xref: /openbmc/linux/kernel/exit.c (revision e1f7c9ee)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct *tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 	}
119 
120 	/*
121 	 * Accumulate here the counters for all threads but the group leader
122 	 * as they die, so they can be added into the process-wide totals
123 	 * when those are taken.  The group leader stays around as a zombie as
124 	 * long as there are other threads.  When it gets reaped, the exit.c
125 	 * code will add its counts into these totals.  We won't ever get here
126 	 * for the group leader, since it will have been the last reference on
127 	 * the signal_struct.
128 	 */
129 	task_cputime(tsk, &utime, &stime);
130 	write_seqlock(&sig->stats_lock);
131 	sig->utime += utime;
132 	sig->stime += stime;
133 	sig->gtime += task_gtime(tsk);
134 	sig->min_flt += tsk->min_flt;
135 	sig->maj_flt += tsk->maj_flt;
136 	sig->nvcsw += tsk->nvcsw;
137 	sig->nivcsw += tsk->nivcsw;
138 	sig->inblock += task_io_get_inblock(tsk);
139 	sig->oublock += task_io_get_oublock(tsk);
140 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 	write_sequnlock(&sig->stats_lock);
145 
146 	/*
147 	 * Do this under ->siglock, we can race with another thread
148 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 	 */
150 	flush_sigqueue(&tsk->pending);
151 	tsk->sighand = NULL;
152 	spin_unlock(&sighand->siglock);
153 
154 	__cleanup_sighand(sighand);
155 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 	if (group_dead) {
157 		flush_sigqueue(&sig->shared_pending);
158 		tty_kref_put(tty);
159 	}
160 }
161 
162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 
166 	perf_event_delayed_put(tsk);
167 	trace_sched_process_free(tsk);
168 	put_task_struct(tsk);
169 }
170 
171 
172 void release_task(struct task_struct *p)
173 {
174 	struct task_struct *leader;
175 	int zap_leader;
176 repeat:
177 	/* don't need to get the RCU readlock here - the process is dead and
178 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 	rcu_read_lock();
180 	atomic_dec(&__task_cred(p)->user->processes);
181 	rcu_read_unlock();
182 
183 	proc_flush_task(p);
184 
185 	write_lock_irq(&tasklist_lock);
186 	ptrace_release_task(p);
187 	__exit_signal(p);
188 
189 	/*
190 	 * If we are the last non-leader member of the thread
191 	 * group, and the leader is zombie, then notify the
192 	 * group leader's parent process. (if it wants notification.)
193 	 */
194 	zap_leader = 0;
195 	leader = p->group_leader;
196 	if (leader != p && thread_group_empty(leader)
197 			&& leader->exit_state == EXIT_ZOMBIE) {
198 		/*
199 		 * If we were the last child thread and the leader has
200 		 * exited already, and the leader's parent ignores SIGCHLD,
201 		 * then we are the one who should release the leader.
202 		 */
203 		zap_leader = do_notify_parent(leader, leader->exit_signal);
204 		if (zap_leader)
205 			leader->exit_state = EXIT_DEAD;
206 	}
207 
208 	write_unlock_irq(&tasklist_lock);
209 	release_thread(p);
210 	call_rcu(&p->rcu, delayed_put_task_struct);
211 
212 	p = leader;
213 	if (unlikely(zap_leader))
214 		goto repeat;
215 }
216 
217 /*
218  * This checks not only the pgrp, but falls back on the pid if no
219  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220  * without this...
221  *
222  * The caller must hold rcu lock or the tasklist lock.
223  */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226 	struct task_struct *p;
227 	struct pid *sid = NULL;
228 
229 	p = pid_task(pgrp, PIDTYPE_PGID);
230 	if (p == NULL)
231 		p = pid_task(pgrp, PIDTYPE_PID);
232 	if (p != NULL)
233 		sid = task_session(p);
234 
235 	return sid;
236 }
237 
238 /*
239  * Determine if a process group is "orphaned", according to the POSIX
240  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
241  * by terminal-generated stop signals.  Newly orphaned process groups are
242  * to receive a SIGHUP and a SIGCONT.
243  *
244  * "I ask you, have you ever known what it is to be an orphan?"
245  */
246 static int will_become_orphaned_pgrp(struct pid *pgrp,
247 					struct task_struct *ignored_task)
248 {
249 	struct task_struct *p;
250 
251 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 		if ((p == ignored_task) ||
253 		    (p->exit_state && thread_group_empty(p)) ||
254 		    is_global_init(p->real_parent))
255 			continue;
256 
257 		if (task_pgrp(p->real_parent) != pgrp &&
258 		    task_session(p->real_parent) == task_session(p))
259 			return 0;
260 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 
262 	return 1;
263 }
264 
265 int is_current_pgrp_orphaned(void)
266 {
267 	int retval;
268 
269 	read_lock(&tasklist_lock);
270 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 	read_unlock(&tasklist_lock);
272 
273 	return retval;
274 }
275 
276 static bool has_stopped_jobs(struct pid *pgrp)
277 {
278 	struct task_struct *p;
279 
280 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 			return true;
283 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 
285 	return false;
286 }
287 
288 /*
289  * Check to see if any process groups have become orphaned as
290  * a result of our exiting, and if they have any stopped jobs,
291  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292  */
293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 {
296 	struct pid *pgrp = task_pgrp(tsk);
297 	struct task_struct *ignored_task = tsk;
298 
299 	if (!parent)
300 		/* exit: our father is in a different pgrp than
301 		 * we are and we were the only connection outside.
302 		 */
303 		parent = tsk->real_parent;
304 	else
305 		/* reparent: our child is in a different pgrp than
306 		 * we are, and it was the only connection outside.
307 		 */
308 		ignored_task = NULL;
309 
310 	if (task_pgrp(parent) != pgrp &&
311 	    task_session(parent) == task_session(tsk) &&
312 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 	    has_stopped_jobs(pgrp)) {
314 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 	}
317 }
318 
319 #ifdef CONFIG_MEMCG
320 /*
321  * A task is exiting.   If it owned this mm, find a new owner for the mm.
322  */
323 void mm_update_next_owner(struct mm_struct *mm)
324 {
325 	struct task_struct *c, *g, *p = current;
326 
327 retry:
328 	/*
329 	 * If the exiting or execing task is not the owner, it's
330 	 * someone else's problem.
331 	 */
332 	if (mm->owner != p)
333 		return;
334 	/*
335 	 * The current owner is exiting/execing and there are no other
336 	 * candidates.  Do not leave the mm pointing to a possibly
337 	 * freed task structure.
338 	 */
339 	if (atomic_read(&mm->mm_users) <= 1) {
340 		mm->owner = NULL;
341 		return;
342 	}
343 
344 	read_lock(&tasklist_lock);
345 	/*
346 	 * Search in the children
347 	 */
348 	list_for_each_entry(c, &p->children, sibling) {
349 		if (c->mm == mm)
350 			goto assign_new_owner;
351 	}
352 
353 	/*
354 	 * Search in the siblings
355 	 */
356 	list_for_each_entry(c, &p->real_parent->children, sibling) {
357 		if (c->mm == mm)
358 			goto assign_new_owner;
359 	}
360 
361 	/*
362 	 * Search through everything else, we should not get here often.
363 	 */
364 	for_each_process(g) {
365 		if (g->flags & PF_KTHREAD)
366 			continue;
367 		for_each_thread(g, c) {
368 			if (c->mm == mm)
369 				goto assign_new_owner;
370 			if (c->mm)
371 				break;
372 		}
373 	}
374 	read_unlock(&tasklist_lock);
375 	/*
376 	 * We found no owner yet mm_users > 1: this implies that we are
377 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
379 	 */
380 	mm->owner = NULL;
381 	return;
382 
383 assign_new_owner:
384 	BUG_ON(c == p);
385 	get_task_struct(c);
386 	/*
387 	 * The task_lock protects c->mm from changing.
388 	 * We always want mm->owner->mm == mm
389 	 */
390 	task_lock(c);
391 	/*
392 	 * Delay read_unlock() till we have the task_lock()
393 	 * to ensure that c does not slip away underneath us
394 	 */
395 	read_unlock(&tasklist_lock);
396 	if (c->mm != mm) {
397 		task_unlock(c);
398 		put_task_struct(c);
399 		goto retry;
400 	}
401 	mm->owner = c;
402 	task_unlock(c);
403 	put_task_struct(c);
404 }
405 #endif /* CONFIG_MEMCG */
406 
407 /*
408  * Turn us into a lazy TLB process if we
409  * aren't already..
410  */
411 static void exit_mm(struct task_struct *tsk)
412 {
413 	struct mm_struct *mm = tsk->mm;
414 	struct core_state *core_state;
415 
416 	mm_release(tsk, mm);
417 	if (!mm)
418 		return;
419 	sync_mm_rss(mm);
420 	/*
421 	 * Serialize with any possible pending coredump.
422 	 * We must hold mmap_sem around checking core_state
423 	 * and clearing tsk->mm.  The core-inducing thread
424 	 * will increment ->nr_threads for each thread in the
425 	 * group with ->mm != NULL.
426 	 */
427 	down_read(&mm->mmap_sem);
428 	core_state = mm->core_state;
429 	if (core_state) {
430 		struct core_thread self;
431 
432 		up_read(&mm->mmap_sem);
433 
434 		self.task = tsk;
435 		self.next = xchg(&core_state->dumper.next, &self);
436 		/*
437 		 * Implies mb(), the result of xchg() must be visible
438 		 * to core_state->dumper.
439 		 */
440 		if (atomic_dec_and_test(&core_state->nr_threads))
441 			complete(&core_state->startup);
442 
443 		for (;;) {
444 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
445 			if (!self.task) /* see coredump_finish() */
446 				break;
447 			freezable_schedule();
448 		}
449 		__set_task_state(tsk, TASK_RUNNING);
450 		down_read(&mm->mmap_sem);
451 	}
452 	atomic_inc(&mm->mm_count);
453 	BUG_ON(mm != tsk->active_mm);
454 	/* more a memory barrier than a real lock */
455 	task_lock(tsk);
456 	tsk->mm = NULL;
457 	up_read(&mm->mmap_sem);
458 	enter_lazy_tlb(mm, current);
459 	task_unlock(tsk);
460 	mm_update_next_owner(mm);
461 	mmput(mm);
462 	clear_thread_flag(TIF_MEMDIE);
463 }
464 
465 /*
466  * When we die, we re-parent all our children, and try to:
467  * 1. give them to another thread in our thread group, if such a member exists
468  * 2. give it to the first ancestor process which prctl'd itself as a
469  *    child_subreaper for its children (like a service manager)
470  * 3. give it to the init process (PID 1) in our pid namespace
471  */
472 static struct task_struct *find_new_reaper(struct task_struct *father)
473 	__releases(&tasklist_lock)
474 	__acquires(&tasklist_lock)
475 {
476 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
477 	struct task_struct *thread;
478 
479 	thread = father;
480 	while_each_thread(father, thread) {
481 		if (thread->flags & PF_EXITING)
482 			continue;
483 		if (unlikely(pid_ns->child_reaper == father))
484 			pid_ns->child_reaper = thread;
485 		return thread;
486 	}
487 
488 	if (unlikely(pid_ns->child_reaper == father)) {
489 		write_unlock_irq(&tasklist_lock);
490 		if (unlikely(pid_ns == &init_pid_ns)) {
491 			panic("Attempted to kill init! exitcode=0x%08x\n",
492 				father->signal->group_exit_code ?:
493 					father->exit_code);
494 		}
495 
496 		zap_pid_ns_processes(pid_ns);
497 		write_lock_irq(&tasklist_lock);
498 	} else if (father->signal->has_child_subreaper) {
499 		struct task_struct *reaper;
500 
501 		/*
502 		 * Find the first ancestor marked as child_subreaper.
503 		 * Note that the code below checks same_thread_group(reaper,
504 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
505 		 * PID namespace. However we still need the check above, see
506 		 * http://marc.info/?l=linux-kernel&m=131385460420380
507 		 */
508 		for (reaper = father->real_parent;
509 		     reaper != &init_task;
510 		     reaper = reaper->real_parent) {
511 			if (same_thread_group(reaper, pid_ns->child_reaper))
512 				break;
513 			if (!reaper->signal->is_child_subreaper)
514 				continue;
515 			thread = reaper;
516 			do {
517 				if (!(thread->flags & PF_EXITING))
518 					return reaper;
519 			} while_each_thread(reaper, thread);
520 		}
521 	}
522 
523 	return pid_ns->child_reaper;
524 }
525 
526 /*
527 * Any that need to be release_task'd are put on the @dead list.
528  */
529 static void reparent_leader(struct task_struct *father, struct task_struct *p,
530 				struct list_head *dead)
531 {
532 	list_move_tail(&p->sibling, &p->real_parent->children);
533 
534 	if (p->exit_state == EXIT_DEAD)
535 		return;
536 	/*
537 	 * If this is a threaded reparent there is no need to
538 	 * notify anyone anything has happened.
539 	 */
540 	if (same_thread_group(p->real_parent, father))
541 		return;
542 
543 	/* We don't want people slaying init. */
544 	p->exit_signal = SIGCHLD;
545 
546 	/* If it has exited notify the new parent about this child's death. */
547 	if (!p->ptrace &&
548 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
549 		if (do_notify_parent(p, p->exit_signal)) {
550 			p->exit_state = EXIT_DEAD;
551 			list_move_tail(&p->sibling, dead);
552 		}
553 	}
554 
555 	kill_orphaned_pgrp(p, father);
556 }
557 
558 static void forget_original_parent(struct task_struct *father)
559 {
560 	struct task_struct *p, *n, *reaper;
561 	LIST_HEAD(dead_children);
562 
563 	write_lock_irq(&tasklist_lock);
564 	/*
565 	 * Note that exit_ptrace() and find_new_reaper() might
566 	 * drop tasklist_lock and reacquire it.
567 	 */
568 	exit_ptrace(father);
569 	reaper = find_new_reaper(father);
570 
571 	list_for_each_entry_safe(p, n, &father->children, sibling) {
572 		struct task_struct *t = p;
573 
574 		do {
575 			t->real_parent = reaper;
576 			if (t->parent == father) {
577 				BUG_ON(t->ptrace);
578 				t->parent = t->real_parent;
579 			}
580 			if (t->pdeath_signal)
581 				group_send_sig_info(t->pdeath_signal,
582 						    SEND_SIG_NOINFO, t);
583 		} while_each_thread(p, t);
584 		reparent_leader(father, p, &dead_children);
585 	}
586 	write_unlock_irq(&tasklist_lock);
587 
588 	BUG_ON(!list_empty(&father->children));
589 
590 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
591 		list_del_init(&p->sibling);
592 		release_task(p);
593 	}
594 }
595 
596 /*
597  * Send signals to all our closest relatives so that they know
598  * to properly mourn us..
599  */
600 static void exit_notify(struct task_struct *tsk, int group_dead)
601 {
602 	bool autoreap;
603 
604 	/*
605 	 * This does two things:
606 	 *
607 	 * A.  Make init inherit all the child processes
608 	 * B.  Check to see if any process groups have become orphaned
609 	 *	as a result of our exiting, and if they have any stopped
610 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
611 	 */
612 	forget_original_parent(tsk);
613 
614 	write_lock_irq(&tasklist_lock);
615 	if (group_dead)
616 		kill_orphaned_pgrp(tsk->group_leader, NULL);
617 
618 	if (unlikely(tsk->ptrace)) {
619 		int sig = thread_group_leader(tsk) &&
620 				thread_group_empty(tsk) &&
621 				!ptrace_reparented(tsk) ?
622 			tsk->exit_signal : SIGCHLD;
623 		autoreap = do_notify_parent(tsk, sig);
624 	} else if (thread_group_leader(tsk)) {
625 		autoreap = thread_group_empty(tsk) &&
626 			do_notify_parent(tsk, tsk->exit_signal);
627 	} else {
628 		autoreap = true;
629 	}
630 
631 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
632 
633 	/* mt-exec, de_thread() is waiting for group leader */
634 	if (unlikely(tsk->signal->notify_count < 0))
635 		wake_up_process(tsk->signal->group_exit_task);
636 	write_unlock_irq(&tasklist_lock);
637 
638 	/* If the process is dead, release it - nobody will wait for it */
639 	if (autoreap)
640 		release_task(tsk);
641 }
642 
643 #ifdef CONFIG_DEBUG_STACK_USAGE
644 static void check_stack_usage(void)
645 {
646 	static DEFINE_SPINLOCK(low_water_lock);
647 	static int lowest_to_date = THREAD_SIZE;
648 	unsigned long free;
649 
650 	free = stack_not_used(current);
651 
652 	if (free >= lowest_to_date)
653 		return;
654 
655 	spin_lock(&low_water_lock);
656 	if (free < lowest_to_date) {
657 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 			current->comm, task_pid_nr(current), free);
659 		lowest_to_date = free;
660 	}
661 	spin_unlock(&low_water_lock);
662 }
663 #else
664 static inline void check_stack_usage(void) {}
665 #endif
666 
667 void do_exit(long code)
668 {
669 	struct task_struct *tsk = current;
670 	int group_dead;
671 	TASKS_RCU(int tasks_rcu_i);
672 
673 	profile_task_exit(tsk);
674 
675 	WARN_ON(blk_needs_flush_plug(tsk));
676 
677 	if (unlikely(in_interrupt()))
678 		panic("Aiee, killing interrupt handler!");
679 	if (unlikely(!tsk->pid))
680 		panic("Attempted to kill the idle task!");
681 
682 	/*
683 	 * If do_exit is called because this processes oopsed, it's possible
684 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
685 	 * continuing. Amongst other possible reasons, this is to prevent
686 	 * mm_release()->clear_child_tid() from writing to a user-controlled
687 	 * kernel address.
688 	 */
689 	set_fs(USER_DS);
690 
691 	ptrace_event(PTRACE_EVENT_EXIT, code);
692 
693 	validate_creds_for_do_exit(tsk);
694 
695 	/*
696 	 * We're taking recursive faults here in do_exit. Safest is to just
697 	 * leave this task alone and wait for reboot.
698 	 */
699 	if (unlikely(tsk->flags & PF_EXITING)) {
700 		pr_alert("Fixing recursive fault but reboot is needed!\n");
701 		/*
702 		 * We can do this unlocked here. The futex code uses
703 		 * this flag just to verify whether the pi state
704 		 * cleanup has been done or not. In the worst case it
705 		 * loops once more. We pretend that the cleanup was
706 		 * done as there is no way to return. Either the
707 		 * OWNER_DIED bit is set by now or we push the blocked
708 		 * task into the wait for ever nirwana as well.
709 		 */
710 		tsk->flags |= PF_EXITPIDONE;
711 		set_current_state(TASK_UNINTERRUPTIBLE);
712 		schedule();
713 	}
714 
715 	exit_signals(tsk);  /* sets PF_EXITING */
716 	/*
717 	 * tsk->flags are checked in the futex code to protect against
718 	 * an exiting task cleaning up the robust pi futexes.
719 	 */
720 	smp_mb();
721 	raw_spin_unlock_wait(&tsk->pi_lock);
722 
723 	if (unlikely(in_atomic()))
724 		pr_info("note: %s[%d] exited with preempt_count %d\n",
725 			current->comm, task_pid_nr(current),
726 			preempt_count());
727 
728 	acct_update_integrals(tsk);
729 	/* sync mm's RSS info before statistics gathering */
730 	if (tsk->mm)
731 		sync_mm_rss(tsk->mm);
732 	group_dead = atomic_dec_and_test(&tsk->signal->live);
733 	if (group_dead) {
734 		hrtimer_cancel(&tsk->signal->real_timer);
735 		exit_itimers(tsk->signal);
736 		if (tsk->mm)
737 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
738 	}
739 	acct_collect(code, group_dead);
740 	if (group_dead)
741 		tty_audit_exit();
742 	audit_free(tsk);
743 
744 	tsk->exit_code = code;
745 	taskstats_exit(tsk, group_dead);
746 
747 	exit_mm(tsk);
748 
749 	if (group_dead)
750 		acct_process();
751 	trace_sched_process_exit(tsk);
752 
753 	exit_sem(tsk);
754 	exit_shm(tsk);
755 	exit_files(tsk);
756 	exit_fs(tsk);
757 	if (group_dead)
758 		disassociate_ctty(1);
759 	exit_task_namespaces(tsk);
760 	exit_task_work(tsk);
761 	exit_thread();
762 
763 	/*
764 	 * Flush inherited counters to the parent - before the parent
765 	 * gets woken up by child-exit notifications.
766 	 *
767 	 * because of cgroup mode, must be called before cgroup_exit()
768 	 */
769 	perf_event_exit_task(tsk);
770 
771 	cgroup_exit(tsk);
772 
773 	module_put(task_thread_info(tsk)->exec_domain->module);
774 
775 	/*
776 	 * FIXME: do that only when needed, using sched_exit tracepoint
777 	 */
778 	flush_ptrace_hw_breakpoint(tsk);
779 
780 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
781 	exit_notify(tsk, group_dead);
782 	proc_exit_connector(tsk);
783 #ifdef CONFIG_NUMA
784 	task_lock(tsk);
785 	mpol_put(tsk->mempolicy);
786 	tsk->mempolicy = NULL;
787 	task_unlock(tsk);
788 #endif
789 #ifdef CONFIG_FUTEX
790 	if (unlikely(current->pi_state_cache))
791 		kfree(current->pi_state_cache);
792 #endif
793 	/*
794 	 * Make sure we are holding no locks:
795 	 */
796 	debug_check_no_locks_held();
797 	/*
798 	 * We can do this unlocked here. The futex code uses this flag
799 	 * just to verify whether the pi state cleanup has been done
800 	 * or not. In the worst case it loops once more.
801 	 */
802 	tsk->flags |= PF_EXITPIDONE;
803 
804 	if (tsk->io_context)
805 		exit_io_context(tsk);
806 
807 	if (tsk->splice_pipe)
808 		free_pipe_info(tsk->splice_pipe);
809 
810 	if (tsk->task_frag.page)
811 		put_page(tsk->task_frag.page);
812 
813 	validate_creds_for_do_exit(tsk);
814 
815 	check_stack_usage();
816 	preempt_disable();
817 	if (tsk->nr_dirtied)
818 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
819 	exit_rcu();
820 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
821 
822 	/*
823 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
824 	 * when the following two conditions become true.
825 	 *   - There is race condition of mmap_sem (It is acquired by
826 	 *     exit_mm()), and
827 	 *   - SMI occurs before setting TASK_RUNINNG.
828 	 *     (or hypervisor of virtual machine switches to other guest)
829 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
830 	 *
831 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
832 	 * is held by try_to_wake_up()
833 	 */
834 	smp_mb();
835 	raw_spin_unlock_wait(&tsk->pi_lock);
836 
837 	/* causes final put_task_struct in finish_task_switch(). */
838 	tsk->state = TASK_DEAD;
839 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
840 	schedule();
841 	BUG();
842 	/* Avoid "noreturn function does return".  */
843 	for (;;)
844 		cpu_relax();	/* For when BUG is null */
845 }
846 EXPORT_SYMBOL_GPL(do_exit);
847 
848 void complete_and_exit(struct completion *comp, long code)
849 {
850 	if (comp)
851 		complete(comp);
852 
853 	do_exit(code);
854 }
855 EXPORT_SYMBOL(complete_and_exit);
856 
857 SYSCALL_DEFINE1(exit, int, error_code)
858 {
859 	do_exit((error_code&0xff)<<8);
860 }
861 
862 /*
863  * Take down every thread in the group.  This is called by fatal signals
864  * as well as by sys_exit_group (below).
865  */
866 void
867 do_group_exit(int exit_code)
868 {
869 	struct signal_struct *sig = current->signal;
870 
871 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
872 
873 	if (signal_group_exit(sig))
874 		exit_code = sig->group_exit_code;
875 	else if (!thread_group_empty(current)) {
876 		struct sighand_struct *const sighand = current->sighand;
877 
878 		spin_lock_irq(&sighand->siglock);
879 		if (signal_group_exit(sig))
880 			/* Another thread got here before we took the lock.  */
881 			exit_code = sig->group_exit_code;
882 		else {
883 			sig->group_exit_code = exit_code;
884 			sig->flags = SIGNAL_GROUP_EXIT;
885 			zap_other_threads(current);
886 		}
887 		spin_unlock_irq(&sighand->siglock);
888 	}
889 
890 	do_exit(exit_code);
891 	/* NOTREACHED */
892 }
893 
894 /*
895  * this kills every thread in the thread group. Note that any externally
896  * wait4()-ing process will get the correct exit code - even if this
897  * thread is not the thread group leader.
898  */
899 SYSCALL_DEFINE1(exit_group, int, error_code)
900 {
901 	do_group_exit((error_code & 0xff) << 8);
902 	/* NOTREACHED */
903 	return 0;
904 }
905 
906 struct wait_opts {
907 	enum pid_type		wo_type;
908 	int			wo_flags;
909 	struct pid		*wo_pid;
910 
911 	struct siginfo __user	*wo_info;
912 	int __user		*wo_stat;
913 	struct rusage __user	*wo_rusage;
914 
915 	wait_queue_t		child_wait;
916 	int			notask_error;
917 };
918 
919 static inline
920 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
921 {
922 	if (type != PIDTYPE_PID)
923 		task = task->group_leader;
924 	return task->pids[type].pid;
925 }
926 
927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
928 {
929 	return	wo->wo_type == PIDTYPE_MAX ||
930 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
931 }
932 
933 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
934 {
935 	if (!eligible_pid(wo, p))
936 		return 0;
937 	/* Wait for all children (clone and not) if __WALL is set;
938 	 * otherwise, wait for clone children *only* if __WCLONE is
939 	 * set; otherwise, wait for non-clone children *only*.  (Note:
940 	 * A "clone" child here is one that reports to its parent
941 	 * using a signal other than SIGCHLD.) */
942 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
943 	    && !(wo->wo_flags & __WALL))
944 		return 0;
945 
946 	return 1;
947 }
948 
949 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
950 				pid_t pid, uid_t uid, int why, int status)
951 {
952 	struct siginfo __user *infop;
953 	int retval = wo->wo_rusage
954 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
955 
956 	put_task_struct(p);
957 	infop = wo->wo_info;
958 	if (infop) {
959 		if (!retval)
960 			retval = put_user(SIGCHLD, &infop->si_signo);
961 		if (!retval)
962 			retval = put_user(0, &infop->si_errno);
963 		if (!retval)
964 			retval = put_user((short)why, &infop->si_code);
965 		if (!retval)
966 			retval = put_user(pid, &infop->si_pid);
967 		if (!retval)
968 			retval = put_user(uid, &infop->si_uid);
969 		if (!retval)
970 			retval = put_user(status, &infop->si_status);
971 	}
972 	if (!retval)
973 		retval = pid;
974 	return retval;
975 }
976 
977 /*
978  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
979  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
980  * the lock and this task is uninteresting.  If we return nonzero, we have
981  * released the lock and the system call should return.
982  */
983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
984 {
985 	unsigned long state;
986 	int retval, status, traced;
987 	pid_t pid = task_pid_vnr(p);
988 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989 	struct siginfo __user *infop;
990 
991 	if (!likely(wo->wo_flags & WEXITED))
992 		return 0;
993 
994 	if (unlikely(wo->wo_flags & WNOWAIT)) {
995 		int exit_code = p->exit_code;
996 		int why;
997 
998 		get_task_struct(p);
999 		read_unlock(&tasklist_lock);
1000 		if ((exit_code & 0x7f) == 0) {
1001 			why = CLD_EXITED;
1002 			status = exit_code >> 8;
1003 		} else {
1004 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005 			status = exit_code & 0x7f;
1006 		}
1007 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008 	}
1009 
1010 	traced = ptrace_reparented(p);
1011 	/*
1012 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1013 	 */
1014 	state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1015 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1016 		return 0;
1017 	/*
1018 	 * It can be ptraced but not reparented, check
1019 	 * thread_group_leader() to filter out sub-threads.
1020 	 */
1021 	if (likely(!traced) && thread_group_leader(p)) {
1022 		struct signal_struct *psig;
1023 		struct signal_struct *sig;
1024 		unsigned long maxrss;
1025 		cputime_t tgutime, tgstime;
1026 
1027 		/*
1028 		 * The resource counters for the group leader are in its
1029 		 * own task_struct.  Those for dead threads in the group
1030 		 * are in its signal_struct, as are those for the child
1031 		 * processes it has previously reaped.  All these
1032 		 * accumulate in the parent's signal_struct c* fields.
1033 		 *
1034 		 * We don't bother to take a lock here to protect these
1035 		 * p->signal fields, because they are only touched by
1036 		 * __exit_signal, which runs with tasklist_lock
1037 		 * write-locked anyway, and so is excluded here.  We do
1038 		 * need to protect the access to parent->signal fields,
1039 		 * as other threads in the parent group can be right
1040 		 * here reaping other children at the same time.
1041 		 *
1042 		 * We use thread_group_cputime_adjusted() to get times for
1043 		 * the thread group, which consolidates times for all threads
1044 		 * in the group including the group leader.
1045 		 */
1046 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047 		spin_lock_irq(&p->real_parent->sighand->siglock);
1048 		psig = p->real_parent->signal;
1049 		sig = p->signal;
1050 		write_seqlock(&psig->stats_lock);
1051 		psig->cutime += tgutime + sig->cutime;
1052 		psig->cstime += tgstime + sig->cstime;
1053 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1054 		psig->cmin_flt +=
1055 			p->min_flt + sig->min_flt + sig->cmin_flt;
1056 		psig->cmaj_flt +=
1057 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1058 		psig->cnvcsw +=
1059 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1060 		psig->cnivcsw +=
1061 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1062 		psig->cinblock +=
1063 			task_io_get_inblock(p) +
1064 			sig->inblock + sig->cinblock;
1065 		psig->coublock +=
1066 			task_io_get_oublock(p) +
1067 			sig->oublock + sig->coublock;
1068 		maxrss = max(sig->maxrss, sig->cmaxrss);
1069 		if (psig->cmaxrss < maxrss)
1070 			psig->cmaxrss = maxrss;
1071 		task_io_accounting_add(&psig->ioac, &p->ioac);
1072 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1073 		write_sequnlock(&psig->stats_lock);
1074 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1075 	}
1076 
1077 	/*
1078 	 * Now we are sure this task is interesting, and no other
1079 	 * thread can reap it because we its state == DEAD/TRACE.
1080 	 */
1081 	read_unlock(&tasklist_lock);
1082 
1083 	retval = wo->wo_rusage
1084 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1085 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1086 		? p->signal->group_exit_code : p->exit_code;
1087 	if (!retval && wo->wo_stat)
1088 		retval = put_user(status, wo->wo_stat);
1089 
1090 	infop = wo->wo_info;
1091 	if (!retval && infop)
1092 		retval = put_user(SIGCHLD, &infop->si_signo);
1093 	if (!retval && infop)
1094 		retval = put_user(0, &infop->si_errno);
1095 	if (!retval && infop) {
1096 		int why;
1097 
1098 		if ((status & 0x7f) == 0) {
1099 			why = CLD_EXITED;
1100 			status >>= 8;
1101 		} else {
1102 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1103 			status &= 0x7f;
1104 		}
1105 		retval = put_user((short)why, &infop->si_code);
1106 		if (!retval)
1107 			retval = put_user(status, &infop->si_status);
1108 	}
1109 	if (!retval && infop)
1110 		retval = put_user(pid, &infop->si_pid);
1111 	if (!retval && infop)
1112 		retval = put_user(uid, &infop->si_uid);
1113 	if (!retval)
1114 		retval = pid;
1115 
1116 	if (state == EXIT_TRACE) {
1117 		write_lock_irq(&tasklist_lock);
1118 		/* We dropped tasklist, ptracer could die and untrace */
1119 		ptrace_unlink(p);
1120 
1121 		/* If parent wants a zombie, don't release it now */
1122 		state = EXIT_ZOMBIE;
1123 		if (do_notify_parent(p, p->exit_signal))
1124 			state = EXIT_DEAD;
1125 		p->exit_state = state;
1126 		write_unlock_irq(&tasklist_lock);
1127 	}
1128 	if (state == EXIT_DEAD)
1129 		release_task(p);
1130 
1131 	return retval;
1132 }
1133 
1134 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1135 {
1136 	if (ptrace) {
1137 		if (task_is_stopped_or_traced(p) &&
1138 		    !(p->jobctl & JOBCTL_LISTENING))
1139 			return &p->exit_code;
1140 	} else {
1141 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1142 			return &p->signal->group_exit_code;
1143 	}
1144 	return NULL;
1145 }
1146 
1147 /**
1148  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1149  * @wo: wait options
1150  * @ptrace: is the wait for ptrace
1151  * @p: task to wait for
1152  *
1153  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1154  *
1155  * CONTEXT:
1156  * read_lock(&tasklist_lock), which is released if return value is
1157  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1158  *
1159  * RETURNS:
1160  * 0 if wait condition didn't exist and search for other wait conditions
1161  * should continue.  Non-zero return, -errno on failure and @p's pid on
1162  * success, implies that tasklist_lock is released and wait condition
1163  * search should terminate.
1164  */
1165 static int wait_task_stopped(struct wait_opts *wo,
1166 				int ptrace, struct task_struct *p)
1167 {
1168 	struct siginfo __user *infop;
1169 	int retval, exit_code, *p_code, why;
1170 	uid_t uid = 0; /* unneeded, required by compiler */
1171 	pid_t pid;
1172 
1173 	/*
1174 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1175 	 */
1176 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1177 		return 0;
1178 
1179 	if (!task_stopped_code(p, ptrace))
1180 		return 0;
1181 
1182 	exit_code = 0;
1183 	spin_lock_irq(&p->sighand->siglock);
1184 
1185 	p_code = task_stopped_code(p, ptrace);
1186 	if (unlikely(!p_code))
1187 		goto unlock_sig;
1188 
1189 	exit_code = *p_code;
1190 	if (!exit_code)
1191 		goto unlock_sig;
1192 
1193 	if (!unlikely(wo->wo_flags & WNOWAIT))
1194 		*p_code = 0;
1195 
1196 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1197 unlock_sig:
1198 	spin_unlock_irq(&p->sighand->siglock);
1199 	if (!exit_code)
1200 		return 0;
1201 
1202 	/*
1203 	 * Now we are pretty sure this task is interesting.
1204 	 * Make sure it doesn't get reaped out from under us while we
1205 	 * give up the lock and then examine it below.  We don't want to
1206 	 * keep holding onto the tasklist_lock while we call getrusage and
1207 	 * possibly take page faults for user memory.
1208 	 */
1209 	get_task_struct(p);
1210 	pid = task_pid_vnr(p);
1211 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1212 	read_unlock(&tasklist_lock);
1213 
1214 	if (unlikely(wo->wo_flags & WNOWAIT))
1215 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1216 
1217 	retval = wo->wo_rusage
1218 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1219 	if (!retval && wo->wo_stat)
1220 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1221 
1222 	infop = wo->wo_info;
1223 	if (!retval && infop)
1224 		retval = put_user(SIGCHLD, &infop->si_signo);
1225 	if (!retval && infop)
1226 		retval = put_user(0, &infop->si_errno);
1227 	if (!retval && infop)
1228 		retval = put_user((short)why, &infop->si_code);
1229 	if (!retval && infop)
1230 		retval = put_user(exit_code, &infop->si_status);
1231 	if (!retval && infop)
1232 		retval = put_user(pid, &infop->si_pid);
1233 	if (!retval && infop)
1234 		retval = put_user(uid, &infop->si_uid);
1235 	if (!retval)
1236 		retval = pid;
1237 	put_task_struct(p);
1238 
1239 	BUG_ON(!retval);
1240 	return retval;
1241 }
1242 
1243 /*
1244  * Handle do_wait work for one task in a live, non-stopped state.
1245  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1246  * the lock and this task is uninteresting.  If we return nonzero, we have
1247  * released the lock and the system call should return.
1248  */
1249 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1250 {
1251 	int retval;
1252 	pid_t pid;
1253 	uid_t uid;
1254 
1255 	if (!unlikely(wo->wo_flags & WCONTINUED))
1256 		return 0;
1257 
1258 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1259 		return 0;
1260 
1261 	spin_lock_irq(&p->sighand->siglock);
1262 	/* Re-check with the lock held.  */
1263 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1264 		spin_unlock_irq(&p->sighand->siglock);
1265 		return 0;
1266 	}
1267 	if (!unlikely(wo->wo_flags & WNOWAIT))
1268 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1269 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270 	spin_unlock_irq(&p->sighand->siglock);
1271 
1272 	pid = task_pid_vnr(p);
1273 	get_task_struct(p);
1274 	read_unlock(&tasklist_lock);
1275 
1276 	if (!wo->wo_info) {
1277 		retval = wo->wo_rusage
1278 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 		put_task_struct(p);
1280 		if (!retval && wo->wo_stat)
1281 			retval = put_user(0xffff, wo->wo_stat);
1282 		if (!retval)
1283 			retval = pid;
1284 	} else {
1285 		retval = wait_noreap_copyout(wo, p, pid, uid,
1286 					     CLD_CONTINUED, SIGCONT);
1287 		BUG_ON(retval == 0);
1288 	}
1289 
1290 	return retval;
1291 }
1292 
1293 /*
1294  * Consider @p for a wait by @parent.
1295  *
1296  * -ECHILD should be in ->notask_error before the first call.
1297  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298  * Returns zero if the search for a child should continue;
1299  * then ->notask_error is 0 if @p is an eligible child,
1300  * or another error from security_task_wait(), or still -ECHILD.
1301  */
1302 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1303 				struct task_struct *p)
1304 {
1305 	int ret;
1306 
1307 	if (unlikely(p->exit_state == EXIT_DEAD))
1308 		return 0;
1309 
1310 	ret = eligible_child(wo, p);
1311 	if (!ret)
1312 		return ret;
1313 
1314 	ret = security_task_wait(p);
1315 	if (unlikely(ret < 0)) {
1316 		/*
1317 		 * If we have not yet seen any eligible child,
1318 		 * then let this error code replace -ECHILD.
1319 		 * A permission error will give the user a clue
1320 		 * to look for security policy problems, rather
1321 		 * than for mysterious wait bugs.
1322 		 */
1323 		if (wo->notask_error)
1324 			wo->notask_error = ret;
1325 		return 0;
1326 	}
1327 
1328 	if (unlikely(p->exit_state == EXIT_TRACE)) {
1329 		/*
1330 		 * ptrace == 0 means we are the natural parent. In this case
1331 		 * we should clear notask_error, debugger will notify us.
1332 		 */
1333 		if (likely(!ptrace))
1334 			wo->notask_error = 0;
1335 		return 0;
1336 	}
1337 
1338 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1339 		/*
1340 		 * If it is traced by its real parent's group, just pretend
1341 		 * the caller is ptrace_do_wait() and reap this child if it
1342 		 * is zombie.
1343 		 *
1344 		 * This also hides group stop state from real parent; otherwise
1345 		 * a single stop can be reported twice as group and ptrace stop.
1346 		 * If a ptracer wants to distinguish these two events for its
1347 		 * own children it should create a separate process which takes
1348 		 * the role of real parent.
1349 		 */
1350 		if (!ptrace_reparented(p))
1351 			ptrace = 1;
1352 	}
1353 
1354 	/* slay zombie? */
1355 	if (p->exit_state == EXIT_ZOMBIE) {
1356 		/* we don't reap group leaders with subthreads */
1357 		if (!delay_group_leader(p)) {
1358 			/*
1359 			 * A zombie ptracee is only visible to its ptracer.
1360 			 * Notification and reaping will be cascaded to the
1361 			 * real parent when the ptracer detaches.
1362 			 */
1363 			if (unlikely(ptrace) || likely(!p->ptrace))
1364 				return wait_task_zombie(wo, p);
1365 		}
1366 
1367 		/*
1368 		 * Allow access to stopped/continued state via zombie by
1369 		 * falling through.  Clearing of notask_error is complex.
1370 		 *
1371 		 * When !@ptrace:
1372 		 *
1373 		 * If WEXITED is set, notask_error should naturally be
1374 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1375 		 * so, if there are live subthreads, there are events to
1376 		 * wait for.  If all subthreads are dead, it's still safe
1377 		 * to clear - this function will be called again in finite
1378 		 * amount time once all the subthreads are released and
1379 		 * will then return without clearing.
1380 		 *
1381 		 * When @ptrace:
1382 		 *
1383 		 * Stopped state is per-task and thus can't change once the
1384 		 * target task dies.  Only continued and exited can happen.
1385 		 * Clear notask_error if WCONTINUED | WEXITED.
1386 		 */
1387 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1388 			wo->notask_error = 0;
1389 	} else {
1390 		/*
1391 		 * @p is alive and it's gonna stop, continue or exit, so
1392 		 * there always is something to wait for.
1393 		 */
1394 		wo->notask_error = 0;
1395 	}
1396 
1397 	/*
1398 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1399 	 * is used and the two don't interact with each other.
1400 	 */
1401 	ret = wait_task_stopped(wo, ptrace, p);
1402 	if (ret)
1403 		return ret;
1404 
1405 	/*
1406 	 * Wait for continued.  There's only one continued state and the
1407 	 * ptracer can consume it which can confuse the real parent.  Don't
1408 	 * use WCONTINUED from ptracer.  You don't need or want it.
1409 	 */
1410 	return wait_task_continued(wo, p);
1411 }
1412 
1413 /*
1414  * Do the work of do_wait() for one thread in the group, @tsk.
1415  *
1416  * -ECHILD should be in ->notask_error before the first call.
1417  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418  * Returns zero if the search for a child should continue; then
1419  * ->notask_error is 0 if there were any eligible children,
1420  * or another error from security_task_wait(), or still -ECHILD.
1421  */
1422 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1423 {
1424 	struct task_struct *p;
1425 
1426 	list_for_each_entry(p, &tsk->children, sibling) {
1427 		int ret = wait_consider_task(wo, 0, p);
1428 
1429 		if (ret)
1430 			return ret;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1437 {
1438 	struct task_struct *p;
1439 
1440 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1441 		int ret = wait_consider_task(wo, 1, p);
1442 
1443 		if (ret)
1444 			return ret;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1451 				int sync, void *key)
1452 {
1453 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1454 						child_wait);
1455 	struct task_struct *p = key;
1456 
1457 	if (!eligible_pid(wo, p))
1458 		return 0;
1459 
1460 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1461 		return 0;
1462 
1463 	return default_wake_function(wait, mode, sync, key);
1464 }
1465 
1466 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1467 {
1468 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1469 				TASK_INTERRUPTIBLE, 1, p);
1470 }
1471 
1472 static long do_wait(struct wait_opts *wo)
1473 {
1474 	struct task_struct *tsk;
1475 	int retval;
1476 
1477 	trace_sched_process_wait(wo->wo_pid);
1478 
1479 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1480 	wo->child_wait.private = current;
1481 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1482 repeat:
1483 	/*
1484 	 * If there is nothing that can match our critiera just get out.
1485 	 * We will clear ->notask_error to zero if we see any child that
1486 	 * might later match our criteria, even if we are not able to reap
1487 	 * it yet.
1488 	 */
1489 	wo->notask_error = -ECHILD;
1490 	if ((wo->wo_type < PIDTYPE_MAX) &&
1491 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1492 		goto notask;
1493 
1494 	set_current_state(TASK_INTERRUPTIBLE);
1495 	read_lock(&tasklist_lock);
1496 	tsk = current;
1497 	do {
1498 		retval = do_wait_thread(wo, tsk);
1499 		if (retval)
1500 			goto end;
1501 
1502 		retval = ptrace_do_wait(wo, tsk);
1503 		if (retval)
1504 			goto end;
1505 
1506 		if (wo->wo_flags & __WNOTHREAD)
1507 			break;
1508 	} while_each_thread(current, tsk);
1509 	read_unlock(&tasklist_lock);
1510 
1511 notask:
1512 	retval = wo->notask_error;
1513 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1514 		retval = -ERESTARTSYS;
1515 		if (!signal_pending(current)) {
1516 			schedule();
1517 			goto repeat;
1518 		}
1519 	}
1520 end:
1521 	__set_current_state(TASK_RUNNING);
1522 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1523 	return retval;
1524 }
1525 
1526 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1527 		infop, int, options, struct rusage __user *, ru)
1528 {
1529 	struct wait_opts wo;
1530 	struct pid *pid = NULL;
1531 	enum pid_type type;
1532 	long ret;
1533 
1534 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1535 		return -EINVAL;
1536 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1537 		return -EINVAL;
1538 
1539 	switch (which) {
1540 	case P_ALL:
1541 		type = PIDTYPE_MAX;
1542 		break;
1543 	case P_PID:
1544 		type = PIDTYPE_PID;
1545 		if (upid <= 0)
1546 			return -EINVAL;
1547 		break;
1548 	case P_PGID:
1549 		type = PIDTYPE_PGID;
1550 		if (upid <= 0)
1551 			return -EINVAL;
1552 		break;
1553 	default:
1554 		return -EINVAL;
1555 	}
1556 
1557 	if (type < PIDTYPE_MAX)
1558 		pid = find_get_pid(upid);
1559 
1560 	wo.wo_type	= type;
1561 	wo.wo_pid	= pid;
1562 	wo.wo_flags	= options;
1563 	wo.wo_info	= infop;
1564 	wo.wo_stat	= NULL;
1565 	wo.wo_rusage	= ru;
1566 	ret = do_wait(&wo);
1567 
1568 	if (ret > 0) {
1569 		ret = 0;
1570 	} else if (infop) {
1571 		/*
1572 		 * For a WNOHANG return, clear out all the fields
1573 		 * we would set so the user can easily tell the
1574 		 * difference.
1575 		 */
1576 		if (!ret)
1577 			ret = put_user(0, &infop->si_signo);
1578 		if (!ret)
1579 			ret = put_user(0, &infop->si_errno);
1580 		if (!ret)
1581 			ret = put_user(0, &infop->si_code);
1582 		if (!ret)
1583 			ret = put_user(0, &infop->si_pid);
1584 		if (!ret)
1585 			ret = put_user(0, &infop->si_uid);
1586 		if (!ret)
1587 			ret = put_user(0, &infop->si_status);
1588 	}
1589 
1590 	put_pid(pid);
1591 	return ret;
1592 }
1593 
1594 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1595 		int, options, struct rusage __user *, ru)
1596 {
1597 	struct wait_opts wo;
1598 	struct pid *pid = NULL;
1599 	enum pid_type type;
1600 	long ret;
1601 
1602 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1603 			__WNOTHREAD|__WCLONE|__WALL))
1604 		return -EINVAL;
1605 
1606 	if (upid == -1)
1607 		type = PIDTYPE_MAX;
1608 	else if (upid < 0) {
1609 		type = PIDTYPE_PGID;
1610 		pid = find_get_pid(-upid);
1611 	} else if (upid == 0) {
1612 		type = PIDTYPE_PGID;
1613 		pid = get_task_pid(current, PIDTYPE_PGID);
1614 	} else /* upid > 0 */ {
1615 		type = PIDTYPE_PID;
1616 		pid = find_get_pid(upid);
1617 	}
1618 
1619 	wo.wo_type	= type;
1620 	wo.wo_pid	= pid;
1621 	wo.wo_flags	= options | WEXITED;
1622 	wo.wo_info	= NULL;
1623 	wo.wo_stat	= stat_addr;
1624 	wo.wo_rusage	= ru;
1625 	ret = do_wait(&wo);
1626 	put_pid(pid);
1627 
1628 	return ret;
1629 }
1630 
1631 #ifdef __ARCH_WANT_SYS_WAITPID
1632 
1633 /*
1634  * sys_waitpid() remains for compatibility. waitpid() should be
1635  * implemented by calling sys_wait4() from libc.a.
1636  */
1637 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1638 {
1639 	return sys_wait4(pid, stat_addr, options, NULL);
1640 }
1641 
1642 #endif
1643