1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 /* 119 * Accumulate here the counters for all threads but the 120 * group leader as they die, so they can be added into 121 * the process-wide totals when those are taken. 122 * The group leader stays around as a zombie as long 123 * as there are other threads. When it gets reaped, 124 * the exit.c code will add its counts into these totals. 125 * We won't ever get here for the group leader, since it 126 * will have been the last reference on the signal_struct. 127 */ 128 task_cputime(tsk, &utime, &stime); 129 sig->utime += utime; 130 sig->stime += stime; 131 sig->gtime += task_gtime(tsk); 132 sig->min_flt += tsk->min_flt; 133 sig->maj_flt += tsk->maj_flt; 134 sig->nvcsw += tsk->nvcsw; 135 sig->nivcsw += tsk->nivcsw; 136 sig->inblock += task_io_get_inblock(tsk); 137 sig->oublock += task_io_get_oublock(tsk); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 140 } 141 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 145 /* 146 * Do this under ->siglock, we can race with another thread 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 */ 149 flush_sigqueue(&tsk->pending); 150 tsk->sighand = NULL; 151 spin_unlock(&sighand->siglock); 152 153 __cleanup_sighand(sighand); 154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 155 if (group_dead) { 156 flush_sigqueue(&sig->shared_pending); 157 tty_kref_put(tty); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 perf_event_delayed_put(tsk); 166 trace_sched_process_free(tsk); 167 put_task_struct(tsk); 168 } 169 170 171 void release_task(struct task_struct * p) 172 { 173 struct task_struct *leader; 174 int zap_leader; 175 repeat: 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 rcu_read_lock(); 179 atomic_dec(&__task_cred(p)->user->processes); 180 rcu_read_unlock(); 181 182 proc_flush_task(p); 183 184 write_lock_irq(&tasklist_lock); 185 ptrace_release_task(p); 186 __exit_signal(p); 187 188 /* 189 * If we are the last non-leader member of the thread 190 * group, and the leader is zombie, then notify the 191 * group leader's parent process. (if it wants notification.) 192 */ 193 zap_leader = 0; 194 leader = p->group_leader; 195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 */ 201 zap_leader = do_notify_parent(leader, leader->exit_signal); 202 if (zap_leader) 203 leader->exit_state = EXIT_DEAD; 204 } 205 206 write_unlock_irq(&tasklist_lock); 207 release_thread(p); 208 call_rcu(&p->rcu, delayed_put_task_struct); 209 210 p = leader; 211 if (unlikely(zap_leader)) 212 goto repeat; 213 } 214 215 /* 216 * This checks not only the pgrp, but falls back on the pid if no 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 218 * without this... 219 * 220 * The caller must hold rcu lock or the tasklist lock. 221 */ 222 struct pid *session_of_pgrp(struct pid *pgrp) 223 { 224 struct task_struct *p; 225 struct pid *sid = NULL; 226 227 p = pid_task(pgrp, PIDTYPE_PGID); 228 if (p == NULL) 229 p = pid_task(pgrp, PIDTYPE_PID); 230 if (p != NULL) 231 sid = task_session(p); 232 233 return sid; 234 } 235 236 /* 237 * Determine if a process group is "orphaned", according to the POSIX 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 239 * by terminal-generated stop signals. Newly orphaned process groups are 240 * to receive a SIGHUP and a SIGCONT. 241 * 242 * "I ask you, have you ever known what it is to be an orphan?" 243 */ 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static bool has_stopped_jobs(struct pid *pgrp) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 279 return true; 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 281 282 return false; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 #ifdef CONFIG_MEMCG 317 /* 318 * A task is exiting. If it owned this mm, find a new owner for the mm. 319 */ 320 void mm_update_next_owner(struct mm_struct *mm) 321 { 322 struct task_struct *c, *g, *p = current; 323 324 retry: 325 /* 326 * If the exiting or execing task is not the owner, it's 327 * someone else's problem. 328 */ 329 if (mm->owner != p) 330 return; 331 /* 332 * The current owner is exiting/execing and there are no other 333 * candidates. Do not leave the mm pointing to a possibly 334 * freed task structure. 335 */ 336 if (atomic_read(&mm->mm_users) <= 1) { 337 mm->owner = NULL; 338 return; 339 } 340 341 read_lock(&tasklist_lock); 342 /* 343 * Search in the children 344 */ 345 list_for_each_entry(c, &p->children, sibling) { 346 if (c->mm == mm) 347 goto assign_new_owner; 348 } 349 350 /* 351 * Search in the siblings 352 */ 353 list_for_each_entry(c, &p->real_parent->children, sibling) { 354 if (c->mm == mm) 355 goto assign_new_owner; 356 } 357 358 /* 359 * Search through everything else, we should not get here often. 360 */ 361 for_each_process(g) { 362 if (g->flags & PF_KTHREAD) 363 continue; 364 for_each_thread(g, c) { 365 if (c->mm == mm) 366 goto assign_new_owner; 367 if (c->mm) 368 break; 369 } 370 } 371 read_unlock(&tasklist_lock); 372 /* 373 * We found no owner yet mm_users > 1: this implies that we are 374 * most likely racing with swapoff (try_to_unuse()) or /proc or 375 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 376 */ 377 mm->owner = NULL; 378 return; 379 380 assign_new_owner: 381 BUG_ON(c == p); 382 get_task_struct(c); 383 /* 384 * The task_lock protects c->mm from changing. 385 * We always want mm->owner->mm == mm 386 */ 387 task_lock(c); 388 /* 389 * Delay read_unlock() till we have the task_lock() 390 * to ensure that c does not slip away underneath us 391 */ 392 read_unlock(&tasklist_lock); 393 if (c->mm != mm) { 394 task_unlock(c); 395 put_task_struct(c); 396 goto retry; 397 } 398 mm->owner = c; 399 task_unlock(c); 400 put_task_struct(c); 401 } 402 #endif /* CONFIG_MEMCG */ 403 404 /* 405 * Turn us into a lazy TLB process if we 406 * aren't already.. 407 */ 408 static void exit_mm(struct task_struct * tsk) 409 { 410 struct mm_struct *mm = tsk->mm; 411 struct core_state *core_state; 412 413 mm_release(tsk, mm); 414 if (!mm) 415 return; 416 sync_mm_rss(mm); 417 /* 418 * Serialize with any possible pending coredump. 419 * We must hold mmap_sem around checking core_state 420 * and clearing tsk->mm. The core-inducing thread 421 * will increment ->nr_threads for each thread in the 422 * group with ->mm != NULL. 423 */ 424 down_read(&mm->mmap_sem); 425 core_state = mm->core_state; 426 if (core_state) { 427 struct core_thread self; 428 up_read(&mm->mmap_sem); 429 430 self.task = tsk; 431 self.next = xchg(&core_state->dumper.next, &self); 432 /* 433 * Implies mb(), the result of xchg() must be visible 434 * to core_state->dumper. 435 */ 436 if (atomic_dec_and_test(&core_state->nr_threads)) 437 complete(&core_state->startup); 438 439 for (;;) { 440 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 441 if (!self.task) /* see coredump_finish() */ 442 break; 443 freezable_schedule(); 444 } 445 __set_task_state(tsk, TASK_RUNNING); 446 down_read(&mm->mmap_sem); 447 } 448 atomic_inc(&mm->mm_count); 449 BUG_ON(mm != tsk->active_mm); 450 /* more a memory barrier than a real lock */ 451 task_lock(tsk); 452 tsk->mm = NULL; 453 up_read(&mm->mmap_sem); 454 enter_lazy_tlb(mm, current); 455 task_unlock(tsk); 456 mm_update_next_owner(mm); 457 mmput(mm); 458 } 459 460 /* 461 * When we die, we re-parent all our children, and try to: 462 * 1. give them to another thread in our thread group, if such a member exists 463 * 2. give it to the first ancestor process which prctl'd itself as a 464 * child_subreaper for its children (like a service manager) 465 * 3. give it to the init process (PID 1) in our pid namespace 466 */ 467 static struct task_struct *find_new_reaper(struct task_struct *father) 468 __releases(&tasklist_lock) 469 __acquires(&tasklist_lock) 470 { 471 struct pid_namespace *pid_ns = task_active_pid_ns(father); 472 struct task_struct *thread; 473 474 thread = father; 475 while_each_thread(father, thread) { 476 if (thread->flags & PF_EXITING) 477 continue; 478 if (unlikely(pid_ns->child_reaper == father)) 479 pid_ns->child_reaper = thread; 480 return thread; 481 } 482 483 if (unlikely(pid_ns->child_reaper == father)) { 484 write_unlock_irq(&tasklist_lock); 485 if (unlikely(pid_ns == &init_pid_ns)) { 486 panic("Attempted to kill init! exitcode=0x%08x\n", 487 father->signal->group_exit_code ?: 488 father->exit_code); 489 } 490 491 zap_pid_ns_processes(pid_ns); 492 write_lock_irq(&tasklist_lock); 493 } else if (father->signal->has_child_subreaper) { 494 struct task_struct *reaper; 495 496 /* 497 * Find the first ancestor marked as child_subreaper. 498 * Note that the code below checks same_thread_group(reaper, 499 * pid_ns->child_reaper). This is what we need to DTRT in a 500 * PID namespace. However we still need the check above, see 501 * http://marc.info/?l=linux-kernel&m=131385460420380 502 */ 503 for (reaper = father->real_parent; 504 reaper != &init_task; 505 reaper = reaper->real_parent) { 506 if (same_thread_group(reaper, pid_ns->child_reaper)) 507 break; 508 if (!reaper->signal->is_child_subreaper) 509 continue; 510 thread = reaper; 511 do { 512 if (!(thread->flags & PF_EXITING)) 513 return reaper; 514 } while_each_thread(reaper, thread); 515 } 516 } 517 518 return pid_ns->child_reaper; 519 } 520 521 /* 522 * Any that need to be release_task'd are put on the @dead list. 523 */ 524 static void reparent_leader(struct task_struct *father, struct task_struct *p, 525 struct list_head *dead) 526 { 527 list_move_tail(&p->sibling, &p->real_parent->children); 528 529 if (p->exit_state == EXIT_DEAD) 530 return; 531 /* 532 * If this is a threaded reparent there is no need to 533 * notify anyone anything has happened. 534 */ 535 if (same_thread_group(p->real_parent, father)) 536 return; 537 538 /* We don't want people slaying init. */ 539 p->exit_signal = SIGCHLD; 540 541 /* If it has exited notify the new parent about this child's death. */ 542 if (!p->ptrace && 543 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 544 if (do_notify_parent(p, p->exit_signal)) { 545 p->exit_state = EXIT_DEAD; 546 list_move_tail(&p->sibling, dead); 547 } 548 } 549 550 kill_orphaned_pgrp(p, father); 551 } 552 553 static void forget_original_parent(struct task_struct *father) 554 { 555 struct task_struct *p, *n, *reaper; 556 LIST_HEAD(dead_children); 557 558 write_lock_irq(&tasklist_lock); 559 /* 560 * Note that exit_ptrace() and find_new_reaper() might 561 * drop tasklist_lock and reacquire it. 562 */ 563 exit_ptrace(father); 564 reaper = find_new_reaper(father); 565 566 list_for_each_entry_safe(p, n, &father->children, sibling) { 567 struct task_struct *t = p; 568 do { 569 t->real_parent = reaper; 570 if (t->parent == father) { 571 BUG_ON(t->ptrace); 572 t->parent = t->real_parent; 573 } 574 if (t->pdeath_signal) 575 group_send_sig_info(t->pdeath_signal, 576 SEND_SIG_NOINFO, t); 577 } while_each_thread(p, t); 578 reparent_leader(father, p, &dead_children); 579 } 580 write_unlock_irq(&tasklist_lock); 581 582 BUG_ON(!list_empty(&father->children)); 583 584 list_for_each_entry_safe(p, n, &dead_children, sibling) { 585 list_del_init(&p->sibling); 586 release_task(p); 587 } 588 } 589 590 /* 591 * Send signals to all our closest relatives so that they know 592 * to properly mourn us.. 593 */ 594 static void exit_notify(struct task_struct *tsk, int group_dead) 595 { 596 bool autoreap; 597 598 /* 599 * This does two things: 600 * 601 * A. Make init inherit all the child processes 602 * B. Check to see if any process groups have become orphaned 603 * as a result of our exiting, and if they have any stopped 604 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 605 */ 606 forget_original_parent(tsk); 607 608 write_lock_irq(&tasklist_lock); 609 if (group_dead) 610 kill_orphaned_pgrp(tsk->group_leader, NULL); 611 612 if (unlikely(tsk->ptrace)) { 613 int sig = thread_group_leader(tsk) && 614 thread_group_empty(tsk) && 615 !ptrace_reparented(tsk) ? 616 tsk->exit_signal : SIGCHLD; 617 autoreap = do_notify_parent(tsk, sig); 618 } else if (thread_group_leader(tsk)) { 619 autoreap = thread_group_empty(tsk) && 620 do_notify_parent(tsk, tsk->exit_signal); 621 } else { 622 autoreap = true; 623 } 624 625 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 626 627 /* mt-exec, de_thread() is waiting for group leader */ 628 if (unlikely(tsk->signal->notify_count < 0)) 629 wake_up_process(tsk->signal->group_exit_task); 630 write_unlock_irq(&tasklist_lock); 631 632 /* If the process is dead, release it - nobody will wait for it */ 633 if (autoreap) 634 release_task(tsk); 635 } 636 637 #ifdef CONFIG_DEBUG_STACK_USAGE 638 static void check_stack_usage(void) 639 { 640 static DEFINE_SPINLOCK(low_water_lock); 641 static int lowest_to_date = THREAD_SIZE; 642 unsigned long free; 643 644 free = stack_not_used(current); 645 646 if (free >= lowest_to_date) 647 return; 648 649 spin_lock(&low_water_lock); 650 if (free < lowest_to_date) { 651 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 652 "%lu bytes left\n", 653 current->comm, task_pid_nr(current), free); 654 lowest_to_date = free; 655 } 656 spin_unlock(&low_water_lock); 657 } 658 #else 659 static inline void check_stack_usage(void) {} 660 #endif 661 662 void do_exit(long code) 663 { 664 struct task_struct *tsk = current; 665 int group_dead; 666 667 profile_task_exit(tsk); 668 669 WARN_ON(blk_needs_flush_plug(tsk)); 670 671 if (unlikely(in_interrupt())) 672 panic("Aiee, killing interrupt handler!"); 673 if (unlikely(!tsk->pid)) 674 panic("Attempted to kill the idle task!"); 675 676 /* 677 * If do_exit is called because this processes oopsed, it's possible 678 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 679 * continuing. Amongst other possible reasons, this is to prevent 680 * mm_release()->clear_child_tid() from writing to a user-controlled 681 * kernel address. 682 */ 683 set_fs(USER_DS); 684 685 ptrace_event(PTRACE_EVENT_EXIT, code); 686 687 validate_creds_for_do_exit(tsk); 688 689 /* 690 * We're taking recursive faults here in do_exit. Safest is to just 691 * leave this task alone and wait for reboot. 692 */ 693 if (unlikely(tsk->flags & PF_EXITING)) { 694 printk(KERN_ALERT 695 "Fixing recursive fault but reboot is needed!\n"); 696 /* 697 * We can do this unlocked here. The futex code uses 698 * this flag just to verify whether the pi state 699 * cleanup has been done or not. In the worst case it 700 * loops once more. We pretend that the cleanup was 701 * done as there is no way to return. Either the 702 * OWNER_DIED bit is set by now or we push the blocked 703 * task into the wait for ever nirwana as well. 704 */ 705 tsk->flags |= PF_EXITPIDONE; 706 set_current_state(TASK_UNINTERRUPTIBLE); 707 schedule(); 708 } 709 710 exit_signals(tsk); /* sets PF_EXITING */ 711 /* 712 * tsk->flags are checked in the futex code to protect against 713 * an exiting task cleaning up the robust pi futexes. 714 */ 715 smp_mb(); 716 raw_spin_unlock_wait(&tsk->pi_lock); 717 718 if (unlikely(in_atomic())) 719 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 720 current->comm, task_pid_nr(current), 721 preempt_count()); 722 723 acct_update_integrals(tsk); 724 /* sync mm's RSS info before statistics gathering */ 725 if (tsk->mm) 726 sync_mm_rss(tsk->mm); 727 group_dead = atomic_dec_and_test(&tsk->signal->live); 728 if (group_dead) { 729 hrtimer_cancel(&tsk->signal->real_timer); 730 exit_itimers(tsk->signal); 731 if (tsk->mm) 732 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 733 } 734 acct_collect(code, group_dead); 735 if (group_dead) 736 tty_audit_exit(); 737 audit_free(tsk); 738 739 tsk->exit_code = code; 740 taskstats_exit(tsk, group_dead); 741 742 exit_mm(tsk); 743 744 if (group_dead) 745 acct_process(); 746 trace_sched_process_exit(tsk); 747 748 exit_sem(tsk); 749 exit_shm(tsk); 750 exit_files(tsk); 751 exit_fs(tsk); 752 if (group_dead) 753 disassociate_ctty(1); 754 exit_task_namespaces(tsk); 755 exit_task_work(tsk); 756 exit_thread(); 757 758 /* 759 * Flush inherited counters to the parent - before the parent 760 * gets woken up by child-exit notifications. 761 * 762 * because of cgroup mode, must be called before cgroup_exit() 763 */ 764 perf_event_exit_task(tsk); 765 766 cgroup_exit(tsk); 767 768 module_put(task_thread_info(tsk)->exec_domain->module); 769 770 /* 771 * FIXME: do that only when needed, using sched_exit tracepoint 772 */ 773 flush_ptrace_hw_breakpoint(tsk); 774 775 exit_notify(tsk, group_dead); 776 proc_exit_connector(tsk); 777 #ifdef CONFIG_NUMA 778 task_lock(tsk); 779 mpol_put(tsk->mempolicy); 780 tsk->mempolicy = NULL; 781 task_unlock(tsk); 782 #endif 783 #ifdef CONFIG_FUTEX 784 if (unlikely(current->pi_state_cache)) 785 kfree(current->pi_state_cache); 786 #endif 787 /* 788 * Make sure we are holding no locks: 789 */ 790 debug_check_no_locks_held(); 791 /* 792 * We can do this unlocked here. The futex code uses this flag 793 * just to verify whether the pi state cleanup has been done 794 * or not. In the worst case it loops once more. 795 */ 796 tsk->flags |= PF_EXITPIDONE; 797 798 if (tsk->io_context) 799 exit_io_context(tsk); 800 801 if (tsk->splice_pipe) 802 free_pipe_info(tsk->splice_pipe); 803 804 if (tsk->task_frag.page) 805 put_page(tsk->task_frag.page); 806 807 validate_creds_for_do_exit(tsk); 808 809 check_stack_usage(); 810 preempt_disable(); 811 if (tsk->nr_dirtied) 812 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 813 exit_rcu(); 814 815 /* 816 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 817 * when the following two conditions become true. 818 * - There is race condition of mmap_sem (It is acquired by 819 * exit_mm()), and 820 * - SMI occurs before setting TASK_RUNINNG. 821 * (or hypervisor of virtual machine switches to other guest) 822 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 823 * 824 * To avoid it, we have to wait for releasing tsk->pi_lock which 825 * is held by try_to_wake_up() 826 */ 827 smp_mb(); 828 raw_spin_unlock_wait(&tsk->pi_lock); 829 830 /* causes final put_task_struct in finish_task_switch(). */ 831 tsk->state = TASK_DEAD; 832 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 833 schedule(); 834 BUG(); 835 /* Avoid "noreturn function does return". */ 836 for (;;) 837 cpu_relax(); /* For when BUG is null */ 838 } 839 840 EXPORT_SYMBOL_GPL(do_exit); 841 842 void complete_and_exit(struct completion *comp, long code) 843 { 844 if (comp) 845 complete(comp); 846 847 do_exit(code); 848 } 849 850 EXPORT_SYMBOL(complete_and_exit); 851 852 SYSCALL_DEFINE1(exit, int, error_code) 853 { 854 do_exit((error_code&0xff)<<8); 855 } 856 857 /* 858 * Take down every thread in the group. This is called by fatal signals 859 * as well as by sys_exit_group (below). 860 */ 861 void 862 do_group_exit(int exit_code) 863 { 864 struct signal_struct *sig = current->signal; 865 866 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 867 868 if (signal_group_exit(sig)) 869 exit_code = sig->group_exit_code; 870 else if (!thread_group_empty(current)) { 871 struct sighand_struct *const sighand = current->sighand; 872 spin_lock_irq(&sighand->siglock); 873 if (signal_group_exit(sig)) 874 /* Another thread got here before we took the lock. */ 875 exit_code = sig->group_exit_code; 876 else { 877 sig->group_exit_code = exit_code; 878 sig->flags = SIGNAL_GROUP_EXIT; 879 zap_other_threads(current); 880 } 881 spin_unlock_irq(&sighand->siglock); 882 } 883 884 do_exit(exit_code); 885 /* NOTREACHED */ 886 } 887 888 /* 889 * this kills every thread in the thread group. Note that any externally 890 * wait4()-ing process will get the correct exit code - even if this 891 * thread is not the thread group leader. 892 */ 893 SYSCALL_DEFINE1(exit_group, int, error_code) 894 { 895 do_group_exit((error_code & 0xff) << 8); 896 /* NOTREACHED */ 897 return 0; 898 } 899 900 struct wait_opts { 901 enum pid_type wo_type; 902 int wo_flags; 903 struct pid *wo_pid; 904 905 struct siginfo __user *wo_info; 906 int __user *wo_stat; 907 struct rusage __user *wo_rusage; 908 909 wait_queue_t child_wait; 910 int notask_error; 911 }; 912 913 static inline 914 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 915 { 916 if (type != PIDTYPE_PID) 917 task = task->group_leader; 918 return task->pids[type].pid; 919 } 920 921 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 922 { 923 return wo->wo_type == PIDTYPE_MAX || 924 task_pid_type(p, wo->wo_type) == wo->wo_pid; 925 } 926 927 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 928 { 929 if (!eligible_pid(wo, p)) 930 return 0; 931 /* Wait for all children (clone and not) if __WALL is set; 932 * otherwise, wait for clone children *only* if __WCLONE is 933 * set; otherwise, wait for non-clone children *only*. (Note: 934 * A "clone" child here is one that reports to its parent 935 * using a signal other than SIGCHLD.) */ 936 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 937 && !(wo->wo_flags & __WALL)) 938 return 0; 939 940 return 1; 941 } 942 943 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 944 pid_t pid, uid_t uid, int why, int status) 945 { 946 struct siginfo __user *infop; 947 int retval = wo->wo_rusage 948 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 949 950 put_task_struct(p); 951 infop = wo->wo_info; 952 if (infop) { 953 if (!retval) 954 retval = put_user(SIGCHLD, &infop->si_signo); 955 if (!retval) 956 retval = put_user(0, &infop->si_errno); 957 if (!retval) 958 retval = put_user((short)why, &infop->si_code); 959 if (!retval) 960 retval = put_user(pid, &infop->si_pid); 961 if (!retval) 962 retval = put_user(uid, &infop->si_uid); 963 if (!retval) 964 retval = put_user(status, &infop->si_status); 965 } 966 if (!retval) 967 retval = pid; 968 return retval; 969 } 970 971 /* 972 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 973 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 974 * the lock and this task is uninteresting. If we return nonzero, we have 975 * released the lock and the system call should return. 976 */ 977 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 978 { 979 unsigned long state; 980 int retval, status, traced; 981 pid_t pid = task_pid_vnr(p); 982 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 983 struct siginfo __user *infop; 984 985 if (!likely(wo->wo_flags & WEXITED)) 986 return 0; 987 988 if (unlikely(wo->wo_flags & WNOWAIT)) { 989 int exit_code = p->exit_code; 990 int why; 991 992 get_task_struct(p); 993 read_unlock(&tasklist_lock); 994 if ((exit_code & 0x7f) == 0) { 995 why = CLD_EXITED; 996 status = exit_code >> 8; 997 } else { 998 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 999 status = exit_code & 0x7f; 1000 } 1001 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1002 } 1003 1004 traced = ptrace_reparented(p); 1005 /* 1006 * Move the task's state to DEAD/TRACE, only one thread can do this. 1007 */ 1008 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1009 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1010 return 0; 1011 /* 1012 * It can be ptraced but not reparented, check 1013 * thread_group_leader() to filter out sub-threads. 1014 */ 1015 if (likely(!traced) && thread_group_leader(p)) { 1016 struct signal_struct *psig; 1017 struct signal_struct *sig; 1018 unsigned long maxrss; 1019 cputime_t tgutime, tgstime; 1020 1021 /* 1022 * The resource counters for the group leader are in its 1023 * own task_struct. Those for dead threads in the group 1024 * are in its signal_struct, as are those for the child 1025 * processes it has previously reaped. All these 1026 * accumulate in the parent's signal_struct c* fields. 1027 * 1028 * We don't bother to take a lock here to protect these 1029 * p->signal fields, because they are only touched by 1030 * __exit_signal, which runs with tasklist_lock 1031 * write-locked anyway, and so is excluded here. We do 1032 * need to protect the access to parent->signal fields, 1033 * as other threads in the parent group can be right 1034 * here reaping other children at the same time. 1035 * 1036 * We use thread_group_cputime_adjusted() to get times for the thread 1037 * group, which consolidates times for all threads in the 1038 * group including the group leader. 1039 */ 1040 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1041 spin_lock_irq(&p->real_parent->sighand->siglock); 1042 psig = p->real_parent->signal; 1043 sig = p->signal; 1044 psig->cutime += tgutime + sig->cutime; 1045 psig->cstime += tgstime + sig->cstime; 1046 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1047 psig->cmin_flt += 1048 p->min_flt + sig->min_flt + sig->cmin_flt; 1049 psig->cmaj_flt += 1050 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1051 psig->cnvcsw += 1052 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1053 psig->cnivcsw += 1054 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1055 psig->cinblock += 1056 task_io_get_inblock(p) + 1057 sig->inblock + sig->cinblock; 1058 psig->coublock += 1059 task_io_get_oublock(p) + 1060 sig->oublock + sig->coublock; 1061 maxrss = max(sig->maxrss, sig->cmaxrss); 1062 if (psig->cmaxrss < maxrss) 1063 psig->cmaxrss = maxrss; 1064 task_io_accounting_add(&psig->ioac, &p->ioac); 1065 task_io_accounting_add(&psig->ioac, &sig->ioac); 1066 spin_unlock_irq(&p->real_parent->sighand->siglock); 1067 } 1068 1069 /* 1070 * Now we are sure this task is interesting, and no other 1071 * thread can reap it because we its state == DEAD/TRACE. 1072 */ 1073 read_unlock(&tasklist_lock); 1074 1075 retval = wo->wo_rusage 1076 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1077 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1078 ? p->signal->group_exit_code : p->exit_code; 1079 if (!retval && wo->wo_stat) 1080 retval = put_user(status, wo->wo_stat); 1081 1082 infop = wo->wo_info; 1083 if (!retval && infop) 1084 retval = put_user(SIGCHLD, &infop->si_signo); 1085 if (!retval && infop) 1086 retval = put_user(0, &infop->si_errno); 1087 if (!retval && infop) { 1088 int why; 1089 1090 if ((status & 0x7f) == 0) { 1091 why = CLD_EXITED; 1092 status >>= 8; 1093 } else { 1094 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1095 status &= 0x7f; 1096 } 1097 retval = put_user((short)why, &infop->si_code); 1098 if (!retval) 1099 retval = put_user(status, &infop->si_status); 1100 } 1101 if (!retval && infop) 1102 retval = put_user(pid, &infop->si_pid); 1103 if (!retval && infop) 1104 retval = put_user(uid, &infop->si_uid); 1105 if (!retval) 1106 retval = pid; 1107 1108 if (state == EXIT_TRACE) { 1109 write_lock_irq(&tasklist_lock); 1110 /* We dropped tasklist, ptracer could die and untrace */ 1111 ptrace_unlink(p); 1112 1113 /* If parent wants a zombie, don't release it now */ 1114 state = EXIT_ZOMBIE; 1115 if (do_notify_parent(p, p->exit_signal)) 1116 state = EXIT_DEAD; 1117 p->exit_state = state; 1118 write_unlock_irq(&tasklist_lock); 1119 } 1120 if (state == EXIT_DEAD) 1121 release_task(p); 1122 1123 return retval; 1124 } 1125 1126 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1127 { 1128 if (ptrace) { 1129 if (task_is_stopped_or_traced(p) && 1130 !(p->jobctl & JOBCTL_LISTENING)) 1131 return &p->exit_code; 1132 } else { 1133 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1134 return &p->signal->group_exit_code; 1135 } 1136 return NULL; 1137 } 1138 1139 /** 1140 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1141 * @wo: wait options 1142 * @ptrace: is the wait for ptrace 1143 * @p: task to wait for 1144 * 1145 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1146 * 1147 * CONTEXT: 1148 * read_lock(&tasklist_lock), which is released if return value is 1149 * non-zero. Also, grabs and releases @p->sighand->siglock. 1150 * 1151 * RETURNS: 1152 * 0 if wait condition didn't exist and search for other wait conditions 1153 * should continue. Non-zero return, -errno on failure and @p's pid on 1154 * success, implies that tasklist_lock is released and wait condition 1155 * search should terminate. 1156 */ 1157 static int wait_task_stopped(struct wait_opts *wo, 1158 int ptrace, struct task_struct *p) 1159 { 1160 struct siginfo __user *infop; 1161 int retval, exit_code, *p_code, why; 1162 uid_t uid = 0; /* unneeded, required by compiler */ 1163 pid_t pid; 1164 1165 /* 1166 * Traditionally we see ptrace'd stopped tasks regardless of options. 1167 */ 1168 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1169 return 0; 1170 1171 if (!task_stopped_code(p, ptrace)) 1172 return 0; 1173 1174 exit_code = 0; 1175 spin_lock_irq(&p->sighand->siglock); 1176 1177 p_code = task_stopped_code(p, ptrace); 1178 if (unlikely(!p_code)) 1179 goto unlock_sig; 1180 1181 exit_code = *p_code; 1182 if (!exit_code) 1183 goto unlock_sig; 1184 1185 if (!unlikely(wo->wo_flags & WNOWAIT)) 1186 *p_code = 0; 1187 1188 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1189 unlock_sig: 1190 spin_unlock_irq(&p->sighand->siglock); 1191 if (!exit_code) 1192 return 0; 1193 1194 /* 1195 * Now we are pretty sure this task is interesting. 1196 * Make sure it doesn't get reaped out from under us while we 1197 * give up the lock and then examine it below. We don't want to 1198 * keep holding onto the tasklist_lock while we call getrusage and 1199 * possibly take page faults for user memory. 1200 */ 1201 get_task_struct(p); 1202 pid = task_pid_vnr(p); 1203 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1204 read_unlock(&tasklist_lock); 1205 1206 if (unlikely(wo->wo_flags & WNOWAIT)) 1207 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1208 1209 retval = wo->wo_rusage 1210 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1211 if (!retval && wo->wo_stat) 1212 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1213 1214 infop = wo->wo_info; 1215 if (!retval && infop) 1216 retval = put_user(SIGCHLD, &infop->si_signo); 1217 if (!retval && infop) 1218 retval = put_user(0, &infop->si_errno); 1219 if (!retval && infop) 1220 retval = put_user((short)why, &infop->si_code); 1221 if (!retval && infop) 1222 retval = put_user(exit_code, &infop->si_status); 1223 if (!retval && infop) 1224 retval = put_user(pid, &infop->si_pid); 1225 if (!retval && infop) 1226 retval = put_user(uid, &infop->si_uid); 1227 if (!retval) 1228 retval = pid; 1229 put_task_struct(p); 1230 1231 BUG_ON(!retval); 1232 return retval; 1233 } 1234 1235 /* 1236 * Handle do_wait work for one task in a live, non-stopped state. 1237 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1238 * the lock and this task is uninteresting. If we return nonzero, we have 1239 * released the lock and the system call should return. 1240 */ 1241 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1242 { 1243 int retval; 1244 pid_t pid; 1245 uid_t uid; 1246 1247 if (!unlikely(wo->wo_flags & WCONTINUED)) 1248 return 0; 1249 1250 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1251 return 0; 1252 1253 spin_lock_irq(&p->sighand->siglock); 1254 /* Re-check with the lock held. */ 1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1256 spin_unlock_irq(&p->sighand->siglock); 1257 return 0; 1258 } 1259 if (!unlikely(wo->wo_flags & WNOWAIT)) 1260 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1261 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1262 spin_unlock_irq(&p->sighand->siglock); 1263 1264 pid = task_pid_vnr(p); 1265 get_task_struct(p); 1266 read_unlock(&tasklist_lock); 1267 1268 if (!wo->wo_info) { 1269 retval = wo->wo_rusage 1270 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1271 put_task_struct(p); 1272 if (!retval && wo->wo_stat) 1273 retval = put_user(0xffff, wo->wo_stat); 1274 if (!retval) 1275 retval = pid; 1276 } else { 1277 retval = wait_noreap_copyout(wo, p, pid, uid, 1278 CLD_CONTINUED, SIGCONT); 1279 BUG_ON(retval == 0); 1280 } 1281 1282 return retval; 1283 } 1284 1285 /* 1286 * Consider @p for a wait by @parent. 1287 * 1288 * -ECHILD should be in ->notask_error before the first call. 1289 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1290 * Returns zero if the search for a child should continue; 1291 * then ->notask_error is 0 if @p is an eligible child, 1292 * or another error from security_task_wait(), or still -ECHILD. 1293 */ 1294 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1295 struct task_struct *p) 1296 { 1297 int ret; 1298 1299 if (unlikely(p->exit_state == EXIT_DEAD)) 1300 return 0; 1301 1302 ret = eligible_child(wo, p); 1303 if (!ret) 1304 return ret; 1305 1306 ret = security_task_wait(p); 1307 if (unlikely(ret < 0)) { 1308 /* 1309 * If we have not yet seen any eligible child, 1310 * then let this error code replace -ECHILD. 1311 * A permission error will give the user a clue 1312 * to look for security policy problems, rather 1313 * than for mysterious wait bugs. 1314 */ 1315 if (wo->notask_error) 1316 wo->notask_error = ret; 1317 return 0; 1318 } 1319 1320 if (unlikely(p->exit_state == EXIT_TRACE)) { 1321 /* 1322 * ptrace == 0 means we are the natural parent. In this case 1323 * we should clear notask_error, debugger will notify us. 1324 */ 1325 if (likely(!ptrace)) 1326 wo->notask_error = 0; 1327 return 0; 1328 } 1329 1330 if (likely(!ptrace) && unlikely(p->ptrace)) { 1331 /* 1332 * If it is traced by its real parent's group, just pretend 1333 * the caller is ptrace_do_wait() and reap this child if it 1334 * is zombie. 1335 * 1336 * This also hides group stop state from real parent; otherwise 1337 * a single stop can be reported twice as group and ptrace stop. 1338 * If a ptracer wants to distinguish these two events for its 1339 * own children it should create a separate process which takes 1340 * the role of real parent. 1341 */ 1342 if (!ptrace_reparented(p)) 1343 ptrace = 1; 1344 } 1345 1346 /* slay zombie? */ 1347 if (p->exit_state == EXIT_ZOMBIE) { 1348 /* we don't reap group leaders with subthreads */ 1349 if (!delay_group_leader(p)) { 1350 /* 1351 * A zombie ptracee is only visible to its ptracer. 1352 * Notification and reaping will be cascaded to the 1353 * real parent when the ptracer detaches. 1354 */ 1355 if (unlikely(ptrace) || likely(!p->ptrace)) 1356 return wait_task_zombie(wo, p); 1357 } 1358 1359 /* 1360 * Allow access to stopped/continued state via zombie by 1361 * falling through. Clearing of notask_error is complex. 1362 * 1363 * When !@ptrace: 1364 * 1365 * If WEXITED is set, notask_error should naturally be 1366 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1367 * so, if there are live subthreads, there are events to 1368 * wait for. If all subthreads are dead, it's still safe 1369 * to clear - this function will be called again in finite 1370 * amount time once all the subthreads are released and 1371 * will then return without clearing. 1372 * 1373 * When @ptrace: 1374 * 1375 * Stopped state is per-task and thus can't change once the 1376 * target task dies. Only continued and exited can happen. 1377 * Clear notask_error if WCONTINUED | WEXITED. 1378 */ 1379 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1380 wo->notask_error = 0; 1381 } else { 1382 /* 1383 * @p is alive and it's gonna stop, continue or exit, so 1384 * there always is something to wait for. 1385 */ 1386 wo->notask_error = 0; 1387 } 1388 1389 /* 1390 * Wait for stopped. Depending on @ptrace, different stopped state 1391 * is used and the two don't interact with each other. 1392 */ 1393 ret = wait_task_stopped(wo, ptrace, p); 1394 if (ret) 1395 return ret; 1396 1397 /* 1398 * Wait for continued. There's only one continued state and the 1399 * ptracer can consume it which can confuse the real parent. Don't 1400 * use WCONTINUED from ptracer. You don't need or want it. 1401 */ 1402 return wait_task_continued(wo, p); 1403 } 1404 1405 /* 1406 * Do the work of do_wait() for one thread in the group, @tsk. 1407 * 1408 * -ECHILD should be in ->notask_error before the first call. 1409 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1410 * Returns zero if the search for a child should continue; then 1411 * ->notask_error is 0 if there were any eligible children, 1412 * or another error from security_task_wait(), or still -ECHILD. 1413 */ 1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1415 { 1416 struct task_struct *p; 1417 1418 list_for_each_entry(p, &tsk->children, sibling) { 1419 int ret = wait_consider_task(wo, 0, p); 1420 if (ret) 1421 return ret; 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1428 { 1429 struct task_struct *p; 1430 1431 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1432 int ret = wait_consider_task(wo, 1, p); 1433 if (ret) 1434 return ret; 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1441 int sync, void *key) 1442 { 1443 struct wait_opts *wo = container_of(wait, struct wait_opts, 1444 child_wait); 1445 struct task_struct *p = key; 1446 1447 if (!eligible_pid(wo, p)) 1448 return 0; 1449 1450 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1451 return 0; 1452 1453 return default_wake_function(wait, mode, sync, key); 1454 } 1455 1456 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1457 { 1458 __wake_up_sync_key(&parent->signal->wait_chldexit, 1459 TASK_INTERRUPTIBLE, 1, p); 1460 } 1461 1462 static long do_wait(struct wait_opts *wo) 1463 { 1464 struct task_struct *tsk; 1465 int retval; 1466 1467 trace_sched_process_wait(wo->wo_pid); 1468 1469 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1470 wo->child_wait.private = current; 1471 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1472 repeat: 1473 /* 1474 * If there is nothing that can match our critiera just get out. 1475 * We will clear ->notask_error to zero if we see any child that 1476 * might later match our criteria, even if we are not able to reap 1477 * it yet. 1478 */ 1479 wo->notask_error = -ECHILD; 1480 if ((wo->wo_type < PIDTYPE_MAX) && 1481 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1482 goto notask; 1483 1484 set_current_state(TASK_INTERRUPTIBLE); 1485 read_lock(&tasklist_lock); 1486 tsk = current; 1487 do { 1488 retval = do_wait_thread(wo, tsk); 1489 if (retval) 1490 goto end; 1491 1492 retval = ptrace_do_wait(wo, tsk); 1493 if (retval) 1494 goto end; 1495 1496 if (wo->wo_flags & __WNOTHREAD) 1497 break; 1498 } while_each_thread(current, tsk); 1499 read_unlock(&tasklist_lock); 1500 1501 notask: 1502 retval = wo->notask_error; 1503 if (!retval && !(wo->wo_flags & WNOHANG)) { 1504 retval = -ERESTARTSYS; 1505 if (!signal_pending(current)) { 1506 schedule(); 1507 goto repeat; 1508 } 1509 } 1510 end: 1511 __set_current_state(TASK_RUNNING); 1512 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1513 return retval; 1514 } 1515 1516 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1517 infop, int, options, struct rusage __user *, ru) 1518 { 1519 struct wait_opts wo; 1520 struct pid *pid = NULL; 1521 enum pid_type type; 1522 long ret; 1523 1524 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1525 return -EINVAL; 1526 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1527 return -EINVAL; 1528 1529 switch (which) { 1530 case P_ALL: 1531 type = PIDTYPE_MAX; 1532 break; 1533 case P_PID: 1534 type = PIDTYPE_PID; 1535 if (upid <= 0) 1536 return -EINVAL; 1537 break; 1538 case P_PGID: 1539 type = PIDTYPE_PGID; 1540 if (upid <= 0) 1541 return -EINVAL; 1542 break; 1543 default: 1544 return -EINVAL; 1545 } 1546 1547 if (type < PIDTYPE_MAX) 1548 pid = find_get_pid(upid); 1549 1550 wo.wo_type = type; 1551 wo.wo_pid = pid; 1552 wo.wo_flags = options; 1553 wo.wo_info = infop; 1554 wo.wo_stat = NULL; 1555 wo.wo_rusage = ru; 1556 ret = do_wait(&wo); 1557 1558 if (ret > 0) { 1559 ret = 0; 1560 } else if (infop) { 1561 /* 1562 * For a WNOHANG return, clear out all the fields 1563 * we would set so the user can easily tell the 1564 * difference. 1565 */ 1566 if (!ret) 1567 ret = put_user(0, &infop->si_signo); 1568 if (!ret) 1569 ret = put_user(0, &infop->si_errno); 1570 if (!ret) 1571 ret = put_user(0, &infop->si_code); 1572 if (!ret) 1573 ret = put_user(0, &infop->si_pid); 1574 if (!ret) 1575 ret = put_user(0, &infop->si_uid); 1576 if (!ret) 1577 ret = put_user(0, &infop->si_status); 1578 } 1579 1580 put_pid(pid); 1581 return ret; 1582 } 1583 1584 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1585 int, options, struct rusage __user *, ru) 1586 { 1587 struct wait_opts wo; 1588 struct pid *pid = NULL; 1589 enum pid_type type; 1590 long ret; 1591 1592 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1593 __WNOTHREAD|__WCLONE|__WALL)) 1594 return -EINVAL; 1595 1596 if (upid == -1) 1597 type = PIDTYPE_MAX; 1598 else if (upid < 0) { 1599 type = PIDTYPE_PGID; 1600 pid = find_get_pid(-upid); 1601 } else if (upid == 0) { 1602 type = PIDTYPE_PGID; 1603 pid = get_task_pid(current, PIDTYPE_PGID); 1604 } else /* upid > 0 */ { 1605 type = PIDTYPE_PID; 1606 pid = find_get_pid(upid); 1607 } 1608 1609 wo.wo_type = type; 1610 wo.wo_pid = pid; 1611 wo.wo_flags = options | WEXITED; 1612 wo.wo_info = NULL; 1613 wo.wo_stat = stat_addr; 1614 wo.wo_rusage = ru; 1615 ret = do_wait(&wo); 1616 put_pid(pid); 1617 1618 return ret; 1619 } 1620 1621 #ifdef __ARCH_WANT_SYS_WAITPID 1622 1623 /* 1624 * sys_waitpid() remains for compatibility. waitpid() should be 1625 * implemented by calling sys_wait4() from libc.a. 1626 */ 1627 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1628 { 1629 return sys_wait4(pid, stat_addr, options, NULL); 1630 } 1631 1632 #endif 1633