1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/unistd.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *tty; 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 void put_task_struct_rcu_user(struct task_struct *task) 177 { 178 if (refcount_dec_and_test(&task->rcu_users)) 179 call_rcu(&task->rcu, delayed_put_task_struct); 180 } 181 182 void release_task(struct task_struct *p) 183 { 184 struct task_struct *leader; 185 struct pid *thread_pid; 186 int zap_leader; 187 repeat: 188 /* don't need to get the RCU readlock here - the process is dead and 189 * can't be modifying its own credentials. But shut RCU-lockdep up */ 190 rcu_read_lock(); 191 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 192 rcu_read_unlock(); 193 194 cgroup_release(p); 195 196 write_lock_irq(&tasklist_lock); 197 ptrace_release_task(p); 198 thread_pid = get_pid(p->thread_pid); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 seccomp_filter_release(p); 222 proc_flush_pid(thread_pid); 223 put_pid(thread_pid); 224 release_thread(p); 225 put_task_struct_rcu_user(p); 226 227 p = leader; 228 if (unlikely(zap_leader)) 229 goto repeat; 230 } 231 232 int rcuwait_wake_up(struct rcuwait *w) 233 { 234 int ret = 0; 235 struct task_struct *task; 236 237 rcu_read_lock(); 238 239 /* 240 * Order condition vs @task, such that everything prior to the load 241 * of @task is visible. This is the condition as to why the user called 242 * rcuwait_wake() in the first place. Pairs with set_current_state() 243 * barrier (A) in rcuwait_wait_event(). 244 * 245 * WAIT WAKE 246 * [S] tsk = current [S] cond = true 247 * MB (A) MB (B) 248 * [L] cond [L] tsk 249 */ 250 smp_mb(); /* (B) */ 251 252 task = rcu_dereference(w->task); 253 if (task) 254 ret = wake_up_process(task); 255 rcu_read_unlock(); 256 257 return ret; 258 } 259 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 260 261 /* 262 * Determine if a process group is "orphaned", according to the POSIX 263 * definition in 2.2.2.52. Orphaned process groups are not to be affected 264 * by terminal-generated stop signals. Newly orphaned process groups are 265 * to receive a SIGHUP and a SIGCONT. 266 * 267 * "I ask you, have you ever known what it is to be an orphan?" 268 */ 269 static int will_become_orphaned_pgrp(struct pid *pgrp, 270 struct task_struct *ignored_task) 271 { 272 struct task_struct *p; 273 274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 275 if ((p == ignored_task) || 276 (p->exit_state && thread_group_empty(p)) || 277 is_global_init(p->real_parent)) 278 continue; 279 280 if (task_pgrp(p->real_parent) != pgrp && 281 task_session(p->real_parent) == task_session(p)) 282 return 0; 283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 284 285 return 1; 286 } 287 288 int is_current_pgrp_orphaned(void) 289 { 290 int retval; 291 292 read_lock(&tasklist_lock); 293 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 294 read_unlock(&tasklist_lock); 295 296 return retval; 297 } 298 299 static bool has_stopped_jobs(struct pid *pgrp) 300 { 301 struct task_struct *p; 302 303 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 304 if (p->signal->flags & SIGNAL_STOP_STOPPED) 305 return true; 306 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 307 308 return false; 309 } 310 311 /* 312 * Check to see if any process groups have become orphaned as 313 * a result of our exiting, and if they have any stopped jobs, 314 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 315 */ 316 static void 317 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 318 { 319 struct pid *pgrp = task_pgrp(tsk); 320 struct task_struct *ignored_task = tsk; 321 322 if (!parent) 323 /* exit: our father is in a different pgrp than 324 * we are and we were the only connection outside. 325 */ 326 parent = tsk->real_parent; 327 else 328 /* reparent: our child is in a different pgrp than 329 * we are, and it was the only connection outside. 330 */ 331 ignored_task = NULL; 332 333 if (task_pgrp(parent) != pgrp && 334 task_session(parent) == task_session(tsk) && 335 will_become_orphaned_pgrp(pgrp, ignored_task) && 336 has_stopped_jobs(pgrp)) { 337 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 338 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 339 } 340 } 341 342 #ifdef CONFIG_MEMCG 343 /* 344 * A task is exiting. If it owned this mm, find a new owner for the mm. 345 */ 346 void mm_update_next_owner(struct mm_struct *mm) 347 { 348 struct task_struct *c, *g, *p = current; 349 350 retry: 351 /* 352 * If the exiting or execing task is not the owner, it's 353 * someone else's problem. 354 */ 355 if (mm->owner != p) 356 return; 357 /* 358 * The current owner is exiting/execing and there are no other 359 * candidates. Do not leave the mm pointing to a possibly 360 * freed task structure. 361 */ 362 if (atomic_read(&mm->mm_users) <= 1) { 363 WRITE_ONCE(mm->owner, NULL); 364 return; 365 } 366 367 read_lock(&tasklist_lock); 368 /* 369 * Search in the children 370 */ 371 list_for_each_entry(c, &p->children, sibling) { 372 if (c->mm == mm) 373 goto assign_new_owner; 374 } 375 376 /* 377 * Search in the siblings 378 */ 379 list_for_each_entry(c, &p->real_parent->children, sibling) { 380 if (c->mm == mm) 381 goto assign_new_owner; 382 } 383 384 /* 385 * Search through everything else, we should not get here often. 386 */ 387 for_each_process(g) { 388 if (g->flags & PF_KTHREAD) 389 continue; 390 for_each_thread(g, c) { 391 if (c->mm == mm) 392 goto assign_new_owner; 393 if (c->mm) 394 break; 395 } 396 } 397 read_unlock(&tasklist_lock); 398 /* 399 * We found no owner yet mm_users > 1: this implies that we are 400 * most likely racing with swapoff (try_to_unuse()) or /proc or 401 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 402 */ 403 WRITE_ONCE(mm->owner, NULL); 404 return; 405 406 assign_new_owner: 407 BUG_ON(c == p); 408 get_task_struct(c); 409 /* 410 * The task_lock protects c->mm from changing. 411 * We always want mm->owner->mm == mm 412 */ 413 task_lock(c); 414 /* 415 * Delay read_unlock() till we have the task_lock() 416 * to ensure that c does not slip away underneath us 417 */ 418 read_unlock(&tasklist_lock); 419 if (c->mm != mm) { 420 task_unlock(c); 421 put_task_struct(c); 422 goto retry; 423 } 424 WRITE_ONCE(mm->owner, c); 425 task_unlock(c); 426 put_task_struct(c); 427 } 428 #endif /* CONFIG_MEMCG */ 429 430 /* 431 * Turn us into a lazy TLB process if we 432 * aren't already.. 433 */ 434 static void exit_mm(void) 435 { 436 struct mm_struct *mm = current->mm; 437 struct core_state *core_state; 438 439 exit_mm_release(current, mm); 440 if (!mm) 441 return; 442 sync_mm_rss(mm); 443 /* 444 * Serialize with any possible pending coredump. 445 * We must hold mmap_lock around checking core_state 446 * and clearing tsk->mm. The core-inducing thread 447 * will increment ->nr_threads for each thread in the 448 * group with ->mm != NULL. 449 */ 450 mmap_read_lock(mm); 451 core_state = mm->core_state; 452 if (core_state) { 453 struct core_thread self; 454 455 mmap_read_unlock(mm); 456 457 self.task = current; 458 if (self.task->flags & PF_SIGNALED) 459 self.next = xchg(&core_state->dumper.next, &self); 460 else 461 self.task = NULL; 462 /* 463 * Implies mb(), the result of xchg() must be visible 464 * to core_state->dumper. 465 */ 466 if (atomic_dec_and_test(&core_state->nr_threads)) 467 complete(&core_state->startup); 468 469 for (;;) { 470 set_current_state(TASK_UNINTERRUPTIBLE); 471 if (!self.task) /* see coredump_finish() */ 472 break; 473 freezable_schedule(); 474 } 475 __set_current_state(TASK_RUNNING); 476 mmap_read_lock(mm); 477 } 478 mmgrab(mm); 479 BUG_ON(mm != current->active_mm); 480 /* more a memory barrier than a real lock */ 481 task_lock(current); 482 /* 483 * When a thread stops operating on an address space, the loop 484 * in membarrier_private_expedited() may not observe that 485 * tsk->mm, and the loop in membarrier_global_expedited() may 486 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 487 * rq->membarrier_state, so those would not issue an IPI. 488 * Membarrier requires a memory barrier after accessing 489 * user-space memory, before clearing tsk->mm or the 490 * rq->membarrier_state. 491 */ 492 smp_mb__after_spinlock(); 493 local_irq_disable(); 494 current->mm = NULL; 495 membarrier_update_current_mm(NULL); 496 enter_lazy_tlb(mm, current); 497 local_irq_enable(); 498 task_unlock(current); 499 mmap_read_unlock(mm); 500 mm_update_next_owner(mm); 501 mmput(mm); 502 if (test_thread_flag(TIF_MEMDIE)) 503 exit_oom_victim(); 504 } 505 506 static struct task_struct *find_alive_thread(struct task_struct *p) 507 { 508 struct task_struct *t; 509 510 for_each_thread(p, t) { 511 if (!(t->flags & PF_EXITING)) 512 return t; 513 } 514 return NULL; 515 } 516 517 static struct task_struct *find_child_reaper(struct task_struct *father, 518 struct list_head *dead) 519 __releases(&tasklist_lock) 520 __acquires(&tasklist_lock) 521 { 522 struct pid_namespace *pid_ns = task_active_pid_ns(father); 523 struct task_struct *reaper = pid_ns->child_reaper; 524 struct task_struct *p, *n; 525 526 if (likely(reaper != father)) 527 return reaper; 528 529 reaper = find_alive_thread(father); 530 if (reaper) { 531 pid_ns->child_reaper = reaper; 532 return reaper; 533 } 534 535 write_unlock_irq(&tasklist_lock); 536 537 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 538 list_del_init(&p->ptrace_entry); 539 release_task(p); 540 } 541 542 zap_pid_ns_processes(pid_ns); 543 write_lock_irq(&tasklist_lock); 544 545 return father; 546 } 547 548 /* 549 * When we die, we re-parent all our children, and try to: 550 * 1. give them to another thread in our thread group, if such a member exists 551 * 2. give it to the first ancestor process which prctl'd itself as a 552 * child_subreaper for its children (like a service manager) 553 * 3. give it to the init process (PID 1) in our pid namespace 554 */ 555 static struct task_struct *find_new_reaper(struct task_struct *father, 556 struct task_struct *child_reaper) 557 { 558 struct task_struct *thread, *reaper; 559 560 thread = find_alive_thread(father); 561 if (thread) 562 return thread; 563 564 if (father->signal->has_child_subreaper) { 565 unsigned int ns_level = task_pid(father)->level; 566 /* 567 * Find the first ->is_child_subreaper ancestor in our pid_ns. 568 * We can't check reaper != child_reaper to ensure we do not 569 * cross the namespaces, the exiting parent could be injected 570 * by setns() + fork(). 571 * We check pid->level, this is slightly more efficient than 572 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 573 */ 574 for (reaper = father->real_parent; 575 task_pid(reaper)->level == ns_level; 576 reaper = reaper->real_parent) { 577 if (reaper == &init_task) 578 break; 579 if (!reaper->signal->is_child_subreaper) 580 continue; 581 thread = find_alive_thread(reaper); 582 if (thread) 583 return thread; 584 } 585 } 586 587 return child_reaper; 588 } 589 590 /* 591 * Any that need to be release_task'd are put on the @dead list. 592 */ 593 static void reparent_leader(struct task_struct *father, struct task_struct *p, 594 struct list_head *dead) 595 { 596 if (unlikely(p->exit_state == EXIT_DEAD)) 597 return; 598 599 /* We don't want people slaying init. */ 600 p->exit_signal = SIGCHLD; 601 602 /* If it has exited notify the new parent about this child's death. */ 603 if (!p->ptrace && 604 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 605 if (do_notify_parent(p, p->exit_signal)) { 606 p->exit_state = EXIT_DEAD; 607 list_add(&p->ptrace_entry, dead); 608 } 609 } 610 611 kill_orphaned_pgrp(p, father); 612 } 613 614 /* 615 * This does two things: 616 * 617 * A. Make init inherit all the child processes 618 * B. Check to see if any process groups have become orphaned 619 * as a result of our exiting, and if they have any stopped 620 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 621 */ 622 static void forget_original_parent(struct task_struct *father, 623 struct list_head *dead) 624 { 625 struct task_struct *p, *t, *reaper; 626 627 if (unlikely(!list_empty(&father->ptraced))) 628 exit_ptrace(father, dead); 629 630 /* Can drop and reacquire tasklist_lock */ 631 reaper = find_child_reaper(father, dead); 632 if (list_empty(&father->children)) 633 return; 634 635 reaper = find_new_reaper(father, reaper); 636 list_for_each_entry(p, &father->children, sibling) { 637 for_each_thread(p, t) { 638 RCU_INIT_POINTER(t->real_parent, reaper); 639 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 640 if (likely(!t->ptrace)) 641 t->parent = t->real_parent; 642 if (t->pdeath_signal) 643 group_send_sig_info(t->pdeath_signal, 644 SEND_SIG_NOINFO, t, 645 PIDTYPE_TGID); 646 } 647 /* 648 * If this is a threaded reparent there is no need to 649 * notify anyone anything has happened. 650 */ 651 if (!same_thread_group(reaper, father)) 652 reparent_leader(father, p, dead); 653 } 654 list_splice_tail_init(&father->children, &reaper->children); 655 } 656 657 /* 658 * Send signals to all our closest relatives so that they know 659 * to properly mourn us.. 660 */ 661 static void exit_notify(struct task_struct *tsk, int group_dead) 662 { 663 bool autoreap; 664 struct task_struct *p, *n; 665 LIST_HEAD(dead); 666 667 write_lock_irq(&tasklist_lock); 668 forget_original_parent(tsk, &dead); 669 670 if (group_dead) 671 kill_orphaned_pgrp(tsk->group_leader, NULL); 672 673 tsk->exit_state = EXIT_ZOMBIE; 674 if (unlikely(tsk->ptrace)) { 675 int sig = thread_group_leader(tsk) && 676 thread_group_empty(tsk) && 677 !ptrace_reparented(tsk) ? 678 tsk->exit_signal : SIGCHLD; 679 autoreap = do_notify_parent(tsk, sig); 680 } else if (thread_group_leader(tsk)) { 681 autoreap = thread_group_empty(tsk) && 682 do_notify_parent(tsk, tsk->exit_signal); 683 } else { 684 autoreap = true; 685 } 686 687 if (autoreap) { 688 tsk->exit_state = EXIT_DEAD; 689 list_add(&tsk->ptrace_entry, &dead); 690 } 691 692 /* mt-exec, de_thread() is waiting for group leader */ 693 if (unlikely(tsk->signal->notify_count < 0)) 694 wake_up_process(tsk->signal->group_exit_task); 695 write_unlock_irq(&tasklist_lock); 696 697 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 698 list_del_init(&p->ptrace_entry); 699 release_task(p); 700 } 701 } 702 703 #ifdef CONFIG_DEBUG_STACK_USAGE 704 static void check_stack_usage(void) 705 { 706 static DEFINE_SPINLOCK(low_water_lock); 707 static int lowest_to_date = THREAD_SIZE; 708 unsigned long free; 709 710 free = stack_not_used(current); 711 712 if (free >= lowest_to_date) 713 return; 714 715 spin_lock(&low_water_lock); 716 if (free < lowest_to_date) { 717 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 718 current->comm, task_pid_nr(current), free); 719 lowest_to_date = free; 720 } 721 spin_unlock(&low_water_lock); 722 } 723 #else 724 static inline void check_stack_usage(void) {} 725 #endif 726 727 void __noreturn do_exit(long code) 728 { 729 struct task_struct *tsk = current; 730 int group_dead; 731 732 /* 733 * We can get here from a kernel oops, sometimes with preemption off. 734 * Start by checking for critical errors. 735 * Then fix up important state like USER_DS and preemption. 736 * Then do everything else. 737 */ 738 739 WARN_ON(blk_needs_flush_plug(tsk)); 740 741 if (unlikely(in_interrupt())) 742 panic("Aiee, killing interrupt handler!"); 743 if (unlikely(!tsk->pid)) 744 panic("Attempted to kill the idle task!"); 745 746 /* 747 * If do_exit is called because this processes oopsed, it's possible 748 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 749 * continuing. Amongst other possible reasons, this is to prevent 750 * mm_release()->clear_child_tid() from writing to a user-controlled 751 * kernel address. 752 */ 753 force_uaccess_begin(); 754 755 if (unlikely(in_atomic())) { 756 pr_info("note: %s[%d] exited with preempt_count %d\n", 757 current->comm, task_pid_nr(current), 758 preempt_count()); 759 preempt_count_set(PREEMPT_ENABLED); 760 } 761 762 profile_task_exit(tsk); 763 kcov_task_exit(tsk); 764 765 ptrace_event(PTRACE_EVENT_EXIT, code); 766 767 validate_creds_for_do_exit(tsk); 768 769 /* 770 * We're taking recursive faults here in do_exit. Safest is to just 771 * leave this task alone and wait for reboot. 772 */ 773 if (unlikely(tsk->flags & PF_EXITING)) { 774 pr_alert("Fixing recursive fault but reboot is needed!\n"); 775 futex_exit_recursive(tsk); 776 set_current_state(TASK_UNINTERRUPTIBLE); 777 schedule(); 778 } 779 780 io_uring_files_cancel(tsk->files); 781 exit_signals(tsk); /* sets PF_EXITING */ 782 783 /* sync mm's RSS info before statistics gathering */ 784 if (tsk->mm) 785 sync_mm_rss(tsk->mm); 786 acct_update_integrals(tsk); 787 group_dead = atomic_dec_and_test(&tsk->signal->live); 788 if (group_dead) { 789 /* 790 * If the last thread of global init has exited, panic 791 * immediately to get a useable coredump. 792 */ 793 if (unlikely(is_global_init(tsk))) 794 panic("Attempted to kill init! exitcode=0x%08x\n", 795 tsk->signal->group_exit_code ?: (int)code); 796 797 #ifdef CONFIG_POSIX_TIMERS 798 hrtimer_cancel(&tsk->signal->real_timer); 799 exit_itimers(tsk->signal); 800 #endif 801 if (tsk->mm) 802 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 803 } 804 acct_collect(code, group_dead); 805 if (group_dead) 806 tty_audit_exit(); 807 audit_free(tsk); 808 809 tsk->exit_code = code; 810 taskstats_exit(tsk, group_dead); 811 812 exit_mm(); 813 814 if (group_dead) 815 acct_process(); 816 trace_sched_process_exit(tsk); 817 818 exit_sem(tsk); 819 exit_shm(tsk); 820 exit_files(tsk); 821 exit_fs(tsk); 822 if (group_dead) 823 disassociate_ctty(1); 824 exit_task_namespaces(tsk); 825 exit_task_work(tsk); 826 exit_thread(tsk); 827 828 /* 829 * Flush inherited counters to the parent - before the parent 830 * gets woken up by child-exit notifications. 831 * 832 * because of cgroup mode, must be called before cgroup_exit() 833 */ 834 perf_event_exit_task(tsk); 835 836 sched_autogroup_exit_task(tsk); 837 cgroup_exit(tsk); 838 839 /* 840 * FIXME: do that only when needed, using sched_exit tracepoint 841 */ 842 flush_ptrace_hw_breakpoint(tsk); 843 844 exit_tasks_rcu_start(); 845 exit_notify(tsk, group_dead); 846 proc_exit_connector(tsk); 847 mpol_put_task_policy(tsk); 848 #ifdef CONFIG_FUTEX 849 if (unlikely(current->pi_state_cache)) 850 kfree(current->pi_state_cache); 851 #endif 852 /* 853 * Make sure we are holding no locks: 854 */ 855 debug_check_no_locks_held(); 856 857 if (tsk->io_context) 858 exit_io_context(tsk); 859 860 if (tsk->splice_pipe) 861 free_pipe_info(tsk->splice_pipe); 862 863 if (tsk->task_frag.page) 864 put_page(tsk->task_frag.page); 865 866 validate_creds_for_do_exit(tsk); 867 868 check_stack_usage(); 869 preempt_disable(); 870 if (tsk->nr_dirtied) 871 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 872 exit_rcu(); 873 exit_tasks_rcu_finish(); 874 875 lockdep_free_task(tsk); 876 do_task_dead(); 877 } 878 EXPORT_SYMBOL_GPL(do_exit); 879 880 void complete_and_exit(struct completion *comp, long code) 881 { 882 if (comp) 883 complete(comp); 884 885 do_exit(code); 886 } 887 EXPORT_SYMBOL(complete_and_exit); 888 889 SYSCALL_DEFINE1(exit, int, error_code) 890 { 891 do_exit((error_code&0xff)<<8); 892 } 893 894 /* 895 * Take down every thread in the group. This is called by fatal signals 896 * as well as by sys_exit_group (below). 897 */ 898 void 899 do_group_exit(int exit_code) 900 { 901 struct signal_struct *sig = current->signal; 902 903 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 904 905 if (signal_group_exit(sig)) 906 exit_code = sig->group_exit_code; 907 else if (!thread_group_empty(current)) { 908 struct sighand_struct *const sighand = current->sighand; 909 910 spin_lock_irq(&sighand->siglock); 911 if (signal_group_exit(sig)) 912 /* Another thread got here before we took the lock. */ 913 exit_code = sig->group_exit_code; 914 else { 915 sig->group_exit_code = exit_code; 916 sig->flags = SIGNAL_GROUP_EXIT; 917 zap_other_threads(current); 918 } 919 spin_unlock_irq(&sighand->siglock); 920 } 921 922 do_exit(exit_code); 923 /* NOTREACHED */ 924 } 925 926 /* 927 * this kills every thread in the thread group. Note that any externally 928 * wait4()-ing process will get the correct exit code - even if this 929 * thread is not the thread group leader. 930 */ 931 SYSCALL_DEFINE1(exit_group, int, error_code) 932 { 933 do_group_exit((error_code & 0xff) << 8); 934 /* NOTREACHED */ 935 return 0; 936 } 937 938 struct waitid_info { 939 pid_t pid; 940 uid_t uid; 941 int status; 942 int cause; 943 }; 944 945 struct wait_opts { 946 enum pid_type wo_type; 947 int wo_flags; 948 struct pid *wo_pid; 949 950 struct waitid_info *wo_info; 951 int wo_stat; 952 struct rusage *wo_rusage; 953 954 wait_queue_entry_t child_wait; 955 int notask_error; 956 }; 957 958 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 959 { 960 return wo->wo_type == PIDTYPE_MAX || 961 task_pid_type(p, wo->wo_type) == wo->wo_pid; 962 } 963 964 static int 965 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 966 { 967 if (!eligible_pid(wo, p)) 968 return 0; 969 970 /* 971 * Wait for all children (clone and not) if __WALL is set or 972 * if it is traced by us. 973 */ 974 if (ptrace || (wo->wo_flags & __WALL)) 975 return 1; 976 977 /* 978 * Otherwise, wait for clone children *only* if __WCLONE is set; 979 * otherwise, wait for non-clone children *only*. 980 * 981 * Note: a "clone" child here is one that reports to its parent 982 * using a signal other than SIGCHLD, or a non-leader thread which 983 * we can only see if it is traced by us. 984 */ 985 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 986 return 0; 987 988 return 1; 989 } 990 991 /* 992 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 993 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 994 * the lock and this task is uninteresting. If we return nonzero, we have 995 * released the lock and the system call should return. 996 */ 997 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 998 { 999 int state, status; 1000 pid_t pid = task_pid_vnr(p); 1001 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1002 struct waitid_info *infop; 1003 1004 if (!likely(wo->wo_flags & WEXITED)) 1005 return 0; 1006 1007 if (unlikely(wo->wo_flags & WNOWAIT)) { 1008 status = p->exit_code; 1009 get_task_struct(p); 1010 read_unlock(&tasklist_lock); 1011 sched_annotate_sleep(); 1012 if (wo->wo_rusage) 1013 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1014 put_task_struct(p); 1015 goto out_info; 1016 } 1017 /* 1018 * Move the task's state to DEAD/TRACE, only one thread can do this. 1019 */ 1020 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1021 EXIT_TRACE : EXIT_DEAD; 1022 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1023 return 0; 1024 /* 1025 * We own this thread, nobody else can reap it. 1026 */ 1027 read_unlock(&tasklist_lock); 1028 sched_annotate_sleep(); 1029 1030 /* 1031 * Check thread_group_leader() to exclude the traced sub-threads. 1032 */ 1033 if (state == EXIT_DEAD && thread_group_leader(p)) { 1034 struct signal_struct *sig = p->signal; 1035 struct signal_struct *psig = current->signal; 1036 unsigned long maxrss; 1037 u64 tgutime, tgstime; 1038 1039 /* 1040 * The resource counters for the group leader are in its 1041 * own task_struct. Those for dead threads in the group 1042 * are in its signal_struct, as are those for the child 1043 * processes it has previously reaped. All these 1044 * accumulate in the parent's signal_struct c* fields. 1045 * 1046 * We don't bother to take a lock here to protect these 1047 * p->signal fields because the whole thread group is dead 1048 * and nobody can change them. 1049 * 1050 * psig->stats_lock also protects us from our sub-theads 1051 * which can reap other children at the same time. Until 1052 * we change k_getrusage()-like users to rely on this lock 1053 * we have to take ->siglock as well. 1054 * 1055 * We use thread_group_cputime_adjusted() to get times for 1056 * the thread group, which consolidates times for all threads 1057 * in the group including the group leader. 1058 */ 1059 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1060 spin_lock_irq(¤t->sighand->siglock); 1061 write_seqlock(&psig->stats_lock); 1062 psig->cutime += tgutime + sig->cutime; 1063 psig->cstime += tgstime + sig->cstime; 1064 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1065 psig->cmin_flt += 1066 p->min_flt + sig->min_flt + sig->cmin_flt; 1067 psig->cmaj_flt += 1068 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1069 psig->cnvcsw += 1070 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1071 psig->cnivcsw += 1072 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1073 psig->cinblock += 1074 task_io_get_inblock(p) + 1075 sig->inblock + sig->cinblock; 1076 psig->coublock += 1077 task_io_get_oublock(p) + 1078 sig->oublock + sig->coublock; 1079 maxrss = max(sig->maxrss, sig->cmaxrss); 1080 if (psig->cmaxrss < maxrss) 1081 psig->cmaxrss = maxrss; 1082 task_io_accounting_add(&psig->ioac, &p->ioac); 1083 task_io_accounting_add(&psig->ioac, &sig->ioac); 1084 write_sequnlock(&psig->stats_lock); 1085 spin_unlock_irq(¤t->sighand->siglock); 1086 } 1087 1088 if (wo->wo_rusage) 1089 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1090 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1091 ? p->signal->group_exit_code : p->exit_code; 1092 wo->wo_stat = status; 1093 1094 if (state == EXIT_TRACE) { 1095 write_lock_irq(&tasklist_lock); 1096 /* We dropped tasklist, ptracer could die and untrace */ 1097 ptrace_unlink(p); 1098 1099 /* If parent wants a zombie, don't release it now */ 1100 state = EXIT_ZOMBIE; 1101 if (do_notify_parent(p, p->exit_signal)) 1102 state = EXIT_DEAD; 1103 p->exit_state = state; 1104 write_unlock_irq(&tasklist_lock); 1105 } 1106 if (state == EXIT_DEAD) 1107 release_task(p); 1108 1109 out_info: 1110 infop = wo->wo_info; 1111 if (infop) { 1112 if ((status & 0x7f) == 0) { 1113 infop->cause = CLD_EXITED; 1114 infop->status = status >> 8; 1115 } else { 1116 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1117 infop->status = status & 0x7f; 1118 } 1119 infop->pid = pid; 1120 infop->uid = uid; 1121 } 1122 1123 return pid; 1124 } 1125 1126 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1127 { 1128 if (ptrace) { 1129 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1130 return &p->exit_code; 1131 } else { 1132 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1133 return &p->signal->group_exit_code; 1134 } 1135 return NULL; 1136 } 1137 1138 /** 1139 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1140 * @wo: wait options 1141 * @ptrace: is the wait for ptrace 1142 * @p: task to wait for 1143 * 1144 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1145 * 1146 * CONTEXT: 1147 * read_lock(&tasklist_lock), which is released if return value is 1148 * non-zero. Also, grabs and releases @p->sighand->siglock. 1149 * 1150 * RETURNS: 1151 * 0 if wait condition didn't exist and search for other wait conditions 1152 * should continue. Non-zero return, -errno on failure and @p's pid on 1153 * success, implies that tasklist_lock is released and wait condition 1154 * search should terminate. 1155 */ 1156 static int wait_task_stopped(struct wait_opts *wo, 1157 int ptrace, struct task_struct *p) 1158 { 1159 struct waitid_info *infop; 1160 int exit_code, *p_code, why; 1161 uid_t uid = 0; /* unneeded, required by compiler */ 1162 pid_t pid; 1163 1164 /* 1165 * Traditionally we see ptrace'd stopped tasks regardless of options. 1166 */ 1167 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1168 return 0; 1169 1170 if (!task_stopped_code(p, ptrace)) 1171 return 0; 1172 1173 exit_code = 0; 1174 spin_lock_irq(&p->sighand->siglock); 1175 1176 p_code = task_stopped_code(p, ptrace); 1177 if (unlikely(!p_code)) 1178 goto unlock_sig; 1179 1180 exit_code = *p_code; 1181 if (!exit_code) 1182 goto unlock_sig; 1183 1184 if (!unlikely(wo->wo_flags & WNOWAIT)) 1185 *p_code = 0; 1186 1187 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1188 unlock_sig: 1189 spin_unlock_irq(&p->sighand->siglock); 1190 if (!exit_code) 1191 return 0; 1192 1193 /* 1194 * Now we are pretty sure this task is interesting. 1195 * Make sure it doesn't get reaped out from under us while we 1196 * give up the lock and then examine it below. We don't want to 1197 * keep holding onto the tasklist_lock while we call getrusage and 1198 * possibly take page faults for user memory. 1199 */ 1200 get_task_struct(p); 1201 pid = task_pid_vnr(p); 1202 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1203 read_unlock(&tasklist_lock); 1204 sched_annotate_sleep(); 1205 if (wo->wo_rusage) 1206 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1207 put_task_struct(p); 1208 1209 if (likely(!(wo->wo_flags & WNOWAIT))) 1210 wo->wo_stat = (exit_code << 8) | 0x7f; 1211 1212 infop = wo->wo_info; 1213 if (infop) { 1214 infop->cause = why; 1215 infop->status = exit_code; 1216 infop->pid = pid; 1217 infop->uid = uid; 1218 } 1219 return pid; 1220 } 1221 1222 /* 1223 * Handle do_wait work for one task in a live, non-stopped state. 1224 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1225 * the lock and this task is uninteresting. If we return nonzero, we have 1226 * released the lock and the system call should return. 1227 */ 1228 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1229 { 1230 struct waitid_info *infop; 1231 pid_t pid; 1232 uid_t uid; 1233 1234 if (!unlikely(wo->wo_flags & WCONTINUED)) 1235 return 0; 1236 1237 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1238 return 0; 1239 1240 spin_lock_irq(&p->sighand->siglock); 1241 /* Re-check with the lock held. */ 1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1243 spin_unlock_irq(&p->sighand->siglock); 1244 return 0; 1245 } 1246 if (!unlikely(wo->wo_flags & WNOWAIT)) 1247 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1248 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1249 spin_unlock_irq(&p->sighand->siglock); 1250 1251 pid = task_pid_vnr(p); 1252 get_task_struct(p); 1253 read_unlock(&tasklist_lock); 1254 sched_annotate_sleep(); 1255 if (wo->wo_rusage) 1256 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1257 put_task_struct(p); 1258 1259 infop = wo->wo_info; 1260 if (!infop) { 1261 wo->wo_stat = 0xffff; 1262 } else { 1263 infop->cause = CLD_CONTINUED; 1264 infop->pid = pid; 1265 infop->uid = uid; 1266 infop->status = SIGCONT; 1267 } 1268 return pid; 1269 } 1270 1271 /* 1272 * Consider @p for a wait by @parent. 1273 * 1274 * -ECHILD should be in ->notask_error before the first call. 1275 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1276 * Returns zero if the search for a child should continue; 1277 * then ->notask_error is 0 if @p is an eligible child, 1278 * or still -ECHILD. 1279 */ 1280 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1281 struct task_struct *p) 1282 { 1283 /* 1284 * We can race with wait_task_zombie() from another thread. 1285 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1286 * can't confuse the checks below. 1287 */ 1288 int exit_state = READ_ONCE(p->exit_state); 1289 int ret; 1290 1291 if (unlikely(exit_state == EXIT_DEAD)) 1292 return 0; 1293 1294 ret = eligible_child(wo, ptrace, p); 1295 if (!ret) 1296 return ret; 1297 1298 if (unlikely(exit_state == EXIT_TRACE)) { 1299 /* 1300 * ptrace == 0 means we are the natural parent. In this case 1301 * we should clear notask_error, debugger will notify us. 1302 */ 1303 if (likely(!ptrace)) 1304 wo->notask_error = 0; 1305 return 0; 1306 } 1307 1308 if (likely(!ptrace) && unlikely(p->ptrace)) { 1309 /* 1310 * If it is traced by its real parent's group, just pretend 1311 * the caller is ptrace_do_wait() and reap this child if it 1312 * is zombie. 1313 * 1314 * This also hides group stop state from real parent; otherwise 1315 * a single stop can be reported twice as group and ptrace stop. 1316 * If a ptracer wants to distinguish these two events for its 1317 * own children it should create a separate process which takes 1318 * the role of real parent. 1319 */ 1320 if (!ptrace_reparented(p)) 1321 ptrace = 1; 1322 } 1323 1324 /* slay zombie? */ 1325 if (exit_state == EXIT_ZOMBIE) { 1326 /* we don't reap group leaders with subthreads */ 1327 if (!delay_group_leader(p)) { 1328 /* 1329 * A zombie ptracee is only visible to its ptracer. 1330 * Notification and reaping will be cascaded to the 1331 * real parent when the ptracer detaches. 1332 */ 1333 if (unlikely(ptrace) || likely(!p->ptrace)) 1334 return wait_task_zombie(wo, p); 1335 } 1336 1337 /* 1338 * Allow access to stopped/continued state via zombie by 1339 * falling through. Clearing of notask_error is complex. 1340 * 1341 * When !@ptrace: 1342 * 1343 * If WEXITED is set, notask_error should naturally be 1344 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1345 * so, if there are live subthreads, there are events to 1346 * wait for. If all subthreads are dead, it's still safe 1347 * to clear - this function will be called again in finite 1348 * amount time once all the subthreads are released and 1349 * will then return without clearing. 1350 * 1351 * When @ptrace: 1352 * 1353 * Stopped state is per-task and thus can't change once the 1354 * target task dies. Only continued and exited can happen. 1355 * Clear notask_error if WCONTINUED | WEXITED. 1356 */ 1357 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1358 wo->notask_error = 0; 1359 } else { 1360 /* 1361 * @p is alive and it's gonna stop, continue or exit, so 1362 * there always is something to wait for. 1363 */ 1364 wo->notask_error = 0; 1365 } 1366 1367 /* 1368 * Wait for stopped. Depending on @ptrace, different stopped state 1369 * is used and the two don't interact with each other. 1370 */ 1371 ret = wait_task_stopped(wo, ptrace, p); 1372 if (ret) 1373 return ret; 1374 1375 /* 1376 * Wait for continued. There's only one continued state and the 1377 * ptracer can consume it which can confuse the real parent. Don't 1378 * use WCONTINUED from ptracer. You don't need or want it. 1379 */ 1380 return wait_task_continued(wo, p); 1381 } 1382 1383 /* 1384 * Do the work of do_wait() for one thread in the group, @tsk. 1385 * 1386 * -ECHILD should be in ->notask_error before the first call. 1387 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1388 * Returns zero if the search for a child should continue; then 1389 * ->notask_error is 0 if there were any eligible children, 1390 * or still -ECHILD. 1391 */ 1392 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1393 { 1394 struct task_struct *p; 1395 1396 list_for_each_entry(p, &tsk->children, sibling) { 1397 int ret = wait_consider_task(wo, 0, p); 1398 1399 if (ret) 1400 return ret; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1407 { 1408 struct task_struct *p; 1409 1410 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1411 int ret = wait_consider_task(wo, 1, p); 1412 1413 if (ret) 1414 return ret; 1415 } 1416 1417 return 0; 1418 } 1419 1420 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1421 int sync, void *key) 1422 { 1423 struct wait_opts *wo = container_of(wait, struct wait_opts, 1424 child_wait); 1425 struct task_struct *p = key; 1426 1427 if (!eligible_pid(wo, p)) 1428 return 0; 1429 1430 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1431 return 0; 1432 1433 return default_wake_function(wait, mode, sync, key); 1434 } 1435 1436 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1437 { 1438 __wake_up_sync_key(&parent->signal->wait_chldexit, 1439 TASK_INTERRUPTIBLE, p); 1440 } 1441 1442 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1443 struct task_struct *target) 1444 { 1445 struct task_struct *parent = 1446 !ptrace ? target->real_parent : target->parent; 1447 1448 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1449 same_thread_group(current, parent)); 1450 } 1451 1452 /* 1453 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1454 * and tracee lists to find the target task. 1455 */ 1456 static int do_wait_pid(struct wait_opts *wo) 1457 { 1458 bool ptrace; 1459 struct task_struct *target; 1460 int retval; 1461 1462 ptrace = false; 1463 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1464 if (target && is_effectively_child(wo, ptrace, target)) { 1465 retval = wait_consider_task(wo, ptrace, target); 1466 if (retval) 1467 return retval; 1468 } 1469 1470 ptrace = true; 1471 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1472 if (target && target->ptrace && 1473 is_effectively_child(wo, ptrace, target)) { 1474 retval = wait_consider_task(wo, ptrace, target); 1475 if (retval) 1476 return retval; 1477 } 1478 1479 return 0; 1480 } 1481 1482 static long do_wait(struct wait_opts *wo) 1483 { 1484 int retval; 1485 1486 trace_sched_process_wait(wo->wo_pid); 1487 1488 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1489 wo->child_wait.private = current; 1490 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1491 repeat: 1492 /* 1493 * If there is nothing that can match our criteria, just get out. 1494 * We will clear ->notask_error to zero if we see any child that 1495 * might later match our criteria, even if we are not able to reap 1496 * it yet. 1497 */ 1498 wo->notask_error = -ECHILD; 1499 if ((wo->wo_type < PIDTYPE_MAX) && 1500 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1501 goto notask; 1502 1503 set_current_state(TASK_INTERRUPTIBLE); 1504 read_lock(&tasklist_lock); 1505 1506 if (wo->wo_type == PIDTYPE_PID) { 1507 retval = do_wait_pid(wo); 1508 if (retval) 1509 goto end; 1510 } else { 1511 struct task_struct *tsk = current; 1512 1513 do { 1514 retval = do_wait_thread(wo, tsk); 1515 if (retval) 1516 goto end; 1517 1518 retval = ptrace_do_wait(wo, tsk); 1519 if (retval) 1520 goto end; 1521 1522 if (wo->wo_flags & __WNOTHREAD) 1523 break; 1524 } while_each_thread(current, tsk); 1525 } 1526 read_unlock(&tasklist_lock); 1527 1528 notask: 1529 retval = wo->notask_error; 1530 if (!retval && !(wo->wo_flags & WNOHANG)) { 1531 retval = -ERESTARTSYS; 1532 if (!signal_pending(current)) { 1533 schedule(); 1534 goto repeat; 1535 } 1536 } 1537 end: 1538 __set_current_state(TASK_RUNNING); 1539 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1540 return retval; 1541 } 1542 1543 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1544 int options, struct rusage *ru) 1545 { 1546 struct wait_opts wo; 1547 struct pid *pid = NULL; 1548 enum pid_type type; 1549 long ret; 1550 unsigned int f_flags = 0; 1551 1552 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1553 __WNOTHREAD|__WCLONE|__WALL)) 1554 return -EINVAL; 1555 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1556 return -EINVAL; 1557 1558 switch (which) { 1559 case P_ALL: 1560 type = PIDTYPE_MAX; 1561 break; 1562 case P_PID: 1563 type = PIDTYPE_PID; 1564 if (upid <= 0) 1565 return -EINVAL; 1566 1567 pid = find_get_pid(upid); 1568 break; 1569 case P_PGID: 1570 type = PIDTYPE_PGID; 1571 if (upid < 0) 1572 return -EINVAL; 1573 1574 if (upid) 1575 pid = find_get_pid(upid); 1576 else 1577 pid = get_task_pid(current, PIDTYPE_PGID); 1578 break; 1579 case P_PIDFD: 1580 type = PIDTYPE_PID; 1581 if (upid < 0) 1582 return -EINVAL; 1583 1584 pid = pidfd_get_pid(upid, &f_flags); 1585 if (IS_ERR(pid)) 1586 return PTR_ERR(pid); 1587 1588 break; 1589 default: 1590 return -EINVAL; 1591 } 1592 1593 wo.wo_type = type; 1594 wo.wo_pid = pid; 1595 wo.wo_flags = options; 1596 wo.wo_info = infop; 1597 wo.wo_rusage = ru; 1598 if (f_flags & O_NONBLOCK) 1599 wo.wo_flags |= WNOHANG; 1600 1601 ret = do_wait(&wo); 1602 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1603 ret = -EAGAIN; 1604 1605 put_pid(pid); 1606 return ret; 1607 } 1608 1609 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1610 infop, int, options, struct rusage __user *, ru) 1611 { 1612 struct rusage r; 1613 struct waitid_info info = {.status = 0}; 1614 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1615 int signo = 0; 1616 1617 if (err > 0) { 1618 signo = SIGCHLD; 1619 err = 0; 1620 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1621 return -EFAULT; 1622 } 1623 if (!infop) 1624 return err; 1625 1626 if (!user_write_access_begin(infop, sizeof(*infop))) 1627 return -EFAULT; 1628 1629 unsafe_put_user(signo, &infop->si_signo, Efault); 1630 unsafe_put_user(0, &infop->si_errno, Efault); 1631 unsafe_put_user(info.cause, &infop->si_code, Efault); 1632 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1633 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1634 unsafe_put_user(info.status, &infop->si_status, Efault); 1635 user_write_access_end(); 1636 return err; 1637 Efault: 1638 user_write_access_end(); 1639 return -EFAULT; 1640 } 1641 1642 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1643 struct rusage *ru) 1644 { 1645 struct wait_opts wo; 1646 struct pid *pid = NULL; 1647 enum pid_type type; 1648 long ret; 1649 1650 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1651 __WNOTHREAD|__WCLONE|__WALL)) 1652 return -EINVAL; 1653 1654 /* -INT_MIN is not defined */ 1655 if (upid == INT_MIN) 1656 return -ESRCH; 1657 1658 if (upid == -1) 1659 type = PIDTYPE_MAX; 1660 else if (upid < 0) { 1661 type = PIDTYPE_PGID; 1662 pid = find_get_pid(-upid); 1663 } else if (upid == 0) { 1664 type = PIDTYPE_PGID; 1665 pid = get_task_pid(current, PIDTYPE_PGID); 1666 } else /* upid > 0 */ { 1667 type = PIDTYPE_PID; 1668 pid = find_get_pid(upid); 1669 } 1670 1671 wo.wo_type = type; 1672 wo.wo_pid = pid; 1673 wo.wo_flags = options | WEXITED; 1674 wo.wo_info = NULL; 1675 wo.wo_stat = 0; 1676 wo.wo_rusage = ru; 1677 ret = do_wait(&wo); 1678 put_pid(pid); 1679 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1680 ret = -EFAULT; 1681 1682 return ret; 1683 } 1684 1685 int kernel_wait(pid_t pid, int *stat) 1686 { 1687 struct wait_opts wo = { 1688 .wo_type = PIDTYPE_PID, 1689 .wo_pid = find_get_pid(pid), 1690 .wo_flags = WEXITED, 1691 }; 1692 int ret; 1693 1694 ret = do_wait(&wo); 1695 if (ret > 0 && wo.wo_stat) 1696 *stat = wo.wo_stat; 1697 put_pid(wo.wo_pid); 1698 return ret; 1699 } 1700 1701 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1702 int, options, struct rusage __user *, ru) 1703 { 1704 struct rusage r; 1705 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1706 1707 if (err > 0) { 1708 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1709 return -EFAULT; 1710 } 1711 return err; 1712 } 1713 1714 #ifdef __ARCH_WANT_SYS_WAITPID 1715 1716 /* 1717 * sys_waitpid() remains for compatibility. waitpid() should be 1718 * implemented by calling sys_wait4() from libc.a. 1719 */ 1720 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1721 { 1722 return kernel_wait4(pid, stat_addr, options, NULL); 1723 } 1724 1725 #endif 1726 1727 #ifdef CONFIG_COMPAT 1728 COMPAT_SYSCALL_DEFINE4(wait4, 1729 compat_pid_t, pid, 1730 compat_uint_t __user *, stat_addr, 1731 int, options, 1732 struct compat_rusage __user *, ru) 1733 { 1734 struct rusage r; 1735 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1736 if (err > 0) { 1737 if (ru && put_compat_rusage(&r, ru)) 1738 return -EFAULT; 1739 } 1740 return err; 1741 } 1742 1743 COMPAT_SYSCALL_DEFINE5(waitid, 1744 int, which, compat_pid_t, pid, 1745 struct compat_siginfo __user *, infop, int, options, 1746 struct compat_rusage __user *, uru) 1747 { 1748 struct rusage ru; 1749 struct waitid_info info = {.status = 0}; 1750 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1751 int signo = 0; 1752 if (err > 0) { 1753 signo = SIGCHLD; 1754 err = 0; 1755 if (uru) { 1756 /* kernel_waitid() overwrites everything in ru */ 1757 if (COMPAT_USE_64BIT_TIME) 1758 err = copy_to_user(uru, &ru, sizeof(ru)); 1759 else 1760 err = put_compat_rusage(&ru, uru); 1761 if (err) 1762 return -EFAULT; 1763 } 1764 } 1765 1766 if (!infop) 1767 return err; 1768 1769 if (!user_write_access_begin(infop, sizeof(*infop))) 1770 return -EFAULT; 1771 1772 unsafe_put_user(signo, &infop->si_signo, Efault); 1773 unsafe_put_user(0, &infop->si_errno, Efault); 1774 unsafe_put_user(info.cause, &infop->si_code, Efault); 1775 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1776 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1777 unsafe_put_user(info.status, &infop->si_status, Efault); 1778 user_write_access_end(); 1779 return err; 1780 Efault: 1781 user_write_access_end(); 1782 return -EFAULT; 1783 } 1784 #endif 1785 1786 /** 1787 * thread_group_exited - check that a thread group has exited 1788 * @pid: tgid of thread group to be checked. 1789 * 1790 * Test if the thread group represented by tgid has exited (all 1791 * threads are zombies, dead or completely gone). 1792 * 1793 * Return: true if the thread group has exited. false otherwise. 1794 */ 1795 bool thread_group_exited(struct pid *pid) 1796 { 1797 struct task_struct *task; 1798 bool exited; 1799 1800 rcu_read_lock(); 1801 task = pid_task(pid, PIDTYPE_PID); 1802 exited = !task || 1803 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1804 rcu_read_unlock(); 1805 1806 return exited; 1807 } 1808 EXPORT_SYMBOL(thread_group_exited); 1809 1810 __weak void abort(void) 1811 { 1812 BUG(); 1813 1814 /* if that doesn't kill us, halt */ 1815 panic("Oops failed to kill thread"); 1816 } 1817 EXPORT_SYMBOL(abort); 1818