1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/usermode_driver.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/unistd.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 void put_task_struct_rcu_user(struct task_struct *task) 177 { 178 if (refcount_dec_and_test(&task->rcu_users)) 179 call_rcu(&task->rcu, delayed_put_task_struct); 180 } 181 182 void release_task(struct task_struct *p) 183 { 184 struct task_struct *leader; 185 struct pid *thread_pid; 186 int zap_leader; 187 repeat: 188 /* don't need to get the RCU readlock here - the process is dead and 189 * can't be modifying its own credentials. But shut RCU-lockdep up */ 190 rcu_read_lock(); 191 atomic_dec(&__task_cred(p)->user->processes); 192 rcu_read_unlock(); 193 194 cgroup_release(p); 195 196 write_lock_irq(&tasklist_lock); 197 ptrace_release_task(p); 198 thread_pid = get_pid(p->thread_pid); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 proc_flush_pid(thread_pid); 222 put_pid(thread_pid); 223 release_thread(p); 224 put_task_struct_rcu_user(p); 225 226 p = leader; 227 if (unlikely(zap_leader)) 228 goto repeat; 229 } 230 231 int rcuwait_wake_up(struct rcuwait *w) 232 { 233 int ret = 0; 234 struct task_struct *task; 235 236 rcu_read_lock(); 237 238 /* 239 * Order condition vs @task, such that everything prior to the load 240 * of @task is visible. This is the condition as to why the user called 241 * rcuwait_wake() in the first place. Pairs with set_current_state() 242 * barrier (A) in rcuwait_wait_event(). 243 * 244 * WAIT WAKE 245 * [S] tsk = current [S] cond = true 246 * MB (A) MB (B) 247 * [L] cond [L] tsk 248 */ 249 smp_mb(); /* (B) */ 250 251 task = rcu_dereference(w->task); 252 if (task) 253 ret = wake_up_process(task); 254 rcu_read_unlock(); 255 256 return ret; 257 } 258 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 259 260 /* 261 * Determine if a process group is "orphaned", according to the POSIX 262 * definition in 2.2.2.52. Orphaned process groups are not to be affected 263 * by terminal-generated stop signals. Newly orphaned process groups are 264 * to receive a SIGHUP and a SIGCONT. 265 * 266 * "I ask you, have you ever known what it is to be an orphan?" 267 */ 268 static int will_become_orphaned_pgrp(struct pid *pgrp, 269 struct task_struct *ignored_task) 270 { 271 struct task_struct *p; 272 273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 274 if ((p == ignored_task) || 275 (p->exit_state && thread_group_empty(p)) || 276 is_global_init(p->real_parent)) 277 continue; 278 279 if (task_pgrp(p->real_parent) != pgrp && 280 task_session(p->real_parent) == task_session(p)) 281 return 0; 282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 284 return 1; 285 } 286 287 int is_current_pgrp_orphaned(void) 288 { 289 int retval; 290 291 read_lock(&tasklist_lock); 292 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 293 read_unlock(&tasklist_lock); 294 295 return retval; 296 } 297 298 static bool has_stopped_jobs(struct pid *pgrp) 299 { 300 struct task_struct *p; 301 302 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 303 if (p->signal->flags & SIGNAL_STOP_STOPPED) 304 return true; 305 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 306 307 return false; 308 } 309 310 /* 311 * Check to see if any process groups have become orphaned as 312 * a result of our exiting, and if they have any stopped jobs, 313 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 314 */ 315 static void 316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 317 { 318 struct pid *pgrp = task_pgrp(tsk); 319 struct task_struct *ignored_task = tsk; 320 321 if (!parent) 322 /* exit: our father is in a different pgrp than 323 * we are and we were the only connection outside. 324 */ 325 parent = tsk->real_parent; 326 else 327 /* reparent: our child is in a different pgrp than 328 * we are, and it was the only connection outside. 329 */ 330 ignored_task = NULL; 331 332 if (task_pgrp(parent) != pgrp && 333 task_session(parent) == task_session(tsk) && 334 will_become_orphaned_pgrp(pgrp, ignored_task) && 335 has_stopped_jobs(pgrp)) { 336 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 337 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 338 } 339 } 340 341 #ifdef CONFIG_MEMCG 342 /* 343 * A task is exiting. If it owned this mm, find a new owner for the mm. 344 */ 345 void mm_update_next_owner(struct mm_struct *mm) 346 { 347 struct task_struct *c, *g, *p = current; 348 349 retry: 350 /* 351 * If the exiting or execing task is not the owner, it's 352 * someone else's problem. 353 */ 354 if (mm->owner != p) 355 return; 356 /* 357 * The current owner is exiting/execing and there are no other 358 * candidates. Do not leave the mm pointing to a possibly 359 * freed task structure. 360 */ 361 if (atomic_read(&mm->mm_users) <= 1) { 362 WRITE_ONCE(mm->owner, NULL); 363 return; 364 } 365 366 read_lock(&tasklist_lock); 367 /* 368 * Search in the children 369 */ 370 list_for_each_entry(c, &p->children, sibling) { 371 if (c->mm == mm) 372 goto assign_new_owner; 373 } 374 375 /* 376 * Search in the siblings 377 */ 378 list_for_each_entry(c, &p->real_parent->children, sibling) { 379 if (c->mm == mm) 380 goto assign_new_owner; 381 } 382 383 /* 384 * Search through everything else, we should not get here often. 385 */ 386 for_each_process(g) { 387 if (g->flags & PF_KTHREAD) 388 continue; 389 for_each_thread(g, c) { 390 if (c->mm == mm) 391 goto assign_new_owner; 392 if (c->mm) 393 break; 394 } 395 } 396 read_unlock(&tasklist_lock); 397 /* 398 * We found no owner yet mm_users > 1: this implies that we are 399 * most likely racing with swapoff (try_to_unuse()) or /proc or 400 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 401 */ 402 WRITE_ONCE(mm->owner, NULL); 403 return; 404 405 assign_new_owner: 406 BUG_ON(c == p); 407 get_task_struct(c); 408 /* 409 * The task_lock protects c->mm from changing. 410 * We always want mm->owner->mm == mm 411 */ 412 task_lock(c); 413 /* 414 * Delay read_unlock() till we have the task_lock() 415 * to ensure that c does not slip away underneath us 416 */ 417 read_unlock(&tasklist_lock); 418 if (c->mm != mm) { 419 task_unlock(c); 420 put_task_struct(c); 421 goto retry; 422 } 423 WRITE_ONCE(mm->owner, c); 424 task_unlock(c); 425 put_task_struct(c); 426 } 427 #endif /* CONFIG_MEMCG */ 428 429 /* 430 * Turn us into a lazy TLB process if we 431 * aren't already.. 432 */ 433 static void exit_mm(void) 434 { 435 struct mm_struct *mm = current->mm; 436 struct core_state *core_state; 437 438 exit_mm_release(current, mm); 439 if (!mm) 440 return; 441 sync_mm_rss(mm); 442 /* 443 * Serialize with any possible pending coredump. 444 * We must hold mmap_lock around checking core_state 445 * and clearing tsk->mm. The core-inducing thread 446 * will increment ->nr_threads for each thread in the 447 * group with ->mm != NULL. 448 */ 449 mmap_read_lock(mm); 450 core_state = mm->core_state; 451 if (core_state) { 452 struct core_thread self; 453 454 mmap_read_unlock(mm); 455 456 self.task = current; 457 self.next = xchg(&core_state->dumper.next, &self); 458 /* 459 * Implies mb(), the result of xchg() must be visible 460 * to core_state->dumper. 461 */ 462 if (atomic_dec_and_test(&core_state->nr_threads)) 463 complete(&core_state->startup); 464 465 for (;;) { 466 set_current_state(TASK_UNINTERRUPTIBLE); 467 if (!self.task) /* see coredump_finish() */ 468 break; 469 freezable_schedule(); 470 } 471 __set_current_state(TASK_RUNNING); 472 mmap_read_lock(mm); 473 } 474 mmgrab(mm); 475 BUG_ON(mm != current->active_mm); 476 /* more a memory barrier than a real lock */ 477 task_lock(current); 478 current->mm = NULL; 479 mmap_read_unlock(mm); 480 enter_lazy_tlb(mm, current); 481 task_unlock(current); 482 mm_update_next_owner(mm); 483 mmput(mm); 484 if (test_thread_flag(TIF_MEMDIE)) 485 exit_oom_victim(); 486 } 487 488 static struct task_struct *find_alive_thread(struct task_struct *p) 489 { 490 struct task_struct *t; 491 492 for_each_thread(p, t) { 493 if (!(t->flags & PF_EXITING)) 494 return t; 495 } 496 return NULL; 497 } 498 499 static struct task_struct *find_child_reaper(struct task_struct *father, 500 struct list_head *dead) 501 __releases(&tasklist_lock) 502 __acquires(&tasklist_lock) 503 { 504 struct pid_namespace *pid_ns = task_active_pid_ns(father); 505 struct task_struct *reaper = pid_ns->child_reaper; 506 struct task_struct *p, *n; 507 508 if (likely(reaper != father)) 509 return reaper; 510 511 reaper = find_alive_thread(father); 512 if (reaper) { 513 pid_ns->child_reaper = reaper; 514 return reaper; 515 } 516 517 write_unlock_irq(&tasklist_lock); 518 519 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 520 list_del_init(&p->ptrace_entry); 521 release_task(p); 522 } 523 524 zap_pid_ns_processes(pid_ns); 525 write_lock_irq(&tasklist_lock); 526 527 return father; 528 } 529 530 /* 531 * When we die, we re-parent all our children, and try to: 532 * 1. give them to another thread in our thread group, if such a member exists 533 * 2. give it to the first ancestor process which prctl'd itself as a 534 * child_subreaper for its children (like a service manager) 535 * 3. give it to the init process (PID 1) in our pid namespace 536 */ 537 static struct task_struct *find_new_reaper(struct task_struct *father, 538 struct task_struct *child_reaper) 539 { 540 struct task_struct *thread, *reaper; 541 542 thread = find_alive_thread(father); 543 if (thread) 544 return thread; 545 546 if (father->signal->has_child_subreaper) { 547 unsigned int ns_level = task_pid(father)->level; 548 /* 549 * Find the first ->is_child_subreaper ancestor in our pid_ns. 550 * We can't check reaper != child_reaper to ensure we do not 551 * cross the namespaces, the exiting parent could be injected 552 * by setns() + fork(). 553 * We check pid->level, this is slightly more efficient than 554 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 555 */ 556 for (reaper = father->real_parent; 557 task_pid(reaper)->level == ns_level; 558 reaper = reaper->real_parent) { 559 if (reaper == &init_task) 560 break; 561 if (!reaper->signal->is_child_subreaper) 562 continue; 563 thread = find_alive_thread(reaper); 564 if (thread) 565 return thread; 566 } 567 } 568 569 return child_reaper; 570 } 571 572 /* 573 * Any that need to be release_task'd are put on the @dead list. 574 */ 575 static void reparent_leader(struct task_struct *father, struct task_struct *p, 576 struct list_head *dead) 577 { 578 if (unlikely(p->exit_state == EXIT_DEAD)) 579 return; 580 581 /* We don't want people slaying init. */ 582 p->exit_signal = SIGCHLD; 583 584 /* If it has exited notify the new parent about this child's death. */ 585 if (!p->ptrace && 586 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 587 if (do_notify_parent(p, p->exit_signal)) { 588 p->exit_state = EXIT_DEAD; 589 list_add(&p->ptrace_entry, dead); 590 } 591 } 592 593 kill_orphaned_pgrp(p, father); 594 } 595 596 /* 597 * This does two things: 598 * 599 * A. Make init inherit all the child processes 600 * B. Check to see if any process groups have become orphaned 601 * as a result of our exiting, and if they have any stopped 602 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 603 */ 604 static void forget_original_parent(struct task_struct *father, 605 struct list_head *dead) 606 { 607 struct task_struct *p, *t, *reaper; 608 609 if (unlikely(!list_empty(&father->ptraced))) 610 exit_ptrace(father, dead); 611 612 /* Can drop and reacquire tasklist_lock */ 613 reaper = find_child_reaper(father, dead); 614 if (list_empty(&father->children)) 615 return; 616 617 reaper = find_new_reaper(father, reaper); 618 list_for_each_entry(p, &father->children, sibling) { 619 for_each_thread(p, t) { 620 RCU_INIT_POINTER(t->real_parent, reaper); 621 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 622 if (likely(!t->ptrace)) 623 t->parent = t->real_parent; 624 if (t->pdeath_signal) 625 group_send_sig_info(t->pdeath_signal, 626 SEND_SIG_NOINFO, t, 627 PIDTYPE_TGID); 628 } 629 /* 630 * If this is a threaded reparent there is no need to 631 * notify anyone anything has happened. 632 */ 633 if (!same_thread_group(reaper, father)) 634 reparent_leader(father, p, dead); 635 } 636 list_splice_tail_init(&father->children, &reaper->children); 637 } 638 639 /* 640 * Send signals to all our closest relatives so that they know 641 * to properly mourn us.. 642 */ 643 static void exit_notify(struct task_struct *tsk, int group_dead) 644 { 645 bool autoreap; 646 struct task_struct *p, *n; 647 LIST_HEAD(dead); 648 649 write_lock_irq(&tasklist_lock); 650 forget_original_parent(tsk, &dead); 651 652 if (group_dead) 653 kill_orphaned_pgrp(tsk->group_leader, NULL); 654 655 tsk->exit_state = EXIT_ZOMBIE; 656 if (unlikely(tsk->ptrace)) { 657 int sig = thread_group_leader(tsk) && 658 thread_group_empty(tsk) && 659 !ptrace_reparented(tsk) ? 660 tsk->exit_signal : SIGCHLD; 661 autoreap = do_notify_parent(tsk, sig); 662 } else if (thread_group_leader(tsk)) { 663 autoreap = thread_group_empty(tsk) && 664 do_notify_parent(tsk, tsk->exit_signal); 665 } else { 666 autoreap = true; 667 } 668 669 if (autoreap) { 670 tsk->exit_state = EXIT_DEAD; 671 list_add(&tsk->ptrace_entry, &dead); 672 } 673 674 /* mt-exec, de_thread() is waiting for group leader */ 675 if (unlikely(tsk->signal->notify_count < 0)) 676 wake_up_process(tsk->signal->group_exit_task); 677 write_unlock_irq(&tasklist_lock); 678 679 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 680 list_del_init(&p->ptrace_entry); 681 release_task(p); 682 } 683 } 684 685 #ifdef CONFIG_DEBUG_STACK_USAGE 686 static void check_stack_usage(void) 687 { 688 static DEFINE_SPINLOCK(low_water_lock); 689 static int lowest_to_date = THREAD_SIZE; 690 unsigned long free; 691 692 free = stack_not_used(current); 693 694 if (free >= lowest_to_date) 695 return; 696 697 spin_lock(&low_water_lock); 698 if (free < lowest_to_date) { 699 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 700 current->comm, task_pid_nr(current), free); 701 lowest_to_date = free; 702 } 703 spin_unlock(&low_water_lock); 704 } 705 #else 706 static inline void check_stack_usage(void) {} 707 #endif 708 709 void __noreturn do_exit(long code) 710 { 711 struct task_struct *tsk = current; 712 int group_dead; 713 714 /* 715 * We can get here from a kernel oops, sometimes with preemption off. 716 * Start by checking for critical errors. 717 * Then fix up important state like USER_DS and preemption. 718 * Then do everything else. 719 */ 720 721 WARN_ON(blk_needs_flush_plug(tsk)); 722 723 if (unlikely(in_interrupt())) 724 panic("Aiee, killing interrupt handler!"); 725 if (unlikely(!tsk->pid)) 726 panic("Attempted to kill the idle task!"); 727 728 /* 729 * If do_exit is called because this processes oopsed, it's possible 730 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 731 * continuing. Amongst other possible reasons, this is to prevent 732 * mm_release()->clear_child_tid() from writing to a user-controlled 733 * kernel address. 734 */ 735 set_fs(USER_DS); 736 737 if (unlikely(in_atomic())) { 738 pr_info("note: %s[%d] exited with preempt_count %d\n", 739 current->comm, task_pid_nr(current), 740 preempt_count()); 741 preempt_count_set(PREEMPT_ENABLED); 742 } 743 744 profile_task_exit(tsk); 745 kcov_task_exit(tsk); 746 747 ptrace_event(PTRACE_EVENT_EXIT, code); 748 749 validate_creds_for_do_exit(tsk); 750 751 /* 752 * We're taking recursive faults here in do_exit. Safest is to just 753 * leave this task alone and wait for reboot. 754 */ 755 if (unlikely(tsk->flags & PF_EXITING)) { 756 pr_alert("Fixing recursive fault but reboot is needed!\n"); 757 futex_exit_recursive(tsk); 758 set_current_state(TASK_UNINTERRUPTIBLE); 759 schedule(); 760 } 761 762 exit_signals(tsk); /* sets PF_EXITING */ 763 764 /* sync mm's RSS info before statistics gathering */ 765 if (tsk->mm) 766 sync_mm_rss(tsk->mm); 767 acct_update_integrals(tsk); 768 group_dead = atomic_dec_and_test(&tsk->signal->live); 769 if (group_dead) { 770 /* 771 * If the last thread of global init has exited, panic 772 * immediately to get a useable coredump. 773 */ 774 if (unlikely(is_global_init(tsk))) 775 panic("Attempted to kill init! exitcode=0x%08x\n", 776 tsk->signal->group_exit_code ?: (int)code); 777 778 #ifdef CONFIG_POSIX_TIMERS 779 hrtimer_cancel(&tsk->signal->real_timer); 780 exit_itimers(tsk->signal); 781 #endif 782 if (tsk->mm) 783 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 784 } 785 acct_collect(code, group_dead); 786 if (group_dead) 787 tty_audit_exit(); 788 audit_free(tsk); 789 790 tsk->exit_code = code; 791 taskstats_exit(tsk, group_dead); 792 793 exit_mm(); 794 795 if (group_dead) 796 acct_process(); 797 trace_sched_process_exit(tsk); 798 799 exit_sem(tsk); 800 exit_shm(tsk); 801 exit_files(tsk); 802 exit_fs(tsk); 803 if (group_dead) 804 disassociate_ctty(1); 805 exit_task_namespaces(tsk); 806 exit_task_work(tsk); 807 exit_thread(tsk); 808 if (group_dead) 809 exit_umh(tsk); 810 811 /* 812 * Flush inherited counters to the parent - before the parent 813 * gets woken up by child-exit notifications. 814 * 815 * because of cgroup mode, must be called before cgroup_exit() 816 */ 817 perf_event_exit_task(tsk); 818 819 sched_autogroup_exit_task(tsk); 820 cgroup_exit(tsk); 821 822 /* 823 * FIXME: do that only when needed, using sched_exit tracepoint 824 */ 825 flush_ptrace_hw_breakpoint(tsk); 826 827 exit_tasks_rcu_start(); 828 exit_notify(tsk, group_dead); 829 proc_exit_connector(tsk); 830 mpol_put_task_policy(tsk); 831 #ifdef CONFIG_FUTEX 832 if (unlikely(current->pi_state_cache)) 833 kfree(current->pi_state_cache); 834 #endif 835 /* 836 * Make sure we are holding no locks: 837 */ 838 debug_check_no_locks_held(); 839 840 if (tsk->io_context) 841 exit_io_context(tsk); 842 843 if (tsk->splice_pipe) 844 free_pipe_info(tsk->splice_pipe); 845 846 if (tsk->task_frag.page) 847 put_page(tsk->task_frag.page); 848 849 validate_creds_for_do_exit(tsk); 850 851 check_stack_usage(); 852 preempt_disable(); 853 if (tsk->nr_dirtied) 854 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 855 exit_rcu(); 856 exit_tasks_rcu_finish(); 857 858 lockdep_free_task(tsk); 859 do_task_dead(); 860 } 861 EXPORT_SYMBOL_GPL(do_exit); 862 863 void complete_and_exit(struct completion *comp, long code) 864 { 865 if (comp) 866 complete(comp); 867 868 do_exit(code); 869 } 870 EXPORT_SYMBOL(complete_and_exit); 871 872 SYSCALL_DEFINE1(exit, int, error_code) 873 { 874 do_exit((error_code&0xff)<<8); 875 } 876 877 /* 878 * Take down every thread in the group. This is called by fatal signals 879 * as well as by sys_exit_group (below). 880 */ 881 void 882 do_group_exit(int exit_code) 883 { 884 struct signal_struct *sig = current->signal; 885 886 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 887 888 if (signal_group_exit(sig)) 889 exit_code = sig->group_exit_code; 890 else if (!thread_group_empty(current)) { 891 struct sighand_struct *const sighand = current->sighand; 892 893 spin_lock_irq(&sighand->siglock); 894 if (signal_group_exit(sig)) 895 /* Another thread got here before we took the lock. */ 896 exit_code = sig->group_exit_code; 897 else { 898 sig->group_exit_code = exit_code; 899 sig->flags = SIGNAL_GROUP_EXIT; 900 zap_other_threads(current); 901 } 902 spin_unlock_irq(&sighand->siglock); 903 } 904 905 do_exit(exit_code); 906 /* NOTREACHED */ 907 } 908 909 /* 910 * this kills every thread in the thread group. Note that any externally 911 * wait4()-ing process will get the correct exit code - even if this 912 * thread is not the thread group leader. 913 */ 914 SYSCALL_DEFINE1(exit_group, int, error_code) 915 { 916 do_group_exit((error_code & 0xff) << 8); 917 /* NOTREACHED */ 918 return 0; 919 } 920 921 struct waitid_info { 922 pid_t pid; 923 uid_t uid; 924 int status; 925 int cause; 926 }; 927 928 struct wait_opts { 929 enum pid_type wo_type; 930 int wo_flags; 931 struct pid *wo_pid; 932 933 struct waitid_info *wo_info; 934 int wo_stat; 935 struct rusage *wo_rusage; 936 937 wait_queue_entry_t child_wait; 938 int notask_error; 939 }; 940 941 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 942 { 943 return wo->wo_type == PIDTYPE_MAX || 944 task_pid_type(p, wo->wo_type) == wo->wo_pid; 945 } 946 947 static int 948 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 949 { 950 if (!eligible_pid(wo, p)) 951 return 0; 952 953 /* 954 * Wait for all children (clone and not) if __WALL is set or 955 * if it is traced by us. 956 */ 957 if (ptrace || (wo->wo_flags & __WALL)) 958 return 1; 959 960 /* 961 * Otherwise, wait for clone children *only* if __WCLONE is set; 962 * otherwise, wait for non-clone children *only*. 963 * 964 * Note: a "clone" child here is one that reports to its parent 965 * using a signal other than SIGCHLD, or a non-leader thread which 966 * we can only see if it is traced by us. 967 */ 968 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 969 return 0; 970 971 return 1; 972 } 973 974 /* 975 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 976 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 977 * the lock and this task is uninteresting. If we return nonzero, we have 978 * released the lock and the system call should return. 979 */ 980 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 981 { 982 int state, status; 983 pid_t pid = task_pid_vnr(p); 984 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 985 struct waitid_info *infop; 986 987 if (!likely(wo->wo_flags & WEXITED)) 988 return 0; 989 990 if (unlikely(wo->wo_flags & WNOWAIT)) { 991 status = p->exit_code; 992 get_task_struct(p); 993 read_unlock(&tasklist_lock); 994 sched_annotate_sleep(); 995 if (wo->wo_rusage) 996 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 997 put_task_struct(p); 998 goto out_info; 999 } 1000 /* 1001 * Move the task's state to DEAD/TRACE, only one thread can do this. 1002 */ 1003 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1004 EXIT_TRACE : EXIT_DEAD; 1005 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1006 return 0; 1007 /* 1008 * We own this thread, nobody else can reap it. 1009 */ 1010 read_unlock(&tasklist_lock); 1011 sched_annotate_sleep(); 1012 1013 /* 1014 * Check thread_group_leader() to exclude the traced sub-threads. 1015 */ 1016 if (state == EXIT_DEAD && thread_group_leader(p)) { 1017 struct signal_struct *sig = p->signal; 1018 struct signal_struct *psig = current->signal; 1019 unsigned long maxrss; 1020 u64 tgutime, tgstime; 1021 1022 /* 1023 * The resource counters for the group leader are in its 1024 * own task_struct. Those for dead threads in the group 1025 * are in its signal_struct, as are those for the child 1026 * processes it has previously reaped. All these 1027 * accumulate in the parent's signal_struct c* fields. 1028 * 1029 * We don't bother to take a lock here to protect these 1030 * p->signal fields because the whole thread group is dead 1031 * and nobody can change them. 1032 * 1033 * psig->stats_lock also protects us from our sub-theads 1034 * which can reap other children at the same time. Until 1035 * we change k_getrusage()-like users to rely on this lock 1036 * we have to take ->siglock as well. 1037 * 1038 * We use thread_group_cputime_adjusted() to get times for 1039 * the thread group, which consolidates times for all threads 1040 * in the group including the group leader. 1041 */ 1042 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1043 spin_lock_irq(¤t->sighand->siglock); 1044 write_seqlock(&psig->stats_lock); 1045 psig->cutime += tgutime + sig->cutime; 1046 psig->cstime += tgstime + sig->cstime; 1047 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1048 psig->cmin_flt += 1049 p->min_flt + sig->min_flt + sig->cmin_flt; 1050 psig->cmaj_flt += 1051 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1052 psig->cnvcsw += 1053 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1054 psig->cnivcsw += 1055 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1056 psig->cinblock += 1057 task_io_get_inblock(p) + 1058 sig->inblock + sig->cinblock; 1059 psig->coublock += 1060 task_io_get_oublock(p) + 1061 sig->oublock + sig->coublock; 1062 maxrss = max(sig->maxrss, sig->cmaxrss); 1063 if (psig->cmaxrss < maxrss) 1064 psig->cmaxrss = maxrss; 1065 task_io_accounting_add(&psig->ioac, &p->ioac); 1066 task_io_accounting_add(&psig->ioac, &sig->ioac); 1067 write_sequnlock(&psig->stats_lock); 1068 spin_unlock_irq(¤t->sighand->siglock); 1069 } 1070 1071 if (wo->wo_rusage) 1072 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1073 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1074 ? p->signal->group_exit_code : p->exit_code; 1075 wo->wo_stat = status; 1076 1077 if (state == EXIT_TRACE) { 1078 write_lock_irq(&tasklist_lock); 1079 /* We dropped tasklist, ptracer could die and untrace */ 1080 ptrace_unlink(p); 1081 1082 /* If parent wants a zombie, don't release it now */ 1083 state = EXIT_ZOMBIE; 1084 if (do_notify_parent(p, p->exit_signal)) 1085 state = EXIT_DEAD; 1086 p->exit_state = state; 1087 write_unlock_irq(&tasklist_lock); 1088 } 1089 if (state == EXIT_DEAD) 1090 release_task(p); 1091 1092 out_info: 1093 infop = wo->wo_info; 1094 if (infop) { 1095 if ((status & 0x7f) == 0) { 1096 infop->cause = CLD_EXITED; 1097 infop->status = status >> 8; 1098 } else { 1099 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1100 infop->status = status & 0x7f; 1101 } 1102 infop->pid = pid; 1103 infop->uid = uid; 1104 } 1105 1106 return pid; 1107 } 1108 1109 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1110 { 1111 if (ptrace) { 1112 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1113 return &p->exit_code; 1114 } else { 1115 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1116 return &p->signal->group_exit_code; 1117 } 1118 return NULL; 1119 } 1120 1121 /** 1122 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1123 * @wo: wait options 1124 * @ptrace: is the wait for ptrace 1125 * @p: task to wait for 1126 * 1127 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1128 * 1129 * CONTEXT: 1130 * read_lock(&tasklist_lock), which is released if return value is 1131 * non-zero. Also, grabs and releases @p->sighand->siglock. 1132 * 1133 * RETURNS: 1134 * 0 if wait condition didn't exist and search for other wait conditions 1135 * should continue. Non-zero return, -errno on failure and @p's pid on 1136 * success, implies that tasklist_lock is released and wait condition 1137 * search should terminate. 1138 */ 1139 static int wait_task_stopped(struct wait_opts *wo, 1140 int ptrace, struct task_struct *p) 1141 { 1142 struct waitid_info *infop; 1143 int exit_code, *p_code, why; 1144 uid_t uid = 0; /* unneeded, required by compiler */ 1145 pid_t pid; 1146 1147 /* 1148 * Traditionally we see ptrace'd stopped tasks regardless of options. 1149 */ 1150 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1151 return 0; 1152 1153 if (!task_stopped_code(p, ptrace)) 1154 return 0; 1155 1156 exit_code = 0; 1157 spin_lock_irq(&p->sighand->siglock); 1158 1159 p_code = task_stopped_code(p, ptrace); 1160 if (unlikely(!p_code)) 1161 goto unlock_sig; 1162 1163 exit_code = *p_code; 1164 if (!exit_code) 1165 goto unlock_sig; 1166 1167 if (!unlikely(wo->wo_flags & WNOWAIT)) 1168 *p_code = 0; 1169 1170 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1171 unlock_sig: 1172 spin_unlock_irq(&p->sighand->siglock); 1173 if (!exit_code) 1174 return 0; 1175 1176 /* 1177 * Now we are pretty sure this task is interesting. 1178 * Make sure it doesn't get reaped out from under us while we 1179 * give up the lock and then examine it below. We don't want to 1180 * keep holding onto the tasklist_lock while we call getrusage and 1181 * possibly take page faults for user memory. 1182 */ 1183 get_task_struct(p); 1184 pid = task_pid_vnr(p); 1185 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1186 read_unlock(&tasklist_lock); 1187 sched_annotate_sleep(); 1188 if (wo->wo_rusage) 1189 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1190 put_task_struct(p); 1191 1192 if (likely(!(wo->wo_flags & WNOWAIT))) 1193 wo->wo_stat = (exit_code << 8) | 0x7f; 1194 1195 infop = wo->wo_info; 1196 if (infop) { 1197 infop->cause = why; 1198 infop->status = exit_code; 1199 infop->pid = pid; 1200 infop->uid = uid; 1201 } 1202 return pid; 1203 } 1204 1205 /* 1206 * Handle do_wait work for one task in a live, non-stopped state. 1207 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1208 * the lock and this task is uninteresting. If we return nonzero, we have 1209 * released the lock and the system call should return. 1210 */ 1211 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1212 { 1213 struct waitid_info *infop; 1214 pid_t pid; 1215 uid_t uid; 1216 1217 if (!unlikely(wo->wo_flags & WCONTINUED)) 1218 return 0; 1219 1220 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1221 return 0; 1222 1223 spin_lock_irq(&p->sighand->siglock); 1224 /* Re-check with the lock held. */ 1225 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1226 spin_unlock_irq(&p->sighand->siglock); 1227 return 0; 1228 } 1229 if (!unlikely(wo->wo_flags & WNOWAIT)) 1230 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1231 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1232 spin_unlock_irq(&p->sighand->siglock); 1233 1234 pid = task_pid_vnr(p); 1235 get_task_struct(p); 1236 read_unlock(&tasklist_lock); 1237 sched_annotate_sleep(); 1238 if (wo->wo_rusage) 1239 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1240 put_task_struct(p); 1241 1242 infop = wo->wo_info; 1243 if (!infop) { 1244 wo->wo_stat = 0xffff; 1245 } else { 1246 infop->cause = CLD_CONTINUED; 1247 infop->pid = pid; 1248 infop->uid = uid; 1249 infop->status = SIGCONT; 1250 } 1251 return pid; 1252 } 1253 1254 /* 1255 * Consider @p for a wait by @parent. 1256 * 1257 * -ECHILD should be in ->notask_error before the first call. 1258 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1259 * Returns zero if the search for a child should continue; 1260 * then ->notask_error is 0 if @p is an eligible child, 1261 * or still -ECHILD. 1262 */ 1263 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1264 struct task_struct *p) 1265 { 1266 /* 1267 * We can race with wait_task_zombie() from another thread. 1268 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1269 * can't confuse the checks below. 1270 */ 1271 int exit_state = READ_ONCE(p->exit_state); 1272 int ret; 1273 1274 if (unlikely(exit_state == EXIT_DEAD)) 1275 return 0; 1276 1277 ret = eligible_child(wo, ptrace, p); 1278 if (!ret) 1279 return ret; 1280 1281 if (unlikely(exit_state == EXIT_TRACE)) { 1282 /* 1283 * ptrace == 0 means we are the natural parent. In this case 1284 * we should clear notask_error, debugger will notify us. 1285 */ 1286 if (likely(!ptrace)) 1287 wo->notask_error = 0; 1288 return 0; 1289 } 1290 1291 if (likely(!ptrace) && unlikely(p->ptrace)) { 1292 /* 1293 * If it is traced by its real parent's group, just pretend 1294 * the caller is ptrace_do_wait() and reap this child if it 1295 * is zombie. 1296 * 1297 * This also hides group stop state from real parent; otherwise 1298 * a single stop can be reported twice as group and ptrace stop. 1299 * If a ptracer wants to distinguish these two events for its 1300 * own children it should create a separate process which takes 1301 * the role of real parent. 1302 */ 1303 if (!ptrace_reparented(p)) 1304 ptrace = 1; 1305 } 1306 1307 /* slay zombie? */ 1308 if (exit_state == EXIT_ZOMBIE) { 1309 /* we don't reap group leaders with subthreads */ 1310 if (!delay_group_leader(p)) { 1311 /* 1312 * A zombie ptracee is only visible to its ptracer. 1313 * Notification and reaping will be cascaded to the 1314 * real parent when the ptracer detaches. 1315 */ 1316 if (unlikely(ptrace) || likely(!p->ptrace)) 1317 return wait_task_zombie(wo, p); 1318 } 1319 1320 /* 1321 * Allow access to stopped/continued state via zombie by 1322 * falling through. Clearing of notask_error is complex. 1323 * 1324 * When !@ptrace: 1325 * 1326 * If WEXITED is set, notask_error should naturally be 1327 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1328 * so, if there are live subthreads, there are events to 1329 * wait for. If all subthreads are dead, it's still safe 1330 * to clear - this function will be called again in finite 1331 * amount time once all the subthreads are released and 1332 * will then return without clearing. 1333 * 1334 * When @ptrace: 1335 * 1336 * Stopped state is per-task and thus can't change once the 1337 * target task dies. Only continued and exited can happen. 1338 * Clear notask_error if WCONTINUED | WEXITED. 1339 */ 1340 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1341 wo->notask_error = 0; 1342 } else { 1343 /* 1344 * @p is alive and it's gonna stop, continue or exit, so 1345 * there always is something to wait for. 1346 */ 1347 wo->notask_error = 0; 1348 } 1349 1350 /* 1351 * Wait for stopped. Depending on @ptrace, different stopped state 1352 * is used and the two don't interact with each other. 1353 */ 1354 ret = wait_task_stopped(wo, ptrace, p); 1355 if (ret) 1356 return ret; 1357 1358 /* 1359 * Wait for continued. There's only one continued state and the 1360 * ptracer can consume it which can confuse the real parent. Don't 1361 * use WCONTINUED from ptracer. You don't need or want it. 1362 */ 1363 return wait_task_continued(wo, p); 1364 } 1365 1366 /* 1367 * Do the work of do_wait() for one thread in the group, @tsk. 1368 * 1369 * -ECHILD should be in ->notask_error before the first call. 1370 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1371 * Returns zero if the search for a child should continue; then 1372 * ->notask_error is 0 if there were any eligible children, 1373 * or still -ECHILD. 1374 */ 1375 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1376 { 1377 struct task_struct *p; 1378 1379 list_for_each_entry(p, &tsk->children, sibling) { 1380 int ret = wait_consider_task(wo, 0, p); 1381 1382 if (ret) 1383 return ret; 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1390 { 1391 struct task_struct *p; 1392 1393 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1394 int ret = wait_consider_task(wo, 1, p); 1395 1396 if (ret) 1397 return ret; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1404 int sync, void *key) 1405 { 1406 struct wait_opts *wo = container_of(wait, struct wait_opts, 1407 child_wait); 1408 struct task_struct *p = key; 1409 1410 if (!eligible_pid(wo, p)) 1411 return 0; 1412 1413 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1414 return 0; 1415 1416 return default_wake_function(wait, mode, sync, key); 1417 } 1418 1419 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1420 { 1421 __wake_up_sync_key(&parent->signal->wait_chldexit, 1422 TASK_INTERRUPTIBLE, p); 1423 } 1424 1425 static long do_wait(struct wait_opts *wo) 1426 { 1427 struct task_struct *tsk; 1428 int retval; 1429 1430 trace_sched_process_wait(wo->wo_pid); 1431 1432 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1433 wo->child_wait.private = current; 1434 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1435 repeat: 1436 /* 1437 * If there is nothing that can match our criteria, just get out. 1438 * We will clear ->notask_error to zero if we see any child that 1439 * might later match our criteria, even if we are not able to reap 1440 * it yet. 1441 */ 1442 wo->notask_error = -ECHILD; 1443 if ((wo->wo_type < PIDTYPE_MAX) && 1444 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1445 goto notask; 1446 1447 set_current_state(TASK_INTERRUPTIBLE); 1448 read_lock(&tasklist_lock); 1449 tsk = current; 1450 do { 1451 retval = do_wait_thread(wo, tsk); 1452 if (retval) 1453 goto end; 1454 1455 retval = ptrace_do_wait(wo, tsk); 1456 if (retval) 1457 goto end; 1458 1459 if (wo->wo_flags & __WNOTHREAD) 1460 break; 1461 } while_each_thread(current, tsk); 1462 read_unlock(&tasklist_lock); 1463 1464 notask: 1465 retval = wo->notask_error; 1466 if (!retval && !(wo->wo_flags & WNOHANG)) { 1467 retval = -ERESTARTSYS; 1468 if (!signal_pending(current)) { 1469 schedule(); 1470 goto repeat; 1471 } 1472 } 1473 end: 1474 __set_current_state(TASK_RUNNING); 1475 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1476 return retval; 1477 } 1478 1479 static struct pid *pidfd_get_pid(unsigned int fd) 1480 { 1481 struct fd f; 1482 struct pid *pid; 1483 1484 f = fdget(fd); 1485 if (!f.file) 1486 return ERR_PTR(-EBADF); 1487 1488 pid = pidfd_pid(f.file); 1489 if (!IS_ERR(pid)) 1490 get_pid(pid); 1491 1492 fdput(f); 1493 return pid; 1494 } 1495 1496 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1497 int options, struct rusage *ru) 1498 { 1499 struct wait_opts wo; 1500 struct pid *pid = NULL; 1501 enum pid_type type; 1502 long ret; 1503 1504 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1505 __WNOTHREAD|__WCLONE|__WALL)) 1506 return -EINVAL; 1507 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1508 return -EINVAL; 1509 1510 switch (which) { 1511 case P_ALL: 1512 type = PIDTYPE_MAX; 1513 break; 1514 case P_PID: 1515 type = PIDTYPE_PID; 1516 if (upid <= 0) 1517 return -EINVAL; 1518 1519 pid = find_get_pid(upid); 1520 break; 1521 case P_PGID: 1522 type = PIDTYPE_PGID; 1523 if (upid < 0) 1524 return -EINVAL; 1525 1526 if (upid) 1527 pid = find_get_pid(upid); 1528 else 1529 pid = get_task_pid(current, PIDTYPE_PGID); 1530 break; 1531 case P_PIDFD: 1532 type = PIDTYPE_PID; 1533 if (upid < 0) 1534 return -EINVAL; 1535 1536 pid = pidfd_get_pid(upid); 1537 if (IS_ERR(pid)) 1538 return PTR_ERR(pid); 1539 break; 1540 default: 1541 return -EINVAL; 1542 } 1543 1544 wo.wo_type = type; 1545 wo.wo_pid = pid; 1546 wo.wo_flags = options; 1547 wo.wo_info = infop; 1548 wo.wo_rusage = ru; 1549 ret = do_wait(&wo); 1550 1551 put_pid(pid); 1552 return ret; 1553 } 1554 1555 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1556 infop, int, options, struct rusage __user *, ru) 1557 { 1558 struct rusage r; 1559 struct waitid_info info = {.status = 0}; 1560 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1561 int signo = 0; 1562 1563 if (err > 0) { 1564 signo = SIGCHLD; 1565 err = 0; 1566 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1567 return -EFAULT; 1568 } 1569 if (!infop) 1570 return err; 1571 1572 if (!user_write_access_begin(infop, sizeof(*infop))) 1573 return -EFAULT; 1574 1575 unsafe_put_user(signo, &infop->si_signo, Efault); 1576 unsafe_put_user(0, &infop->si_errno, Efault); 1577 unsafe_put_user(info.cause, &infop->si_code, Efault); 1578 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1579 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1580 unsafe_put_user(info.status, &infop->si_status, Efault); 1581 user_write_access_end(); 1582 return err; 1583 Efault: 1584 user_write_access_end(); 1585 return -EFAULT; 1586 } 1587 1588 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1589 struct rusage *ru) 1590 { 1591 struct wait_opts wo; 1592 struct pid *pid = NULL; 1593 enum pid_type type; 1594 long ret; 1595 1596 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1597 __WNOTHREAD|__WCLONE|__WALL)) 1598 return -EINVAL; 1599 1600 /* -INT_MIN is not defined */ 1601 if (upid == INT_MIN) 1602 return -ESRCH; 1603 1604 if (upid == -1) 1605 type = PIDTYPE_MAX; 1606 else if (upid < 0) { 1607 type = PIDTYPE_PGID; 1608 pid = find_get_pid(-upid); 1609 } else if (upid == 0) { 1610 type = PIDTYPE_PGID; 1611 pid = get_task_pid(current, PIDTYPE_PGID); 1612 } else /* upid > 0 */ { 1613 type = PIDTYPE_PID; 1614 pid = find_get_pid(upid); 1615 } 1616 1617 wo.wo_type = type; 1618 wo.wo_pid = pid; 1619 wo.wo_flags = options | WEXITED; 1620 wo.wo_info = NULL; 1621 wo.wo_stat = 0; 1622 wo.wo_rusage = ru; 1623 ret = do_wait(&wo); 1624 put_pid(pid); 1625 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1626 ret = -EFAULT; 1627 1628 return ret; 1629 } 1630 1631 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1632 int, options, struct rusage __user *, ru) 1633 { 1634 struct rusage r; 1635 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1636 1637 if (err > 0) { 1638 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1639 return -EFAULT; 1640 } 1641 return err; 1642 } 1643 1644 #ifdef __ARCH_WANT_SYS_WAITPID 1645 1646 /* 1647 * sys_waitpid() remains for compatibility. waitpid() should be 1648 * implemented by calling sys_wait4() from libc.a. 1649 */ 1650 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1651 { 1652 return kernel_wait4(pid, stat_addr, options, NULL); 1653 } 1654 1655 #endif 1656 1657 #ifdef CONFIG_COMPAT 1658 COMPAT_SYSCALL_DEFINE4(wait4, 1659 compat_pid_t, pid, 1660 compat_uint_t __user *, stat_addr, 1661 int, options, 1662 struct compat_rusage __user *, ru) 1663 { 1664 struct rusage r; 1665 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1666 if (err > 0) { 1667 if (ru && put_compat_rusage(&r, ru)) 1668 return -EFAULT; 1669 } 1670 return err; 1671 } 1672 1673 COMPAT_SYSCALL_DEFINE5(waitid, 1674 int, which, compat_pid_t, pid, 1675 struct compat_siginfo __user *, infop, int, options, 1676 struct compat_rusage __user *, uru) 1677 { 1678 struct rusage ru; 1679 struct waitid_info info = {.status = 0}; 1680 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1681 int signo = 0; 1682 if (err > 0) { 1683 signo = SIGCHLD; 1684 err = 0; 1685 if (uru) { 1686 /* kernel_waitid() overwrites everything in ru */ 1687 if (COMPAT_USE_64BIT_TIME) 1688 err = copy_to_user(uru, &ru, sizeof(ru)); 1689 else 1690 err = put_compat_rusage(&ru, uru); 1691 if (err) 1692 return -EFAULT; 1693 } 1694 } 1695 1696 if (!infop) 1697 return err; 1698 1699 if (!user_write_access_begin(infop, sizeof(*infop))) 1700 return -EFAULT; 1701 1702 unsafe_put_user(signo, &infop->si_signo, Efault); 1703 unsafe_put_user(0, &infop->si_errno, Efault); 1704 unsafe_put_user(info.cause, &infop->si_code, Efault); 1705 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1706 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1707 unsafe_put_user(info.status, &infop->si_status, Efault); 1708 user_write_access_end(); 1709 return err; 1710 Efault: 1711 user_write_access_end(); 1712 return -EFAULT; 1713 } 1714 #endif 1715 1716 /** 1717 * thread_group_exited - check that a thread group has exited 1718 * @pid: tgid of thread group to be checked. 1719 * 1720 * Test if the thread group represented by tgid has exited (all 1721 * threads are zombies, dead or completely gone). 1722 * 1723 * Return: true if the thread group has exited. false otherwise. 1724 */ 1725 bool thread_group_exited(struct pid *pid) 1726 { 1727 struct task_struct *task; 1728 bool exited; 1729 1730 rcu_read_lock(); 1731 task = pid_task(pid, PIDTYPE_PID); 1732 exited = !task || 1733 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1734 rcu_read_unlock(); 1735 1736 return exited; 1737 } 1738 EXPORT_SYMBOL(thread_group_exited); 1739 1740 __weak void abort(void) 1741 { 1742 BUG(); 1743 1744 /* if that doesn't kill us, halt */ 1745 panic("Oops failed to kill thread"); 1746 } 1747 EXPORT_SYMBOL(abort); 1748