xref: /openbmc/linux/kernel/exit.c (revision e9e8bcb8)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (group_dead) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__this_cpu_dec(process_counts);
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	bool group_dead = thread_group_leader(tsk);
84 	struct sighand_struct *sighand;
85 	struct tty_struct *uninitialized_var(tty);
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					rcu_read_lock_held() ||
89 					lockdep_tasklist_lock_is_held());
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (group_dead) {
94 		posix_cpu_timers_exit_group(tsk);
95 		tty = sig->tty;
96 		sig->tty = NULL;
97 	} else {
98 		/*
99 		 * This can only happen if the caller is de_thread().
100 		 * FIXME: this is the temporary hack, we should teach
101 		 * posix-cpu-timers to handle this case correctly.
102 		 */
103 		if (unlikely(has_group_leader_pid(tsk)))
104 			posix_cpu_timers_exit_group(tsk);
105 
106 		/*
107 		 * If there is any task waiting for the group exit
108 		 * then notify it:
109 		 */
110 		if (sig->notify_count > 0 && !--sig->notify_count)
111 			wake_up_process(sig->group_exit_task);
112 
113 		if (tsk == sig->curr_target)
114 			sig->curr_target = next_thread(tsk);
115 		/*
116 		 * Accumulate here the counters for all threads but the
117 		 * group leader as they die, so they can be added into
118 		 * the process-wide totals when those are taken.
119 		 * The group leader stays around as a zombie as long
120 		 * as there are other threads.  When it gets reaped,
121 		 * the exit.c code will add its counts into these totals.
122 		 * We won't ever get here for the group leader, since it
123 		 * will have been the last reference on the signal_struct.
124 		 */
125 		sig->utime = cputime_add(sig->utime, tsk->utime);
126 		sig->stime = cputime_add(sig->stime, tsk->stime);
127 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 		sig->min_flt += tsk->min_flt;
129 		sig->maj_flt += tsk->maj_flt;
130 		sig->nvcsw += tsk->nvcsw;
131 		sig->nivcsw += tsk->nivcsw;
132 		sig->inblock += task_io_get_inblock(tsk);
133 		sig->oublock += task_io_get_oublock(tsk);
134 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 	}
137 
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 
141 	/*
142 	 * Do this under ->siglock, we can race with another thread
143 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 	 */
145 	flush_sigqueue(&tsk->pending);
146 	tsk->sighand = NULL;
147 	spin_unlock(&sighand->siglock);
148 
149 	__cleanup_sighand(sighand);
150 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 	if (group_dead) {
152 		flush_sigqueue(&sig->shared_pending);
153 		tty_kref_put(tty);
154 	}
155 }
156 
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160 
161 	perf_event_delayed_put(tsk);
162 	trace_sched_process_free(tsk);
163 	put_task_struct(tsk);
164 }
165 
166 
167 void release_task(struct task_struct * p)
168 {
169 	struct task_struct *leader;
170 	int zap_leader;
171 repeat:
172 	tracehook_prepare_release_task(p);
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	tracehook_finish_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		BUG_ON(task_detached(leader));
194 		do_notify_parent(leader, leader->exit_signal);
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 *
200 		 * do_notify_parent() will have marked it self-reaping in
201 		 * that case.
202 		 */
203 		zap_leader = task_detached(leader);
204 
205 		/*
206 		 * This maintains the invariant that release_task()
207 		 * only runs on a task in EXIT_DEAD, just for sanity.
208 		 */
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 	struct task_struct *p;
232 	struct pid *sid = NULL;
233 
234 	p = pid_task(pgrp, PIDTYPE_PGID);
235 	if (p == NULL)
236 		p = pid_task(pgrp, PIDTYPE_PID);
237 	if (p != NULL)
238 		sid = task_session(p);
239 
240 	return sid;
241 }
242 
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if ((p == ignored_task) ||
257 		    (p->exit_state && thread_group_empty(p)) ||
258 		    is_global_init(p->real_parent))
259 			continue;
260 
261 		if (task_pgrp(p->real_parent) != pgrp &&
262 		    task_session(p->real_parent) == task_session(p))
263 			return 0;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 
266 	return 1;
267 }
268 
269 int is_current_pgrp_orphaned(void)
270 {
271 	int retval;
272 
273 	read_lock(&tasklist_lock);
274 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 	read_unlock(&tasklist_lock);
276 
277 	return retval;
278 }
279 
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 	int retval = 0;
283 	struct task_struct *p;
284 
285 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 		if (!task_is_stopped(p))
287 			continue;
288 		retval = 1;
289 		break;
290 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 	return retval;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 
366 	if (task_session(curr) != pid)
367 		change_pid(curr, PIDTYPE_SID, pid);
368 
369 	if (task_pgrp(curr) != pid)
370 		change_pid(curr, PIDTYPE_PGID, pid);
371 }
372 
373 static void set_special_pids(struct pid *pid)
374 {
375 	write_lock_irq(&tasklist_lock);
376 	__set_special_pids(pid);
377 	write_unlock_irq(&tasklist_lock);
378 }
379 
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386 	if (!valid_signal(sig) || sig < 1)
387 		return -EINVAL;
388 
389 	spin_lock_irq(&current->sighand->siglock);
390 	/* This is only needed for daemonize()'ed kthreads */
391 	sigdelset(&current->blocked, sig);
392 	/*
393 	 * Kernel threads handle their own signals. Let the signal code
394 	 * know it'll be handled, so that they don't get converted to
395 	 * SIGKILL or just silently dropped.
396 	 */
397 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 	recalc_sigpending();
399 	spin_unlock_irq(&current->sighand->siglock);
400 	return 0;
401 }
402 
403 EXPORT_SYMBOL(allow_signal);
404 
405 int disallow_signal(int sig)
406 {
407 	if (!valid_signal(sig) || sig < 1)
408 		return -EINVAL;
409 
410 	spin_lock_irq(&current->sighand->siglock);
411 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 	recalc_sigpending();
413 	spin_unlock_irq(&current->sighand->siglock);
414 	return 0;
415 }
416 
417 EXPORT_SYMBOL(disallow_signal);
418 
419 /*
420  *	Put all the gunge required to become a kernel thread without
421  *	attached user resources in one place where it belongs.
422  */
423 
424 void daemonize(const char *name, ...)
425 {
426 	va_list args;
427 	sigset_t blocked;
428 
429 	va_start(args, name);
430 	vsnprintf(current->comm, sizeof(current->comm), name, args);
431 	va_end(args);
432 
433 	/*
434 	 * If we were started as result of loading a module, close all of the
435 	 * user space pages.  We don't need them, and if we didn't close them
436 	 * they would be locked into memory.
437 	 */
438 	exit_mm(current);
439 	/*
440 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 	 * or suspend transition begins right now.
442 	 */
443 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444 
445 	if (current->nsproxy != &init_nsproxy) {
446 		get_nsproxy(&init_nsproxy);
447 		switch_task_namespaces(current, &init_nsproxy);
448 	}
449 	set_special_pids(&init_struct_pid);
450 	proc_clear_tty(current);
451 
452 	/* Block and flush all signals */
453 	sigfillset(&blocked);
454 	sigprocmask(SIG_BLOCK, &blocked, NULL);
455 	flush_signals(current);
456 
457 	/* Become as one with the init task */
458 
459 	daemonize_fs_struct();
460 	exit_files(current);
461 	current->files = init_task.files;
462 	atomic_inc(&current->files->count);
463 
464 	reparent_to_kthreadd();
465 }
466 
467 EXPORT_SYMBOL(daemonize);
468 
469 static void close_files(struct files_struct * files)
470 {
471 	int i, j;
472 	struct fdtable *fdt;
473 
474 	j = 0;
475 
476 	/*
477 	 * It is safe to dereference the fd table without RCU or
478 	 * ->file_lock because this is the last reference to the
479 	 * files structure.  But use RCU to shut RCU-lockdep up.
480 	 */
481 	rcu_read_lock();
482 	fdt = files_fdtable(files);
483 	rcu_read_unlock();
484 	for (;;) {
485 		unsigned long set;
486 		i = j * __NFDBITS;
487 		if (i >= fdt->max_fds)
488 			break;
489 		set = fdt->open_fds->fds_bits[j++];
490 		while (set) {
491 			if (set & 1) {
492 				struct file * file = xchg(&fdt->fd[i], NULL);
493 				if (file) {
494 					filp_close(file, files);
495 					cond_resched();
496 				}
497 			}
498 			i++;
499 			set >>= 1;
500 		}
501 	}
502 }
503 
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 	struct files_struct *files;
507 
508 	task_lock(task);
509 	files = task->files;
510 	if (files)
511 		atomic_inc(&files->count);
512 	task_unlock(task);
513 
514 	return files;
515 }
516 
517 void put_files_struct(struct files_struct *files)
518 {
519 	struct fdtable *fdt;
520 
521 	if (atomic_dec_and_test(&files->count)) {
522 		close_files(files);
523 		/*
524 		 * Free the fd and fdset arrays if we expanded them.
525 		 * If the fdtable was embedded, pass files for freeing
526 		 * at the end of the RCU grace period. Otherwise,
527 		 * you can free files immediately.
528 		 */
529 		rcu_read_lock();
530 		fdt = files_fdtable(files);
531 		if (fdt != &files->fdtab)
532 			kmem_cache_free(files_cachep, files);
533 		free_fdtable(fdt);
534 		rcu_read_unlock();
535 	}
536 }
537 
538 void reset_files_struct(struct files_struct *files)
539 {
540 	struct task_struct *tsk = current;
541 	struct files_struct *old;
542 
543 	old = tsk->files;
544 	task_lock(tsk);
545 	tsk->files = files;
546 	task_unlock(tsk);
547 	put_files_struct(old);
548 }
549 
550 void exit_files(struct task_struct *tsk)
551 {
552 	struct files_struct * files = tsk->files;
553 
554 	if (files) {
555 		task_lock(tsk);
556 		tsk->files = NULL;
557 		task_unlock(tsk);
558 		put_files_struct(files);
559 	}
560 }
561 
562 #ifdef CONFIG_MM_OWNER
563 /*
564  * A task is exiting.   If it owned this mm, find a new owner for the mm.
565  */
566 void mm_update_next_owner(struct mm_struct *mm)
567 {
568 	struct task_struct *c, *g, *p = current;
569 
570 retry:
571 	/*
572 	 * If the exiting or execing task is not the owner, it's
573 	 * someone else's problem.
574 	 */
575 	if (mm->owner != p)
576 		return;
577 	/*
578 	 * The current owner is exiting/execing and there are no other
579 	 * candidates.  Do not leave the mm pointing to a possibly
580 	 * freed task structure.
581 	 */
582 	if (atomic_read(&mm->mm_users) <= 1) {
583 		mm->owner = NULL;
584 		return;
585 	}
586 
587 	read_lock(&tasklist_lock);
588 	/*
589 	 * Search in the children
590 	 */
591 	list_for_each_entry(c, &p->children, sibling) {
592 		if (c->mm == mm)
593 			goto assign_new_owner;
594 	}
595 
596 	/*
597 	 * Search in the siblings
598 	 */
599 	list_for_each_entry(c, &p->real_parent->children, sibling) {
600 		if (c->mm == mm)
601 			goto assign_new_owner;
602 	}
603 
604 	/*
605 	 * Search through everything else. We should not get
606 	 * here often
607 	 */
608 	do_each_thread(g, c) {
609 		if (c->mm == mm)
610 			goto assign_new_owner;
611 	} while_each_thread(g, c);
612 
613 	read_unlock(&tasklist_lock);
614 	/*
615 	 * We found no owner yet mm_users > 1: this implies that we are
616 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
617 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
618 	 */
619 	mm->owner = NULL;
620 	return;
621 
622 assign_new_owner:
623 	BUG_ON(c == p);
624 	get_task_struct(c);
625 	/*
626 	 * The task_lock protects c->mm from changing.
627 	 * We always want mm->owner->mm == mm
628 	 */
629 	task_lock(c);
630 	/*
631 	 * Delay read_unlock() till we have the task_lock()
632 	 * to ensure that c does not slip away underneath us
633 	 */
634 	read_unlock(&tasklist_lock);
635 	if (c->mm != mm) {
636 		task_unlock(c);
637 		put_task_struct(c);
638 		goto retry;
639 	}
640 	mm->owner = c;
641 	task_unlock(c);
642 	put_task_struct(c);
643 }
644 #endif /* CONFIG_MM_OWNER */
645 
646 /*
647  * Turn us into a lazy TLB process if we
648  * aren't already..
649  */
650 static void exit_mm(struct task_struct * tsk)
651 {
652 	struct mm_struct *mm = tsk->mm;
653 	struct core_state *core_state;
654 
655 	mm_release(tsk, mm);
656 	if (!mm)
657 		return;
658 	/*
659 	 * Serialize with any possible pending coredump.
660 	 * We must hold mmap_sem around checking core_state
661 	 * and clearing tsk->mm.  The core-inducing thread
662 	 * will increment ->nr_threads for each thread in the
663 	 * group with ->mm != NULL.
664 	 */
665 	down_read(&mm->mmap_sem);
666 	core_state = mm->core_state;
667 	if (core_state) {
668 		struct core_thread self;
669 		up_read(&mm->mmap_sem);
670 
671 		self.task = tsk;
672 		self.next = xchg(&core_state->dumper.next, &self);
673 		/*
674 		 * Implies mb(), the result of xchg() must be visible
675 		 * to core_state->dumper.
676 		 */
677 		if (atomic_dec_and_test(&core_state->nr_threads))
678 			complete(&core_state->startup);
679 
680 		for (;;) {
681 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
682 			if (!self.task) /* see coredump_finish() */
683 				break;
684 			schedule();
685 		}
686 		__set_task_state(tsk, TASK_RUNNING);
687 		down_read(&mm->mmap_sem);
688 	}
689 	atomic_inc(&mm->mm_count);
690 	BUG_ON(mm != tsk->active_mm);
691 	/* more a memory barrier than a real lock */
692 	task_lock(tsk);
693 	tsk->mm = NULL;
694 	up_read(&mm->mmap_sem);
695 	enter_lazy_tlb(mm, current);
696 	/* We don't want this task to be frozen prematurely */
697 	clear_freeze_flag(tsk);
698 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
699 		atomic_dec(&mm->oom_disable_count);
700 	task_unlock(tsk);
701 	mm_update_next_owner(mm);
702 	mmput(mm);
703 }
704 
705 /*
706  * When we die, we re-parent all our children.
707  * Try to give them to another thread in our thread
708  * group, and if no such member exists, give it to
709  * the child reaper process (ie "init") in our pid
710  * space.
711  */
712 static struct task_struct *find_new_reaper(struct task_struct *father)
713 	__releases(&tasklist_lock)
714 	__acquires(&tasklist_lock)
715 {
716 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
717 	struct task_struct *thread;
718 
719 	thread = father;
720 	while_each_thread(father, thread) {
721 		if (thread->flags & PF_EXITING)
722 			continue;
723 		if (unlikely(pid_ns->child_reaper == father))
724 			pid_ns->child_reaper = thread;
725 		return thread;
726 	}
727 
728 	if (unlikely(pid_ns->child_reaper == father)) {
729 		write_unlock_irq(&tasklist_lock);
730 		if (unlikely(pid_ns == &init_pid_ns))
731 			panic("Attempted to kill init!");
732 
733 		zap_pid_ns_processes(pid_ns);
734 		write_lock_irq(&tasklist_lock);
735 		/*
736 		 * We can not clear ->child_reaper or leave it alone.
737 		 * There may by stealth EXIT_DEAD tasks on ->children,
738 		 * forget_original_parent() must move them somewhere.
739 		 */
740 		pid_ns->child_reaper = init_pid_ns.child_reaper;
741 	}
742 
743 	return pid_ns->child_reaper;
744 }
745 
746 /*
747 * Any that need to be release_task'd are put on the @dead list.
748  */
749 static void reparent_leader(struct task_struct *father, struct task_struct *p,
750 				struct list_head *dead)
751 {
752 	list_move_tail(&p->sibling, &p->real_parent->children);
753 
754 	if (task_detached(p))
755 		return;
756 	/*
757 	 * If this is a threaded reparent there is no need to
758 	 * notify anyone anything has happened.
759 	 */
760 	if (same_thread_group(p->real_parent, father))
761 		return;
762 
763 	/* We don't want people slaying init.  */
764 	p->exit_signal = SIGCHLD;
765 
766 	/* If it has exited notify the new parent about this child's death. */
767 	if (!task_ptrace(p) &&
768 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
769 		do_notify_parent(p, p->exit_signal);
770 		if (task_detached(p)) {
771 			p->exit_state = EXIT_DEAD;
772 			list_move_tail(&p->sibling, dead);
773 		}
774 	}
775 
776 	kill_orphaned_pgrp(p, father);
777 }
778 
779 static void forget_original_parent(struct task_struct *father)
780 {
781 	struct task_struct *p, *n, *reaper;
782 	LIST_HEAD(dead_children);
783 
784 	write_lock_irq(&tasklist_lock);
785 	/*
786 	 * Note that exit_ptrace() and find_new_reaper() might
787 	 * drop tasklist_lock and reacquire it.
788 	 */
789 	exit_ptrace(father);
790 	reaper = find_new_reaper(father);
791 
792 	list_for_each_entry_safe(p, n, &father->children, sibling) {
793 		struct task_struct *t = p;
794 		do {
795 			t->real_parent = reaper;
796 			if (t->parent == father) {
797 				BUG_ON(task_ptrace(t));
798 				t->parent = t->real_parent;
799 			}
800 			if (t->pdeath_signal)
801 				group_send_sig_info(t->pdeath_signal,
802 						    SEND_SIG_NOINFO, t);
803 		} while_each_thread(p, t);
804 		reparent_leader(father, p, &dead_children);
805 	}
806 	write_unlock_irq(&tasklist_lock);
807 
808 	BUG_ON(!list_empty(&father->children));
809 
810 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
811 		list_del_init(&p->sibling);
812 		release_task(p);
813 	}
814 }
815 
816 /*
817  * Send signals to all our closest relatives so that they know
818  * to properly mourn us..
819  */
820 static void exit_notify(struct task_struct *tsk, int group_dead)
821 {
822 	int signal;
823 	void *cookie;
824 
825 	/*
826 	 * This does two things:
827 	 *
828   	 * A.  Make init inherit all the child processes
829 	 * B.  Check to see if any process groups have become orphaned
830 	 *	as a result of our exiting, and if they have any stopped
831 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
832 	 */
833 	forget_original_parent(tsk);
834 	exit_task_namespaces(tsk);
835 
836 	write_lock_irq(&tasklist_lock);
837 	if (group_dead)
838 		kill_orphaned_pgrp(tsk->group_leader, NULL);
839 
840 	/* Let father know we died
841 	 *
842 	 * Thread signals are configurable, but you aren't going to use
843 	 * that to send signals to arbitrary processes.
844 	 * That stops right now.
845 	 *
846 	 * If the parent exec id doesn't match the exec id we saved
847 	 * when we started then we know the parent has changed security
848 	 * domain.
849 	 *
850 	 * If our self_exec id doesn't match our parent_exec_id then
851 	 * we have changed execution domain as these two values started
852 	 * the same after a fork.
853 	 */
854 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
855 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
856 	     tsk->self_exec_id != tsk->parent_exec_id))
857 		tsk->exit_signal = SIGCHLD;
858 
859 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
860 	if (signal >= 0)
861 		signal = do_notify_parent(tsk, signal);
862 
863 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
864 
865 	/* mt-exec, de_thread() is waiting for group leader */
866 	if (unlikely(tsk->signal->notify_count < 0))
867 		wake_up_process(tsk->signal->group_exit_task);
868 	write_unlock_irq(&tasklist_lock);
869 
870 	tracehook_report_death(tsk, signal, cookie, group_dead);
871 
872 	/* If the process is dead, release it - nobody will wait for it */
873 	if (signal == DEATH_REAP)
874 		release_task(tsk);
875 }
876 
877 #ifdef CONFIG_DEBUG_STACK_USAGE
878 static void check_stack_usage(void)
879 {
880 	static DEFINE_SPINLOCK(low_water_lock);
881 	static int lowest_to_date = THREAD_SIZE;
882 	unsigned long free;
883 
884 	free = stack_not_used(current);
885 
886 	if (free >= lowest_to_date)
887 		return;
888 
889 	spin_lock(&low_water_lock);
890 	if (free < lowest_to_date) {
891 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
892 				"left\n",
893 				current->comm, free);
894 		lowest_to_date = free;
895 	}
896 	spin_unlock(&low_water_lock);
897 }
898 #else
899 static inline void check_stack_usage(void) {}
900 #endif
901 
902 NORET_TYPE void do_exit(long code)
903 {
904 	struct task_struct *tsk = current;
905 	int group_dead;
906 
907 	profile_task_exit(tsk);
908 
909 	WARN_ON(atomic_read(&tsk->fs_excl));
910 	WARN_ON(blk_needs_flush_plug(tsk));
911 
912 	if (unlikely(in_interrupt()))
913 		panic("Aiee, killing interrupt handler!");
914 	if (unlikely(!tsk->pid))
915 		panic("Attempted to kill the idle task!");
916 
917 	/*
918 	 * If do_exit is called because this processes oopsed, it's possible
919 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
920 	 * continuing. Amongst other possible reasons, this is to prevent
921 	 * mm_release()->clear_child_tid() from writing to a user-controlled
922 	 * kernel address.
923 	 */
924 	set_fs(USER_DS);
925 
926 	tracehook_report_exit(&code);
927 
928 	validate_creds_for_do_exit(tsk);
929 
930 	/*
931 	 * We're taking recursive faults here in do_exit. Safest is to just
932 	 * leave this task alone and wait for reboot.
933 	 */
934 	if (unlikely(tsk->flags & PF_EXITING)) {
935 		printk(KERN_ALERT
936 			"Fixing recursive fault but reboot is needed!\n");
937 		/*
938 		 * We can do this unlocked here. The futex code uses
939 		 * this flag just to verify whether the pi state
940 		 * cleanup has been done or not. In the worst case it
941 		 * loops once more. We pretend that the cleanup was
942 		 * done as there is no way to return. Either the
943 		 * OWNER_DIED bit is set by now or we push the blocked
944 		 * task into the wait for ever nirwana as well.
945 		 */
946 		tsk->flags |= PF_EXITPIDONE;
947 		set_current_state(TASK_UNINTERRUPTIBLE);
948 		schedule();
949 	}
950 
951 	exit_irq_thread();
952 
953 	exit_signals(tsk);  /* sets PF_EXITING */
954 	/*
955 	 * tsk->flags are checked in the futex code to protect against
956 	 * an exiting task cleaning up the robust pi futexes.
957 	 */
958 	smp_mb();
959 	raw_spin_unlock_wait(&tsk->pi_lock);
960 
961 	if (unlikely(in_atomic()))
962 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
963 				current->comm, task_pid_nr(current),
964 				preempt_count());
965 
966 	acct_update_integrals(tsk);
967 	/* sync mm's RSS info before statistics gathering */
968 	if (tsk->mm)
969 		sync_mm_rss(tsk, tsk->mm);
970 	group_dead = atomic_dec_and_test(&tsk->signal->live);
971 	if (group_dead) {
972 		hrtimer_cancel(&tsk->signal->real_timer);
973 		exit_itimers(tsk->signal);
974 		if (tsk->mm)
975 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
976 	}
977 	acct_collect(code, group_dead);
978 	if (group_dead)
979 		tty_audit_exit();
980 	if (unlikely(tsk->audit_context))
981 		audit_free(tsk);
982 
983 	tsk->exit_code = code;
984 	taskstats_exit(tsk, group_dead);
985 
986 	exit_mm(tsk);
987 
988 	if (group_dead)
989 		acct_process();
990 	trace_sched_process_exit(tsk);
991 
992 	exit_sem(tsk);
993 	exit_files(tsk);
994 	exit_fs(tsk);
995 	check_stack_usage();
996 	exit_thread();
997 
998 	/*
999 	 * Flush inherited counters to the parent - before the parent
1000 	 * gets woken up by child-exit notifications.
1001 	 *
1002 	 * because of cgroup mode, must be called before cgroup_exit()
1003 	 */
1004 	perf_event_exit_task(tsk);
1005 
1006 	cgroup_exit(tsk, 1);
1007 
1008 	if (group_dead)
1009 		disassociate_ctty(1);
1010 
1011 	module_put(task_thread_info(tsk)->exec_domain->module);
1012 
1013 	proc_exit_connector(tsk);
1014 
1015 	/*
1016 	 * FIXME: do that only when needed, using sched_exit tracepoint
1017 	 */
1018 	ptrace_put_breakpoints(tsk);
1019 
1020 	exit_notify(tsk, group_dead);
1021 #ifdef CONFIG_NUMA
1022 	task_lock(tsk);
1023 	mpol_put(tsk->mempolicy);
1024 	tsk->mempolicy = NULL;
1025 	task_unlock(tsk);
1026 #endif
1027 #ifdef CONFIG_FUTEX
1028 	if (unlikely(current->pi_state_cache))
1029 		kfree(current->pi_state_cache);
1030 #endif
1031 	/*
1032 	 * Make sure we are holding no locks:
1033 	 */
1034 	debug_check_no_locks_held(tsk);
1035 	/*
1036 	 * We can do this unlocked here. The futex code uses this flag
1037 	 * just to verify whether the pi state cleanup has been done
1038 	 * or not. In the worst case it loops once more.
1039 	 */
1040 	tsk->flags |= PF_EXITPIDONE;
1041 
1042 	if (tsk->io_context)
1043 		exit_io_context(tsk);
1044 
1045 	if (tsk->splice_pipe)
1046 		__free_pipe_info(tsk->splice_pipe);
1047 
1048 	validate_creds_for_do_exit(tsk);
1049 
1050 	preempt_disable();
1051 	exit_rcu();
1052 	/* causes final put_task_struct in finish_task_switch(). */
1053 	tsk->state = TASK_DEAD;
1054 	schedule();
1055 	BUG();
1056 	/* Avoid "noreturn function does return".  */
1057 	for (;;)
1058 		cpu_relax();	/* For when BUG is null */
1059 }
1060 
1061 EXPORT_SYMBOL_GPL(do_exit);
1062 
1063 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1064 {
1065 	if (comp)
1066 		complete(comp);
1067 
1068 	do_exit(code);
1069 }
1070 
1071 EXPORT_SYMBOL(complete_and_exit);
1072 
1073 SYSCALL_DEFINE1(exit, int, error_code)
1074 {
1075 	do_exit((error_code&0xff)<<8);
1076 }
1077 
1078 /*
1079  * Take down every thread in the group.  This is called by fatal signals
1080  * as well as by sys_exit_group (below).
1081  */
1082 NORET_TYPE void
1083 do_group_exit(int exit_code)
1084 {
1085 	struct signal_struct *sig = current->signal;
1086 
1087 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1088 
1089 	if (signal_group_exit(sig))
1090 		exit_code = sig->group_exit_code;
1091 	else if (!thread_group_empty(current)) {
1092 		struct sighand_struct *const sighand = current->sighand;
1093 		spin_lock_irq(&sighand->siglock);
1094 		if (signal_group_exit(sig))
1095 			/* Another thread got here before we took the lock.  */
1096 			exit_code = sig->group_exit_code;
1097 		else {
1098 			sig->group_exit_code = exit_code;
1099 			sig->flags = SIGNAL_GROUP_EXIT;
1100 			zap_other_threads(current);
1101 		}
1102 		spin_unlock_irq(&sighand->siglock);
1103 	}
1104 
1105 	do_exit(exit_code);
1106 	/* NOTREACHED */
1107 }
1108 
1109 /*
1110  * this kills every thread in the thread group. Note that any externally
1111  * wait4()-ing process will get the correct exit code - even if this
1112  * thread is not the thread group leader.
1113  */
1114 SYSCALL_DEFINE1(exit_group, int, error_code)
1115 {
1116 	do_group_exit((error_code & 0xff) << 8);
1117 	/* NOTREACHED */
1118 	return 0;
1119 }
1120 
1121 struct wait_opts {
1122 	enum pid_type		wo_type;
1123 	int			wo_flags;
1124 	struct pid		*wo_pid;
1125 
1126 	struct siginfo __user	*wo_info;
1127 	int __user		*wo_stat;
1128 	struct rusage __user	*wo_rusage;
1129 
1130 	wait_queue_t		child_wait;
1131 	int			notask_error;
1132 };
1133 
1134 static inline
1135 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1136 {
1137 	if (type != PIDTYPE_PID)
1138 		task = task->group_leader;
1139 	return task->pids[type].pid;
1140 }
1141 
1142 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1143 {
1144 	return	wo->wo_type == PIDTYPE_MAX ||
1145 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1146 }
1147 
1148 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1149 {
1150 	if (!eligible_pid(wo, p))
1151 		return 0;
1152 	/* Wait for all children (clone and not) if __WALL is set;
1153 	 * otherwise, wait for clone children *only* if __WCLONE is
1154 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1155 	 * A "clone" child here is one that reports to its parent
1156 	 * using a signal other than SIGCHLD.) */
1157 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1158 	    && !(wo->wo_flags & __WALL))
1159 		return 0;
1160 
1161 	return 1;
1162 }
1163 
1164 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1165 				pid_t pid, uid_t uid, int why, int status)
1166 {
1167 	struct siginfo __user *infop;
1168 	int retval = wo->wo_rusage
1169 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1170 
1171 	put_task_struct(p);
1172 	infop = wo->wo_info;
1173 	if (infop) {
1174 		if (!retval)
1175 			retval = put_user(SIGCHLD, &infop->si_signo);
1176 		if (!retval)
1177 			retval = put_user(0, &infop->si_errno);
1178 		if (!retval)
1179 			retval = put_user((short)why, &infop->si_code);
1180 		if (!retval)
1181 			retval = put_user(pid, &infop->si_pid);
1182 		if (!retval)
1183 			retval = put_user(uid, &infop->si_uid);
1184 		if (!retval)
1185 			retval = put_user(status, &infop->si_status);
1186 	}
1187 	if (!retval)
1188 		retval = pid;
1189 	return retval;
1190 }
1191 
1192 /*
1193  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1194  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1195  * the lock and this task is uninteresting.  If we return nonzero, we have
1196  * released the lock and the system call should return.
1197  */
1198 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1199 {
1200 	unsigned long state;
1201 	int retval, status, traced;
1202 	pid_t pid = task_pid_vnr(p);
1203 	uid_t uid = __task_cred(p)->uid;
1204 	struct siginfo __user *infop;
1205 
1206 	if (!likely(wo->wo_flags & WEXITED))
1207 		return 0;
1208 
1209 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1210 		int exit_code = p->exit_code;
1211 		int why;
1212 
1213 		get_task_struct(p);
1214 		read_unlock(&tasklist_lock);
1215 		if ((exit_code & 0x7f) == 0) {
1216 			why = CLD_EXITED;
1217 			status = exit_code >> 8;
1218 		} else {
1219 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 			status = exit_code & 0x7f;
1221 		}
1222 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1223 	}
1224 
1225 	/*
1226 	 * Try to move the task's state to DEAD
1227 	 * only one thread is allowed to do this:
1228 	 */
1229 	state = xchg(&p->exit_state, EXIT_DEAD);
1230 	if (state != EXIT_ZOMBIE) {
1231 		BUG_ON(state != EXIT_DEAD);
1232 		return 0;
1233 	}
1234 
1235 	traced = ptrace_reparented(p);
1236 	/*
1237 	 * It can be ptraced but not reparented, check
1238 	 * !task_detached() to filter out sub-threads.
1239 	 */
1240 	if (likely(!traced) && likely(!task_detached(p))) {
1241 		struct signal_struct *psig;
1242 		struct signal_struct *sig;
1243 		unsigned long maxrss;
1244 		cputime_t tgutime, tgstime;
1245 
1246 		/*
1247 		 * The resource counters for the group leader are in its
1248 		 * own task_struct.  Those for dead threads in the group
1249 		 * are in its signal_struct, as are those for the child
1250 		 * processes it has previously reaped.  All these
1251 		 * accumulate in the parent's signal_struct c* fields.
1252 		 *
1253 		 * We don't bother to take a lock here to protect these
1254 		 * p->signal fields, because they are only touched by
1255 		 * __exit_signal, which runs with tasklist_lock
1256 		 * write-locked anyway, and so is excluded here.  We do
1257 		 * need to protect the access to parent->signal fields,
1258 		 * as other threads in the parent group can be right
1259 		 * here reaping other children at the same time.
1260 		 *
1261 		 * We use thread_group_times() to get times for the thread
1262 		 * group, which consolidates times for all threads in the
1263 		 * group including the group leader.
1264 		 */
1265 		thread_group_times(p, &tgutime, &tgstime);
1266 		spin_lock_irq(&p->real_parent->sighand->siglock);
1267 		psig = p->real_parent->signal;
1268 		sig = p->signal;
1269 		psig->cutime =
1270 			cputime_add(psig->cutime,
1271 			cputime_add(tgutime,
1272 				    sig->cutime));
1273 		psig->cstime =
1274 			cputime_add(psig->cstime,
1275 			cputime_add(tgstime,
1276 				    sig->cstime));
1277 		psig->cgtime =
1278 			cputime_add(psig->cgtime,
1279 			cputime_add(p->gtime,
1280 			cputime_add(sig->gtime,
1281 				    sig->cgtime)));
1282 		psig->cmin_flt +=
1283 			p->min_flt + sig->min_flt + sig->cmin_flt;
1284 		psig->cmaj_flt +=
1285 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1286 		psig->cnvcsw +=
1287 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1288 		psig->cnivcsw +=
1289 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1290 		psig->cinblock +=
1291 			task_io_get_inblock(p) +
1292 			sig->inblock + sig->cinblock;
1293 		psig->coublock +=
1294 			task_io_get_oublock(p) +
1295 			sig->oublock + sig->coublock;
1296 		maxrss = max(sig->maxrss, sig->cmaxrss);
1297 		if (psig->cmaxrss < maxrss)
1298 			psig->cmaxrss = maxrss;
1299 		task_io_accounting_add(&psig->ioac, &p->ioac);
1300 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1301 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1302 	}
1303 
1304 	/*
1305 	 * Now we are sure this task is interesting, and no other
1306 	 * thread can reap it because we set its state to EXIT_DEAD.
1307 	 */
1308 	read_unlock(&tasklist_lock);
1309 
1310 	retval = wo->wo_rusage
1311 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1312 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1313 		? p->signal->group_exit_code : p->exit_code;
1314 	if (!retval && wo->wo_stat)
1315 		retval = put_user(status, wo->wo_stat);
1316 
1317 	infop = wo->wo_info;
1318 	if (!retval && infop)
1319 		retval = put_user(SIGCHLD, &infop->si_signo);
1320 	if (!retval && infop)
1321 		retval = put_user(0, &infop->si_errno);
1322 	if (!retval && infop) {
1323 		int why;
1324 
1325 		if ((status & 0x7f) == 0) {
1326 			why = CLD_EXITED;
1327 			status >>= 8;
1328 		} else {
1329 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1330 			status &= 0x7f;
1331 		}
1332 		retval = put_user((short)why, &infop->si_code);
1333 		if (!retval)
1334 			retval = put_user(status, &infop->si_status);
1335 	}
1336 	if (!retval && infop)
1337 		retval = put_user(pid, &infop->si_pid);
1338 	if (!retval && infop)
1339 		retval = put_user(uid, &infop->si_uid);
1340 	if (!retval)
1341 		retval = pid;
1342 
1343 	if (traced) {
1344 		write_lock_irq(&tasklist_lock);
1345 		/* We dropped tasklist, ptracer could die and untrace */
1346 		ptrace_unlink(p);
1347 		/*
1348 		 * If this is not a detached task, notify the parent.
1349 		 * If it's still not detached after that, don't release
1350 		 * it now.
1351 		 */
1352 		if (!task_detached(p)) {
1353 			do_notify_parent(p, p->exit_signal);
1354 			if (!task_detached(p)) {
1355 				p->exit_state = EXIT_ZOMBIE;
1356 				p = NULL;
1357 			}
1358 		}
1359 		write_unlock_irq(&tasklist_lock);
1360 	}
1361 	if (p != NULL)
1362 		release_task(p);
1363 
1364 	return retval;
1365 }
1366 
1367 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1368 {
1369 	if (ptrace) {
1370 		if (task_is_stopped_or_traced(p))
1371 			return &p->exit_code;
1372 	} else {
1373 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1374 			return &p->signal->group_exit_code;
1375 	}
1376 	return NULL;
1377 }
1378 
1379 /**
1380  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1381  * @wo: wait options
1382  * @ptrace: is the wait for ptrace
1383  * @p: task to wait for
1384  *
1385  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1386  *
1387  * CONTEXT:
1388  * read_lock(&tasklist_lock), which is released if return value is
1389  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1390  *
1391  * RETURNS:
1392  * 0 if wait condition didn't exist and search for other wait conditions
1393  * should continue.  Non-zero return, -errno on failure and @p's pid on
1394  * success, implies that tasklist_lock is released and wait condition
1395  * search should terminate.
1396  */
1397 static int wait_task_stopped(struct wait_opts *wo,
1398 				int ptrace, struct task_struct *p)
1399 {
1400 	struct siginfo __user *infop;
1401 	int retval, exit_code, *p_code, why;
1402 	uid_t uid = 0; /* unneeded, required by compiler */
1403 	pid_t pid;
1404 
1405 	/*
1406 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1407 	 */
1408 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1409 		return 0;
1410 
1411 	if (!task_stopped_code(p, ptrace))
1412 		return 0;
1413 
1414 	exit_code = 0;
1415 	spin_lock_irq(&p->sighand->siglock);
1416 
1417 	p_code = task_stopped_code(p, ptrace);
1418 	if (unlikely(!p_code))
1419 		goto unlock_sig;
1420 
1421 	exit_code = *p_code;
1422 	if (!exit_code)
1423 		goto unlock_sig;
1424 
1425 	if (!unlikely(wo->wo_flags & WNOWAIT))
1426 		*p_code = 0;
1427 
1428 	uid = task_uid(p);
1429 unlock_sig:
1430 	spin_unlock_irq(&p->sighand->siglock);
1431 	if (!exit_code)
1432 		return 0;
1433 
1434 	/*
1435 	 * Now we are pretty sure this task is interesting.
1436 	 * Make sure it doesn't get reaped out from under us while we
1437 	 * give up the lock and then examine it below.  We don't want to
1438 	 * keep holding onto the tasklist_lock while we call getrusage and
1439 	 * possibly take page faults for user memory.
1440 	 */
1441 	get_task_struct(p);
1442 	pid = task_pid_vnr(p);
1443 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1444 	read_unlock(&tasklist_lock);
1445 
1446 	if (unlikely(wo->wo_flags & WNOWAIT))
1447 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1448 
1449 	retval = wo->wo_rusage
1450 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1451 	if (!retval && wo->wo_stat)
1452 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1453 
1454 	infop = wo->wo_info;
1455 	if (!retval && infop)
1456 		retval = put_user(SIGCHLD, &infop->si_signo);
1457 	if (!retval && infop)
1458 		retval = put_user(0, &infop->si_errno);
1459 	if (!retval && infop)
1460 		retval = put_user((short)why, &infop->si_code);
1461 	if (!retval && infop)
1462 		retval = put_user(exit_code, &infop->si_status);
1463 	if (!retval && infop)
1464 		retval = put_user(pid, &infop->si_pid);
1465 	if (!retval && infop)
1466 		retval = put_user(uid, &infop->si_uid);
1467 	if (!retval)
1468 		retval = pid;
1469 	put_task_struct(p);
1470 
1471 	BUG_ON(!retval);
1472 	return retval;
1473 }
1474 
1475 /*
1476  * Handle do_wait work for one task in a live, non-stopped state.
1477  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1478  * the lock and this task is uninteresting.  If we return nonzero, we have
1479  * released the lock and the system call should return.
1480  */
1481 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1482 {
1483 	int retval;
1484 	pid_t pid;
1485 	uid_t uid;
1486 
1487 	if (!unlikely(wo->wo_flags & WCONTINUED))
1488 		return 0;
1489 
1490 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1491 		return 0;
1492 
1493 	spin_lock_irq(&p->sighand->siglock);
1494 	/* Re-check with the lock held.  */
1495 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1496 		spin_unlock_irq(&p->sighand->siglock);
1497 		return 0;
1498 	}
1499 	if (!unlikely(wo->wo_flags & WNOWAIT))
1500 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1501 	uid = task_uid(p);
1502 	spin_unlock_irq(&p->sighand->siglock);
1503 
1504 	pid = task_pid_vnr(p);
1505 	get_task_struct(p);
1506 	read_unlock(&tasklist_lock);
1507 
1508 	if (!wo->wo_info) {
1509 		retval = wo->wo_rusage
1510 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1511 		put_task_struct(p);
1512 		if (!retval && wo->wo_stat)
1513 			retval = put_user(0xffff, wo->wo_stat);
1514 		if (!retval)
1515 			retval = pid;
1516 	} else {
1517 		retval = wait_noreap_copyout(wo, p, pid, uid,
1518 					     CLD_CONTINUED, SIGCONT);
1519 		BUG_ON(retval == 0);
1520 	}
1521 
1522 	return retval;
1523 }
1524 
1525 /*
1526  * Consider @p for a wait by @parent.
1527  *
1528  * -ECHILD should be in ->notask_error before the first call.
1529  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530  * Returns zero if the search for a child should continue;
1531  * then ->notask_error is 0 if @p is an eligible child,
1532  * or another error from security_task_wait(), or still -ECHILD.
1533  */
1534 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1535 				struct task_struct *p)
1536 {
1537 	int ret = eligible_child(wo, p);
1538 	if (!ret)
1539 		return ret;
1540 
1541 	ret = security_task_wait(p);
1542 	if (unlikely(ret < 0)) {
1543 		/*
1544 		 * If we have not yet seen any eligible child,
1545 		 * then let this error code replace -ECHILD.
1546 		 * A permission error will give the user a clue
1547 		 * to look for security policy problems, rather
1548 		 * than for mysterious wait bugs.
1549 		 */
1550 		if (wo->notask_error)
1551 			wo->notask_error = ret;
1552 		return 0;
1553 	}
1554 
1555 	/* dead body doesn't have much to contribute */
1556 	if (p->exit_state == EXIT_DEAD)
1557 		return 0;
1558 
1559 	/* slay zombie? */
1560 	if (p->exit_state == EXIT_ZOMBIE) {
1561 		/*
1562 		 * A zombie ptracee is only visible to its ptracer.
1563 		 * Notification and reaping will be cascaded to the real
1564 		 * parent when the ptracer detaches.
1565 		 */
1566 		if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1567 			/* it will become visible, clear notask_error */
1568 			wo->notask_error = 0;
1569 			return 0;
1570 		}
1571 
1572 		/* we don't reap group leaders with subthreads */
1573 		if (!delay_group_leader(p))
1574 			return wait_task_zombie(wo, p);
1575 
1576 		/*
1577 		 * Allow access to stopped/continued state via zombie by
1578 		 * falling through.  Clearing of notask_error is complex.
1579 		 *
1580 		 * When !@ptrace:
1581 		 *
1582 		 * If WEXITED is set, notask_error should naturally be
1583 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1584 		 * so, if there are live subthreads, there are events to
1585 		 * wait for.  If all subthreads are dead, it's still safe
1586 		 * to clear - this function will be called again in finite
1587 		 * amount time once all the subthreads are released and
1588 		 * will then return without clearing.
1589 		 *
1590 		 * When @ptrace:
1591 		 *
1592 		 * Stopped state is per-task and thus can't change once the
1593 		 * target task dies.  Only continued and exited can happen.
1594 		 * Clear notask_error if WCONTINUED | WEXITED.
1595 		 */
1596 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1597 			wo->notask_error = 0;
1598 	} else {
1599 		/*
1600 		 * If @p is ptraced by a task in its real parent's group,
1601 		 * hide group stop/continued state when looking at @p as
1602 		 * the real parent; otherwise, a single stop can be
1603 		 * reported twice as group and ptrace stops.
1604 		 *
1605 		 * If a ptracer wants to distinguish the two events for its
1606 		 * own children, it should create a separate process which
1607 		 * takes the role of real parent.
1608 		 */
1609 		if (likely(!ptrace) && task_ptrace(p) &&
1610 		    same_thread_group(p->parent, p->real_parent))
1611 			return 0;
1612 
1613 		/*
1614 		 * @p is alive and it's gonna stop, continue or exit, so
1615 		 * there always is something to wait for.
1616 		 */
1617 		wo->notask_error = 0;
1618 	}
1619 
1620 	/*
1621 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1622 	 * is used and the two don't interact with each other.
1623 	 */
1624 	ret = wait_task_stopped(wo, ptrace, p);
1625 	if (ret)
1626 		return ret;
1627 
1628 	/*
1629 	 * Wait for continued.  There's only one continued state and the
1630 	 * ptracer can consume it which can confuse the real parent.  Don't
1631 	 * use WCONTINUED from ptracer.  You don't need or want it.
1632 	 */
1633 	return wait_task_continued(wo, p);
1634 }
1635 
1636 /*
1637  * Do the work of do_wait() for one thread in the group, @tsk.
1638  *
1639  * -ECHILD should be in ->notask_error before the first call.
1640  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1641  * Returns zero if the search for a child should continue; then
1642  * ->notask_error is 0 if there were any eligible children,
1643  * or another error from security_task_wait(), or still -ECHILD.
1644  */
1645 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1646 {
1647 	struct task_struct *p;
1648 
1649 	list_for_each_entry(p, &tsk->children, sibling) {
1650 		int ret = wait_consider_task(wo, 0, p);
1651 		if (ret)
1652 			return ret;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1659 {
1660 	struct task_struct *p;
1661 
1662 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1663 		int ret = wait_consider_task(wo, 1, p);
1664 		if (ret)
1665 			return ret;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1672 				int sync, void *key)
1673 {
1674 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1675 						child_wait);
1676 	struct task_struct *p = key;
1677 
1678 	if (!eligible_pid(wo, p))
1679 		return 0;
1680 
1681 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1682 		return 0;
1683 
1684 	return default_wake_function(wait, mode, sync, key);
1685 }
1686 
1687 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1688 {
1689 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1690 				TASK_INTERRUPTIBLE, 1, p);
1691 }
1692 
1693 static long do_wait(struct wait_opts *wo)
1694 {
1695 	struct task_struct *tsk;
1696 	int retval;
1697 
1698 	trace_sched_process_wait(wo->wo_pid);
1699 
1700 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1701 	wo->child_wait.private = current;
1702 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1703 repeat:
1704 	/*
1705 	 * If there is nothing that can match our critiera just get out.
1706 	 * We will clear ->notask_error to zero if we see any child that
1707 	 * might later match our criteria, even if we are not able to reap
1708 	 * it yet.
1709 	 */
1710 	wo->notask_error = -ECHILD;
1711 	if ((wo->wo_type < PIDTYPE_MAX) &&
1712 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1713 		goto notask;
1714 
1715 	set_current_state(TASK_INTERRUPTIBLE);
1716 	read_lock(&tasklist_lock);
1717 	tsk = current;
1718 	do {
1719 		retval = do_wait_thread(wo, tsk);
1720 		if (retval)
1721 			goto end;
1722 
1723 		retval = ptrace_do_wait(wo, tsk);
1724 		if (retval)
1725 			goto end;
1726 
1727 		if (wo->wo_flags & __WNOTHREAD)
1728 			break;
1729 	} while_each_thread(current, tsk);
1730 	read_unlock(&tasklist_lock);
1731 
1732 notask:
1733 	retval = wo->notask_error;
1734 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1735 		retval = -ERESTARTSYS;
1736 		if (!signal_pending(current)) {
1737 			schedule();
1738 			goto repeat;
1739 		}
1740 	}
1741 end:
1742 	__set_current_state(TASK_RUNNING);
1743 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1744 	return retval;
1745 }
1746 
1747 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1748 		infop, int, options, struct rusage __user *, ru)
1749 {
1750 	struct wait_opts wo;
1751 	struct pid *pid = NULL;
1752 	enum pid_type type;
1753 	long ret;
1754 
1755 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1756 		return -EINVAL;
1757 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1758 		return -EINVAL;
1759 
1760 	switch (which) {
1761 	case P_ALL:
1762 		type = PIDTYPE_MAX;
1763 		break;
1764 	case P_PID:
1765 		type = PIDTYPE_PID;
1766 		if (upid <= 0)
1767 			return -EINVAL;
1768 		break;
1769 	case P_PGID:
1770 		type = PIDTYPE_PGID;
1771 		if (upid <= 0)
1772 			return -EINVAL;
1773 		break;
1774 	default:
1775 		return -EINVAL;
1776 	}
1777 
1778 	if (type < PIDTYPE_MAX)
1779 		pid = find_get_pid(upid);
1780 
1781 	wo.wo_type	= type;
1782 	wo.wo_pid	= pid;
1783 	wo.wo_flags	= options;
1784 	wo.wo_info	= infop;
1785 	wo.wo_stat	= NULL;
1786 	wo.wo_rusage	= ru;
1787 	ret = do_wait(&wo);
1788 
1789 	if (ret > 0) {
1790 		ret = 0;
1791 	} else if (infop) {
1792 		/*
1793 		 * For a WNOHANG return, clear out all the fields
1794 		 * we would set so the user can easily tell the
1795 		 * difference.
1796 		 */
1797 		if (!ret)
1798 			ret = put_user(0, &infop->si_signo);
1799 		if (!ret)
1800 			ret = put_user(0, &infop->si_errno);
1801 		if (!ret)
1802 			ret = put_user(0, &infop->si_code);
1803 		if (!ret)
1804 			ret = put_user(0, &infop->si_pid);
1805 		if (!ret)
1806 			ret = put_user(0, &infop->si_uid);
1807 		if (!ret)
1808 			ret = put_user(0, &infop->si_status);
1809 	}
1810 
1811 	put_pid(pid);
1812 
1813 	/* avoid REGPARM breakage on x86: */
1814 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1815 	return ret;
1816 }
1817 
1818 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1819 		int, options, struct rusage __user *, ru)
1820 {
1821 	struct wait_opts wo;
1822 	struct pid *pid = NULL;
1823 	enum pid_type type;
1824 	long ret;
1825 
1826 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1827 			__WNOTHREAD|__WCLONE|__WALL))
1828 		return -EINVAL;
1829 
1830 	if (upid == -1)
1831 		type = PIDTYPE_MAX;
1832 	else if (upid < 0) {
1833 		type = PIDTYPE_PGID;
1834 		pid = find_get_pid(-upid);
1835 	} else if (upid == 0) {
1836 		type = PIDTYPE_PGID;
1837 		pid = get_task_pid(current, PIDTYPE_PGID);
1838 	} else /* upid > 0 */ {
1839 		type = PIDTYPE_PID;
1840 		pid = find_get_pid(upid);
1841 	}
1842 
1843 	wo.wo_type	= type;
1844 	wo.wo_pid	= pid;
1845 	wo.wo_flags	= options | WEXITED;
1846 	wo.wo_info	= NULL;
1847 	wo.wo_stat	= stat_addr;
1848 	wo.wo_rusage	= ru;
1849 	ret = do_wait(&wo);
1850 	put_pid(pid);
1851 
1852 	/* avoid REGPARM breakage on x86: */
1853 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1854 	return ret;
1855 }
1856 
1857 #ifdef __ARCH_WANT_SYS_WAITPID
1858 
1859 /*
1860  * sys_waitpid() remains for compatibility. waitpid() should be
1861  * implemented by calling sys_wait4() from libc.a.
1862  */
1863 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1864 {
1865 	return sys_wait4(pid, stat_addr, options, NULL);
1866 }
1867 
1868 #endif
1869