xref: /openbmc/linux/kernel/exit.c (revision d670b479)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 
89 	sighand = rcu_dereference_check(tsk->sighand,
90 					lockdep_tasklist_lock_is_held());
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (group_dead) {
95 		posix_cpu_timers_exit_group(tsk);
96 		tty = sig->tty;
97 		sig->tty = NULL;
98 	} else {
99 		/*
100 		 * This can only happen if the caller is de_thread().
101 		 * FIXME: this is the temporary hack, we should teach
102 		 * posix-cpu-timers to handle this case correctly.
103 		 */
104 		if (unlikely(has_group_leader_pid(tsk)))
105 			posix_cpu_timers_exit_group(tsk);
106 
107 		/*
108 		 * If there is any task waiting for the group exit
109 		 * then notify it:
110 		 */
111 		if (sig->notify_count > 0 && !--sig->notify_count)
112 			wake_up_process(sig->group_exit_task);
113 
114 		if (tsk == sig->curr_target)
115 			sig->curr_target = next_thread(tsk);
116 		/*
117 		 * Accumulate here the counters for all threads but the
118 		 * group leader as they die, so they can be added into
119 		 * the process-wide totals when those are taken.
120 		 * The group leader stays around as a zombie as long
121 		 * as there are other threads.  When it gets reaped,
122 		 * the exit.c code will add its counts into these totals.
123 		 * We won't ever get here for the group leader, since it
124 		 * will have been the last reference on the signal_struct.
125 		 */
126 		sig->utime += tsk->utime;
127 		sig->stime += tsk->stime;
128 		sig->gtime += tsk->gtime;
129 		sig->min_flt += tsk->min_flt;
130 		sig->maj_flt += tsk->maj_flt;
131 		sig->nvcsw += tsk->nvcsw;
132 		sig->nivcsw += tsk->nivcsw;
133 		sig->inblock += task_io_get_inblock(tsk);
134 		sig->oublock += task_io_get_oublock(tsk);
135 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 	}
138 
139 	sig->nr_threads--;
140 	__unhash_process(tsk, group_dead);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct * p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		/*
194 		 * If we were the last child thread and the leader has
195 		 * exited already, and the leader's parent ignores SIGCHLD,
196 		 * then we are the one who should release the leader.
197 		 */
198 		zap_leader = do_notify_parent(leader, leader->exit_signal);
199 		if (zap_leader)
200 			leader->exit_state = EXIT_DEAD;
201 	}
202 
203 	write_unlock_irq(&tasklist_lock);
204 	release_thread(p);
205 	call_rcu(&p->rcu, delayed_put_task_struct);
206 
207 	p = leader;
208 	if (unlikely(zap_leader))
209 		goto repeat;
210 }
211 
212 /*
213  * This checks not only the pgrp, but falls back on the pid if no
214  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215  * without this...
216  *
217  * The caller must hold rcu lock or the tasklist lock.
218  */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 	struct task_struct *p;
222 	struct pid *sid = NULL;
223 
224 	p = pid_task(pgrp, PIDTYPE_PGID);
225 	if (p == NULL)
226 		p = pid_task(pgrp, PIDTYPE_PID);
227 	if (p != NULL)
228 		sid = task_session(p);
229 
230 	return sid;
231 }
232 
233 /*
234  * Determine if a process group is "orphaned", according to the POSIX
235  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
236  * by terminal-generated stop signals.  Newly orphaned process groups are
237  * to receive a SIGHUP and a SIGCONT.
238  *
239  * "I ask you, have you ever known what it is to be an orphan?"
240  */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 	struct task_struct *p;
244 
245 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 		if ((p == ignored_task) ||
247 		    (p->exit_state && thread_group_empty(p)) ||
248 		    is_global_init(p->real_parent))
249 			continue;
250 
251 		if (task_pgrp(p->real_parent) != pgrp &&
252 		    task_session(p->real_parent) == task_session(p))
253 			return 0;
254 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 
256 	return 1;
257 }
258 
259 int is_current_pgrp_orphaned(void)
260 {
261 	int retval;
262 
263 	read_lock(&tasklist_lock);
264 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 	read_unlock(&tasklist_lock);
266 
267 	return retval;
268 }
269 
270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 			return true;
277 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 
279 	return false;
280 }
281 
282 /*
283  * Check to see if any process groups have become orphaned as
284  * a result of our exiting, and if they have any stopped jobs,
285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286  */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 	struct pid *pgrp = task_pgrp(tsk);
291 	struct task_struct *ignored_task = tsk;
292 
293 	if (!parent)
294 		 /* exit: our father is in a different pgrp than
295 		  * we are and we were the only connection outside.
296 		  */
297 		parent = tsk->real_parent;
298 	else
299 		/* reparent: our child is in a different pgrp than
300 		 * we are, and it was the only connection outside.
301 		 */
302 		ignored_task = NULL;
303 
304 	if (task_pgrp(parent) != pgrp &&
305 	    task_session(parent) == task_session(tsk) &&
306 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 	    has_stopped_jobs(pgrp)) {
308 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 	}
311 }
312 
313 /**
314  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315  *
316  * If a kernel thread is launched as a result of a system call, or if
317  * it ever exits, it should generally reparent itself to kthreadd so it
318  * isn't in the way of other processes and is correctly cleaned up on exit.
319  *
320  * The various task state such as scheduling policy and priority may have
321  * been inherited from a user process, so we reset them to sane values here.
322  *
323  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324  */
325 static void reparent_to_kthreadd(void)
326 {
327 	write_lock_irq(&tasklist_lock);
328 
329 	ptrace_unlink(current);
330 	/* Reparent to init */
331 	current->real_parent = current->parent = kthreadd_task;
332 	list_move_tail(&current->sibling, &current->real_parent->children);
333 
334 	/* Set the exit signal to SIGCHLD so we signal init on exit */
335 	current->exit_signal = SIGCHLD;
336 
337 	if (task_nice(current) < 0)
338 		set_user_nice(current, 0);
339 	/* cpus_allowed? */
340 	/* rt_priority? */
341 	/* signals? */
342 	memcpy(current->signal->rlim, init_task.signal->rlim,
343 	       sizeof(current->signal->rlim));
344 
345 	atomic_inc(&init_cred.usage);
346 	commit_creds(&init_cred);
347 	write_unlock_irq(&tasklist_lock);
348 }
349 
350 void __set_special_pids(struct pid *pid)
351 {
352 	struct task_struct *curr = current->group_leader;
353 
354 	if (task_session(curr) != pid)
355 		change_pid(curr, PIDTYPE_SID, pid);
356 
357 	if (task_pgrp(curr) != pid)
358 		change_pid(curr, PIDTYPE_PGID, pid);
359 }
360 
361 static void set_special_pids(struct pid *pid)
362 {
363 	write_lock_irq(&tasklist_lock);
364 	__set_special_pids(pid);
365 	write_unlock_irq(&tasklist_lock);
366 }
367 
368 /*
369  * Let kernel threads use this to say that they allow a certain signal.
370  * Must not be used if kthread was cloned with CLONE_SIGHAND.
371  */
372 int allow_signal(int sig)
373 {
374 	if (!valid_signal(sig) || sig < 1)
375 		return -EINVAL;
376 
377 	spin_lock_irq(&current->sighand->siglock);
378 	/* This is only needed for daemonize()'ed kthreads */
379 	sigdelset(&current->blocked, sig);
380 	/*
381 	 * Kernel threads handle their own signals. Let the signal code
382 	 * know it'll be handled, so that they don't get converted to
383 	 * SIGKILL or just silently dropped.
384 	 */
385 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 	recalc_sigpending();
387 	spin_unlock_irq(&current->sighand->siglock);
388 	return 0;
389 }
390 
391 EXPORT_SYMBOL(allow_signal);
392 
393 int disallow_signal(int sig)
394 {
395 	if (!valid_signal(sig) || sig < 1)
396 		return -EINVAL;
397 
398 	spin_lock_irq(&current->sighand->siglock);
399 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 	recalc_sigpending();
401 	spin_unlock_irq(&current->sighand->siglock);
402 	return 0;
403 }
404 
405 EXPORT_SYMBOL(disallow_signal);
406 
407 /*
408  *	Put all the gunge required to become a kernel thread without
409  *	attached user resources in one place where it belongs.
410  */
411 
412 void daemonize(const char *name, ...)
413 {
414 	va_list args;
415 	sigset_t blocked;
416 
417 	va_start(args, name);
418 	vsnprintf(current->comm, sizeof(current->comm), name, args);
419 	va_end(args);
420 
421 	/*
422 	 * If we were started as result of loading a module, close all of the
423 	 * user space pages.  We don't need them, and if we didn't close them
424 	 * they would be locked into memory.
425 	 */
426 	exit_mm(current);
427 	/*
428 	 * We don't want to get frozen, in case system-wide hibernation
429 	 * or suspend transition begins right now.
430 	 */
431 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432 
433 	if (current->nsproxy != &init_nsproxy) {
434 		get_nsproxy(&init_nsproxy);
435 		switch_task_namespaces(current, &init_nsproxy);
436 	}
437 	set_special_pids(&init_struct_pid);
438 	proc_clear_tty(current);
439 
440 	/* Block and flush all signals */
441 	sigfillset(&blocked);
442 	sigprocmask(SIG_BLOCK, &blocked, NULL);
443 	flush_signals(current);
444 
445 	/* Become as one with the init task */
446 
447 	daemonize_fs_struct();
448 	exit_files(current);
449 	current->files = init_task.files;
450 	atomic_inc(&current->files->count);
451 
452 	reparent_to_kthreadd();
453 }
454 
455 EXPORT_SYMBOL(daemonize);
456 
457 static void close_files(struct files_struct * files)
458 {
459 	int i, j;
460 	struct fdtable *fdt;
461 
462 	j = 0;
463 
464 	/*
465 	 * It is safe to dereference the fd table without RCU or
466 	 * ->file_lock because this is the last reference to the
467 	 * files structure.  But use RCU to shut RCU-lockdep up.
468 	 */
469 	rcu_read_lock();
470 	fdt = files_fdtable(files);
471 	rcu_read_unlock();
472 	for (;;) {
473 		unsigned long set;
474 		i = j * __NFDBITS;
475 		if (i >= fdt->max_fds)
476 			break;
477 		set = fdt->open_fds[j++];
478 		while (set) {
479 			if (set & 1) {
480 				struct file * file = xchg(&fdt->fd[i], NULL);
481 				if (file) {
482 					filp_close(file, files);
483 					cond_resched();
484 				}
485 			}
486 			i++;
487 			set >>= 1;
488 		}
489 	}
490 }
491 
492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494 	struct files_struct *files;
495 
496 	task_lock(task);
497 	files = task->files;
498 	if (files)
499 		atomic_inc(&files->count);
500 	task_unlock(task);
501 
502 	return files;
503 }
504 
505 void put_files_struct(struct files_struct *files)
506 {
507 	struct fdtable *fdt;
508 
509 	if (atomic_dec_and_test(&files->count)) {
510 		close_files(files);
511 		/*
512 		 * Free the fd and fdset arrays if we expanded them.
513 		 * If the fdtable was embedded, pass files for freeing
514 		 * at the end of the RCU grace period. Otherwise,
515 		 * you can free files immediately.
516 		 */
517 		rcu_read_lock();
518 		fdt = files_fdtable(files);
519 		if (fdt != &files->fdtab)
520 			kmem_cache_free(files_cachep, files);
521 		free_fdtable(fdt);
522 		rcu_read_unlock();
523 	}
524 }
525 
526 void reset_files_struct(struct files_struct *files)
527 {
528 	struct task_struct *tsk = current;
529 	struct files_struct *old;
530 
531 	old = tsk->files;
532 	task_lock(tsk);
533 	tsk->files = files;
534 	task_unlock(tsk);
535 	put_files_struct(old);
536 }
537 
538 void exit_files(struct task_struct *tsk)
539 {
540 	struct files_struct * files = tsk->files;
541 
542 	if (files) {
543 		task_lock(tsk);
544 		tsk->files = NULL;
545 		task_unlock(tsk);
546 		put_files_struct(files);
547 	}
548 }
549 
550 #ifdef CONFIG_MM_OWNER
551 /*
552  * A task is exiting.   If it owned this mm, find a new owner for the mm.
553  */
554 void mm_update_next_owner(struct mm_struct *mm)
555 {
556 	struct task_struct *c, *g, *p = current;
557 
558 retry:
559 	/*
560 	 * If the exiting or execing task is not the owner, it's
561 	 * someone else's problem.
562 	 */
563 	if (mm->owner != p)
564 		return;
565 	/*
566 	 * The current owner is exiting/execing and there are no other
567 	 * candidates.  Do not leave the mm pointing to a possibly
568 	 * freed task structure.
569 	 */
570 	if (atomic_read(&mm->mm_users) <= 1) {
571 		mm->owner = NULL;
572 		return;
573 	}
574 
575 	read_lock(&tasklist_lock);
576 	/*
577 	 * Search in the children
578 	 */
579 	list_for_each_entry(c, &p->children, sibling) {
580 		if (c->mm == mm)
581 			goto assign_new_owner;
582 	}
583 
584 	/*
585 	 * Search in the siblings
586 	 */
587 	list_for_each_entry(c, &p->real_parent->children, sibling) {
588 		if (c->mm == mm)
589 			goto assign_new_owner;
590 	}
591 
592 	/*
593 	 * Search through everything else. We should not get
594 	 * here often
595 	 */
596 	do_each_thread(g, c) {
597 		if (c->mm == mm)
598 			goto assign_new_owner;
599 	} while_each_thread(g, c);
600 
601 	read_unlock(&tasklist_lock);
602 	/*
603 	 * We found no owner yet mm_users > 1: this implies that we are
604 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
605 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
606 	 */
607 	mm->owner = NULL;
608 	return;
609 
610 assign_new_owner:
611 	BUG_ON(c == p);
612 	get_task_struct(c);
613 	/*
614 	 * The task_lock protects c->mm from changing.
615 	 * We always want mm->owner->mm == mm
616 	 */
617 	task_lock(c);
618 	/*
619 	 * Delay read_unlock() till we have the task_lock()
620 	 * to ensure that c does not slip away underneath us
621 	 */
622 	read_unlock(&tasklist_lock);
623 	if (c->mm != mm) {
624 		task_unlock(c);
625 		put_task_struct(c);
626 		goto retry;
627 	}
628 	mm->owner = c;
629 	task_unlock(c);
630 	put_task_struct(c);
631 }
632 #endif /* CONFIG_MM_OWNER */
633 
634 /*
635  * Turn us into a lazy TLB process if we
636  * aren't already..
637  */
638 static void exit_mm(struct task_struct * tsk)
639 {
640 	struct mm_struct *mm = tsk->mm;
641 	struct core_state *core_state;
642 
643 	mm_release(tsk, mm);
644 	if (!mm)
645 		return;
646 	/*
647 	 * Serialize with any possible pending coredump.
648 	 * We must hold mmap_sem around checking core_state
649 	 * and clearing tsk->mm.  The core-inducing thread
650 	 * will increment ->nr_threads for each thread in the
651 	 * group with ->mm != NULL.
652 	 */
653 	down_read(&mm->mmap_sem);
654 	core_state = mm->core_state;
655 	if (core_state) {
656 		struct core_thread self;
657 		up_read(&mm->mmap_sem);
658 
659 		self.task = tsk;
660 		self.next = xchg(&core_state->dumper.next, &self);
661 		/*
662 		 * Implies mb(), the result of xchg() must be visible
663 		 * to core_state->dumper.
664 		 */
665 		if (atomic_dec_and_test(&core_state->nr_threads))
666 			complete(&core_state->startup);
667 
668 		for (;;) {
669 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
670 			if (!self.task) /* see coredump_finish() */
671 				break;
672 			schedule();
673 		}
674 		__set_task_state(tsk, TASK_RUNNING);
675 		down_read(&mm->mmap_sem);
676 	}
677 	atomic_inc(&mm->mm_count);
678 	BUG_ON(mm != tsk->active_mm);
679 	/* more a memory barrier than a real lock */
680 	task_lock(tsk);
681 	tsk->mm = NULL;
682 	up_read(&mm->mmap_sem);
683 	enter_lazy_tlb(mm, current);
684 	task_unlock(tsk);
685 	mm_update_next_owner(mm);
686 	mmput(mm);
687 }
688 
689 /*
690  * When we die, we re-parent all our children, and try to:
691  * 1. give them to another thread in our thread group, if such a member exists
692  * 2. give it to the first ancestor process which prctl'd itself as a
693  *    child_subreaper for its children (like a service manager)
694  * 3. give it to the init process (PID 1) in our pid namespace
695  */
696 static struct task_struct *find_new_reaper(struct task_struct *father)
697 	__releases(&tasklist_lock)
698 	__acquires(&tasklist_lock)
699 {
700 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
701 	struct task_struct *thread;
702 
703 	thread = father;
704 	while_each_thread(father, thread) {
705 		if (thread->flags & PF_EXITING)
706 			continue;
707 		if (unlikely(pid_ns->child_reaper == father))
708 			pid_ns->child_reaper = thread;
709 		return thread;
710 	}
711 
712 	if (unlikely(pid_ns->child_reaper == father)) {
713 		write_unlock_irq(&tasklist_lock);
714 		if (unlikely(pid_ns == &init_pid_ns)) {
715 			panic("Attempted to kill init! exitcode=0x%08x\n",
716 				father->signal->group_exit_code ?:
717 					father->exit_code);
718 		}
719 
720 		zap_pid_ns_processes(pid_ns);
721 		write_lock_irq(&tasklist_lock);
722 		/*
723 		 * We can not clear ->child_reaper or leave it alone.
724 		 * There may by stealth EXIT_DEAD tasks on ->children,
725 		 * forget_original_parent() must move them somewhere.
726 		 */
727 		pid_ns->child_reaper = init_pid_ns.child_reaper;
728 	} else if (father->signal->has_child_subreaper) {
729 		struct task_struct *reaper;
730 
731 		/*
732 		 * Find the first ancestor marked as child_subreaper.
733 		 * Note that the code below checks same_thread_group(reaper,
734 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
735 		 * PID namespace. However we still need the check above, see
736 		 * http://marc.info/?l=linux-kernel&m=131385460420380
737 		 */
738 		for (reaper = father->real_parent;
739 		     reaper != &init_task;
740 		     reaper = reaper->real_parent) {
741 			if (same_thread_group(reaper, pid_ns->child_reaper))
742 				break;
743 			if (!reaper->signal->is_child_subreaper)
744 				continue;
745 			thread = reaper;
746 			do {
747 				if (!(thread->flags & PF_EXITING))
748 					return reaper;
749 			} while_each_thread(reaper, thread);
750 		}
751 	}
752 
753 	return pid_ns->child_reaper;
754 }
755 
756 /*
757 * Any that need to be release_task'd are put on the @dead list.
758  */
759 static void reparent_leader(struct task_struct *father, struct task_struct *p,
760 				struct list_head *dead)
761 {
762 	list_move_tail(&p->sibling, &p->real_parent->children);
763 
764 	if (p->exit_state == EXIT_DEAD)
765 		return;
766 	/*
767 	 * If this is a threaded reparent there is no need to
768 	 * notify anyone anything has happened.
769 	 */
770 	if (same_thread_group(p->real_parent, father))
771 		return;
772 
773 	/* We don't want people slaying init.  */
774 	p->exit_signal = SIGCHLD;
775 
776 	/* If it has exited notify the new parent about this child's death. */
777 	if (!p->ptrace &&
778 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
779 		if (do_notify_parent(p, p->exit_signal)) {
780 			p->exit_state = EXIT_DEAD;
781 			list_move_tail(&p->sibling, dead);
782 		}
783 	}
784 
785 	kill_orphaned_pgrp(p, father);
786 }
787 
788 static void forget_original_parent(struct task_struct *father)
789 {
790 	struct task_struct *p, *n, *reaper;
791 	LIST_HEAD(dead_children);
792 
793 	write_lock_irq(&tasklist_lock);
794 	/*
795 	 * Note that exit_ptrace() and find_new_reaper() might
796 	 * drop tasklist_lock and reacquire it.
797 	 */
798 	exit_ptrace(father);
799 	reaper = find_new_reaper(father);
800 
801 	list_for_each_entry_safe(p, n, &father->children, sibling) {
802 		struct task_struct *t = p;
803 		do {
804 			t->real_parent = reaper;
805 			if (t->parent == father) {
806 				BUG_ON(t->ptrace);
807 				t->parent = t->real_parent;
808 			}
809 			if (t->pdeath_signal)
810 				group_send_sig_info(t->pdeath_signal,
811 						    SEND_SIG_NOINFO, t);
812 		} while_each_thread(p, t);
813 		reparent_leader(father, p, &dead_children);
814 	}
815 	write_unlock_irq(&tasklist_lock);
816 
817 	BUG_ON(!list_empty(&father->children));
818 
819 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
820 		list_del_init(&p->sibling);
821 		release_task(p);
822 	}
823 }
824 
825 /*
826  * Send signals to all our closest relatives so that they know
827  * to properly mourn us..
828  */
829 static void exit_notify(struct task_struct *tsk, int group_dead)
830 {
831 	bool autoreap;
832 
833 	/*
834 	 * This does two things:
835 	 *
836   	 * A.  Make init inherit all the child processes
837 	 * B.  Check to see if any process groups have become orphaned
838 	 *	as a result of our exiting, and if they have any stopped
839 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
840 	 */
841 	forget_original_parent(tsk);
842 	exit_task_namespaces(tsk);
843 
844 	write_lock_irq(&tasklist_lock);
845 	if (group_dead)
846 		kill_orphaned_pgrp(tsk->group_leader, NULL);
847 
848 	if (unlikely(tsk->ptrace)) {
849 		int sig = thread_group_leader(tsk) &&
850 				thread_group_empty(tsk) &&
851 				!ptrace_reparented(tsk) ?
852 			tsk->exit_signal : SIGCHLD;
853 		autoreap = do_notify_parent(tsk, sig);
854 	} else if (thread_group_leader(tsk)) {
855 		autoreap = thread_group_empty(tsk) &&
856 			do_notify_parent(tsk, tsk->exit_signal);
857 	} else {
858 		autoreap = true;
859 	}
860 
861 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
862 
863 	/* mt-exec, de_thread() is waiting for group leader */
864 	if (unlikely(tsk->signal->notify_count < 0))
865 		wake_up_process(tsk->signal->group_exit_task);
866 	write_unlock_irq(&tasklist_lock);
867 
868 	/* If the process is dead, release it - nobody will wait for it */
869 	if (autoreap)
870 		release_task(tsk);
871 }
872 
873 #ifdef CONFIG_DEBUG_STACK_USAGE
874 static void check_stack_usage(void)
875 {
876 	static DEFINE_SPINLOCK(low_water_lock);
877 	static int lowest_to_date = THREAD_SIZE;
878 	unsigned long free;
879 
880 	free = stack_not_used(current);
881 
882 	if (free >= lowest_to_date)
883 		return;
884 
885 	spin_lock(&low_water_lock);
886 	if (free < lowest_to_date) {
887 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
888 				"%lu bytes left\n",
889 				current->comm, task_pid_nr(current), free);
890 		lowest_to_date = free;
891 	}
892 	spin_unlock(&low_water_lock);
893 }
894 #else
895 static inline void check_stack_usage(void) {}
896 #endif
897 
898 void do_exit(long code)
899 {
900 	struct task_struct *tsk = current;
901 	int group_dead;
902 
903 	profile_task_exit(tsk);
904 
905 	WARN_ON(blk_needs_flush_plug(tsk));
906 
907 	if (unlikely(in_interrupt()))
908 		panic("Aiee, killing interrupt handler!");
909 	if (unlikely(!tsk->pid))
910 		panic("Attempted to kill the idle task!");
911 
912 	/*
913 	 * If do_exit is called because this processes oopsed, it's possible
914 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
915 	 * continuing. Amongst other possible reasons, this is to prevent
916 	 * mm_release()->clear_child_tid() from writing to a user-controlled
917 	 * kernel address.
918 	 */
919 	set_fs(USER_DS);
920 
921 	ptrace_event(PTRACE_EVENT_EXIT, code);
922 
923 	validate_creds_for_do_exit(tsk);
924 
925 	/*
926 	 * We're taking recursive faults here in do_exit. Safest is to just
927 	 * leave this task alone and wait for reboot.
928 	 */
929 	if (unlikely(tsk->flags & PF_EXITING)) {
930 		printk(KERN_ALERT
931 			"Fixing recursive fault but reboot is needed!\n");
932 		/*
933 		 * We can do this unlocked here. The futex code uses
934 		 * this flag just to verify whether the pi state
935 		 * cleanup has been done or not. In the worst case it
936 		 * loops once more. We pretend that the cleanup was
937 		 * done as there is no way to return. Either the
938 		 * OWNER_DIED bit is set by now or we push the blocked
939 		 * task into the wait for ever nirwana as well.
940 		 */
941 		tsk->flags |= PF_EXITPIDONE;
942 		set_current_state(TASK_UNINTERRUPTIBLE);
943 		schedule();
944 	}
945 
946 	exit_signals(tsk);  /* sets PF_EXITING */
947 	/*
948 	 * tsk->flags are checked in the futex code to protect against
949 	 * an exiting task cleaning up the robust pi futexes, and in
950 	 * task_work_add() to avoid the race with exit_task_work().
951 	 */
952 	smp_mb();
953 	raw_spin_unlock_wait(&tsk->pi_lock);
954 
955 	exit_task_work(tsk);
956 
957 	if (unlikely(in_atomic()))
958 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
959 				current->comm, task_pid_nr(current),
960 				preempt_count());
961 
962 	acct_update_integrals(tsk);
963 	/* sync mm's RSS info before statistics gathering */
964 	if (tsk->mm)
965 		sync_mm_rss(tsk->mm);
966 	group_dead = atomic_dec_and_test(&tsk->signal->live);
967 	if (group_dead) {
968 		hrtimer_cancel(&tsk->signal->real_timer);
969 		exit_itimers(tsk->signal);
970 		if (tsk->mm)
971 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
972 	}
973 	acct_collect(code, group_dead);
974 	if (group_dead)
975 		tty_audit_exit();
976 	audit_free(tsk);
977 
978 	tsk->exit_code = code;
979 	taskstats_exit(tsk, group_dead);
980 
981 	exit_mm(tsk);
982 
983 	if (group_dead)
984 		acct_process();
985 	trace_sched_process_exit(tsk);
986 
987 	exit_sem(tsk);
988 	exit_shm(tsk);
989 	exit_files(tsk);
990 	exit_fs(tsk);
991 	check_stack_usage();
992 	exit_thread();
993 
994 	/*
995 	 * Flush inherited counters to the parent - before the parent
996 	 * gets woken up by child-exit notifications.
997 	 *
998 	 * because of cgroup mode, must be called before cgroup_exit()
999 	 */
1000 	perf_event_exit_task(tsk);
1001 
1002 	cgroup_exit(tsk, 1);
1003 
1004 	if (group_dead)
1005 		disassociate_ctty(1);
1006 
1007 	module_put(task_thread_info(tsk)->exec_domain->module);
1008 
1009 	proc_exit_connector(tsk);
1010 
1011 	/*
1012 	 * FIXME: do that only when needed, using sched_exit tracepoint
1013 	 */
1014 	ptrace_put_breakpoints(tsk);
1015 
1016 	exit_notify(tsk, group_dead);
1017 #ifdef CONFIG_NUMA
1018 	task_lock(tsk);
1019 	mpol_put(tsk->mempolicy);
1020 	tsk->mempolicy = NULL;
1021 	task_unlock(tsk);
1022 #endif
1023 #ifdef CONFIG_FUTEX
1024 	if (unlikely(current->pi_state_cache))
1025 		kfree(current->pi_state_cache);
1026 #endif
1027 	/*
1028 	 * Make sure we are holding no locks:
1029 	 */
1030 	debug_check_no_locks_held(tsk);
1031 	/*
1032 	 * We can do this unlocked here. The futex code uses this flag
1033 	 * just to verify whether the pi state cleanup has been done
1034 	 * or not. In the worst case it loops once more.
1035 	 */
1036 	tsk->flags |= PF_EXITPIDONE;
1037 
1038 	if (tsk->io_context)
1039 		exit_io_context(tsk);
1040 
1041 	if (tsk->splice_pipe)
1042 		__free_pipe_info(tsk->splice_pipe);
1043 
1044 	validate_creds_for_do_exit(tsk);
1045 
1046 	preempt_disable();
1047 	if (tsk->nr_dirtied)
1048 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1049 	exit_rcu();
1050 
1051 	/*
1052 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1053 	 * when the following two conditions become true.
1054 	 *   - There is race condition of mmap_sem (It is acquired by
1055 	 *     exit_mm()), and
1056 	 *   - SMI occurs before setting TASK_RUNINNG.
1057 	 *     (or hypervisor of virtual machine switches to other guest)
1058 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1059 	 *
1060 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
1061 	 * is held by try_to_wake_up()
1062 	 */
1063 	smp_mb();
1064 	raw_spin_unlock_wait(&tsk->pi_lock);
1065 
1066 	/* causes final put_task_struct in finish_task_switch(). */
1067 	tsk->state = TASK_DEAD;
1068 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1069 	schedule();
1070 	BUG();
1071 	/* Avoid "noreturn function does return".  */
1072 	for (;;)
1073 		cpu_relax();	/* For when BUG is null */
1074 }
1075 
1076 EXPORT_SYMBOL_GPL(do_exit);
1077 
1078 void complete_and_exit(struct completion *comp, long code)
1079 {
1080 	if (comp)
1081 		complete(comp);
1082 
1083 	do_exit(code);
1084 }
1085 
1086 EXPORT_SYMBOL(complete_and_exit);
1087 
1088 SYSCALL_DEFINE1(exit, int, error_code)
1089 {
1090 	do_exit((error_code&0xff)<<8);
1091 }
1092 
1093 /*
1094  * Take down every thread in the group.  This is called by fatal signals
1095  * as well as by sys_exit_group (below).
1096  */
1097 void
1098 do_group_exit(int exit_code)
1099 {
1100 	struct signal_struct *sig = current->signal;
1101 
1102 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1103 
1104 	if (signal_group_exit(sig))
1105 		exit_code = sig->group_exit_code;
1106 	else if (!thread_group_empty(current)) {
1107 		struct sighand_struct *const sighand = current->sighand;
1108 		spin_lock_irq(&sighand->siglock);
1109 		if (signal_group_exit(sig))
1110 			/* Another thread got here before we took the lock.  */
1111 			exit_code = sig->group_exit_code;
1112 		else {
1113 			sig->group_exit_code = exit_code;
1114 			sig->flags = SIGNAL_GROUP_EXIT;
1115 			zap_other_threads(current);
1116 		}
1117 		spin_unlock_irq(&sighand->siglock);
1118 	}
1119 
1120 	do_exit(exit_code);
1121 	/* NOTREACHED */
1122 }
1123 
1124 /*
1125  * this kills every thread in the thread group. Note that any externally
1126  * wait4()-ing process will get the correct exit code - even if this
1127  * thread is not the thread group leader.
1128  */
1129 SYSCALL_DEFINE1(exit_group, int, error_code)
1130 {
1131 	do_group_exit((error_code & 0xff) << 8);
1132 	/* NOTREACHED */
1133 	return 0;
1134 }
1135 
1136 struct wait_opts {
1137 	enum pid_type		wo_type;
1138 	int			wo_flags;
1139 	struct pid		*wo_pid;
1140 
1141 	struct siginfo __user	*wo_info;
1142 	int __user		*wo_stat;
1143 	struct rusage __user	*wo_rusage;
1144 
1145 	wait_queue_t		child_wait;
1146 	int			notask_error;
1147 };
1148 
1149 static inline
1150 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1151 {
1152 	if (type != PIDTYPE_PID)
1153 		task = task->group_leader;
1154 	return task->pids[type].pid;
1155 }
1156 
1157 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1158 {
1159 	return	wo->wo_type == PIDTYPE_MAX ||
1160 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1161 }
1162 
1163 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1164 {
1165 	if (!eligible_pid(wo, p))
1166 		return 0;
1167 	/* Wait for all children (clone and not) if __WALL is set;
1168 	 * otherwise, wait for clone children *only* if __WCLONE is
1169 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1170 	 * A "clone" child here is one that reports to its parent
1171 	 * using a signal other than SIGCHLD.) */
1172 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1173 	    && !(wo->wo_flags & __WALL))
1174 		return 0;
1175 
1176 	return 1;
1177 }
1178 
1179 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1180 				pid_t pid, uid_t uid, int why, int status)
1181 {
1182 	struct siginfo __user *infop;
1183 	int retval = wo->wo_rusage
1184 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1185 
1186 	put_task_struct(p);
1187 	infop = wo->wo_info;
1188 	if (infop) {
1189 		if (!retval)
1190 			retval = put_user(SIGCHLD, &infop->si_signo);
1191 		if (!retval)
1192 			retval = put_user(0, &infop->si_errno);
1193 		if (!retval)
1194 			retval = put_user((short)why, &infop->si_code);
1195 		if (!retval)
1196 			retval = put_user(pid, &infop->si_pid);
1197 		if (!retval)
1198 			retval = put_user(uid, &infop->si_uid);
1199 		if (!retval)
1200 			retval = put_user(status, &infop->si_status);
1201 	}
1202 	if (!retval)
1203 		retval = pid;
1204 	return retval;
1205 }
1206 
1207 /*
1208  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1209  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1210  * the lock and this task is uninteresting.  If we return nonzero, we have
1211  * released the lock and the system call should return.
1212  */
1213 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1214 {
1215 	unsigned long state;
1216 	int retval, status, traced;
1217 	pid_t pid = task_pid_vnr(p);
1218 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1219 	struct siginfo __user *infop;
1220 
1221 	if (!likely(wo->wo_flags & WEXITED))
1222 		return 0;
1223 
1224 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1225 		int exit_code = p->exit_code;
1226 		int why;
1227 
1228 		get_task_struct(p);
1229 		read_unlock(&tasklist_lock);
1230 		if ((exit_code & 0x7f) == 0) {
1231 			why = CLD_EXITED;
1232 			status = exit_code >> 8;
1233 		} else {
1234 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1235 			status = exit_code & 0x7f;
1236 		}
1237 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1238 	}
1239 
1240 	/*
1241 	 * Try to move the task's state to DEAD
1242 	 * only one thread is allowed to do this:
1243 	 */
1244 	state = xchg(&p->exit_state, EXIT_DEAD);
1245 	if (state != EXIT_ZOMBIE) {
1246 		BUG_ON(state != EXIT_DEAD);
1247 		return 0;
1248 	}
1249 
1250 	traced = ptrace_reparented(p);
1251 	/*
1252 	 * It can be ptraced but not reparented, check
1253 	 * thread_group_leader() to filter out sub-threads.
1254 	 */
1255 	if (likely(!traced) && thread_group_leader(p)) {
1256 		struct signal_struct *psig;
1257 		struct signal_struct *sig;
1258 		unsigned long maxrss;
1259 		cputime_t tgutime, tgstime;
1260 
1261 		/*
1262 		 * The resource counters for the group leader are in its
1263 		 * own task_struct.  Those for dead threads in the group
1264 		 * are in its signal_struct, as are those for the child
1265 		 * processes it has previously reaped.  All these
1266 		 * accumulate in the parent's signal_struct c* fields.
1267 		 *
1268 		 * We don't bother to take a lock here to protect these
1269 		 * p->signal fields, because they are only touched by
1270 		 * __exit_signal, which runs with tasklist_lock
1271 		 * write-locked anyway, and so is excluded here.  We do
1272 		 * need to protect the access to parent->signal fields,
1273 		 * as other threads in the parent group can be right
1274 		 * here reaping other children at the same time.
1275 		 *
1276 		 * We use thread_group_times() to get times for the thread
1277 		 * group, which consolidates times for all threads in the
1278 		 * group including the group leader.
1279 		 */
1280 		thread_group_times(p, &tgutime, &tgstime);
1281 		spin_lock_irq(&p->real_parent->sighand->siglock);
1282 		psig = p->real_parent->signal;
1283 		sig = p->signal;
1284 		psig->cutime += tgutime + sig->cutime;
1285 		psig->cstime += tgstime + sig->cstime;
1286 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1287 		psig->cmin_flt +=
1288 			p->min_flt + sig->min_flt + sig->cmin_flt;
1289 		psig->cmaj_flt +=
1290 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1291 		psig->cnvcsw +=
1292 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1293 		psig->cnivcsw +=
1294 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1295 		psig->cinblock +=
1296 			task_io_get_inblock(p) +
1297 			sig->inblock + sig->cinblock;
1298 		psig->coublock +=
1299 			task_io_get_oublock(p) +
1300 			sig->oublock + sig->coublock;
1301 		maxrss = max(sig->maxrss, sig->cmaxrss);
1302 		if (psig->cmaxrss < maxrss)
1303 			psig->cmaxrss = maxrss;
1304 		task_io_accounting_add(&psig->ioac, &p->ioac);
1305 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1306 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1307 	}
1308 
1309 	/*
1310 	 * Now we are sure this task is interesting, and no other
1311 	 * thread can reap it because we set its state to EXIT_DEAD.
1312 	 */
1313 	read_unlock(&tasklist_lock);
1314 
1315 	retval = wo->wo_rusage
1316 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1317 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1318 		? p->signal->group_exit_code : p->exit_code;
1319 	if (!retval && wo->wo_stat)
1320 		retval = put_user(status, wo->wo_stat);
1321 
1322 	infop = wo->wo_info;
1323 	if (!retval && infop)
1324 		retval = put_user(SIGCHLD, &infop->si_signo);
1325 	if (!retval && infop)
1326 		retval = put_user(0, &infop->si_errno);
1327 	if (!retval && infop) {
1328 		int why;
1329 
1330 		if ((status & 0x7f) == 0) {
1331 			why = CLD_EXITED;
1332 			status >>= 8;
1333 		} else {
1334 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1335 			status &= 0x7f;
1336 		}
1337 		retval = put_user((short)why, &infop->si_code);
1338 		if (!retval)
1339 			retval = put_user(status, &infop->si_status);
1340 	}
1341 	if (!retval && infop)
1342 		retval = put_user(pid, &infop->si_pid);
1343 	if (!retval && infop)
1344 		retval = put_user(uid, &infop->si_uid);
1345 	if (!retval)
1346 		retval = pid;
1347 
1348 	if (traced) {
1349 		write_lock_irq(&tasklist_lock);
1350 		/* We dropped tasklist, ptracer could die and untrace */
1351 		ptrace_unlink(p);
1352 		/*
1353 		 * If this is not a sub-thread, notify the parent.
1354 		 * If parent wants a zombie, don't release it now.
1355 		 */
1356 		if (thread_group_leader(p) &&
1357 		    !do_notify_parent(p, p->exit_signal)) {
1358 			p->exit_state = EXIT_ZOMBIE;
1359 			p = NULL;
1360 		}
1361 		write_unlock_irq(&tasklist_lock);
1362 	}
1363 	if (p != NULL)
1364 		release_task(p);
1365 
1366 	return retval;
1367 }
1368 
1369 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1370 {
1371 	if (ptrace) {
1372 		if (task_is_stopped_or_traced(p) &&
1373 		    !(p->jobctl & JOBCTL_LISTENING))
1374 			return &p->exit_code;
1375 	} else {
1376 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1377 			return &p->signal->group_exit_code;
1378 	}
1379 	return NULL;
1380 }
1381 
1382 /**
1383  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1384  * @wo: wait options
1385  * @ptrace: is the wait for ptrace
1386  * @p: task to wait for
1387  *
1388  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1389  *
1390  * CONTEXT:
1391  * read_lock(&tasklist_lock), which is released if return value is
1392  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1393  *
1394  * RETURNS:
1395  * 0 if wait condition didn't exist and search for other wait conditions
1396  * should continue.  Non-zero return, -errno on failure and @p's pid on
1397  * success, implies that tasklist_lock is released and wait condition
1398  * search should terminate.
1399  */
1400 static int wait_task_stopped(struct wait_opts *wo,
1401 				int ptrace, struct task_struct *p)
1402 {
1403 	struct siginfo __user *infop;
1404 	int retval, exit_code, *p_code, why;
1405 	uid_t uid = 0; /* unneeded, required by compiler */
1406 	pid_t pid;
1407 
1408 	/*
1409 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1410 	 */
1411 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1412 		return 0;
1413 
1414 	if (!task_stopped_code(p, ptrace))
1415 		return 0;
1416 
1417 	exit_code = 0;
1418 	spin_lock_irq(&p->sighand->siglock);
1419 
1420 	p_code = task_stopped_code(p, ptrace);
1421 	if (unlikely(!p_code))
1422 		goto unlock_sig;
1423 
1424 	exit_code = *p_code;
1425 	if (!exit_code)
1426 		goto unlock_sig;
1427 
1428 	if (!unlikely(wo->wo_flags & WNOWAIT))
1429 		*p_code = 0;
1430 
1431 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1432 unlock_sig:
1433 	spin_unlock_irq(&p->sighand->siglock);
1434 	if (!exit_code)
1435 		return 0;
1436 
1437 	/*
1438 	 * Now we are pretty sure this task is interesting.
1439 	 * Make sure it doesn't get reaped out from under us while we
1440 	 * give up the lock and then examine it below.  We don't want to
1441 	 * keep holding onto the tasklist_lock while we call getrusage and
1442 	 * possibly take page faults for user memory.
1443 	 */
1444 	get_task_struct(p);
1445 	pid = task_pid_vnr(p);
1446 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1447 	read_unlock(&tasklist_lock);
1448 
1449 	if (unlikely(wo->wo_flags & WNOWAIT))
1450 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1451 
1452 	retval = wo->wo_rusage
1453 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1454 	if (!retval && wo->wo_stat)
1455 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1456 
1457 	infop = wo->wo_info;
1458 	if (!retval && infop)
1459 		retval = put_user(SIGCHLD, &infop->si_signo);
1460 	if (!retval && infop)
1461 		retval = put_user(0, &infop->si_errno);
1462 	if (!retval && infop)
1463 		retval = put_user((short)why, &infop->si_code);
1464 	if (!retval && infop)
1465 		retval = put_user(exit_code, &infop->si_status);
1466 	if (!retval && infop)
1467 		retval = put_user(pid, &infop->si_pid);
1468 	if (!retval && infop)
1469 		retval = put_user(uid, &infop->si_uid);
1470 	if (!retval)
1471 		retval = pid;
1472 	put_task_struct(p);
1473 
1474 	BUG_ON(!retval);
1475 	return retval;
1476 }
1477 
1478 /*
1479  * Handle do_wait work for one task in a live, non-stopped state.
1480  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1481  * the lock and this task is uninteresting.  If we return nonzero, we have
1482  * released the lock and the system call should return.
1483  */
1484 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1485 {
1486 	int retval;
1487 	pid_t pid;
1488 	uid_t uid;
1489 
1490 	if (!unlikely(wo->wo_flags & WCONTINUED))
1491 		return 0;
1492 
1493 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1494 		return 0;
1495 
1496 	spin_lock_irq(&p->sighand->siglock);
1497 	/* Re-check with the lock held.  */
1498 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1499 		spin_unlock_irq(&p->sighand->siglock);
1500 		return 0;
1501 	}
1502 	if (!unlikely(wo->wo_flags & WNOWAIT))
1503 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1504 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1505 	spin_unlock_irq(&p->sighand->siglock);
1506 
1507 	pid = task_pid_vnr(p);
1508 	get_task_struct(p);
1509 	read_unlock(&tasklist_lock);
1510 
1511 	if (!wo->wo_info) {
1512 		retval = wo->wo_rusage
1513 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1514 		put_task_struct(p);
1515 		if (!retval && wo->wo_stat)
1516 			retval = put_user(0xffff, wo->wo_stat);
1517 		if (!retval)
1518 			retval = pid;
1519 	} else {
1520 		retval = wait_noreap_copyout(wo, p, pid, uid,
1521 					     CLD_CONTINUED, SIGCONT);
1522 		BUG_ON(retval == 0);
1523 	}
1524 
1525 	return retval;
1526 }
1527 
1528 /*
1529  * Consider @p for a wait by @parent.
1530  *
1531  * -ECHILD should be in ->notask_error before the first call.
1532  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1533  * Returns zero if the search for a child should continue;
1534  * then ->notask_error is 0 if @p is an eligible child,
1535  * or another error from security_task_wait(), or still -ECHILD.
1536  */
1537 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1538 				struct task_struct *p)
1539 {
1540 	int ret = eligible_child(wo, p);
1541 	if (!ret)
1542 		return ret;
1543 
1544 	ret = security_task_wait(p);
1545 	if (unlikely(ret < 0)) {
1546 		/*
1547 		 * If we have not yet seen any eligible child,
1548 		 * then let this error code replace -ECHILD.
1549 		 * A permission error will give the user a clue
1550 		 * to look for security policy problems, rather
1551 		 * than for mysterious wait bugs.
1552 		 */
1553 		if (wo->notask_error)
1554 			wo->notask_error = ret;
1555 		return 0;
1556 	}
1557 
1558 	/* dead body doesn't have much to contribute */
1559 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1560 		/*
1561 		 * But do not ignore this task until the tracer does
1562 		 * wait_task_zombie()->do_notify_parent().
1563 		 */
1564 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1565 			wo->notask_error = 0;
1566 		return 0;
1567 	}
1568 
1569 	/* slay zombie? */
1570 	if (p->exit_state == EXIT_ZOMBIE) {
1571 		/*
1572 		 * A zombie ptracee is only visible to its ptracer.
1573 		 * Notification and reaping will be cascaded to the real
1574 		 * parent when the ptracer detaches.
1575 		 */
1576 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1577 			/* it will become visible, clear notask_error */
1578 			wo->notask_error = 0;
1579 			return 0;
1580 		}
1581 
1582 		/* we don't reap group leaders with subthreads */
1583 		if (!delay_group_leader(p))
1584 			return wait_task_zombie(wo, p);
1585 
1586 		/*
1587 		 * Allow access to stopped/continued state via zombie by
1588 		 * falling through.  Clearing of notask_error is complex.
1589 		 *
1590 		 * When !@ptrace:
1591 		 *
1592 		 * If WEXITED is set, notask_error should naturally be
1593 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1594 		 * so, if there are live subthreads, there are events to
1595 		 * wait for.  If all subthreads are dead, it's still safe
1596 		 * to clear - this function will be called again in finite
1597 		 * amount time once all the subthreads are released and
1598 		 * will then return without clearing.
1599 		 *
1600 		 * When @ptrace:
1601 		 *
1602 		 * Stopped state is per-task and thus can't change once the
1603 		 * target task dies.  Only continued and exited can happen.
1604 		 * Clear notask_error if WCONTINUED | WEXITED.
1605 		 */
1606 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1607 			wo->notask_error = 0;
1608 	} else {
1609 		/*
1610 		 * If @p is ptraced by a task in its real parent's group,
1611 		 * hide group stop/continued state when looking at @p as
1612 		 * the real parent; otherwise, a single stop can be
1613 		 * reported twice as group and ptrace stops.
1614 		 *
1615 		 * If a ptracer wants to distinguish the two events for its
1616 		 * own children, it should create a separate process which
1617 		 * takes the role of real parent.
1618 		 */
1619 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1620 			return 0;
1621 
1622 		/*
1623 		 * @p is alive and it's gonna stop, continue or exit, so
1624 		 * there always is something to wait for.
1625 		 */
1626 		wo->notask_error = 0;
1627 	}
1628 
1629 	/*
1630 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1631 	 * is used and the two don't interact with each other.
1632 	 */
1633 	ret = wait_task_stopped(wo, ptrace, p);
1634 	if (ret)
1635 		return ret;
1636 
1637 	/*
1638 	 * Wait for continued.  There's only one continued state and the
1639 	 * ptracer can consume it which can confuse the real parent.  Don't
1640 	 * use WCONTINUED from ptracer.  You don't need or want it.
1641 	 */
1642 	return wait_task_continued(wo, p);
1643 }
1644 
1645 /*
1646  * Do the work of do_wait() for one thread in the group, @tsk.
1647  *
1648  * -ECHILD should be in ->notask_error before the first call.
1649  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1650  * Returns zero if the search for a child should continue; then
1651  * ->notask_error is 0 if there were any eligible children,
1652  * or another error from security_task_wait(), or still -ECHILD.
1653  */
1654 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1655 {
1656 	struct task_struct *p;
1657 
1658 	list_for_each_entry(p, &tsk->children, sibling) {
1659 		int ret = wait_consider_task(wo, 0, p);
1660 		if (ret)
1661 			return ret;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1668 {
1669 	struct task_struct *p;
1670 
1671 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1672 		int ret = wait_consider_task(wo, 1, p);
1673 		if (ret)
1674 			return ret;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1681 				int sync, void *key)
1682 {
1683 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1684 						child_wait);
1685 	struct task_struct *p = key;
1686 
1687 	if (!eligible_pid(wo, p))
1688 		return 0;
1689 
1690 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1691 		return 0;
1692 
1693 	return default_wake_function(wait, mode, sync, key);
1694 }
1695 
1696 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1697 {
1698 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1699 				TASK_INTERRUPTIBLE, 1, p);
1700 }
1701 
1702 static long do_wait(struct wait_opts *wo)
1703 {
1704 	struct task_struct *tsk;
1705 	int retval;
1706 
1707 	trace_sched_process_wait(wo->wo_pid);
1708 
1709 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1710 	wo->child_wait.private = current;
1711 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1712 repeat:
1713 	/*
1714 	 * If there is nothing that can match our critiera just get out.
1715 	 * We will clear ->notask_error to zero if we see any child that
1716 	 * might later match our criteria, even if we are not able to reap
1717 	 * it yet.
1718 	 */
1719 	wo->notask_error = -ECHILD;
1720 	if ((wo->wo_type < PIDTYPE_MAX) &&
1721 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1722 		goto notask;
1723 
1724 	set_current_state(TASK_INTERRUPTIBLE);
1725 	read_lock(&tasklist_lock);
1726 	tsk = current;
1727 	do {
1728 		retval = do_wait_thread(wo, tsk);
1729 		if (retval)
1730 			goto end;
1731 
1732 		retval = ptrace_do_wait(wo, tsk);
1733 		if (retval)
1734 			goto end;
1735 
1736 		if (wo->wo_flags & __WNOTHREAD)
1737 			break;
1738 	} while_each_thread(current, tsk);
1739 	read_unlock(&tasklist_lock);
1740 
1741 notask:
1742 	retval = wo->notask_error;
1743 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1744 		retval = -ERESTARTSYS;
1745 		if (!signal_pending(current)) {
1746 			schedule();
1747 			goto repeat;
1748 		}
1749 	}
1750 end:
1751 	__set_current_state(TASK_RUNNING);
1752 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1753 	return retval;
1754 }
1755 
1756 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1757 		infop, int, options, struct rusage __user *, ru)
1758 {
1759 	struct wait_opts wo;
1760 	struct pid *pid = NULL;
1761 	enum pid_type type;
1762 	long ret;
1763 
1764 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1765 		return -EINVAL;
1766 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1767 		return -EINVAL;
1768 
1769 	switch (which) {
1770 	case P_ALL:
1771 		type = PIDTYPE_MAX;
1772 		break;
1773 	case P_PID:
1774 		type = PIDTYPE_PID;
1775 		if (upid <= 0)
1776 			return -EINVAL;
1777 		break;
1778 	case P_PGID:
1779 		type = PIDTYPE_PGID;
1780 		if (upid <= 0)
1781 			return -EINVAL;
1782 		break;
1783 	default:
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (type < PIDTYPE_MAX)
1788 		pid = find_get_pid(upid);
1789 
1790 	wo.wo_type	= type;
1791 	wo.wo_pid	= pid;
1792 	wo.wo_flags	= options;
1793 	wo.wo_info	= infop;
1794 	wo.wo_stat	= NULL;
1795 	wo.wo_rusage	= ru;
1796 	ret = do_wait(&wo);
1797 
1798 	if (ret > 0) {
1799 		ret = 0;
1800 	} else if (infop) {
1801 		/*
1802 		 * For a WNOHANG return, clear out all the fields
1803 		 * we would set so the user can easily tell the
1804 		 * difference.
1805 		 */
1806 		if (!ret)
1807 			ret = put_user(0, &infop->si_signo);
1808 		if (!ret)
1809 			ret = put_user(0, &infop->si_errno);
1810 		if (!ret)
1811 			ret = put_user(0, &infop->si_code);
1812 		if (!ret)
1813 			ret = put_user(0, &infop->si_pid);
1814 		if (!ret)
1815 			ret = put_user(0, &infop->si_uid);
1816 		if (!ret)
1817 			ret = put_user(0, &infop->si_status);
1818 	}
1819 
1820 	put_pid(pid);
1821 
1822 	/* avoid REGPARM breakage on x86: */
1823 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1824 	return ret;
1825 }
1826 
1827 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1828 		int, options, struct rusage __user *, ru)
1829 {
1830 	struct wait_opts wo;
1831 	struct pid *pid = NULL;
1832 	enum pid_type type;
1833 	long ret;
1834 
1835 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1836 			__WNOTHREAD|__WCLONE|__WALL))
1837 		return -EINVAL;
1838 
1839 	if (upid == -1)
1840 		type = PIDTYPE_MAX;
1841 	else if (upid < 0) {
1842 		type = PIDTYPE_PGID;
1843 		pid = find_get_pid(-upid);
1844 	} else if (upid == 0) {
1845 		type = PIDTYPE_PGID;
1846 		pid = get_task_pid(current, PIDTYPE_PGID);
1847 	} else /* upid > 0 */ {
1848 		type = PIDTYPE_PID;
1849 		pid = find_get_pid(upid);
1850 	}
1851 
1852 	wo.wo_type	= type;
1853 	wo.wo_pid	= pid;
1854 	wo.wo_flags	= options | WEXITED;
1855 	wo.wo_info	= NULL;
1856 	wo.wo_stat	= stat_addr;
1857 	wo.wo_rusage	= ru;
1858 	ret = do_wait(&wo);
1859 	put_pid(pid);
1860 
1861 	/* avoid REGPARM breakage on x86: */
1862 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1863 	return ret;
1864 }
1865 
1866 #ifdef __ARCH_WANT_SYS_WAITPID
1867 
1868 /*
1869  * sys_waitpid() remains for compatibility. waitpid() should be
1870  * implemented by calling sys_wait4() from libc.a.
1871  */
1872 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1873 {
1874 	return sys_wait4(pid, stat_addr, options, NULL);
1875 }
1876 
1877 #endif
1878