xref: /openbmc/linux/kernel/exit.c (revision e00a844a)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_PGID);
77 		detach_pid(p, PIDTYPE_SID);
78 
79 		list_del_rcu(&p->tasks);
80 		list_del_init(&p->sibling);
81 		__this_cpu_dec(process_counts);
82 	}
83 	list_del_rcu(&p->thread_group);
84 	list_del_rcu(&p->thread_node);
85 }
86 
87 /*
88  * This function expects the tasklist_lock write-locked.
89  */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 	struct signal_struct *sig = tsk->signal;
93 	bool group_dead = thread_group_leader(tsk);
94 	struct sighand_struct *sighand;
95 	struct tty_struct *uninitialized_var(tty);
96 	u64 utime, stime;
97 
98 	sighand = rcu_dereference_check(tsk->sighand,
99 					lockdep_tasklist_lock_is_held());
100 	spin_lock(&sighand->siglock);
101 
102 #ifdef CONFIG_POSIX_TIMERS
103 	posix_cpu_timers_exit(tsk);
104 	if (group_dead) {
105 		posix_cpu_timers_exit_group(tsk);
106 	} else {
107 		/*
108 		 * This can only happen if the caller is de_thread().
109 		 * FIXME: this is the temporary hack, we should teach
110 		 * posix-cpu-timers to handle this case correctly.
111 		 */
112 		if (unlikely(has_group_leader_pid(tsk)))
113 			posix_cpu_timers_exit_group(tsk);
114 	}
115 #endif
116 
117 	if (group_dead) {
118 		tty = sig->tty;
119 		sig->tty = NULL;
120 	} else {
121 		/*
122 		 * If there is any task waiting for the group exit
123 		 * then notify it:
124 		 */
125 		if (sig->notify_count > 0 && !--sig->notify_count)
126 			wake_up_process(sig->group_exit_task);
127 
128 		if (tsk == sig->curr_target)
129 			sig->curr_target = next_thread(tsk);
130 	}
131 
132 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 			      sizeof(unsigned long long));
134 
135 	/*
136 	 * Accumulate here the counters for all threads as they die. We could
137 	 * skip the group leader because it is the last user of signal_struct,
138 	 * but we want to avoid the race with thread_group_cputime() which can
139 	 * see the empty ->thread_head list.
140 	 */
141 	task_cputime(tsk, &utime, &stime);
142 	write_seqlock(&sig->stats_lock);
143 	sig->utime += utime;
144 	sig->stime += stime;
145 	sig->gtime += task_gtime(tsk);
146 	sig->min_flt += tsk->min_flt;
147 	sig->maj_flt += tsk->maj_flt;
148 	sig->nvcsw += tsk->nvcsw;
149 	sig->nivcsw += tsk->nivcsw;
150 	sig->inblock += task_io_get_inblock(tsk);
151 	sig->oublock += task_io_get_oublock(tsk);
152 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 	sig->nr_threads--;
155 	__unhash_process(tsk, group_dead);
156 	write_sequnlock(&sig->stats_lock);
157 
158 	/*
159 	 * Do this under ->siglock, we can race with another thread
160 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 	 */
162 	flush_sigqueue(&tsk->pending);
163 	tsk->sighand = NULL;
164 	spin_unlock(&sighand->siglock);
165 
166 	__cleanup_sighand(sighand);
167 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 	if (group_dead) {
169 		flush_sigqueue(&sig->shared_pending);
170 		tty_kref_put(tty);
171 	}
172 }
173 
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177 
178 	perf_event_delayed_put(tsk);
179 	trace_sched_process_free(tsk);
180 	put_task_struct(tsk);
181 }
182 
183 
184 void release_task(struct task_struct *p)
185 {
186 	struct task_struct *leader;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	atomic_dec(&__task_cred(p)->user->processes);
193 	rcu_read_unlock();
194 
195 	proc_flush_task(p);
196 
197 	write_lock_irq(&tasklist_lock);
198 	ptrace_release_task(p);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	release_thread(p);
222 	call_rcu(&p->rcu, delayed_put_task_struct);
223 
224 	p = leader;
225 	if (unlikely(zap_leader))
226 		goto repeat;
227 }
228 
229 /*
230  * Note that if this function returns a valid task_struct pointer (!NULL)
231  * task->usage must remain >0 for the duration of the RCU critical section.
232  */
233 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
234 {
235 	struct sighand_struct *sighand;
236 	struct task_struct *task;
237 
238 	/*
239 	 * We need to verify that release_task() was not called and thus
240 	 * delayed_put_task_struct() can't run and drop the last reference
241 	 * before rcu_read_unlock(). We check task->sighand != NULL,
242 	 * but we can read the already freed and reused memory.
243 	 */
244 retry:
245 	task = rcu_dereference(*ptask);
246 	if (!task)
247 		return NULL;
248 
249 	probe_kernel_address(&task->sighand, sighand);
250 
251 	/*
252 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
253 	 * was already freed we can not miss the preceding update of this
254 	 * pointer.
255 	 */
256 	smp_rmb();
257 	if (unlikely(task != READ_ONCE(*ptask)))
258 		goto retry;
259 
260 	/*
261 	 * We've re-checked that "task == *ptask", now we have two different
262 	 * cases:
263 	 *
264 	 * 1. This is actually the same task/task_struct. In this case
265 	 *    sighand != NULL tells us it is still alive.
266 	 *
267 	 * 2. This is another task which got the same memory for task_struct.
268 	 *    We can't know this of course, and we can not trust
269 	 *    sighand != NULL.
270 	 *
271 	 *    In this case we actually return a random value, but this is
272 	 *    correct.
273 	 *
274 	 *    If we return NULL - we can pretend that we actually noticed that
275 	 *    *ptask was updated when the previous task has exited. Or pretend
276 	 *    that probe_slab_address(&sighand) reads NULL.
277 	 *
278 	 *    If we return the new task (because sighand is not NULL for any
279 	 *    reason) - this is fine too. This (new) task can't go away before
280 	 *    another gp pass.
281 	 *
282 	 *    And note: We could even eliminate the false positive if re-read
283 	 *    task->sighand once again to avoid the falsely NULL. But this case
284 	 *    is very unlikely so we don't care.
285 	 */
286 	if (!sighand)
287 		return NULL;
288 
289 	return task;
290 }
291 
292 void rcuwait_wake_up(struct rcuwait *w)
293 {
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_rmb(); /* (B) */
310 
311 	/*
312 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
313 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
314 	 */
315 	task = rcu_dereference(w->task);
316 	if (task)
317 		wake_up_process(task);
318 	rcu_read_unlock();
319 }
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
402 #ifdef CONFIG_MEMCG
403 /*
404  * A task is exiting.   If it owned this mm, find a new owner for the mm.
405  */
406 void mm_update_next_owner(struct mm_struct *mm)
407 {
408 	struct task_struct *c, *g, *p = current;
409 
410 retry:
411 	/*
412 	 * If the exiting or execing task is not the owner, it's
413 	 * someone else's problem.
414 	 */
415 	if (mm->owner != p)
416 		return;
417 	/*
418 	 * The current owner is exiting/execing and there are no other
419 	 * candidates.  Do not leave the mm pointing to a possibly
420 	 * freed task structure.
421 	 */
422 	if (atomic_read(&mm->mm_users) <= 1) {
423 		mm->owner = NULL;
424 		return;
425 	}
426 
427 	read_lock(&tasklist_lock);
428 	/*
429 	 * Search in the children
430 	 */
431 	list_for_each_entry(c, &p->children, sibling) {
432 		if (c->mm == mm)
433 			goto assign_new_owner;
434 	}
435 
436 	/*
437 	 * Search in the siblings
438 	 */
439 	list_for_each_entry(c, &p->real_parent->children, sibling) {
440 		if (c->mm == mm)
441 			goto assign_new_owner;
442 	}
443 
444 	/*
445 	 * Search through everything else, we should not get here often.
446 	 */
447 	for_each_process(g) {
448 		if (g->flags & PF_KTHREAD)
449 			continue;
450 		for_each_thread(g, c) {
451 			if (c->mm == mm)
452 				goto assign_new_owner;
453 			if (c->mm)
454 				break;
455 		}
456 	}
457 	read_unlock(&tasklist_lock);
458 	/*
459 	 * We found no owner yet mm_users > 1: this implies that we are
460 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
461 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
462 	 */
463 	mm->owner = NULL;
464 	return;
465 
466 assign_new_owner:
467 	BUG_ON(c == p);
468 	get_task_struct(c);
469 	/*
470 	 * The task_lock protects c->mm from changing.
471 	 * We always want mm->owner->mm == mm
472 	 */
473 	task_lock(c);
474 	/*
475 	 * Delay read_unlock() till we have the task_lock()
476 	 * to ensure that c does not slip away underneath us
477 	 */
478 	read_unlock(&tasklist_lock);
479 	if (c->mm != mm) {
480 		task_unlock(c);
481 		put_task_struct(c);
482 		goto retry;
483 	}
484 	mm->owner = c;
485 	task_unlock(c);
486 	put_task_struct(c);
487 }
488 #endif /* CONFIG_MEMCG */
489 
490 /*
491  * Turn us into a lazy TLB process if we
492  * aren't already..
493  */
494 static void exit_mm(void)
495 {
496 	struct mm_struct *mm = current->mm;
497 	struct core_state *core_state;
498 
499 	mm_release(current, mm);
500 	if (!mm)
501 		return;
502 	sync_mm_rss(mm);
503 	/*
504 	 * Serialize with any possible pending coredump.
505 	 * We must hold mmap_sem around checking core_state
506 	 * and clearing tsk->mm.  The core-inducing thread
507 	 * will increment ->nr_threads for each thread in the
508 	 * group with ->mm != NULL.
509 	 */
510 	down_read(&mm->mmap_sem);
511 	core_state = mm->core_state;
512 	if (core_state) {
513 		struct core_thread self;
514 
515 		up_read(&mm->mmap_sem);
516 
517 		self.task = current;
518 		self.next = xchg(&core_state->dumper.next, &self);
519 		/*
520 		 * Implies mb(), the result of xchg() must be visible
521 		 * to core_state->dumper.
522 		 */
523 		if (atomic_dec_and_test(&core_state->nr_threads))
524 			complete(&core_state->startup);
525 
526 		for (;;) {
527 			set_current_state(TASK_UNINTERRUPTIBLE);
528 			if (!self.task) /* see coredump_finish() */
529 				break;
530 			freezable_schedule();
531 		}
532 		__set_current_state(TASK_RUNNING);
533 		down_read(&mm->mmap_sem);
534 	}
535 	mmgrab(mm);
536 	BUG_ON(mm != current->active_mm);
537 	/* more a memory barrier than a real lock */
538 	task_lock(current);
539 	current->mm = NULL;
540 	up_read(&mm->mmap_sem);
541 	enter_lazy_tlb(mm, current);
542 	task_unlock(current);
543 	mm_update_next_owner(mm);
544 	mmput(mm);
545 	if (test_thread_flag(TIF_MEMDIE))
546 		exit_oom_victim();
547 }
548 
549 static struct task_struct *find_alive_thread(struct task_struct *p)
550 {
551 	struct task_struct *t;
552 
553 	for_each_thread(p, t) {
554 		if (!(t->flags & PF_EXITING))
555 			return t;
556 	}
557 	return NULL;
558 }
559 
560 static struct task_struct *find_child_reaper(struct task_struct *father)
561 	__releases(&tasklist_lock)
562 	__acquires(&tasklist_lock)
563 {
564 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
565 	struct task_struct *reaper = pid_ns->child_reaper;
566 
567 	if (likely(reaper != father))
568 		return reaper;
569 
570 	reaper = find_alive_thread(father);
571 	if (reaper) {
572 		pid_ns->child_reaper = reaper;
573 		return reaper;
574 	}
575 
576 	write_unlock_irq(&tasklist_lock);
577 	if (unlikely(pid_ns == &init_pid_ns)) {
578 		panic("Attempted to kill init! exitcode=0x%08x\n",
579 			father->signal->group_exit_code ?: father->exit_code);
580 	}
581 	zap_pid_ns_processes(pid_ns);
582 	write_lock_irq(&tasklist_lock);
583 
584 	return father;
585 }
586 
587 /*
588  * When we die, we re-parent all our children, and try to:
589  * 1. give them to another thread in our thread group, if such a member exists
590  * 2. give it to the first ancestor process which prctl'd itself as a
591  *    child_subreaper for its children (like a service manager)
592  * 3. give it to the init process (PID 1) in our pid namespace
593  */
594 static struct task_struct *find_new_reaper(struct task_struct *father,
595 					   struct task_struct *child_reaper)
596 {
597 	struct task_struct *thread, *reaper;
598 
599 	thread = find_alive_thread(father);
600 	if (thread)
601 		return thread;
602 
603 	if (father->signal->has_child_subreaper) {
604 		unsigned int ns_level = task_pid(father)->level;
605 		/*
606 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
607 		 * We can't check reaper != child_reaper to ensure we do not
608 		 * cross the namespaces, the exiting parent could be injected
609 		 * by setns() + fork().
610 		 * We check pid->level, this is slightly more efficient than
611 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
612 		 */
613 		for (reaper = father->real_parent;
614 		     task_pid(reaper)->level == ns_level;
615 		     reaper = reaper->real_parent) {
616 			if (reaper == &init_task)
617 				break;
618 			if (!reaper->signal->is_child_subreaper)
619 				continue;
620 			thread = find_alive_thread(reaper);
621 			if (thread)
622 				return thread;
623 		}
624 	}
625 
626 	return child_reaper;
627 }
628 
629 /*
630 * Any that need to be release_task'd are put on the @dead list.
631  */
632 static void reparent_leader(struct task_struct *father, struct task_struct *p,
633 				struct list_head *dead)
634 {
635 	if (unlikely(p->exit_state == EXIT_DEAD))
636 		return;
637 
638 	/* We don't want people slaying init. */
639 	p->exit_signal = SIGCHLD;
640 
641 	/* If it has exited notify the new parent about this child's death. */
642 	if (!p->ptrace &&
643 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
644 		if (do_notify_parent(p, p->exit_signal)) {
645 			p->exit_state = EXIT_DEAD;
646 			list_add(&p->ptrace_entry, dead);
647 		}
648 	}
649 
650 	kill_orphaned_pgrp(p, father);
651 }
652 
653 /*
654  * This does two things:
655  *
656  * A.  Make init inherit all the child processes
657  * B.  Check to see if any process groups have become orphaned
658  *	as a result of our exiting, and if they have any stopped
659  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
660  */
661 static void forget_original_parent(struct task_struct *father,
662 					struct list_head *dead)
663 {
664 	struct task_struct *p, *t, *reaper;
665 
666 	if (unlikely(!list_empty(&father->ptraced)))
667 		exit_ptrace(father, dead);
668 
669 	/* Can drop and reacquire tasklist_lock */
670 	reaper = find_child_reaper(father);
671 	if (list_empty(&father->children))
672 		return;
673 
674 	reaper = find_new_reaper(father, reaper);
675 	list_for_each_entry(p, &father->children, sibling) {
676 		for_each_thread(p, t) {
677 			t->real_parent = reaper;
678 			BUG_ON((!t->ptrace) != (t->parent == father));
679 			if (likely(!t->ptrace))
680 				t->parent = t->real_parent;
681 			if (t->pdeath_signal)
682 				group_send_sig_info(t->pdeath_signal,
683 						    SEND_SIG_NOINFO, t);
684 		}
685 		/*
686 		 * If this is a threaded reparent there is no need to
687 		 * notify anyone anything has happened.
688 		 */
689 		if (!same_thread_group(reaper, father))
690 			reparent_leader(father, p, dead);
691 	}
692 	list_splice_tail_init(&father->children, &reaper->children);
693 }
694 
695 /*
696  * Send signals to all our closest relatives so that they know
697  * to properly mourn us..
698  */
699 static void exit_notify(struct task_struct *tsk, int group_dead)
700 {
701 	bool autoreap;
702 	struct task_struct *p, *n;
703 	LIST_HEAD(dead);
704 
705 	write_lock_irq(&tasklist_lock);
706 	forget_original_parent(tsk, &dead);
707 
708 	if (group_dead)
709 		kill_orphaned_pgrp(tsk->group_leader, NULL);
710 
711 	if (unlikely(tsk->ptrace)) {
712 		int sig = thread_group_leader(tsk) &&
713 				thread_group_empty(tsk) &&
714 				!ptrace_reparented(tsk) ?
715 			tsk->exit_signal : SIGCHLD;
716 		autoreap = do_notify_parent(tsk, sig);
717 	} else if (thread_group_leader(tsk)) {
718 		autoreap = thread_group_empty(tsk) &&
719 			do_notify_parent(tsk, tsk->exit_signal);
720 	} else {
721 		autoreap = true;
722 	}
723 
724 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
725 	if (tsk->exit_state == EXIT_DEAD)
726 		list_add(&tsk->ptrace_entry, &dead);
727 
728 	/* mt-exec, de_thread() is waiting for group leader */
729 	if (unlikely(tsk->signal->notify_count < 0))
730 		wake_up_process(tsk->signal->group_exit_task);
731 	write_unlock_irq(&tasklist_lock);
732 
733 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 		list_del_init(&p->ptrace_entry);
735 		release_task(p);
736 	}
737 }
738 
739 #ifdef CONFIG_DEBUG_STACK_USAGE
740 static void check_stack_usage(void)
741 {
742 	static DEFINE_SPINLOCK(low_water_lock);
743 	static int lowest_to_date = THREAD_SIZE;
744 	unsigned long free;
745 
746 	free = stack_not_used(current);
747 
748 	if (free >= lowest_to_date)
749 		return;
750 
751 	spin_lock(&low_water_lock);
752 	if (free < lowest_to_date) {
753 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 			current->comm, task_pid_nr(current), free);
755 		lowest_to_date = free;
756 	}
757 	spin_unlock(&low_water_lock);
758 }
759 #else
760 static inline void check_stack_usage(void) {}
761 #endif
762 
763 void __noreturn do_exit(long code)
764 {
765 	struct task_struct *tsk = current;
766 	int group_dead;
767 
768 	profile_task_exit(tsk);
769 	kcov_task_exit(tsk);
770 
771 	WARN_ON(blk_needs_flush_plug(tsk));
772 
773 	if (unlikely(in_interrupt()))
774 		panic("Aiee, killing interrupt handler!");
775 	if (unlikely(!tsk->pid))
776 		panic("Attempted to kill the idle task!");
777 
778 	/*
779 	 * If do_exit is called because this processes oopsed, it's possible
780 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
781 	 * continuing. Amongst other possible reasons, this is to prevent
782 	 * mm_release()->clear_child_tid() from writing to a user-controlled
783 	 * kernel address.
784 	 */
785 	set_fs(USER_DS);
786 
787 	ptrace_event(PTRACE_EVENT_EXIT, code);
788 
789 	validate_creds_for_do_exit(tsk);
790 
791 	/*
792 	 * We're taking recursive faults here in do_exit. Safest is to just
793 	 * leave this task alone and wait for reboot.
794 	 */
795 	if (unlikely(tsk->flags & PF_EXITING)) {
796 		pr_alert("Fixing recursive fault but reboot is needed!\n");
797 		/*
798 		 * We can do this unlocked here. The futex code uses
799 		 * this flag just to verify whether the pi state
800 		 * cleanup has been done or not. In the worst case it
801 		 * loops once more. We pretend that the cleanup was
802 		 * done as there is no way to return. Either the
803 		 * OWNER_DIED bit is set by now or we push the blocked
804 		 * task into the wait for ever nirwana as well.
805 		 */
806 		tsk->flags |= PF_EXITPIDONE;
807 		set_current_state(TASK_UNINTERRUPTIBLE);
808 		schedule();
809 	}
810 
811 	exit_signals(tsk);  /* sets PF_EXITING */
812 	/*
813 	 * Ensure that all new tsk->pi_lock acquisitions must observe
814 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
815 	 */
816 	smp_mb();
817 	/*
818 	 * Ensure that we must observe the pi_state in exit_mm() ->
819 	 * mm_release() -> exit_pi_state_list().
820 	 */
821 	raw_spin_lock_irq(&tsk->pi_lock);
822 	raw_spin_unlock_irq(&tsk->pi_lock);
823 
824 	if (unlikely(in_atomic())) {
825 		pr_info("note: %s[%d] exited with preempt_count %d\n",
826 			current->comm, task_pid_nr(current),
827 			preempt_count());
828 		preempt_count_set(PREEMPT_ENABLED);
829 	}
830 
831 	/* sync mm's RSS info before statistics gathering */
832 	if (tsk->mm)
833 		sync_mm_rss(tsk->mm);
834 	acct_update_integrals(tsk);
835 	group_dead = atomic_dec_and_test(&tsk->signal->live);
836 	if (group_dead) {
837 #ifdef CONFIG_POSIX_TIMERS
838 		hrtimer_cancel(&tsk->signal->real_timer);
839 		exit_itimers(tsk->signal);
840 #endif
841 		if (tsk->mm)
842 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
843 	}
844 	acct_collect(code, group_dead);
845 	if (group_dead)
846 		tty_audit_exit();
847 	audit_free(tsk);
848 
849 	tsk->exit_code = code;
850 	taskstats_exit(tsk, group_dead);
851 
852 	exit_mm();
853 
854 	if (group_dead)
855 		acct_process();
856 	trace_sched_process_exit(tsk);
857 
858 	exit_sem(tsk);
859 	exit_shm(tsk);
860 	exit_files(tsk);
861 	exit_fs(tsk);
862 	if (group_dead)
863 		disassociate_ctty(1);
864 	exit_task_namespaces(tsk);
865 	exit_task_work(tsk);
866 	exit_thread(tsk);
867 
868 	/*
869 	 * Flush inherited counters to the parent - before the parent
870 	 * gets woken up by child-exit notifications.
871 	 *
872 	 * because of cgroup mode, must be called before cgroup_exit()
873 	 */
874 	perf_event_exit_task(tsk);
875 
876 	sched_autogroup_exit_task(tsk);
877 	cgroup_exit(tsk);
878 
879 	/*
880 	 * FIXME: do that only when needed, using sched_exit tracepoint
881 	 */
882 	flush_ptrace_hw_breakpoint(tsk);
883 
884 	exit_tasks_rcu_start();
885 	exit_notify(tsk, group_dead);
886 	proc_exit_connector(tsk);
887 	mpol_put_task_policy(tsk);
888 #ifdef CONFIG_FUTEX
889 	if (unlikely(current->pi_state_cache))
890 		kfree(current->pi_state_cache);
891 #endif
892 	/*
893 	 * Make sure we are holding no locks:
894 	 */
895 	debug_check_no_locks_held();
896 	/*
897 	 * We can do this unlocked here. The futex code uses this flag
898 	 * just to verify whether the pi state cleanup has been done
899 	 * or not. In the worst case it loops once more.
900 	 */
901 	tsk->flags |= PF_EXITPIDONE;
902 
903 	if (tsk->io_context)
904 		exit_io_context(tsk);
905 
906 	if (tsk->splice_pipe)
907 		free_pipe_info(tsk->splice_pipe);
908 
909 	if (tsk->task_frag.page)
910 		put_page(tsk->task_frag.page);
911 
912 	validate_creds_for_do_exit(tsk);
913 
914 	check_stack_usage();
915 	preempt_disable();
916 	if (tsk->nr_dirtied)
917 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918 	exit_rcu();
919 	exit_tasks_rcu_finish();
920 
921 	lockdep_free_task(tsk);
922 	do_task_dead();
923 }
924 EXPORT_SYMBOL_GPL(do_exit);
925 
926 void complete_and_exit(struct completion *comp, long code)
927 {
928 	if (comp)
929 		complete(comp);
930 
931 	do_exit(code);
932 }
933 EXPORT_SYMBOL(complete_and_exit);
934 
935 SYSCALL_DEFINE1(exit, int, error_code)
936 {
937 	do_exit((error_code&0xff)<<8);
938 }
939 
940 /*
941  * Take down every thread in the group.  This is called by fatal signals
942  * as well as by sys_exit_group (below).
943  */
944 void
945 do_group_exit(int exit_code)
946 {
947 	struct signal_struct *sig = current->signal;
948 
949 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
950 
951 	if (signal_group_exit(sig))
952 		exit_code = sig->group_exit_code;
953 	else if (!thread_group_empty(current)) {
954 		struct sighand_struct *const sighand = current->sighand;
955 
956 		spin_lock_irq(&sighand->siglock);
957 		if (signal_group_exit(sig))
958 			/* Another thread got here before we took the lock.  */
959 			exit_code = sig->group_exit_code;
960 		else {
961 			sig->group_exit_code = exit_code;
962 			sig->flags = SIGNAL_GROUP_EXIT;
963 			zap_other_threads(current);
964 		}
965 		spin_unlock_irq(&sighand->siglock);
966 	}
967 
968 	do_exit(exit_code);
969 	/* NOTREACHED */
970 }
971 
972 /*
973  * this kills every thread in the thread group. Note that any externally
974  * wait4()-ing process will get the correct exit code - even if this
975  * thread is not the thread group leader.
976  */
977 SYSCALL_DEFINE1(exit_group, int, error_code)
978 {
979 	do_group_exit((error_code & 0xff) << 8);
980 	/* NOTREACHED */
981 	return 0;
982 }
983 
984 struct waitid_info {
985 	pid_t pid;
986 	uid_t uid;
987 	int status;
988 	int cause;
989 };
990 
991 struct wait_opts {
992 	enum pid_type		wo_type;
993 	int			wo_flags;
994 	struct pid		*wo_pid;
995 
996 	struct waitid_info	*wo_info;
997 	int			wo_stat;
998 	struct rusage		*wo_rusage;
999 
1000 	wait_queue_entry_t		child_wait;
1001 	int			notask_error;
1002 };
1003 
1004 static inline
1005 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1006 {
1007 	if (type != PIDTYPE_PID)
1008 		task = task->group_leader;
1009 	return task->pids[type].pid;
1010 }
1011 
1012 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1013 {
1014 	return	wo->wo_type == PIDTYPE_MAX ||
1015 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1016 }
1017 
1018 static int
1019 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1020 {
1021 	if (!eligible_pid(wo, p))
1022 		return 0;
1023 
1024 	/*
1025 	 * Wait for all children (clone and not) if __WALL is set or
1026 	 * if it is traced by us.
1027 	 */
1028 	if (ptrace || (wo->wo_flags & __WALL))
1029 		return 1;
1030 
1031 	/*
1032 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1033 	 * otherwise, wait for non-clone children *only*.
1034 	 *
1035 	 * Note: a "clone" child here is one that reports to its parent
1036 	 * using a signal other than SIGCHLD, or a non-leader thread which
1037 	 * we can only see if it is traced by us.
1038 	 */
1039 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1040 		return 0;
1041 
1042 	return 1;
1043 }
1044 
1045 /*
1046  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1047  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1048  * the lock and this task is uninteresting.  If we return nonzero, we have
1049  * released the lock and the system call should return.
1050  */
1051 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1052 {
1053 	int state, status;
1054 	pid_t pid = task_pid_vnr(p);
1055 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1056 	struct waitid_info *infop;
1057 
1058 	if (!likely(wo->wo_flags & WEXITED))
1059 		return 0;
1060 
1061 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1062 		status = p->exit_code;
1063 		get_task_struct(p);
1064 		read_unlock(&tasklist_lock);
1065 		sched_annotate_sleep();
1066 		if (wo->wo_rusage)
1067 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1068 		put_task_struct(p);
1069 		goto out_info;
1070 	}
1071 	/*
1072 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1073 	 */
1074 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1075 		EXIT_TRACE : EXIT_DEAD;
1076 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1077 		return 0;
1078 	/*
1079 	 * We own this thread, nobody else can reap it.
1080 	 */
1081 	read_unlock(&tasklist_lock);
1082 	sched_annotate_sleep();
1083 
1084 	/*
1085 	 * Check thread_group_leader() to exclude the traced sub-threads.
1086 	 */
1087 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1088 		struct signal_struct *sig = p->signal;
1089 		struct signal_struct *psig = current->signal;
1090 		unsigned long maxrss;
1091 		u64 tgutime, tgstime;
1092 
1093 		/*
1094 		 * The resource counters for the group leader are in its
1095 		 * own task_struct.  Those for dead threads in the group
1096 		 * are in its signal_struct, as are those for the child
1097 		 * processes it has previously reaped.  All these
1098 		 * accumulate in the parent's signal_struct c* fields.
1099 		 *
1100 		 * We don't bother to take a lock here to protect these
1101 		 * p->signal fields because the whole thread group is dead
1102 		 * and nobody can change them.
1103 		 *
1104 		 * psig->stats_lock also protects us from our sub-theads
1105 		 * which can reap other children at the same time. Until
1106 		 * we change k_getrusage()-like users to rely on this lock
1107 		 * we have to take ->siglock as well.
1108 		 *
1109 		 * We use thread_group_cputime_adjusted() to get times for
1110 		 * the thread group, which consolidates times for all threads
1111 		 * in the group including the group leader.
1112 		 */
1113 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1114 		spin_lock_irq(&current->sighand->siglock);
1115 		write_seqlock(&psig->stats_lock);
1116 		psig->cutime += tgutime + sig->cutime;
1117 		psig->cstime += tgstime + sig->cstime;
1118 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1119 		psig->cmin_flt +=
1120 			p->min_flt + sig->min_flt + sig->cmin_flt;
1121 		psig->cmaj_flt +=
1122 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1123 		psig->cnvcsw +=
1124 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1125 		psig->cnivcsw +=
1126 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1127 		psig->cinblock +=
1128 			task_io_get_inblock(p) +
1129 			sig->inblock + sig->cinblock;
1130 		psig->coublock +=
1131 			task_io_get_oublock(p) +
1132 			sig->oublock + sig->coublock;
1133 		maxrss = max(sig->maxrss, sig->cmaxrss);
1134 		if (psig->cmaxrss < maxrss)
1135 			psig->cmaxrss = maxrss;
1136 		task_io_accounting_add(&psig->ioac, &p->ioac);
1137 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1138 		write_sequnlock(&psig->stats_lock);
1139 		spin_unlock_irq(&current->sighand->siglock);
1140 	}
1141 
1142 	if (wo->wo_rusage)
1143 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1144 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1145 		? p->signal->group_exit_code : p->exit_code;
1146 	wo->wo_stat = status;
1147 
1148 	if (state == EXIT_TRACE) {
1149 		write_lock_irq(&tasklist_lock);
1150 		/* We dropped tasklist, ptracer could die and untrace */
1151 		ptrace_unlink(p);
1152 
1153 		/* If parent wants a zombie, don't release it now */
1154 		state = EXIT_ZOMBIE;
1155 		if (do_notify_parent(p, p->exit_signal))
1156 			state = EXIT_DEAD;
1157 		p->exit_state = state;
1158 		write_unlock_irq(&tasklist_lock);
1159 	}
1160 	if (state == EXIT_DEAD)
1161 		release_task(p);
1162 
1163 out_info:
1164 	infop = wo->wo_info;
1165 	if (infop) {
1166 		if ((status & 0x7f) == 0) {
1167 			infop->cause = CLD_EXITED;
1168 			infop->status = status >> 8;
1169 		} else {
1170 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1171 			infop->status = status & 0x7f;
1172 		}
1173 		infop->pid = pid;
1174 		infop->uid = uid;
1175 	}
1176 
1177 	return pid;
1178 }
1179 
1180 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1181 {
1182 	if (ptrace) {
1183 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1184 			return &p->exit_code;
1185 	} else {
1186 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1187 			return &p->signal->group_exit_code;
1188 	}
1189 	return NULL;
1190 }
1191 
1192 /**
1193  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1194  * @wo: wait options
1195  * @ptrace: is the wait for ptrace
1196  * @p: task to wait for
1197  *
1198  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1199  *
1200  * CONTEXT:
1201  * read_lock(&tasklist_lock), which is released if return value is
1202  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1203  *
1204  * RETURNS:
1205  * 0 if wait condition didn't exist and search for other wait conditions
1206  * should continue.  Non-zero return, -errno on failure and @p's pid on
1207  * success, implies that tasklist_lock is released and wait condition
1208  * search should terminate.
1209  */
1210 static int wait_task_stopped(struct wait_opts *wo,
1211 				int ptrace, struct task_struct *p)
1212 {
1213 	struct waitid_info *infop;
1214 	int exit_code, *p_code, why;
1215 	uid_t uid = 0; /* unneeded, required by compiler */
1216 	pid_t pid;
1217 
1218 	/*
1219 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1220 	 */
1221 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1222 		return 0;
1223 
1224 	if (!task_stopped_code(p, ptrace))
1225 		return 0;
1226 
1227 	exit_code = 0;
1228 	spin_lock_irq(&p->sighand->siglock);
1229 
1230 	p_code = task_stopped_code(p, ptrace);
1231 	if (unlikely(!p_code))
1232 		goto unlock_sig;
1233 
1234 	exit_code = *p_code;
1235 	if (!exit_code)
1236 		goto unlock_sig;
1237 
1238 	if (!unlikely(wo->wo_flags & WNOWAIT))
1239 		*p_code = 0;
1240 
1241 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1242 unlock_sig:
1243 	spin_unlock_irq(&p->sighand->siglock);
1244 	if (!exit_code)
1245 		return 0;
1246 
1247 	/*
1248 	 * Now we are pretty sure this task is interesting.
1249 	 * Make sure it doesn't get reaped out from under us while we
1250 	 * give up the lock and then examine it below.  We don't want to
1251 	 * keep holding onto the tasklist_lock while we call getrusage and
1252 	 * possibly take page faults for user memory.
1253 	 */
1254 	get_task_struct(p);
1255 	pid = task_pid_vnr(p);
1256 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1257 	read_unlock(&tasklist_lock);
1258 	sched_annotate_sleep();
1259 	if (wo->wo_rusage)
1260 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261 	put_task_struct(p);
1262 
1263 	if (likely(!(wo->wo_flags & WNOWAIT)))
1264 		wo->wo_stat = (exit_code << 8) | 0x7f;
1265 
1266 	infop = wo->wo_info;
1267 	if (infop) {
1268 		infop->cause = why;
1269 		infop->status = exit_code;
1270 		infop->pid = pid;
1271 		infop->uid = uid;
1272 	}
1273 	return pid;
1274 }
1275 
1276 /*
1277  * Handle do_wait work for one task in a live, non-stopped state.
1278  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1279  * the lock and this task is uninteresting.  If we return nonzero, we have
1280  * released the lock and the system call should return.
1281  */
1282 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1283 {
1284 	struct waitid_info *infop;
1285 	pid_t pid;
1286 	uid_t uid;
1287 
1288 	if (!unlikely(wo->wo_flags & WCONTINUED))
1289 		return 0;
1290 
1291 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1292 		return 0;
1293 
1294 	spin_lock_irq(&p->sighand->siglock);
1295 	/* Re-check with the lock held.  */
1296 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1297 		spin_unlock_irq(&p->sighand->siglock);
1298 		return 0;
1299 	}
1300 	if (!unlikely(wo->wo_flags & WNOWAIT))
1301 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1302 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1303 	spin_unlock_irq(&p->sighand->siglock);
1304 
1305 	pid = task_pid_vnr(p);
1306 	get_task_struct(p);
1307 	read_unlock(&tasklist_lock);
1308 	sched_annotate_sleep();
1309 	if (wo->wo_rusage)
1310 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1311 	put_task_struct(p);
1312 
1313 	infop = wo->wo_info;
1314 	if (!infop) {
1315 		wo->wo_stat = 0xffff;
1316 	} else {
1317 		infop->cause = CLD_CONTINUED;
1318 		infop->pid = pid;
1319 		infop->uid = uid;
1320 		infop->status = SIGCONT;
1321 	}
1322 	return pid;
1323 }
1324 
1325 /*
1326  * Consider @p for a wait by @parent.
1327  *
1328  * -ECHILD should be in ->notask_error before the first call.
1329  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1330  * Returns zero if the search for a child should continue;
1331  * then ->notask_error is 0 if @p is an eligible child,
1332  * or still -ECHILD.
1333  */
1334 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1335 				struct task_struct *p)
1336 {
1337 	/*
1338 	 * We can race with wait_task_zombie() from another thread.
1339 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1340 	 * can't confuse the checks below.
1341 	 */
1342 	int exit_state = READ_ONCE(p->exit_state);
1343 	int ret;
1344 
1345 	if (unlikely(exit_state == EXIT_DEAD))
1346 		return 0;
1347 
1348 	ret = eligible_child(wo, ptrace, p);
1349 	if (!ret)
1350 		return ret;
1351 
1352 	if (unlikely(exit_state == EXIT_TRACE)) {
1353 		/*
1354 		 * ptrace == 0 means we are the natural parent. In this case
1355 		 * we should clear notask_error, debugger will notify us.
1356 		 */
1357 		if (likely(!ptrace))
1358 			wo->notask_error = 0;
1359 		return 0;
1360 	}
1361 
1362 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1363 		/*
1364 		 * If it is traced by its real parent's group, just pretend
1365 		 * the caller is ptrace_do_wait() and reap this child if it
1366 		 * is zombie.
1367 		 *
1368 		 * This also hides group stop state from real parent; otherwise
1369 		 * a single stop can be reported twice as group and ptrace stop.
1370 		 * If a ptracer wants to distinguish these two events for its
1371 		 * own children it should create a separate process which takes
1372 		 * the role of real parent.
1373 		 */
1374 		if (!ptrace_reparented(p))
1375 			ptrace = 1;
1376 	}
1377 
1378 	/* slay zombie? */
1379 	if (exit_state == EXIT_ZOMBIE) {
1380 		/* we don't reap group leaders with subthreads */
1381 		if (!delay_group_leader(p)) {
1382 			/*
1383 			 * A zombie ptracee is only visible to its ptracer.
1384 			 * Notification and reaping will be cascaded to the
1385 			 * real parent when the ptracer detaches.
1386 			 */
1387 			if (unlikely(ptrace) || likely(!p->ptrace))
1388 				return wait_task_zombie(wo, p);
1389 		}
1390 
1391 		/*
1392 		 * Allow access to stopped/continued state via zombie by
1393 		 * falling through.  Clearing of notask_error is complex.
1394 		 *
1395 		 * When !@ptrace:
1396 		 *
1397 		 * If WEXITED is set, notask_error should naturally be
1398 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1399 		 * so, if there are live subthreads, there are events to
1400 		 * wait for.  If all subthreads are dead, it's still safe
1401 		 * to clear - this function will be called again in finite
1402 		 * amount time once all the subthreads are released and
1403 		 * will then return without clearing.
1404 		 *
1405 		 * When @ptrace:
1406 		 *
1407 		 * Stopped state is per-task and thus can't change once the
1408 		 * target task dies.  Only continued and exited can happen.
1409 		 * Clear notask_error if WCONTINUED | WEXITED.
1410 		 */
1411 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1412 			wo->notask_error = 0;
1413 	} else {
1414 		/*
1415 		 * @p is alive and it's gonna stop, continue or exit, so
1416 		 * there always is something to wait for.
1417 		 */
1418 		wo->notask_error = 0;
1419 	}
1420 
1421 	/*
1422 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1423 	 * is used and the two don't interact with each other.
1424 	 */
1425 	ret = wait_task_stopped(wo, ptrace, p);
1426 	if (ret)
1427 		return ret;
1428 
1429 	/*
1430 	 * Wait for continued.  There's only one continued state and the
1431 	 * ptracer can consume it which can confuse the real parent.  Don't
1432 	 * use WCONTINUED from ptracer.  You don't need or want it.
1433 	 */
1434 	return wait_task_continued(wo, p);
1435 }
1436 
1437 /*
1438  * Do the work of do_wait() for one thread in the group, @tsk.
1439  *
1440  * -ECHILD should be in ->notask_error before the first call.
1441  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1442  * Returns zero if the search for a child should continue; then
1443  * ->notask_error is 0 if there were any eligible children,
1444  * or still -ECHILD.
1445  */
1446 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1447 {
1448 	struct task_struct *p;
1449 
1450 	list_for_each_entry(p, &tsk->children, sibling) {
1451 		int ret = wait_consider_task(wo, 0, p);
1452 
1453 		if (ret)
1454 			return ret;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1461 {
1462 	struct task_struct *p;
1463 
1464 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1465 		int ret = wait_consider_task(wo, 1, p);
1466 
1467 		if (ret)
1468 			return ret;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1475 				int sync, void *key)
1476 {
1477 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1478 						child_wait);
1479 	struct task_struct *p = key;
1480 
1481 	if (!eligible_pid(wo, p))
1482 		return 0;
1483 
1484 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1485 		return 0;
1486 
1487 	return default_wake_function(wait, mode, sync, key);
1488 }
1489 
1490 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1491 {
1492 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1493 				TASK_INTERRUPTIBLE, 1, p);
1494 }
1495 
1496 static long do_wait(struct wait_opts *wo)
1497 {
1498 	struct task_struct *tsk;
1499 	int retval;
1500 
1501 	trace_sched_process_wait(wo->wo_pid);
1502 
1503 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504 	wo->child_wait.private = current;
1505 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506 repeat:
1507 	/*
1508 	 * If there is nothing that can match our criteria, just get out.
1509 	 * We will clear ->notask_error to zero if we see any child that
1510 	 * might later match our criteria, even if we are not able to reap
1511 	 * it yet.
1512 	 */
1513 	wo->notask_error = -ECHILD;
1514 	if ((wo->wo_type < PIDTYPE_MAX) &&
1515 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1516 		goto notask;
1517 
1518 	set_current_state(TASK_INTERRUPTIBLE);
1519 	read_lock(&tasklist_lock);
1520 	tsk = current;
1521 	do {
1522 		retval = do_wait_thread(wo, tsk);
1523 		if (retval)
1524 			goto end;
1525 
1526 		retval = ptrace_do_wait(wo, tsk);
1527 		if (retval)
1528 			goto end;
1529 
1530 		if (wo->wo_flags & __WNOTHREAD)
1531 			break;
1532 	} while_each_thread(current, tsk);
1533 	read_unlock(&tasklist_lock);
1534 
1535 notask:
1536 	retval = wo->notask_error;
1537 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1538 		retval = -ERESTARTSYS;
1539 		if (!signal_pending(current)) {
1540 			schedule();
1541 			goto repeat;
1542 		}
1543 	}
1544 end:
1545 	__set_current_state(TASK_RUNNING);
1546 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547 	return retval;
1548 }
1549 
1550 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551 			  int options, struct rusage *ru)
1552 {
1553 	struct wait_opts wo;
1554 	struct pid *pid = NULL;
1555 	enum pid_type type;
1556 	long ret;
1557 
1558 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1559 			__WNOTHREAD|__WCLONE|__WALL))
1560 		return -EINVAL;
1561 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1562 		return -EINVAL;
1563 
1564 	switch (which) {
1565 	case P_ALL:
1566 		type = PIDTYPE_MAX;
1567 		break;
1568 	case P_PID:
1569 		type = PIDTYPE_PID;
1570 		if (upid <= 0)
1571 			return -EINVAL;
1572 		break;
1573 	case P_PGID:
1574 		type = PIDTYPE_PGID;
1575 		if (upid <= 0)
1576 			return -EINVAL;
1577 		break;
1578 	default:
1579 		return -EINVAL;
1580 	}
1581 
1582 	if (type < PIDTYPE_MAX)
1583 		pid = find_get_pid(upid);
1584 
1585 	wo.wo_type	= type;
1586 	wo.wo_pid	= pid;
1587 	wo.wo_flags	= options;
1588 	wo.wo_info	= infop;
1589 	wo.wo_rusage	= ru;
1590 	ret = do_wait(&wo);
1591 
1592 	put_pid(pid);
1593 	return ret;
1594 }
1595 
1596 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1597 		infop, int, options, struct rusage __user *, ru)
1598 {
1599 	struct rusage r;
1600 	struct waitid_info info = {.status = 0};
1601 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1602 	int signo = 0;
1603 
1604 	if (err > 0) {
1605 		signo = SIGCHLD;
1606 		err = 0;
1607 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1608 			return -EFAULT;
1609 	}
1610 	if (!infop)
1611 		return err;
1612 
1613 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1614 		return -EFAULT;
1615 
1616 	user_access_begin();
1617 	unsafe_put_user(signo, &infop->si_signo, Efault);
1618 	unsafe_put_user(0, &infop->si_errno, Efault);
1619 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1620 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1621 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1622 	unsafe_put_user(info.status, &infop->si_status, Efault);
1623 	user_access_end();
1624 	return err;
1625 Efault:
1626 	user_access_end();
1627 	return -EFAULT;
1628 }
1629 
1630 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1631 		  struct rusage *ru)
1632 {
1633 	struct wait_opts wo;
1634 	struct pid *pid = NULL;
1635 	enum pid_type type;
1636 	long ret;
1637 
1638 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1639 			__WNOTHREAD|__WCLONE|__WALL))
1640 		return -EINVAL;
1641 
1642 	/* -INT_MIN is not defined */
1643 	if (upid == INT_MIN)
1644 		return -ESRCH;
1645 
1646 	if (upid == -1)
1647 		type = PIDTYPE_MAX;
1648 	else if (upid < 0) {
1649 		type = PIDTYPE_PGID;
1650 		pid = find_get_pid(-upid);
1651 	} else if (upid == 0) {
1652 		type = PIDTYPE_PGID;
1653 		pid = get_task_pid(current, PIDTYPE_PGID);
1654 	} else /* upid > 0 */ {
1655 		type = PIDTYPE_PID;
1656 		pid = find_get_pid(upid);
1657 	}
1658 
1659 	wo.wo_type	= type;
1660 	wo.wo_pid	= pid;
1661 	wo.wo_flags	= options | WEXITED;
1662 	wo.wo_info	= NULL;
1663 	wo.wo_stat	= 0;
1664 	wo.wo_rusage	= ru;
1665 	ret = do_wait(&wo);
1666 	put_pid(pid);
1667 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1668 		ret = -EFAULT;
1669 
1670 	return ret;
1671 }
1672 
1673 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1674 		int, options, struct rusage __user *, ru)
1675 {
1676 	struct rusage r;
1677 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1678 
1679 	if (err > 0) {
1680 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1681 			return -EFAULT;
1682 	}
1683 	return err;
1684 }
1685 
1686 #ifdef __ARCH_WANT_SYS_WAITPID
1687 
1688 /*
1689  * sys_waitpid() remains for compatibility. waitpid() should be
1690  * implemented by calling sys_wait4() from libc.a.
1691  */
1692 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1693 {
1694 	return sys_wait4(pid, stat_addr, options, NULL);
1695 }
1696 
1697 #endif
1698 
1699 #ifdef CONFIG_COMPAT
1700 COMPAT_SYSCALL_DEFINE4(wait4,
1701 	compat_pid_t, pid,
1702 	compat_uint_t __user *, stat_addr,
1703 	int, options,
1704 	struct compat_rusage __user *, ru)
1705 {
1706 	struct rusage r;
1707 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1708 	if (err > 0) {
1709 		if (ru && put_compat_rusage(&r, ru))
1710 			return -EFAULT;
1711 	}
1712 	return err;
1713 }
1714 
1715 COMPAT_SYSCALL_DEFINE5(waitid,
1716 		int, which, compat_pid_t, pid,
1717 		struct compat_siginfo __user *, infop, int, options,
1718 		struct compat_rusage __user *, uru)
1719 {
1720 	struct rusage ru;
1721 	struct waitid_info info = {.status = 0};
1722 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1723 	int signo = 0;
1724 	if (err > 0) {
1725 		signo = SIGCHLD;
1726 		err = 0;
1727 		if (uru) {
1728 			/* kernel_waitid() overwrites everything in ru */
1729 			if (COMPAT_USE_64BIT_TIME)
1730 				err = copy_to_user(uru, &ru, sizeof(ru));
1731 			else
1732 				err = put_compat_rusage(&ru, uru);
1733 			if (err)
1734 				return -EFAULT;
1735 		}
1736 	}
1737 
1738 	if (!infop)
1739 		return err;
1740 
1741 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1742 		return -EFAULT;
1743 
1744 	user_access_begin();
1745 	unsafe_put_user(signo, &infop->si_signo, Efault);
1746 	unsafe_put_user(0, &infop->si_errno, Efault);
1747 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1748 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1749 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1750 	unsafe_put_user(info.status, &infop->si_status, Efault);
1751 	user_access_end();
1752 	return err;
1753 Efault:
1754 	user_access_end();
1755 	return -EFAULT;
1756 }
1757 #endif
1758