(&p->sighand->siglock);
1339 	/* Re-check with the lock held.  */
1340 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341 		spin_unlock_irq(&p->sighand->siglock);
1342 		return 0;
1343 	}
1344 	if (!unlikely(wo->wo_flags & WNOWAIT))
1345 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347 	spin_unlock_irq(&p->sighand->siglock);
1348 
1349 	pid = task_pid_vnr(p);
1350 	get_task_struct(p);
1351 	read_unlock(&tasklist_lock);
1352 	sched_annotate_sleep();
1353 	if (wo->wo_rusage)
1354 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1355 	put_task_struct(p);
1356 
1357 	infop = wo->wo_info;
1358 	if (!infop) {
1359 		wo->wo_stat = 0xffff;
1360 	} else {
1361 		infop->cause = CLD_CONTINUED;
1362 		infop->pid = pid;
1363 		infop->uid = uid;
1364 		infop->status = SIGCONT;
1365 	}
1366 	return pid;
1367 }
1368 
1369 /*
1370  * Consider @p for a wait by @parent.
1371  *
1372  * -ECHILD should be in ->notask_error before the first call.
1373  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1374  * Returns zero if the search for a child should continue;
1375  * then ->notask_error is 0 if @p is an eligible child,
1376  * or still -ECHILD.
1377  */
1378 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1379 				struct task_struct *p)
1380 {
1381 	/*
1382 	 * We can race with wait_task_zombie() from another thread.
1383 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1384 	 * can't confuse the checks below.
1385 	 */
1386 	int exit_state = READ_ONCE(p->exit_state);
1387 	int ret;
1388 
1389 	if (unlikely(exit_state == EXIT_DEAD))
1390 		return 0;
1391 
1392 	ret = eligible_child(wo, ptrace, p);
1393 	if (!ret)
1394 		return ret;
1395 
1396 	if (unlikely(exit_state == EXIT_TRACE)) {
1397 		/*
1398 		 * ptrace == 0 means we are the natural parent. In this case
1399 		 * we should clear notask_error, debugger will notify us.
1400 		 */
1401 		if (likely(!ptrace))
1402 			wo->notask_error = 0;
1403 		return 0;
1404 	}
1405 
1406 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1407 		/*
1408 		 * If it is traced by its real parent's group, just pretend
1409 		 * the caller is ptrace_do_wait() and reap this child if it
1410 		 * is zombie.
1411 		 *
1412 		 * This also hides group stop state from real parent; otherwise
1413 		 * a single stop can be reported twice as group and ptrace stop.
1414 		 * If a ptracer wants to distinguish these two events for its
1415 		 * own children it should create a separate process which takes
1416 		 * the role of real parent.
1417 		 */
1418 		if (!ptrace_reparented(p))
1419 			ptrace = 1;
1420 	}
1421 
1422 	/* slay zombie? */
1423 	if (exit_state == EXIT_ZOMBIE) {
1424 		/* we don't reap group leaders with subthreads */
1425 		if (!delay_group_leader(p)) {
1426 			/*
1427 			 * A zombie ptracee is only visible to its ptracer.
1428 			 * Notification and reaping will be cascaded to the
1429 			 * real parent when the ptracer detaches.
1430 			 */
1431 			if (unlikely(ptrace) || likely(!p->ptrace))
1432 				return wait_task_zombie(wo, p);
1433 		}
1434 
1435 		/*
1436 		 * Allow access to stopped/continued state via zombie by
1437 		 * falling through.  Clearing of notask_error is complex.
1438 		 *
1439 		 * When !@ptrace:
1440 		 *
1441 		 * If WEXITED is set, notask_error should naturally be
1442 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1443 		 * so, if there are live subthreads, there are events to
1444 		 * wait for.  If all subthreads are dead, it's still safe
1445 		 * to clear - this function will be called again in finite
1446 		 * amount time once all the subthreads are released and
1447 		 * will then return without clearing.
1448 		 *
1449 		 * When @ptrace:
1450 		 *
1451 		 * Stopped state is per-task and thus can't change once the
1452 		 * target task dies.  Only continued and exited can happen.
1453 		 * Clear notask_error if WCONTINUED | WEXITED.
1454 		 */
1455 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1456 			wo->notask_error = 0;
1457 	} else {
1458 		/*
1459 		 * @p is alive and it's gonna stop, continue or exit, so
1460 		 * there always is something to wait for.
1461 		 */
1462 		wo->notask_error = 0;
1463 	}
1464 
1465 	/*
1466 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1467 	 * is used and the two don't interact with each other.
1468 	 */
1469 	ret = wait_task_stopped(wo, ptrace, p);
1470 	if (ret)
1471 		return ret;
1472 
1473 	/*
1474 	 * Wait for continued.  There's only one continued state and the
1475 	 * ptracer can consume it which can confuse the real parent.  Don't
1476 	 * use WCONTINUED from ptracer.  You don't need or want it.
1477 	 */
1478 	return wait_task_continued(wo, p);
1479 }
1480 
1481 /*
1482  * Do the work of do_wait() for one thread in the group, @tsk.
1483  *
1484  * -ECHILD should be in ->notask_error before the first call.
1485  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1486  * Returns zero if the search for a child should continue; then
1487  * ->notask_error is 0 if there were any eligible children,
1488  * or still -ECHILD.
1489  */
1490 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1491 {
1492 	struct task_struct *p;
1493 
1494 	list_for_each_entry(p, &tsk->children, sibling) {
1495 		int ret = wait_consider_task(wo, 0, p);
1496 
1497 		if (ret)
1498 			return ret;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1505 {
1506 	struct task_struct *p;
1507 
1508 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1509 		int ret = wait_consider_task(wo, 1, p);
1510 
1511 		if (ret)
1512 			return ret;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1519 				int sync, void *key)
1520 {
1521 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1522 						child_wait);
1523 	struct task_struct *p = key;
1524 
1525 	if (!eligible_pid(wo, p))
1526 		return 0;
1527 
1528 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1529 		return 0;
1530 
1531 	return default_wake_function(wait, mode, sync, key);
1532 }
1533 
1534 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1535 {
1536 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1537 			   TASK_INTERRUPTIBLE, p);
1538 }
1539 
1540 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1541 				 struct task_struct *target)
1542 {
1543 	struct task_struct *parent =
1544 		!ptrace ? target->real_parent : target->parent;
1545 
1546 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1547 				     same_thread_group(current, parent));
1548 }
1549 
1550 /*
1551  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1552  * and tracee lists to find the target task.
1553  */
1554 static int do_wait_pid(struct wait_opts *wo)
1555 {
1556 	bool ptrace;
1557 	struct task_struct *target;
1558 	int retval;
1559 
1560 	ptrace = false;
1561 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1562 	if (target && is_effectively_child(wo, ptrace, target)) {
1563 		retval = wait_consider_task(wo, ptrace, target);
1564 		if (retval)
1565 			return retval;
1566 	}
1567 
1568 	ptrace = true;
1569 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1570 	if (target && target->ptrace &&
1571 	    is_effectively_child(wo, ptrace, target)) {
1572 		retval = wait_consider_task(wo, ptrace, target);
1573 		if (retval)
1574 			return retval;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static long do_wait(struct wait_opts *wo)
1581 {
1582 	int retval;
1583 
1584 	trace_sched_process_wait(wo->wo_pid);
1585 
1586 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1587 	wo->child_wait.private = current;
1588 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1589 repeat:
1590 	/*
1591 	 * If there is nothing that can match our criteria, just get out.
1592 	 * We will clear ->notask_error to zero if we see any child that
1593 	 * might later match our criteria, even if we are not able to reap
1594 	 * it yet.
1595 	 */
1596 	wo->notask_error = -ECHILD;
1597 	if ((wo->wo_type < PIDTYPE_MAX) &&
1598 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1599 		goto notask;
1600 
1601 	set_current_state(TASK_INTERRUPTIBLE);
1602 	read_lock(&tasklist_lock);
1603 
1604 	if (wo->wo_type == PIDTYPE_PID) {
1605 		retval = do_wait_pid(wo);
1606 		if (retval)
1607 			goto end;
1608 	} else {
1609 		struct task_struct *tsk = current;
1610 
1611 		do {
1612 			retval = do_wait_thread(wo, tsk);
1613 			if (retval)
1614 				goto end;
1615 
1616 			retval = ptrace_do_wait(wo, tsk);
1617 			if (retval)
1618 				goto end;
1619 
1620 			if (wo->wo_flags & __WNOTHREAD)
1621 				break;
1622 		} while_each_thread(current, tsk);
1623 	}
1624 	read_unlock(&tasklist_lock);
1625 
1626 notask:
1627 	retval = wo->notask_error;
1628 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1629 		retval = -ERESTARTSYS;
1630 		if (!signal_pending(current)) {
1631 			schedule();
1632 			goto repeat;
1633 		}
1634 	}
1635 end:
1636 	__set_current_state(TASK_RUNNING);
1637 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638 	return retval;
1639 }
1640 
1641 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1642 			  int options, struct rusage *ru)
1643 {
1644 	struct wait_opts wo;
1645 	struct pid *pid = NULL;
1646 	enum pid_type type;
1647 	long ret;
1648 	unsigned int f_flags = 0;
1649 
1650 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1651 			__WNOTHREAD|__WCLONE|__WALL))
1652 		return -EINVAL;
1653 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654 		return -EINVAL;
1655 
1656 	switch (which) {
1657 	case P_ALL:
1658 		type = PIDTYPE_MAX;
1659 		break;
1660 	case P_PID:
1661 		type = PIDTYPE_PID;
1662 		if (upid <= 0)
1663 			return -EINVAL;
1664 
1665 		pid = find_get_pid(upid);
1666 		break;
1667 	case P_PGID:
1668 		type = PIDTYPE_PGID;
1669 		if (upid < 0)
1670 			return -EINVAL;
1671 
1672 		if (upid)
1673 			pid = find_get_pid(upid);
1674 		else
1675 			pid = get_task_pid(current, PIDTYPE_PGID);
1676 		break;
1677 	case P_PIDFD:
1678 		type = PIDTYPE_PID;
1679 		if (upid < 0)
1680 			return -EINVAL;
1681 
1682 		pid = pidfd_get_pid(upid, &f_flags);
1683 		if (IS_ERR(pid))
1684 			return PTR_ERR(pid);
1685 
1686 		break;
1687 	default:
1688 		return -EINVAL;
1689 	}
1690 
1691 	wo.wo_type	= type;
1692 	wo.wo_pid	= pid;
1693 	wo.wo_flags	= options;
1694 	wo.wo_info	= infop;
1695 	wo.wo_rusage	= ru;
1696 	if (f_flags & O_NONBLOCK)
1697 		wo.wo_flags |= WNOHANG;
1698 
1699 	ret = do_wait(&wo);
1700 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1701 		ret = -EAGAIN;
1702 
1703 	put_pid(pid);
1704 	return ret;
1705 }
1706 
1707 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1708 		infop, int, options, struct rusage __user *, ru)
1709 {
1710 	struct rusage r;
1711 	struct waitid_info info = {.status = 0};
1712 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1713 	int signo = 0;
1714 
1715 	if (err > 0) {
1716 		signo = SIGCHLD;
1717 		err = 0;
1718 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1719 			return -EFAULT;
1720 	}
1721 	if (!infop)
1722 		return err;
1723 
1724 	if (!user_write_access_begin(infop, sizeof(*infop)))
1725 		return -EFAULT;
1726 
1727 	unsafe_put_user(signo, &infop->si_signo, Efault);
1728 	unsafe_put_user(0, &infop->si_errno, Efault);
1729 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1730 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1731 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1732 	unsafe_put_user(info.status, &infop->si_status, Efault);
1733 	user_write_access_end();
1734 	return err;
1735 Efault:
1736 	user_write_access_end();
1737 	return -EFAULT;
1738 }
1739 
1740 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1741 		  struct rusage *ru)
1742 {
1743 	struct wait_opts wo;
1744 	struct pid *pid = NULL;
1745 	enum pid_type type;
1746 	long ret;
1747 
1748 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749 			__WNOTHREAD|__WCLONE|__WALL))
1750 		return -EINVAL;
1751 
1752 	/* -INT_MIN is not defined */
1753 	if (upid == INT_MIN)
1754 		return -ESRCH;
1755 
1756 	if (upid == -1)
1757 		type = PIDTYPE_MAX;
1758 	else if (upid < 0) {
1759 		type = PIDTYPE_PGID;
1760 		pid = find_get_pid(-upid);
1761 	} else if (upid == 0) {
1762 		type = PIDTYPE_PGID;
1763 		pid = get_task_pid(current, PIDTYPE_PGID);
1764 	} else /* upid > 0 */ {
1765 		type = PIDTYPE_PID;
1766 		pid = find_get_pid(upid);
1767 	}
1768 
1769 	wo.wo_type	= type;
1770 	wo.wo_pid	= pid;
1771 	wo.wo_flags	= options | WEXITED;
1772 	wo.wo_info	= NULL;
1773 	wo.wo_stat	= 0;
1774 	wo.wo_rusage	= ru;
1775 	ret = do_wait(&wo);
1776 	put_pid(pid);
1777 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1778 		ret = -EFAULT;
1779 
1780 	return ret;
1781 }
1782 
1783 int kernel_wait(pid_t pid, int *stat)
1784 {
1785 	struct wait_opts wo = {
1786 		.wo_type	= PIDTYPE_PID,
1787 		.wo_pid		= find_get_pid(pid),
1788 		.wo_flags	= WEXITED,
1789 	};
1790 	int ret;
1791 
1792 	ret = do_wait(&wo);
1793 	if (ret > 0 && wo.wo_stat)
1794 		*stat = wo.wo_stat;
1795 	put_pid(wo.wo_pid);
1796 	return ret;
1797 }
1798 
1799 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1800 		int, options, struct rusage __user *, ru)
1801 {
1802 	struct rusage r;
1803 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1804 
1805 	if (err > 0) {
1806 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1807 			return -EFAULT;
1808 	}
1809 	return err;
1810 }
1811 
1812 #ifdef __ARCH_WANT_SYS_WAITPID
1813 
1814 /*
1815  * sys_waitpid() remains for compatibility. waitpid() should be
1816  * implemented by calling sys_wait4() from libc.a.
1817  */
1818 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1819 {
1820 	return kernel_wait4(pid, stat_addr, options, NULL);
1821 }
1822 
1823 #endif
1824 
1825 #ifdef CONFIG_COMPAT
1826 COMPAT_SYSCALL_DEFINE4(wait4,
1827 	compat_pid_t, pid,
1828 	compat_uint_t __user *, stat_addr,
1829 	int, options,
1830 	struct compat_rusage __user *, ru)
1831 {
1832 	struct rusage r;
1833 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1834 	if (err > 0) {
1835 		if (ru && put_compat_rusage(&r, ru))
1836 			return -EFAULT;
1837 	}
1838 	return err;
1839 }
1840 
1841 COMPAT_SYSCALL_DEFINE5(waitid,
1842 		int, which, compat_pid_t, pid,
1843 		struct compat_siginfo __user *, infop, int, options,
1844 		struct compat_rusage __user *, uru)
1845 {
1846 	struct rusage ru;
1847 	struct waitid_info info = {.status = 0};
1848 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1849 	int signo = 0;
1850 	if (err > 0) {
1851 		signo = SIGCHLD;
1852 		err = 0;
1853 		if (uru) {
1854 			/* kernel_waitid() overwrites everything in ru */
1855 			if (COMPAT_USE_64BIT_TIME)
1856 				err = copy_to_user(uru, &ru, sizeof(ru));
1857 			else
1858 				err = put_compat_rusage(&ru, uru);
1859 			if (err)
1860 				return -EFAULT;
1861 		}
1862 	}
1863 
1864 	if (!infop)
1865 		return err;
1866 
1867 	if (!user_write_access_begin(infop, sizeof(*infop)))
1868 		return -EFAULT;
1869 
1870 	unsafe_put_user(signo, &infop->si_signo, Efault);
1871 	unsafe_put_user(0, &infop->si_errno, Efault);
1872 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1873 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1874 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1875 	unsafe_put_user(info.status, &infop->si_status, Efault);
1876 	user_write_access_end();
1877 	return err;
1878 Efault:
1879 	user_write_access_end();
1880 	return -EFAULT;
1881 }
1882 #endif
1883 
1884 /**
1885  * thread_group_exited - check that a thread group has exited
1886  * @pid: tgid of thread group to be checked.
1887  *
1888  * Test if the thread group represented by tgid has exited (all
1889  * threads are zombies, dead or completely gone).
1890  *
1891  * Return: true if the thread group has exited. false otherwise.
1892  */
1893 bool thread_group_exited(struct pid *pid)
1894 {
1895 	struct task_struct *task;
1896 	bool exited;
1897 
1898 	rcu_read_lock();
1899 	task = pid_task(pid, PIDTYPE_PID);
1900 	exited = !task ||
1901 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1902 	rcu_read_unlock();
1903 
1904 	return exited;
1905 }
1906 EXPORT_SYMBOL(thread_group_exited);
1907 
1908 /*
1909  * This needs to be __function_aligned as GCC implicitly makes any
1910  * implementation of abort() cold and drops alignment specified by
1911  * -falign-functions=N.
1912  *
1913  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1914  */
1915 __weak __function_aligned void abort(void)
1916 {
1917 	BUG();
1918 
1919 	/* if that doesn't kill us, halt */
1920 	panic("Oops failed to kill thread");
1921 }
1922 EXPORT_SYMBOL(abort);
1923