xref: /openbmc/linux/kernel/exit.c (revision d5dbb2e8)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_TGID);
77 		detach_pid(p, PIDTYPE_PGID);
78 		detach_pid(p, PIDTYPE_SID);
79 
80 		list_del_rcu(&p->tasks);
81 		list_del_init(&p->sibling);
82 		__this_cpu_dec(process_counts);
83 	}
84 	list_del_rcu(&p->thread_group);
85 	list_del_rcu(&p->thread_node);
86 }
87 
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 	struct signal_struct *sig = tsk->signal;
94 	bool group_dead = thread_group_leader(tsk);
95 	struct sighand_struct *sighand;
96 	struct tty_struct *uninitialized_var(tty);
97 	u64 utime, stime;
98 
99 	sighand = rcu_dereference_check(tsk->sighand,
100 					lockdep_tasklist_lock_is_held());
101 	spin_lock(&sighand->siglock);
102 
103 #ifdef CONFIG_POSIX_TIMERS
104 	posix_cpu_timers_exit(tsk);
105 	if (group_dead) {
106 		posix_cpu_timers_exit_group(tsk);
107 	} else {
108 		/*
109 		 * This can only happen if the caller is de_thread().
110 		 * FIXME: this is the temporary hack, we should teach
111 		 * posix-cpu-timers to handle this case correctly.
112 		 */
113 		if (unlikely(has_group_leader_pid(tsk)))
114 			posix_cpu_timers_exit_group(tsk);
115 	}
116 #endif
117 
118 	if (group_dead) {
119 		tty = sig->tty;
120 		sig->tty = NULL;
121 	} else {
122 		/*
123 		 * If there is any task waiting for the group exit
124 		 * then notify it:
125 		 */
126 		if (sig->notify_count > 0 && !--sig->notify_count)
127 			wake_up_process(sig->group_exit_task);
128 
129 		if (tsk == sig->curr_target)
130 			sig->curr_target = next_thread(tsk);
131 	}
132 
133 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 			      sizeof(unsigned long long));
135 
136 	/*
137 	 * Accumulate here the counters for all threads as they die. We could
138 	 * skip the group leader because it is the last user of signal_struct,
139 	 * but we want to avoid the race with thread_group_cputime() which can
140 	 * see the empty ->thread_head list.
141 	 */
142 	task_cputime(tsk, &utime, &stime);
143 	write_seqlock(&sig->stats_lock);
144 	sig->utime += utime;
145 	sig->stime += stime;
146 	sig->gtime += task_gtime(tsk);
147 	sig->min_flt += tsk->min_flt;
148 	sig->maj_flt += tsk->maj_flt;
149 	sig->nvcsw += tsk->nvcsw;
150 	sig->nivcsw += tsk->nivcsw;
151 	sig->inblock += task_io_get_inblock(tsk);
152 	sig->oublock += task_io_get_oublock(tsk);
153 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 	sig->nr_threads--;
156 	__unhash_process(tsk, group_dead);
157 	write_sequnlock(&sig->stats_lock);
158 
159 	/*
160 	 * Do this under ->siglock, we can race with another thread
161 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 	 */
163 	flush_sigqueue(&tsk->pending);
164 	tsk->sighand = NULL;
165 	spin_unlock(&sighand->siglock);
166 
167 	__cleanup_sighand(sighand);
168 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 	if (group_dead) {
170 		flush_sigqueue(&sig->shared_pending);
171 		tty_kref_put(tty);
172 	}
173 }
174 
175 static void delayed_put_task_struct(struct rcu_head *rhp)
176 {
177 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178 
179 	perf_event_delayed_put(tsk);
180 	trace_sched_process_free(tsk);
181 	put_task_struct(tsk);
182 }
183 
184 
185 void release_task(struct task_struct *p)
186 {
187 	struct task_struct *leader;
188 	int zap_leader;
189 repeat:
190 	/* don't need to get the RCU readlock here - the process is dead and
191 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 	rcu_read_lock();
193 	atomic_dec(&__task_cred(p)->user->processes);
194 	rcu_read_unlock();
195 
196 	proc_flush_task(p);
197 
198 	write_lock_irq(&tasklist_lock);
199 	ptrace_release_task(p);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	release_thread(p);
223 	call_rcu(&p->rcu, delayed_put_task_struct);
224 
225 	p = leader;
226 	if (unlikely(zap_leader))
227 		goto repeat;
228 }
229 
230 /*
231  * Note that if this function returns a valid task_struct pointer (!NULL)
232  * task->usage must remain >0 for the duration of the RCU critical section.
233  */
234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235 {
236 	struct sighand_struct *sighand;
237 	struct task_struct *task;
238 
239 	/*
240 	 * We need to verify that release_task() was not called and thus
241 	 * delayed_put_task_struct() can't run and drop the last reference
242 	 * before rcu_read_unlock(). We check task->sighand != NULL,
243 	 * but we can read the already freed and reused memory.
244 	 */
245 retry:
246 	task = rcu_dereference(*ptask);
247 	if (!task)
248 		return NULL;
249 
250 	probe_kernel_address(&task->sighand, sighand);
251 
252 	/*
253 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 	 * was already freed we can not miss the preceding update of this
255 	 * pointer.
256 	 */
257 	smp_rmb();
258 	if (unlikely(task != READ_ONCE(*ptask)))
259 		goto retry;
260 
261 	/*
262 	 * We've re-checked that "task == *ptask", now we have two different
263 	 * cases:
264 	 *
265 	 * 1. This is actually the same task/task_struct. In this case
266 	 *    sighand != NULL tells us it is still alive.
267 	 *
268 	 * 2. This is another task which got the same memory for task_struct.
269 	 *    We can't know this of course, and we can not trust
270 	 *    sighand != NULL.
271 	 *
272 	 *    In this case we actually return a random value, but this is
273 	 *    correct.
274 	 *
275 	 *    If we return NULL - we can pretend that we actually noticed that
276 	 *    *ptask was updated when the previous task has exited. Or pretend
277 	 *    that probe_slab_address(&sighand) reads NULL.
278 	 *
279 	 *    If we return the new task (because sighand is not NULL for any
280 	 *    reason) - this is fine too. This (new) task can't go away before
281 	 *    another gp pass.
282 	 *
283 	 *    And note: We could even eliminate the false positive if re-read
284 	 *    task->sighand once again to avoid the falsely NULL. But this case
285 	 *    is very unlikely so we don't care.
286 	 */
287 	if (!sighand)
288 		return NULL;
289 
290 	return task;
291 }
292 
293 void rcuwait_wake_up(struct rcuwait *w)
294 {
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	/*
313 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 	 */
316 	task = rcu_dereference(w->task);
317 	if (task)
318 		wake_up_process(task);
319 	rcu_read_unlock();
320 }
321 
322 /*
323  * Determine if a process group is "orphaned", according to the POSIX
324  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
325  * by terminal-generated stop signals.  Newly orphaned process groups are
326  * to receive a SIGHUP and a SIGCONT.
327  *
328  * "I ask you, have you ever known what it is to be an orphan?"
329  */
330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 					struct task_struct *ignored_task)
332 {
333 	struct task_struct *p;
334 
335 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 		if ((p == ignored_task) ||
337 		    (p->exit_state && thread_group_empty(p)) ||
338 		    is_global_init(p->real_parent))
339 			continue;
340 
341 		if (task_pgrp(p->real_parent) != pgrp &&
342 		    task_session(p->real_parent) == task_session(p))
343 			return 0;
344 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345 
346 	return 1;
347 }
348 
349 int is_current_pgrp_orphaned(void)
350 {
351 	int retval;
352 
353 	read_lock(&tasklist_lock);
354 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 	read_unlock(&tasklist_lock);
356 
357 	return retval;
358 }
359 
360 static bool has_stopped_jobs(struct pid *pgrp)
361 {
362 	struct task_struct *p;
363 
364 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 			return true;
367 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368 
369 	return false;
370 }
371 
372 /*
373  * Check to see if any process groups have become orphaned as
374  * a result of our exiting, and if they have any stopped jobs,
375  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376  */
377 static void
378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 {
380 	struct pid *pgrp = task_pgrp(tsk);
381 	struct task_struct *ignored_task = tsk;
382 
383 	if (!parent)
384 		/* exit: our father is in a different pgrp than
385 		 * we are and we were the only connection outside.
386 		 */
387 		parent = tsk->real_parent;
388 	else
389 		/* reparent: our child is in a different pgrp than
390 		 * we are, and it was the only connection outside.
391 		 */
392 		ignored_task = NULL;
393 
394 	if (task_pgrp(parent) != pgrp &&
395 	    task_session(parent) == task_session(tsk) &&
396 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 	    has_stopped_jobs(pgrp)) {
398 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 	}
401 }
402 
403 #ifdef CONFIG_MEMCG
404 /*
405  * A task is exiting.   If it owned this mm, find a new owner for the mm.
406  */
407 void mm_update_next_owner(struct mm_struct *mm)
408 {
409 	struct task_struct *c, *g, *p = current;
410 
411 retry:
412 	/*
413 	 * If the exiting or execing task is not the owner, it's
414 	 * someone else's problem.
415 	 */
416 	if (mm->owner != p)
417 		return;
418 	/*
419 	 * The current owner is exiting/execing and there are no other
420 	 * candidates.  Do not leave the mm pointing to a possibly
421 	 * freed task structure.
422 	 */
423 	if (atomic_read(&mm->mm_users) <= 1) {
424 		mm->owner = NULL;
425 		return;
426 	}
427 
428 	read_lock(&tasklist_lock);
429 	/*
430 	 * Search in the children
431 	 */
432 	list_for_each_entry(c, &p->children, sibling) {
433 		if (c->mm == mm)
434 			goto assign_new_owner;
435 	}
436 
437 	/*
438 	 * Search in the siblings
439 	 */
440 	list_for_each_entry(c, &p->real_parent->children, sibling) {
441 		if (c->mm == mm)
442 			goto assign_new_owner;
443 	}
444 
445 	/*
446 	 * Search through everything else, we should not get here often.
447 	 */
448 	for_each_process(g) {
449 		if (g->flags & PF_KTHREAD)
450 			continue;
451 		for_each_thread(g, c) {
452 			if (c->mm == mm)
453 				goto assign_new_owner;
454 			if (c->mm)
455 				break;
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	/*
460 	 * We found no owner yet mm_users > 1: this implies that we are
461 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
463 	 */
464 	mm->owner = NULL;
465 	return;
466 
467 assign_new_owner:
468 	BUG_ON(c == p);
469 	get_task_struct(c);
470 	/*
471 	 * The task_lock protects c->mm from changing.
472 	 * We always want mm->owner->mm == mm
473 	 */
474 	task_lock(c);
475 	/*
476 	 * Delay read_unlock() till we have the task_lock()
477 	 * to ensure that c does not slip away underneath us
478 	 */
479 	read_unlock(&tasklist_lock);
480 	if (c->mm != mm) {
481 		task_unlock(c);
482 		put_task_struct(c);
483 		goto retry;
484 	}
485 	mm->owner = c;
486 	task_unlock(c);
487 	put_task_struct(c);
488 }
489 #endif /* CONFIG_MEMCG */
490 
491 /*
492  * Turn us into a lazy TLB process if we
493  * aren't already..
494  */
495 static void exit_mm(void)
496 {
497 	struct mm_struct *mm = current->mm;
498 	struct core_state *core_state;
499 
500 	mm_release(current, mm);
501 	if (!mm)
502 		return;
503 	sync_mm_rss(mm);
504 	/*
505 	 * Serialize with any possible pending coredump.
506 	 * We must hold mmap_sem around checking core_state
507 	 * and clearing tsk->mm.  The core-inducing thread
508 	 * will increment ->nr_threads for each thread in the
509 	 * group with ->mm != NULL.
510 	 */
511 	down_read(&mm->mmap_sem);
512 	core_state = mm->core_state;
513 	if (core_state) {
514 		struct core_thread self;
515 
516 		up_read(&mm->mmap_sem);
517 
518 		self.task = current;
519 		self.next = xchg(&core_state->dumper.next, &self);
520 		/*
521 		 * Implies mb(), the result of xchg() must be visible
522 		 * to core_state->dumper.
523 		 */
524 		if (atomic_dec_and_test(&core_state->nr_threads))
525 			complete(&core_state->startup);
526 
527 		for (;;) {
528 			set_current_state(TASK_UNINTERRUPTIBLE);
529 			if (!self.task) /* see coredump_finish() */
530 				break;
531 			freezable_schedule();
532 		}
533 		__set_current_state(TASK_RUNNING);
534 		down_read(&mm->mmap_sem);
535 	}
536 	mmgrab(mm);
537 	BUG_ON(mm != current->active_mm);
538 	/* more a memory barrier than a real lock */
539 	task_lock(current);
540 	current->mm = NULL;
541 	up_read(&mm->mmap_sem);
542 	enter_lazy_tlb(mm, current);
543 	task_unlock(current);
544 	mm_update_next_owner(mm);
545 	mmput(mm);
546 	if (test_thread_flag(TIF_MEMDIE))
547 		exit_oom_victim();
548 }
549 
550 static struct task_struct *find_alive_thread(struct task_struct *p)
551 {
552 	struct task_struct *t;
553 
554 	for_each_thread(p, t) {
555 		if (!(t->flags & PF_EXITING))
556 			return t;
557 	}
558 	return NULL;
559 }
560 
561 static struct task_struct *find_child_reaper(struct task_struct *father,
562 						struct list_head *dead)
563 	__releases(&tasklist_lock)
564 	__acquires(&tasklist_lock)
565 {
566 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 	struct task_struct *reaper = pid_ns->child_reaper;
568 	struct task_struct *p, *n;
569 
570 	if (likely(reaper != father))
571 		return reaper;
572 
573 	reaper = find_alive_thread(father);
574 	if (reaper) {
575 		pid_ns->child_reaper = reaper;
576 		return reaper;
577 	}
578 
579 	write_unlock_irq(&tasklist_lock);
580 	if (unlikely(pid_ns == &init_pid_ns)) {
581 		panic("Attempted to kill init! exitcode=0x%08x\n",
582 			father->signal->group_exit_code ?: father->exit_code);
583 	}
584 
585 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
586 		list_del_init(&p->ptrace_entry);
587 		release_task(p);
588 	}
589 
590 	zap_pid_ns_processes(pid_ns);
591 	write_lock_irq(&tasklist_lock);
592 
593 	return father;
594 }
595 
596 /*
597  * When we die, we re-parent all our children, and try to:
598  * 1. give them to another thread in our thread group, if such a member exists
599  * 2. give it to the first ancestor process which prctl'd itself as a
600  *    child_subreaper for its children (like a service manager)
601  * 3. give it to the init process (PID 1) in our pid namespace
602  */
603 static struct task_struct *find_new_reaper(struct task_struct *father,
604 					   struct task_struct *child_reaper)
605 {
606 	struct task_struct *thread, *reaper;
607 
608 	thread = find_alive_thread(father);
609 	if (thread)
610 		return thread;
611 
612 	if (father->signal->has_child_subreaper) {
613 		unsigned int ns_level = task_pid(father)->level;
614 		/*
615 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
616 		 * We can't check reaper != child_reaper to ensure we do not
617 		 * cross the namespaces, the exiting parent could be injected
618 		 * by setns() + fork().
619 		 * We check pid->level, this is slightly more efficient than
620 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
621 		 */
622 		for (reaper = father->real_parent;
623 		     task_pid(reaper)->level == ns_level;
624 		     reaper = reaper->real_parent) {
625 			if (reaper == &init_task)
626 				break;
627 			if (!reaper->signal->is_child_subreaper)
628 				continue;
629 			thread = find_alive_thread(reaper);
630 			if (thread)
631 				return thread;
632 		}
633 	}
634 
635 	return child_reaper;
636 }
637 
638 /*
639 * Any that need to be release_task'd are put on the @dead list.
640  */
641 static void reparent_leader(struct task_struct *father, struct task_struct *p,
642 				struct list_head *dead)
643 {
644 	if (unlikely(p->exit_state == EXIT_DEAD))
645 		return;
646 
647 	/* We don't want people slaying init. */
648 	p->exit_signal = SIGCHLD;
649 
650 	/* If it has exited notify the new parent about this child's death. */
651 	if (!p->ptrace &&
652 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
653 		if (do_notify_parent(p, p->exit_signal)) {
654 			p->exit_state = EXIT_DEAD;
655 			list_add(&p->ptrace_entry, dead);
656 		}
657 	}
658 
659 	kill_orphaned_pgrp(p, father);
660 }
661 
662 /*
663  * This does two things:
664  *
665  * A.  Make init inherit all the child processes
666  * B.  Check to see if any process groups have become orphaned
667  *	as a result of our exiting, and if they have any stopped
668  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
669  */
670 static void forget_original_parent(struct task_struct *father,
671 					struct list_head *dead)
672 {
673 	struct task_struct *p, *t, *reaper;
674 
675 	if (unlikely(!list_empty(&father->ptraced)))
676 		exit_ptrace(father, dead);
677 
678 	/* Can drop and reacquire tasklist_lock */
679 	reaper = find_child_reaper(father, dead);
680 	if (list_empty(&father->children))
681 		return;
682 
683 	reaper = find_new_reaper(father, reaper);
684 	list_for_each_entry(p, &father->children, sibling) {
685 		for_each_thread(p, t) {
686 			t->real_parent = reaper;
687 			BUG_ON((!t->ptrace) != (t->parent == father));
688 			if (likely(!t->ptrace))
689 				t->parent = t->real_parent;
690 			if (t->pdeath_signal)
691 				group_send_sig_info(t->pdeath_signal,
692 						    SEND_SIG_NOINFO, t,
693 						    PIDTYPE_TGID);
694 		}
695 		/*
696 		 * If this is a threaded reparent there is no need to
697 		 * notify anyone anything has happened.
698 		 */
699 		if (!same_thread_group(reaper, father))
700 			reparent_leader(father, p, dead);
701 	}
702 	list_splice_tail_init(&father->children, &reaper->children);
703 }
704 
705 /*
706  * Send signals to all our closest relatives so that they know
707  * to properly mourn us..
708  */
709 static void exit_notify(struct task_struct *tsk, int group_dead)
710 {
711 	bool autoreap;
712 	struct task_struct *p, *n;
713 	LIST_HEAD(dead);
714 
715 	write_lock_irq(&tasklist_lock);
716 	forget_original_parent(tsk, &dead);
717 
718 	if (group_dead)
719 		kill_orphaned_pgrp(tsk->group_leader, NULL);
720 
721 	if (unlikely(tsk->ptrace)) {
722 		int sig = thread_group_leader(tsk) &&
723 				thread_group_empty(tsk) &&
724 				!ptrace_reparented(tsk) ?
725 			tsk->exit_signal : SIGCHLD;
726 		autoreap = do_notify_parent(tsk, sig);
727 	} else if (thread_group_leader(tsk)) {
728 		autoreap = thread_group_empty(tsk) &&
729 			do_notify_parent(tsk, tsk->exit_signal);
730 	} else {
731 		autoreap = true;
732 	}
733 
734 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
735 	if (tsk->exit_state == EXIT_DEAD)
736 		list_add(&tsk->ptrace_entry, &dead);
737 
738 	/* mt-exec, de_thread() is waiting for group leader */
739 	if (unlikely(tsk->signal->notify_count < 0))
740 		wake_up_process(tsk->signal->group_exit_task);
741 	write_unlock_irq(&tasklist_lock);
742 
743 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
744 		list_del_init(&p->ptrace_entry);
745 		release_task(p);
746 	}
747 }
748 
749 #ifdef CONFIG_DEBUG_STACK_USAGE
750 static void check_stack_usage(void)
751 {
752 	static DEFINE_SPINLOCK(low_water_lock);
753 	static int lowest_to_date = THREAD_SIZE;
754 	unsigned long free;
755 
756 	free = stack_not_used(current);
757 
758 	if (free >= lowest_to_date)
759 		return;
760 
761 	spin_lock(&low_water_lock);
762 	if (free < lowest_to_date) {
763 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
764 			current->comm, task_pid_nr(current), free);
765 		lowest_to_date = free;
766 	}
767 	spin_unlock(&low_water_lock);
768 }
769 #else
770 static inline void check_stack_usage(void) {}
771 #endif
772 
773 void __noreturn do_exit(long code)
774 {
775 	struct task_struct *tsk = current;
776 	int group_dead;
777 
778 	profile_task_exit(tsk);
779 	kcov_task_exit(tsk);
780 
781 	WARN_ON(blk_needs_flush_plug(tsk));
782 
783 	if (unlikely(in_interrupt()))
784 		panic("Aiee, killing interrupt handler!");
785 	if (unlikely(!tsk->pid))
786 		panic("Attempted to kill the idle task!");
787 
788 	/*
789 	 * If do_exit is called because this processes oopsed, it's possible
790 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
791 	 * continuing. Amongst other possible reasons, this is to prevent
792 	 * mm_release()->clear_child_tid() from writing to a user-controlled
793 	 * kernel address.
794 	 */
795 	set_fs(USER_DS);
796 
797 	ptrace_event(PTRACE_EVENT_EXIT, code);
798 
799 	validate_creds_for_do_exit(tsk);
800 
801 	/*
802 	 * We're taking recursive faults here in do_exit. Safest is to just
803 	 * leave this task alone and wait for reboot.
804 	 */
805 	if (unlikely(tsk->flags & PF_EXITING)) {
806 		pr_alert("Fixing recursive fault but reboot is needed!\n");
807 		/*
808 		 * We can do this unlocked here. The futex code uses
809 		 * this flag just to verify whether the pi state
810 		 * cleanup has been done or not. In the worst case it
811 		 * loops once more. We pretend that the cleanup was
812 		 * done as there is no way to return. Either the
813 		 * OWNER_DIED bit is set by now or we push the blocked
814 		 * task into the wait for ever nirwana as well.
815 		 */
816 		tsk->flags |= PF_EXITPIDONE;
817 		set_current_state(TASK_UNINTERRUPTIBLE);
818 		schedule();
819 	}
820 
821 	exit_signals(tsk);  /* sets PF_EXITING */
822 	/*
823 	 * Ensure that all new tsk->pi_lock acquisitions must observe
824 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
825 	 */
826 	smp_mb();
827 	/*
828 	 * Ensure that we must observe the pi_state in exit_mm() ->
829 	 * mm_release() -> exit_pi_state_list().
830 	 */
831 	raw_spin_lock_irq(&tsk->pi_lock);
832 	raw_spin_unlock_irq(&tsk->pi_lock);
833 
834 	if (unlikely(in_atomic())) {
835 		pr_info("note: %s[%d] exited with preempt_count %d\n",
836 			current->comm, task_pid_nr(current),
837 			preempt_count());
838 		preempt_count_set(PREEMPT_ENABLED);
839 	}
840 
841 	/* sync mm's RSS info before statistics gathering */
842 	if (tsk->mm)
843 		sync_mm_rss(tsk->mm);
844 	acct_update_integrals(tsk);
845 	group_dead = atomic_dec_and_test(&tsk->signal->live);
846 	if (group_dead) {
847 #ifdef CONFIG_POSIX_TIMERS
848 		hrtimer_cancel(&tsk->signal->real_timer);
849 		exit_itimers(tsk->signal);
850 #endif
851 		if (tsk->mm)
852 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 	}
854 	acct_collect(code, group_dead);
855 	if (group_dead)
856 		tty_audit_exit();
857 	audit_free(tsk);
858 
859 	tsk->exit_code = code;
860 	taskstats_exit(tsk, group_dead);
861 
862 	exit_mm();
863 
864 	if (group_dead)
865 		acct_process();
866 	trace_sched_process_exit(tsk);
867 
868 	exit_sem(tsk);
869 	exit_shm(tsk);
870 	exit_files(tsk);
871 	exit_fs(tsk);
872 	if (group_dead)
873 		disassociate_ctty(1);
874 	exit_task_namespaces(tsk);
875 	exit_task_work(tsk);
876 	exit_thread(tsk);
877 	exit_umh(tsk);
878 
879 	/*
880 	 * Flush inherited counters to the parent - before the parent
881 	 * gets woken up by child-exit notifications.
882 	 *
883 	 * because of cgroup mode, must be called before cgroup_exit()
884 	 */
885 	perf_event_exit_task(tsk);
886 
887 	sched_autogroup_exit_task(tsk);
888 	cgroup_exit(tsk);
889 
890 	/*
891 	 * FIXME: do that only when needed, using sched_exit tracepoint
892 	 */
893 	flush_ptrace_hw_breakpoint(tsk);
894 
895 	exit_tasks_rcu_start();
896 	exit_notify(tsk, group_dead);
897 	proc_exit_connector(tsk);
898 	mpol_put_task_policy(tsk);
899 #ifdef CONFIG_FUTEX
900 	if (unlikely(current->pi_state_cache))
901 		kfree(current->pi_state_cache);
902 #endif
903 	/*
904 	 * Make sure we are holding no locks:
905 	 */
906 	debug_check_no_locks_held();
907 	/*
908 	 * We can do this unlocked here. The futex code uses this flag
909 	 * just to verify whether the pi state cleanup has been done
910 	 * or not. In the worst case it loops once more.
911 	 */
912 	tsk->flags |= PF_EXITPIDONE;
913 
914 	if (tsk->io_context)
915 		exit_io_context(tsk);
916 
917 	if (tsk->splice_pipe)
918 		free_pipe_info(tsk->splice_pipe);
919 
920 	if (tsk->task_frag.page)
921 		put_page(tsk->task_frag.page);
922 
923 	validate_creds_for_do_exit(tsk);
924 
925 	check_stack_usage();
926 	preempt_disable();
927 	if (tsk->nr_dirtied)
928 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
929 	exit_rcu();
930 	exit_tasks_rcu_finish();
931 
932 	lockdep_free_task(tsk);
933 	do_task_dead();
934 }
935 EXPORT_SYMBOL_GPL(do_exit);
936 
937 void complete_and_exit(struct completion *comp, long code)
938 {
939 	if (comp)
940 		complete(comp);
941 
942 	do_exit(code);
943 }
944 EXPORT_SYMBOL(complete_and_exit);
945 
946 SYSCALL_DEFINE1(exit, int, error_code)
947 {
948 	do_exit((error_code&0xff)<<8);
949 }
950 
951 /*
952  * Take down every thread in the group.  This is called by fatal signals
953  * as well as by sys_exit_group (below).
954  */
955 void
956 do_group_exit(int exit_code)
957 {
958 	struct signal_struct *sig = current->signal;
959 
960 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
961 
962 	if (signal_group_exit(sig))
963 		exit_code = sig->group_exit_code;
964 	else if (!thread_group_empty(current)) {
965 		struct sighand_struct *const sighand = current->sighand;
966 
967 		spin_lock_irq(&sighand->siglock);
968 		if (signal_group_exit(sig))
969 			/* Another thread got here before we took the lock.  */
970 			exit_code = sig->group_exit_code;
971 		else {
972 			sig->group_exit_code = exit_code;
973 			sig->flags = SIGNAL_GROUP_EXIT;
974 			zap_other_threads(current);
975 		}
976 		spin_unlock_irq(&sighand->siglock);
977 	}
978 
979 	do_exit(exit_code);
980 	/* NOTREACHED */
981 }
982 
983 /*
984  * this kills every thread in the thread group. Note that any externally
985  * wait4()-ing process will get the correct exit code - even if this
986  * thread is not the thread group leader.
987  */
988 SYSCALL_DEFINE1(exit_group, int, error_code)
989 {
990 	do_group_exit((error_code & 0xff) << 8);
991 	/* NOTREACHED */
992 	return 0;
993 }
994 
995 struct waitid_info {
996 	pid_t pid;
997 	uid_t uid;
998 	int status;
999 	int cause;
1000 };
1001 
1002 struct wait_opts {
1003 	enum pid_type		wo_type;
1004 	int			wo_flags;
1005 	struct pid		*wo_pid;
1006 
1007 	struct waitid_info	*wo_info;
1008 	int			wo_stat;
1009 	struct rusage		*wo_rusage;
1010 
1011 	wait_queue_entry_t		child_wait;
1012 	int			notask_error;
1013 };
1014 
1015 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1016 {
1017 	return	wo->wo_type == PIDTYPE_MAX ||
1018 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1019 }
1020 
1021 static int
1022 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1023 {
1024 	if (!eligible_pid(wo, p))
1025 		return 0;
1026 
1027 	/*
1028 	 * Wait for all children (clone and not) if __WALL is set or
1029 	 * if it is traced by us.
1030 	 */
1031 	if (ptrace || (wo->wo_flags & __WALL))
1032 		return 1;
1033 
1034 	/*
1035 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1036 	 * otherwise, wait for non-clone children *only*.
1037 	 *
1038 	 * Note: a "clone" child here is one that reports to its parent
1039 	 * using a signal other than SIGCHLD, or a non-leader thread which
1040 	 * we can only see if it is traced by us.
1041 	 */
1042 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1043 		return 0;
1044 
1045 	return 1;
1046 }
1047 
1048 /*
1049  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1050  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1051  * the lock and this task is uninteresting.  If we return nonzero, we have
1052  * released the lock and the system call should return.
1053  */
1054 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1055 {
1056 	int state, status;
1057 	pid_t pid = task_pid_vnr(p);
1058 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1059 	struct waitid_info *infop;
1060 
1061 	if (!likely(wo->wo_flags & WEXITED))
1062 		return 0;
1063 
1064 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1065 		status = p->exit_code;
1066 		get_task_struct(p);
1067 		read_unlock(&tasklist_lock);
1068 		sched_annotate_sleep();
1069 		if (wo->wo_rusage)
1070 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1071 		put_task_struct(p);
1072 		goto out_info;
1073 	}
1074 	/*
1075 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1076 	 */
1077 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1078 		EXIT_TRACE : EXIT_DEAD;
1079 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1080 		return 0;
1081 	/*
1082 	 * We own this thread, nobody else can reap it.
1083 	 */
1084 	read_unlock(&tasklist_lock);
1085 	sched_annotate_sleep();
1086 
1087 	/*
1088 	 * Check thread_group_leader() to exclude the traced sub-threads.
1089 	 */
1090 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1091 		struct signal_struct *sig = p->signal;
1092 		struct signal_struct *psig = current->signal;
1093 		unsigned long maxrss;
1094 		u64 tgutime, tgstime;
1095 
1096 		/*
1097 		 * The resource counters for the group leader are in its
1098 		 * own task_struct.  Those for dead threads in the group
1099 		 * are in its signal_struct, as are those for the child
1100 		 * processes it has previously reaped.  All these
1101 		 * accumulate in the parent's signal_struct c* fields.
1102 		 *
1103 		 * We don't bother to take a lock here to protect these
1104 		 * p->signal fields because the whole thread group is dead
1105 		 * and nobody can change them.
1106 		 *
1107 		 * psig->stats_lock also protects us from our sub-theads
1108 		 * which can reap other children at the same time. Until
1109 		 * we change k_getrusage()-like users to rely on this lock
1110 		 * we have to take ->siglock as well.
1111 		 *
1112 		 * We use thread_group_cputime_adjusted() to get times for
1113 		 * the thread group, which consolidates times for all threads
1114 		 * in the group including the group leader.
1115 		 */
1116 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1117 		spin_lock_irq(&current->sighand->siglock);
1118 		write_seqlock(&psig->stats_lock);
1119 		psig->cutime += tgutime + sig->cutime;
1120 		psig->cstime += tgstime + sig->cstime;
1121 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1122 		psig->cmin_flt +=
1123 			p->min_flt + sig->min_flt + sig->cmin_flt;
1124 		psig->cmaj_flt +=
1125 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 		psig->cnvcsw +=
1127 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 		psig->cnivcsw +=
1129 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 		psig->cinblock +=
1131 			task_io_get_inblock(p) +
1132 			sig->inblock + sig->cinblock;
1133 		psig->coublock +=
1134 			task_io_get_oublock(p) +
1135 			sig->oublock + sig->coublock;
1136 		maxrss = max(sig->maxrss, sig->cmaxrss);
1137 		if (psig->cmaxrss < maxrss)
1138 			psig->cmaxrss = maxrss;
1139 		task_io_accounting_add(&psig->ioac, &p->ioac);
1140 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1141 		write_sequnlock(&psig->stats_lock);
1142 		spin_unlock_irq(&current->sighand->siglock);
1143 	}
1144 
1145 	if (wo->wo_rusage)
1146 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1147 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1148 		? p->signal->group_exit_code : p->exit_code;
1149 	wo->wo_stat = status;
1150 
1151 	if (state == EXIT_TRACE) {
1152 		write_lock_irq(&tasklist_lock);
1153 		/* We dropped tasklist, ptracer could die and untrace */
1154 		ptrace_unlink(p);
1155 
1156 		/* If parent wants a zombie, don't release it now */
1157 		state = EXIT_ZOMBIE;
1158 		if (do_notify_parent(p, p->exit_signal))
1159 			state = EXIT_DEAD;
1160 		p->exit_state = state;
1161 		write_unlock_irq(&tasklist_lock);
1162 	}
1163 	if (state == EXIT_DEAD)
1164 		release_task(p);
1165 
1166 out_info:
1167 	infop = wo->wo_info;
1168 	if (infop) {
1169 		if ((status & 0x7f) == 0) {
1170 			infop->cause = CLD_EXITED;
1171 			infop->status = status >> 8;
1172 		} else {
1173 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 			infop->status = status & 0x7f;
1175 		}
1176 		infop->pid = pid;
1177 		infop->uid = uid;
1178 	}
1179 
1180 	return pid;
1181 }
1182 
1183 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1184 {
1185 	if (ptrace) {
1186 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1187 			return &p->exit_code;
1188 	} else {
1189 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1190 			return &p->signal->group_exit_code;
1191 	}
1192 	return NULL;
1193 }
1194 
1195 /**
1196  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1197  * @wo: wait options
1198  * @ptrace: is the wait for ptrace
1199  * @p: task to wait for
1200  *
1201  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1202  *
1203  * CONTEXT:
1204  * read_lock(&tasklist_lock), which is released if return value is
1205  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1206  *
1207  * RETURNS:
1208  * 0 if wait condition didn't exist and search for other wait conditions
1209  * should continue.  Non-zero return, -errno on failure and @p's pid on
1210  * success, implies that tasklist_lock is released and wait condition
1211  * search should terminate.
1212  */
1213 static int wait_task_stopped(struct wait_opts *wo,
1214 				int ptrace, struct task_struct *p)
1215 {
1216 	struct waitid_info *infop;
1217 	int exit_code, *p_code, why;
1218 	uid_t uid = 0; /* unneeded, required by compiler */
1219 	pid_t pid;
1220 
1221 	/*
1222 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1223 	 */
1224 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1225 		return 0;
1226 
1227 	if (!task_stopped_code(p, ptrace))
1228 		return 0;
1229 
1230 	exit_code = 0;
1231 	spin_lock_irq(&p->sighand->siglock);
1232 
1233 	p_code = task_stopped_code(p, ptrace);
1234 	if (unlikely(!p_code))
1235 		goto unlock_sig;
1236 
1237 	exit_code = *p_code;
1238 	if (!exit_code)
1239 		goto unlock_sig;
1240 
1241 	if (!unlikely(wo->wo_flags & WNOWAIT))
1242 		*p_code = 0;
1243 
1244 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1245 unlock_sig:
1246 	spin_unlock_irq(&p->sighand->siglock);
1247 	if (!exit_code)
1248 		return 0;
1249 
1250 	/*
1251 	 * Now we are pretty sure this task is interesting.
1252 	 * Make sure it doesn't get reaped out from under us while we
1253 	 * give up the lock and then examine it below.  We don't want to
1254 	 * keep holding onto the tasklist_lock while we call getrusage and
1255 	 * possibly take page faults for user memory.
1256 	 */
1257 	get_task_struct(p);
1258 	pid = task_pid_vnr(p);
1259 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1260 	read_unlock(&tasklist_lock);
1261 	sched_annotate_sleep();
1262 	if (wo->wo_rusage)
1263 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1264 	put_task_struct(p);
1265 
1266 	if (likely(!(wo->wo_flags & WNOWAIT)))
1267 		wo->wo_stat = (exit_code << 8) | 0x7f;
1268 
1269 	infop = wo->wo_info;
1270 	if (infop) {
1271 		infop->cause = why;
1272 		infop->status = exit_code;
1273 		infop->pid = pid;
1274 		infop->uid = uid;
1275 	}
1276 	return pid;
1277 }
1278 
1279 /*
1280  * Handle do_wait work for one task in a live, non-stopped state.
1281  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1282  * the lock and this task is uninteresting.  If we return nonzero, we have
1283  * released the lock and the system call should return.
1284  */
1285 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1286 {
1287 	struct waitid_info *infop;
1288 	pid_t pid;
1289 	uid_t uid;
1290 
1291 	if (!unlikely(wo->wo_flags & WCONTINUED))
1292 		return 0;
1293 
1294 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1295 		return 0;
1296 
1297 	spin_lock_irq(&p->sighand->siglock);
1298 	/* Re-check with the lock held.  */
1299 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1300 		spin_unlock_irq(&p->sighand->siglock);
1301 		return 0;
1302 	}
1303 	if (!unlikely(wo->wo_flags & WNOWAIT))
1304 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1305 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1306 	spin_unlock_irq(&p->sighand->siglock);
1307 
1308 	pid = task_pid_vnr(p);
1309 	get_task_struct(p);
1310 	read_unlock(&tasklist_lock);
1311 	sched_annotate_sleep();
1312 	if (wo->wo_rusage)
1313 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1314 	put_task_struct(p);
1315 
1316 	infop = wo->wo_info;
1317 	if (!infop) {
1318 		wo->wo_stat = 0xffff;
1319 	} else {
1320 		infop->cause = CLD_CONTINUED;
1321 		infop->pid = pid;
1322 		infop->uid = uid;
1323 		infop->status = SIGCONT;
1324 	}
1325 	return pid;
1326 }
1327 
1328 /*
1329  * Consider @p for a wait by @parent.
1330  *
1331  * -ECHILD should be in ->notask_error before the first call.
1332  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1333  * Returns zero if the search for a child should continue;
1334  * then ->notask_error is 0 if @p is an eligible child,
1335  * or still -ECHILD.
1336  */
1337 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1338 				struct task_struct *p)
1339 {
1340 	/*
1341 	 * We can race with wait_task_zombie() from another thread.
1342 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1343 	 * can't confuse the checks below.
1344 	 */
1345 	int exit_state = READ_ONCE(p->exit_state);
1346 	int ret;
1347 
1348 	if (unlikely(exit_state == EXIT_DEAD))
1349 		return 0;
1350 
1351 	ret = eligible_child(wo, ptrace, p);
1352 	if (!ret)
1353 		return ret;
1354 
1355 	if (unlikely(exit_state == EXIT_TRACE)) {
1356 		/*
1357 		 * ptrace == 0 means we are the natural parent. In this case
1358 		 * we should clear notask_error, debugger will notify us.
1359 		 */
1360 		if (likely(!ptrace))
1361 			wo->notask_error = 0;
1362 		return 0;
1363 	}
1364 
1365 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1366 		/*
1367 		 * If it is traced by its real parent's group, just pretend
1368 		 * the caller is ptrace_do_wait() and reap this child if it
1369 		 * is zombie.
1370 		 *
1371 		 * This also hides group stop state from real parent; otherwise
1372 		 * a single stop can be reported twice as group and ptrace stop.
1373 		 * If a ptracer wants to distinguish these two events for its
1374 		 * own children it should create a separate process which takes
1375 		 * the role of real parent.
1376 		 */
1377 		if (!ptrace_reparented(p))
1378 			ptrace = 1;
1379 	}
1380 
1381 	/* slay zombie? */
1382 	if (exit_state == EXIT_ZOMBIE) {
1383 		/* we don't reap group leaders with subthreads */
1384 		if (!delay_group_leader(p)) {
1385 			/*
1386 			 * A zombie ptracee is only visible to its ptracer.
1387 			 * Notification and reaping will be cascaded to the
1388 			 * real parent when the ptracer detaches.
1389 			 */
1390 			if (unlikely(ptrace) || likely(!p->ptrace))
1391 				return wait_task_zombie(wo, p);
1392 		}
1393 
1394 		/*
1395 		 * Allow access to stopped/continued state via zombie by
1396 		 * falling through.  Clearing of notask_error is complex.
1397 		 *
1398 		 * When !@ptrace:
1399 		 *
1400 		 * If WEXITED is set, notask_error should naturally be
1401 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1402 		 * so, if there are live subthreads, there are events to
1403 		 * wait for.  If all subthreads are dead, it's still safe
1404 		 * to clear - this function will be called again in finite
1405 		 * amount time once all the subthreads are released and
1406 		 * will then return without clearing.
1407 		 *
1408 		 * When @ptrace:
1409 		 *
1410 		 * Stopped state is per-task and thus can't change once the
1411 		 * target task dies.  Only continued and exited can happen.
1412 		 * Clear notask_error if WCONTINUED | WEXITED.
1413 		 */
1414 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1415 			wo->notask_error = 0;
1416 	} else {
1417 		/*
1418 		 * @p is alive and it's gonna stop, continue or exit, so
1419 		 * there always is something to wait for.
1420 		 */
1421 		wo->notask_error = 0;
1422 	}
1423 
1424 	/*
1425 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1426 	 * is used and the two don't interact with each other.
1427 	 */
1428 	ret = wait_task_stopped(wo, ptrace, p);
1429 	if (ret)
1430 		return ret;
1431 
1432 	/*
1433 	 * Wait for continued.  There's only one continued state and the
1434 	 * ptracer can consume it which can confuse the real parent.  Don't
1435 	 * use WCONTINUED from ptracer.  You don't need or want it.
1436 	 */
1437 	return wait_task_continued(wo, p);
1438 }
1439 
1440 /*
1441  * Do the work of do_wait() for one thread in the group, @tsk.
1442  *
1443  * -ECHILD should be in ->notask_error before the first call.
1444  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445  * Returns zero if the search for a child should continue; then
1446  * ->notask_error is 0 if there were any eligible children,
1447  * or still -ECHILD.
1448  */
1449 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1450 {
1451 	struct task_struct *p;
1452 
1453 	list_for_each_entry(p, &tsk->children, sibling) {
1454 		int ret = wait_consider_task(wo, 0, p);
1455 
1456 		if (ret)
1457 			return ret;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1464 {
1465 	struct task_struct *p;
1466 
1467 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1468 		int ret = wait_consider_task(wo, 1, p);
1469 
1470 		if (ret)
1471 			return ret;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1478 				int sync, void *key)
1479 {
1480 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1481 						child_wait);
1482 	struct task_struct *p = key;
1483 
1484 	if (!eligible_pid(wo, p))
1485 		return 0;
1486 
1487 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1488 		return 0;
1489 
1490 	return default_wake_function(wait, mode, sync, key);
1491 }
1492 
1493 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1494 {
1495 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1496 				TASK_INTERRUPTIBLE, 1, p);
1497 }
1498 
1499 static long do_wait(struct wait_opts *wo)
1500 {
1501 	struct task_struct *tsk;
1502 	int retval;
1503 
1504 	trace_sched_process_wait(wo->wo_pid);
1505 
1506 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1507 	wo->child_wait.private = current;
1508 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1509 repeat:
1510 	/*
1511 	 * If there is nothing that can match our criteria, just get out.
1512 	 * We will clear ->notask_error to zero if we see any child that
1513 	 * might later match our criteria, even if we are not able to reap
1514 	 * it yet.
1515 	 */
1516 	wo->notask_error = -ECHILD;
1517 	if ((wo->wo_type < PIDTYPE_MAX) &&
1518 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1519 		goto notask;
1520 
1521 	set_current_state(TASK_INTERRUPTIBLE);
1522 	read_lock(&tasklist_lock);
1523 	tsk = current;
1524 	do {
1525 		retval = do_wait_thread(wo, tsk);
1526 		if (retval)
1527 			goto end;
1528 
1529 		retval = ptrace_do_wait(wo, tsk);
1530 		if (retval)
1531 			goto end;
1532 
1533 		if (wo->wo_flags & __WNOTHREAD)
1534 			break;
1535 	} while_each_thread(current, tsk);
1536 	read_unlock(&tasklist_lock);
1537 
1538 notask:
1539 	retval = wo->notask_error;
1540 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1541 		retval = -ERESTARTSYS;
1542 		if (!signal_pending(current)) {
1543 			schedule();
1544 			goto repeat;
1545 		}
1546 	}
1547 end:
1548 	__set_current_state(TASK_RUNNING);
1549 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1550 	return retval;
1551 }
1552 
1553 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1554 			  int options, struct rusage *ru)
1555 {
1556 	struct wait_opts wo;
1557 	struct pid *pid = NULL;
1558 	enum pid_type type;
1559 	long ret;
1560 
1561 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1562 			__WNOTHREAD|__WCLONE|__WALL))
1563 		return -EINVAL;
1564 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1565 		return -EINVAL;
1566 
1567 	switch (which) {
1568 	case P_ALL:
1569 		type = PIDTYPE_MAX;
1570 		break;
1571 	case P_PID:
1572 		type = PIDTYPE_PID;
1573 		if (upid <= 0)
1574 			return -EINVAL;
1575 		break;
1576 	case P_PGID:
1577 		type = PIDTYPE_PGID;
1578 		if (upid <= 0)
1579 			return -EINVAL;
1580 		break;
1581 	default:
1582 		return -EINVAL;
1583 	}
1584 
1585 	if (type < PIDTYPE_MAX)
1586 		pid = find_get_pid(upid);
1587 
1588 	wo.wo_type	= type;
1589 	wo.wo_pid	= pid;
1590 	wo.wo_flags	= options;
1591 	wo.wo_info	= infop;
1592 	wo.wo_rusage	= ru;
1593 	ret = do_wait(&wo);
1594 
1595 	put_pid(pid);
1596 	return ret;
1597 }
1598 
1599 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1600 		infop, int, options, struct rusage __user *, ru)
1601 {
1602 	struct rusage r;
1603 	struct waitid_info info = {.status = 0};
1604 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1605 	int signo = 0;
1606 
1607 	if (err > 0) {
1608 		signo = SIGCHLD;
1609 		err = 0;
1610 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1611 			return -EFAULT;
1612 	}
1613 	if (!infop)
1614 		return err;
1615 
1616 	if (!user_access_begin(infop, sizeof(*infop)))
1617 		return -EFAULT;
1618 
1619 	unsafe_put_user(signo, &infop->si_signo, Efault);
1620 	unsafe_put_user(0, &infop->si_errno, Efault);
1621 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1622 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1623 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1624 	unsafe_put_user(info.status, &infop->si_status, Efault);
1625 	user_access_end();
1626 	return err;
1627 Efault:
1628 	user_access_end();
1629 	return -EFAULT;
1630 }
1631 
1632 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1633 		  struct rusage *ru)
1634 {
1635 	struct wait_opts wo;
1636 	struct pid *pid = NULL;
1637 	enum pid_type type;
1638 	long ret;
1639 
1640 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1641 			__WNOTHREAD|__WCLONE|__WALL))
1642 		return -EINVAL;
1643 
1644 	/* -INT_MIN is not defined */
1645 	if (upid == INT_MIN)
1646 		return -ESRCH;
1647 
1648 	if (upid == -1)
1649 		type = PIDTYPE_MAX;
1650 	else if (upid < 0) {
1651 		type = PIDTYPE_PGID;
1652 		pid = find_get_pid(-upid);
1653 	} else if (upid == 0) {
1654 		type = PIDTYPE_PGID;
1655 		pid = get_task_pid(current, PIDTYPE_PGID);
1656 	} else /* upid > 0 */ {
1657 		type = PIDTYPE_PID;
1658 		pid = find_get_pid(upid);
1659 	}
1660 
1661 	wo.wo_type	= type;
1662 	wo.wo_pid	= pid;
1663 	wo.wo_flags	= options | WEXITED;
1664 	wo.wo_info	= NULL;
1665 	wo.wo_stat	= 0;
1666 	wo.wo_rusage	= ru;
1667 	ret = do_wait(&wo);
1668 	put_pid(pid);
1669 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1670 		ret = -EFAULT;
1671 
1672 	return ret;
1673 }
1674 
1675 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1676 		int, options, struct rusage __user *, ru)
1677 {
1678 	struct rusage r;
1679 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1680 
1681 	if (err > 0) {
1682 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1683 			return -EFAULT;
1684 	}
1685 	return err;
1686 }
1687 
1688 #ifdef __ARCH_WANT_SYS_WAITPID
1689 
1690 /*
1691  * sys_waitpid() remains for compatibility. waitpid() should be
1692  * implemented by calling sys_wait4() from libc.a.
1693  */
1694 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1695 {
1696 	return kernel_wait4(pid, stat_addr, options, NULL);
1697 }
1698 
1699 #endif
1700 
1701 #ifdef CONFIG_COMPAT
1702 COMPAT_SYSCALL_DEFINE4(wait4,
1703 	compat_pid_t, pid,
1704 	compat_uint_t __user *, stat_addr,
1705 	int, options,
1706 	struct compat_rusage __user *, ru)
1707 {
1708 	struct rusage r;
1709 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1710 	if (err > 0) {
1711 		if (ru && put_compat_rusage(&r, ru))
1712 			return -EFAULT;
1713 	}
1714 	return err;
1715 }
1716 
1717 COMPAT_SYSCALL_DEFINE5(waitid,
1718 		int, which, compat_pid_t, pid,
1719 		struct compat_siginfo __user *, infop, int, options,
1720 		struct compat_rusage __user *, uru)
1721 {
1722 	struct rusage ru;
1723 	struct waitid_info info = {.status = 0};
1724 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1725 	int signo = 0;
1726 	if (err > 0) {
1727 		signo = SIGCHLD;
1728 		err = 0;
1729 		if (uru) {
1730 			/* kernel_waitid() overwrites everything in ru */
1731 			if (COMPAT_USE_64BIT_TIME)
1732 				err = copy_to_user(uru, &ru, sizeof(ru));
1733 			else
1734 				err = put_compat_rusage(&ru, uru);
1735 			if (err)
1736 				return -EFAULT;
1737 		}
1738 	}
1739 
1740 	if (!infop)
1741 		return err;
1742 
1743 	if (!user_access_begin(infop, sizeof(*infop)))
1744 		return -EFAULT;
1745 
1746 	unsafe_put_user(signo, &infop->si_signo, Efault);
1747 	unsafe_put_user(0, &infop->si_errno, Efault);
1748 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1749 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1750 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1751 	unsafe_put_user(info.status, &infop->si_status, Efault);
1752 	user_access_end();
1753 	return err;
1754 Efault:
1755 	user_access_end();
1756 	return -EFAULT;
1757 }
1758 #endif
1759 
1760 __weak void abort(void)
1761 {
1762 	BUG();
1763 
1764 	/* if that doesn't kill us, halt */
1765 	panic("Oops failed to kill thread");
1766 }
1767 EXPORT_SYMBOL(abort);
1768