1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/blkdev.h> 53 #include <linux/task_work.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/kmsan.h> 64 #include <linux/random.h> 65 #include <linux/rcuwait.h> 66 #include <linux/compat.h> 67 #include <linux/io_uring.h> 68 #include <linux/kprobes.h> 69 #include <linux/rethook.h> 70 #include <linux/sysfs.h> 71 #include <linux/user_events.h> 72 73 #include <linux/uaccess.h> 74 #include <asm/unistd.h> 75 #include <asm/mmu_context.h> 76 77 /* 78 * The default value should be high enough to not crash a system that randomly 79 * crashes its kernel from time to time, but low enough to at least not permit 80 * overflowing 32-bit refcounts or the ldsem writer count. 81 */ 82 static unsigned int oops_limit = 10000; 83 84 #ifdef CONFIG_SYSCTL 85 static struct ctl_table kern_exit_table[] = { 86 { 87 .procname = "oops_limit", 88 .data = &oops_limit, 89 .maxlen = sizeof(oops_limit), 90 .mode = 0644, 91 .proc_handler = proc_douintvec, 92 }, 93 { } 94 }; 95 96 static __init int kernel_exit_sysctls_init(void) 97 { 98 register_sysctl_init("kernel", kern_exit_table); 99 return 0; 100 } 101 late_initcall(kernel_exit_sysctls_init); 102 #endif 103 104 static atomic_t oops_count = ATOMIC_INIT(0); 105 106 #ifdef CONFIG_SYSFS 107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 108 char *page) 109 { 110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 111 } 112 113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 114 115 static __init int kernel_exit_sysfs_init(void) 116 { 117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 118 return 0; 119 } 120 late_initcall(kernel_exit_sysfs_init); 121 #endif 122 123 static void __unhash_process(struct task_struct *p, bool group_dead) 124 { 125 nr_threads--; 126 detach_pid(p, PIDTYPE_PID); 127 if (group_dead) { 128 detach_pid(p, PIDTYPE_TGID); 129 detach_pid(p, PIDTYPE_PGID); 130 detach_pid(p, PIDTYPE_SID); 131 132 list_del_rcu(&p->tasks); 133 list_del_init(&p->sibling); 134 __this_cpu_dec(process_counts); 135 } 136 list_del_rcu(&p->thread_group); 137 list_del_rcu(&p->thread_node); 138 } 139 140 /* 141 * This function expects the tasklist_lock write-locked. 142 */ 143 static void __exit_signal(struct task_struct *tsk) 144 { 145 struct signal_struct *sig = tsk->signal; 146 bool group_dead = thread_group_leader(tsk); 147 struct sighand_struct *sighand; 148 struct tty_struct *tty; 149 u64 utime, stime; 150 151 sighand = rcu_dereference_check(tsk->sighand, 152 lockdep_tasklist_lock_is_held()); 153 spin_lock(&sighand->siglock); 154 155 #ifdef CONFIG_POSIX_TIMERS 156 posix_cpu_timers_exit(tsk); 157 if (group_dead) 158 posix_cpu_timers_exit_group(tsk); 159 #endif 160 161 if (group_dead) { 162 tty = sig->tty; 163 sig->tty = NULL; 164 } else { 165 /* 166 * If there is any task waiting for the group exit 167 * then notify it: 168 */ 169 if (sig->notify_count > 0 && !--sig->notify_count) 170 wake_up_process(sig->group_exec_task); 171 172 if (tsk == sig->curr_target) 173 sig->curr_target = next_thread(tsk); 174 } 175 176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 177 sizeof(unsigned long long)); 178 179 /* 180 * Accumulate here the counters for all threads as they die. We could 181 * skip the group leader because it is the last user of signal_struct, 182 * but we want to avoid the race with thread_group_cputime() which can 183 * see the empty ->thread_head list. 184 */ 185 task_cputime(tsk, &utime, &stime); 186 write_seqlock(&sig->stats_lock); 187 sig->utime += utime; 188 sig->stime += stime; 189 sig->gtime += task_gtime(tsk); 190 sig->min_flt += tsk->min_flt; 191 sig->maj_flt += tsk->maj_flt; 192 sig->nvcsw += tsk->nvcsw; 193 sig->nivcsw += tsk->nivcsw; 194 sig->inblock += task_io_get_inblock(tsk); 195 sig->oublock += task_io_get_oublock(tsk); 196 task_io_accounting_add(&sig->ioac, &tsk->ioac); 197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 198 sig->nr_threads--; 199 __unhash_process(tsk, group_dead); 200 write_sequnlock(&sig->stats_lock); 201 202 /* 203 * Do this under ->siglock, we can race with another thread 204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 205 */ 206 flush_sigqueue(&tsk->pending); 207 tsk->sighand = NULL; 208 spin_unlock(&sighand->siglock); 209 210 __cleanup_sighand(sighand); 211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 212 if (group_dead) { 213 flush_sigqueue(&sig->shared_pending); 214 tty_kref_put(tty); 215 } 216 } 217 218 static void delayed_put_task_struct(struct rcu_head *rhp) 219 { 220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 221 222 kprobe_flush_task(tsk); 223 rethook_flush_task(tsk); 224 perf_event_delayed_put(tsk); 225 trace_sched_process_free(tsk); 226 put_task_struct(tsk); 227 } 228 229 void put_task_struct_rcu_user(struct task_struct *task) 230 { 231 if (refcount_dec_and_test(&task->rcu_users)) 232 call_rcu(&task->rcu, delayed_put_task_struct); 233 } 234 235 void __weak release_thread(struct task_struct *dead_task) 236 { 237 } 238 239 void release_task(struct task_struct *p) 240 { 241 struct task_struct *leader; 242 struct pid *thread_pid; 243 int zap_leader; 244 repeat: 245 /* don't need to get the RCU readlock here - the process is dead and 246 * can't be modifying its own credentials. But shut RCU-lockdep up */ 247 rcu_read_lock(); 248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 249 rcu_read_unlock(); 250 251 cgroup_release(p); 252 253 write_lock_irq(&tasklist_lock); 254 ptrace_release_task(p); 255 thread_pid = get_pid(p->thread_pid); 256 __exit_signal(p); 257 258 /* 259 * If we are the last non-leader member of the thread 260 * group, and the leader is zombie, then notify the 261 * group leader's parent process. (if it wants notification.) 262 */ 263 zap_leader = 0; 264 leader = p->group_leader; 265 if (leader != p && thread_group_empty(leader) 266 && leader->exit_state == EXIT_ZOMBIE) { 267 /* 268 * If we were the last child thread and the leader has 269 * exited already, and the leader's parent ignores SIGCHLD, 270 * then we are the one who should release the leader. 271 */ 272 zap_leader = do_notify_parent(leader, leader->exit_signal); 273 if (zap_leader) 274 leader->exit_state = EXIT_DEAD; 275 } 276 277 write_unlock_irq(&tasklist_lock); 278 seccomp_filter_release(p); 279 proc_flush_pid(thread_pid); 280 put_pid(thread_pid); 281 release_thread(p); 282 put_task_struct_rcu_user(p); 283 284 p = leader; 285 if (unlikely(zap_leader)) 286 goto repeat; 287 } 288 289 int rcuwait_wake_up(struct rcuwait *w) 290 { 291 int ret = 0; 292 struct task_struct *task; 293 294 rcu_read_lock(); 295 296 /* 297 * Order condition vs @task, such that everything prior to the load 298 * of @task is visible. This is the condition as to why the user called 299 * rcuwait_wake() in the first place. Pairs with set_current_state() 300 * barrier (A) in rcuwait_wait_event(). 301 * 302 * WAIT WAKE 303 * [S] tsk = current [S] cond = true 304 * MB (A) MB (B) 305 * [L] cond [L] tsk 306 */ 307 smp_mb(); /* (B) */ 308 309 task = rcu_dereference(w->task); 310 if (task) 311 ret = wake_up_process(task); 312 rcu_read_unlock(); 313 314 return ret; 315 } 316 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 317 318 /* 319 * Determine if a process group is "orphaned", according to the POSIX 320 * definition in 2.2.2.52. Orphaned process groups are not to be affected 321 * by terminal-generated stop signals. Newly orphaned process groups are 322 * to receive a SIGHUP and a SIGCONT. 323 * 324 * "I ask you, have you ever known what it is to be an orphan?" 325 */ 326 static int will_become_orphaned_pgrp(struct pid *pgrp, 327 struct task_struct *ignored_task) 328 { 329 struct task_struct *p; 330 331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 332 if ((p == ignored_task) || 333 (p->exit_state && thread_group_empty(p)) || 334 is_global_init(p->real_parent)) 335 continue; 336 337 if (task_pgrp(p->real_parent) != pgrp && 338 task_session(p->real_parent) == task_session(p)) 339 return 0; 340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 341 342 return 1; 343 } 344 345 int is_current_pgrp_orphaned(void) 346 { 347 int retval; 348 349 read_lock(&tasklist_lock); 350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 351 read_unlock(&tasklist_lock); 352 353 return retval; 354 } 355 356 static bool has_stopped_jobs(struct pid *pgrp) 357 { 358 struct task_struct *p; 359 360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 361 if (p->signal->flags & SIGNAL_STOP_STOPPED) 362 return true; 363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 364 365 return false; 366 } 367 368 /* 369 * Check to see if any process groups have become orphaned as 370 * a result of our exiting, and if they have any stopped jobs, 371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 372 */ 373 static void 374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 375 { 376 struct pid *pgrp = task_pgrp(tsk); 377 struct task_struct *ignored_task = tsk; 378 379 if (!parent) 380 /* exit: our father is in a different pgrp than 381 * we are and we were the only connection outside. 382 */ 383 parent = tsk->real_parent; 384 else 385 /* reparent: our child is in a different pgrp than 386 * we are, and it was the only connection outside. 387 */ 388 ignored_task = NULL; 389 390 if (task_pgrp(parent) != pgrp && 391 task_session(parent) == task_session(tsk) && 392 will_become_orphaned_pgrp(pgrp, ignored_task) && 393 has_stopped_jobs(pgrp)) { 394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 396 } 397 } 398 399 static void coredump_task_exit(struct task_struct *tsk) 400 { 401 struct core_state *core_state; 402 403 /* 404 * Serialize with any possible pending coredump. 405 * We must hold siglock around checking core_state 406 * and setting PF_POSTCOREDUMP. The core-inducing thread 407 * will increment ->nr_threads for each thread in the 408 * group without PF_POSTCOREDUMP set. 409 */ 410 spin_lock_irq(&tsk->sighand->siglock); 411 tsk->flags |= PF_POSTCOREDUMP; 412 core_state = tsk->signal->core_state; 413 spin_unlock_irq(&tsk->sighand->siglock); 414 415 /* The vhost_worker does not particpate in coredumps */ 416 if (core_state && 417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) { 418 struct core_thread self; 419 420 self.task = current; 421 if (self.task->flags & PF_SIGNALED) 422 self.next = xchg(&core_state->dumper.next, &self); 423 else 424 self.task = NULL; 425 /* 426 * Implies mb(), the result of xchg() must be visible 427 * to core_state->dumper. 428 */ 429 if (atomic_dec_and_test(&core_state->nr_threads)) 430 complete(&core_state->startup); 431 432 for (;;) { 433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); 434 if (!self.task) /* see coredump_finish() */ 435 break; 436 schedule(); 437 } 438 __set_current_state(TASK_RUNNING); 439 } 440 } 441 442 #ifdef CONFIG_MEMCG 443 /* 444 * A task is exiting. If it owned this mm, find a new owner for the mm. 445 */ 446 void mm_update_next_owner(struct mm_struct *mm) 447 { 448 struct task_struct *c, *g, *p = current; 449 450 retry: 451 /* 452 * If the exiting or execing task is not the owner, it's 453 * someone else's problem. 454 */ 455 if (mm->owner != p) 456 return; 457 /* 458 * The current owner is exiting/execing and there are no other 459 * candidates. Do not leave the mm pointing to a possibly 460 * freed task structure. 461 */ 462 if (atomic_read(&mm->mm_users) <= 1) { 463 WRITE_ONCE(mm->owner, NULL); 464 return; 465 } 466 467 read_lock(&tasklist_lock); 468 /* 469 * Search in the children 470 */ 471 list_for_each_entry(c, &p->children, sibling) { 472 if (c->mm == mm) 473 goto assign_new_owner; 474 } 475 476 /* 477 * Search in the siblings 478 */ 479 list_for_each_entry(c, &p->real_parent->children, sibling) { 480 if (c->mm == mm) 481 goto assign_new_owner; 482 } 483 484 /* 485 * Search through everything else, we should not get here often. 486 */ 487 for_each_process(g) { 488 if (atomic_read(&mm->mm_users) <= 1) 489 break; 490 if (g->flags & PF_KTHREAD) 491 continue; 492 for_each_thread(g, c) { 493 if (c->mm == mm) 494 goto assign_new_owner; 495 if (c->mm) 496 break; 497 } 498 } 499 read_unlock(&tasklist_lock); 500 /* 501 * We found no owner yet mm_users > 1: this implies that we are 502 * most likely racing with swapoff (try_to_unuse()) or /proc or 503 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 504 */ 505 WRITE_ONCE(mm->owner, NULL); 506 return; 507 508 assign_new_owner: 509 BUG_ON(c == p); 510 get_task_struct(c); 511 /* 512 * The task_lock protects c->mm from changing. 513 * We always want mm->owner->mm == mm 514 */ 515 task_lock(c); 516 /* 517 * Delay read_unlock() till we have the task_lock() 518 * to ensure that c does not slip away underneath us 519 */ 520 read_unlock(&tasklist_lock); 521 if (c->mm != mm) { 522 task_unlock(c); 523 put_task_struct(c); 524 goto retry; 525 } 526 WRITE_ONCE(mm->owner, c); 527 lru_gen_migrate_mm(mm); 528 task_unlock(c); 529 put_task_struct(c); 530 } 531 #endif /* CONFIG_MEMCG */ 532 533 /* 534 * Turn us into a lazy TLB process if we 535 * aren't already.. 536 */ 537 static void exit_mm(void) 538 { 539 struct mm_struct *mm = current->mm; 540 541 exit_mm_release(current, mm); 542 if (!mm) 543 return; 544 sync_mm_rss(mm); 545 mmap_read_lock(mm); 546 mmgrab_lazy_tlb(mm); 547 BUG_ON(mm != current->active_mm); 548 /* more a memory barrier than a real lock */ 549 task_lock(current); 550 /* 551 * When a thread stops operating on an address space, the loop 552 * in membarrier_private_expedited() may not observe that 553 * tsk->mm, and the loop in membarrier_global_expedited() may 554 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 555 * rq->membarrier_state, so those would not issue an IPI. 556 * Membarrier requires a memory barrier after accessing 557 * user-space memory, before clearing tsk->mm or the 558 * rq->membarrier_state. 559 */ 560 smp_mb__after_spinlock(); 561 local_irq_disable(); 562 current->mm = NULL; 563 membarrier_update_current_mm(NULL); 564 enter_lazy_tlb(mm, current); 565 local_irq_enable(); 566 task_unlock(current); 567 mmap_read_unlock(mm); 568 mm_update_next_owner(mm); 569 mmput(mm); 570 if (test_thread_flag(TIF_MEMDIE)) 571 exit_oom_victim(); 572 } 573 574 static struct task_struct *find_alive_thread(struct task_struct *p) 575 { 576 struct task_struct *t; 577 578 for_each_thread(p, t) { 579 if (!(t->flags & PF_EXITING)) 580 return t; 581 } 582 return NULL; 583 } 584 585 static struct task_struct *find_child_reaper(struct task_struct *father, 586 struct list_head *dead) 587 __releases(&tasklist_lock) 588 __acquires(&tasklist_lock) 589 { 590 struct pid_namespace *pid_ns = task_active_pid_ns(father); 591 struct task_struct *reaper = pid_ns->child_reaper; 592 struct task_struct *p, *n; 593 594 if (likely(reaper != father)) 595 return reaper; 596 597 reaper = find_alive_thread(father); 598 if (reaper) { 599 pid_ns->child_reaper = reaper; 600 return reaper; 601 } 602 603 write_unlock_irq(&tasklist_lock); 604 605 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 606 list_del_init(&p->ptrace_entry); 607 release_task(p); 608 } 609 610 zap_pid_ns_processes(pid_ns); 611 write_lock_irq(&tasklist_lock); 612 613 return father; 614 } 615 616 /* 617 * When we die, we re-parent all our children, and try to: 618 * 1. give them to another thread in our thread group, if such a member exists 619 * 2. give it to the first ancestor process which prctl'd itself as a 620 * child_subreaper for its children (like a service manager) 621 * 3. give it to the init process (PID 1) in our pid namespace 622 */ 623 static struct task_struct *find_new_reaper(struct task_struct *father, 624 struct task_struct *child_reaper) 625 { 626 struct task_struct *thread, *reaper; 627 628 thread = find_alive_thread(father); 629 if (thread) 630 return thread; 631 632 if (father->signal->has_child_subreaper) { 633 unsigned int ns_level = task_pid(father)->level; 634 /* 635 * Find the first ->is_child_subreaper ancestor in our pid_ns. 636 * We can't check reaper != child_reaper to ensure we do not 637 * cross the namespaces, the exiting parent could be injected 638 * by setns() + fork(). 639 * We check pid->level, this is slightly more efficient than 640 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 641 */ 642 for (reaper = father->real_parent; 643 task_pid(reaper)->level == ns_level; 644 reaper = reaper->real_parent) { 645 if (reaper == &init_task) 646 break; 647 if (!reaper->signal->is_child_subreaper) 648 continue; 649 thread = find_alive_thread(reaper); 650 if (thread) 651 return thread; 652 } 653 } 654 655 return child_reaper; 656 } 657 658 /* 659 * Any that need to be release_task'd are put on the @dead list. 660 */ 661 static void reparent_leader(struct task_struct *father, struct task_struct *p, 662 struct list_head *dead) 663 { 664 if (unlikely(p->exit_state == EXIT_DEAD)) 665 return; 666 667 /* We don't want people slaying init. */ 668 p->exit_signal = SIGCHLD; 669 670 /* If it has exited notify the new parent about this child's death. */ 671 if (!p->ptrace && 672 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 673 if (do_notify_parent(p, p->exit_signal)) { 674 p->exit_state = EXIT_DEAD; 675 list_add(&p->ptrace_entry, dead); 676 } 677 } 678 679 kill_orphaned_pgrp(p, father); 680 } 681 682 /* 683 * This does two things: 684 * 685 * A. Make init inherit all the child processes 686 * B. Check to see if any process groups have become orphaned 687 * as a result of our exiting, and if they have any stopped 688 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 689 */ 690 static void forget_original_parent(struct task_struct *father, 691 struct list_head *dead) 692 { 693 struct task_struct *p, *t, *reaper; 694 695 if (unlikely(!list_empty(&father->ptraced))) 696 exit_ptrace(father, dead); 697 698 /* Can drop and reacquire tasklist_lock */ 699 reaper = find_child_reaper(father, dead); 700 if (list_empty(&father->children)) 701 return; 702 703 reaper = find_new_reaper(father, reaper); 704 list_for_each_entry(p, &father->children, sibling) { 705 for_each_thread(p, t) { 706 RCU_INIT_POINTER(t->real_parent, reaper); 707 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 708 if (likely(!t->ptrace)) 709 t->parent = t->real_parent; 710 if (t->pdeath_signal) 711 group_send_sig_info(t->pdeath_signal, 712 SEND_SIG_NOINFO, t, 713 PIDTYPE_TGID); 714 } 715 /* 716 * If this is a threaded reparent there is no need to 717 * notify anyone anything has happened. 718 */ 719 if (!same_thread_group(reaper, father)) 720 reparent_leader(father, p, dead); 721 } 722 list_splice_tail_init(&father->children, &reaper->children); 723 } 724 725 /* 726 * Send signals to all our closest relatives so that they know 727 * to properly mourn us.. 728 */ 729 static void exit_notify(struct task_struct *tsk, int group_dead) 730 { 731 bool autoreap; 732 struct task_struct *p, *n; 733 LIST_HEAD(dead); 734 735 write_lock_irq(&tasklist_lock); 736 forget_original_parent(tsk, &dead); 737 738 if (group_dead) 739 kill_orphaned_pgrp(tsk->group_leader, NULL); 740 741 tsk->exit_state = EXIT_ZOMBIE; 742 if (unlikely(tsk->ptrace)) { 743 int sig = thread_group_leader(tsk) && 744 thread_group_empty(tsk) && 745 !ptrace_reparented(tsk) ? 746 tsk->exit_signal : SIGCHLD; 747 autoreap = do_notify_parent(tsk, sig); 748 } else if (thread_group_leader(tsk)) { 749 autoreap = thread_group_empty(tsk) && 750 do_notify_parent(tsk, tsk->exit_signal); 751 } else { 752 autoreap = true; 753 } 754 755 if (autoreap) { 756 tsk->exit_state = EXIT_DEAD; 757 list_add(&tsk->ptrace_entry, &dead); 758 } 759 760 /* mt-exec, de_thread() is waiting for group leader */ 761 if (unlikely(tsk->signal->notify_count < 0)) 762 wake_up_process(tsk->signal->group_exec_task); 763 write_unlock_irq(&tasklist_lock); 764 765 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 766 list_del_init(&p->ptrace_entry); 767 release_task(p); 768 } 769 } 770 771 #ifdef CONFIG_DEBUG_STACK_USAGE 772 static void check_stack_usage(void) 773 { 774 static DEFINE_SPINLOCK(low_water_lock); 775 static int lowest_to_date = THREAD_SIZE; 776 unsigned long free; 777 778 free = stack_not_used(current); 779 780 if (free >= lowest_to_date) 781 return; 782 783 spin_lock(&low_water_lock); 784 if (free < lowest_to_date) { 785 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 786 current->comm, task_pid_nr(current), free); 787 lowest_to_date = free; 788 } 789 spin_unlock(&low_water_lock); 790 } 791 #else 792 static inline void check_stack_usage(void) {} 793 #endif 794 795 static void synchronize_group_exit(struct task_struct *tsk, long code) 796 { 797 struct sighand_struct *sighand = tsk->sighand; 798 struct signal_struct *signal = tsk->signal; 799 800 spin_lock_irq(&sighand->siglock); 801 signal->quick_threads--; 802 if ((signal->quick_threads == 0) && 803 !(signal->flags & SIGNAL_GROUP_EXIT)) { 804 signal->flags = SIGNAL_GROUP_EXIT; 805 signal->group_exit_code = code; 806 signal->group_stop_count = 0; 807 } 808 spin_unlock_irq(&sighand->siglock); 809 } 810 811 void __noreturn do_exit(long code) 812 { 813 struct task_struct *tsk = current; 814 int group_dead; 815 816 WARN_ON(irqs_disabled()); 817 818 synchronize_group_exit(tsk, code); 819 820 WARN_ON(tsk->plug); 821 822 kcov_task_exit(tsk); 823 kmsan_task_exit(tsk); 824 825 coredump_task_exit(tsk); 826 ptrace_event(PTRACE_EVENT_EXIT, code); 827 user_events_exit(tsk); 828 829 io_uring_files_cancel(); 830 exit_signals(tsk); /* sets PF_EXITING */ 831 832 /* sync mm's RSS info before statistics gathering */ 833 if (tsk->mm) 834 sync_mm_rss(tsk->mm); 835 acct_update_integrals(tsk); 836 group_dead = atomic_dec_and_test(&tsk->signal->live); 837 if (group_dead) { 838 /* 839 * If the last thread of global init has exited, panic 840 * immediately to get a useable coredump. 841 */ 842 if (unlikely(is_global_init(tsk))) 843 panic("Attempted to kill init! exitcode=0x%08x\n", 844 tsk->signal->group_exit_code ?: (int)code); 845 846 #ifdef CONFIG_POSIX_TIMERS 847 hrtimer_cancel(&tsk->signal->real_timer); 848 exit_itimers(tsk); 849 #endif 850 if (tsk->mm) 851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 852 } 853 acct_collect(code, group_dead); 854 if (group_dead) 855 tty_audit_exit(); 856 audit_free(tsk); 857 858 tsk->exit_code = code; 859 taskstats_exit(tsk, group_dead); 860 861 exit_mm(); 862 863 if (group_dead) 864 acct_process(); 865 trace_sched_process_exit(tsk); 866 867 exit_sem(tsk); 868 exit_shm(tsk); 869 exit_files(tsk); 870 exit_fs(tsk); 871 if (group_dead) 872 disassociate_ctty(1); 873 exit_task_namespaces(tsk); 874 exit_task_work(tsk); 875 exit_thread(tsk); 876 877 /* 878 * Flush inherited counters to the parent - before the parent 879 * gets woken up by child-exit notifications. 880 * 881 * because of cgroup mode, must be called before cgroup_exit() 882 */ 883 perf_event_exit_task(tsk); 884 885 sched_autogroup_exit_task(tsk); 886 cgroup_exit(tsk); 887 888 /* 889 * FIXME: do that only when needed, using sched_exit tracepoint 890 */ 891 flush_ptrace_hw_breakpoint(tsk); 892 893 exit_tasks_rcu_start(); 894 exit_notify(tsk, group_dead); 895 proc_exit_connector(tsk); 896 mpol_put_task_policy(tsk); 897 #ifdef CONFIG_FUTEX 898 if (unlikely(current->pi_state_cache)) 899 kfree(current->pi_state_cache); 900 #endif 901 /* 902 * Make sure we are holding no locks: 903 */ 904 debug_check_no_locks_held(); 905 906 if (tsk->io_context) 907 exit_io_context(tsk); 908 909 if (tsk->splice_pipe) 910 free_pipe_info(tsk->splice_pipe); 911 912 if (tsk->task_frag.page) 913 put_page(tsk->task_frag.page); 914 915 exit_task_stack_account(tsk); 916 917 check_stack_usage(); 918 preempt_disable(); 919 if (tsk->nr_dirtied) 920 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 921 exit_rcu(); 922 exit_tasks_rcu_finish(); 923 924 lockdep_free_task(tsk); 925 do_task_dead(); 926 } 927 928 void __noreturn make_task_dead(int signr) 929 { 930 /* 931 * Take the task off the cpu after something catastrophic has 932 * happened. 933 * 934 * We can get here from a kernel oops, sometimes with preemption off. 935 * Start by checking for critical errors. 936 * Then fix up important state like USER_DS and preemption. 937 * Then do everything else. 938 */ 939 struct task_struct *tsk = current; 940 unsigned int limit; 941 942 if (unlikely(in_interrupt())) 943 panic("Aiee, killing interrupt handler!"); 944 if (unlikely(!tsk->pid)) 945 panic("Attempted to kill the idle task!"); 946 947 if (unlikely(irqs_disabled())) { 948 pr_info("note: %s[%d] exited with irqs disabled\n", 949 current->comm, task_pid_nr(current)); 950 local_irq_enable(); 951 } 952 if (unlikely(in_atomic())) { 953 pr_info("note: %s[%d] exited with preempt_count %d\n", 954 current->comm, task_pid_nr(current), 955 preempt_count()); 956 preempt_count_set(PREEMPT_ENABLED); 957 } 958 959 /* 960 * Every time the system oopses, if the oops happens while a reference 961 * to an object was held, the reference leaks. 962 * If the oops doesn't also leak memory, repeated oopsing can cause 963 * reference counters to wrap around (if they're not using refcount_t). 964 * This means that repeated oopsing can make unexploitable-looking bugs 965 * exploitable through repeated oopsing. 966 * To make sure this can't happen, place an upper bound on how often the 967 * kernel may oops without panic(). 968 */ 969 limit = READ_ONCE(oops_limit); 970 if (atomic_inc_return(&oops_count) >= limit && limit) 971 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 972 973 /* 974 * We're taking recursive faults here in make_task_dead. Safest is to just 975 * leave this task alone and wait for reboot. 976 */ 977 if (unlikely(tsk->flags & PF_EXITING)) { 978 pr_alert("Fixing recursive fault but reboot is needed!\n"); 979 futex_exit_recursive(tsk); 980 tsk->exit_state = EXIT_DEAD; 981 refcount_inc(&tsk->rcu_users); 982 do_task_dead(); 983 } 984 985 do_exit(signr); 986 } 987 988 SYSCALL_DEFINE1(exit, int, error_code) 989 { 990 do_exit((error_code&0xff)<<8); 991 } 992 993 /* 994 * Take down every thread in the group. This is called by fatal signals 995 * as well as by sys_exit_group (below). 996 */ 997 void __noreturn 998 do_group_exit(int exit_code) 999 { 1000 struct signal_struct *sig = current->signal; 1001 1002 if (sig->flags & SIGNAL_GROUP_EXIT) 1003 exit_code = sig->group_exit_code; 1004 else if (sig->group_exec_task) 1005 exit_code = 0; 1006 else { 1007 struct sighand_struct *const sighand = current->sighand; 1008 1009 spin_lock_irq(&sighand->siglock); 1010 if (sig->flags & SIGNAL_GROUP_EXIT) 1011 /* Another thread got here before we took the lock. */ 1012 exit_code = sig->group_exit_code; 1013 else if (sig->group_exec_task) 1014 exit_code = 0; 1015 else { 1016 sig->group_exit_code = exit_code; 1017 sig->flags = SIGNAL_GROUP_EXIT; 1018 zap_other_threads(current); 1019 } 1020 spin_unlock_irq(&sighand->siglock); 1021 } 1022 1023 do_exit(exit_code); 1024 /* NOTREACHED */ 1025 } 1026 1027 /* 1028 * this kills every thread in the thread group. Note that any externally 1029 * wait4()-ing process will get the correct exit code - even if this 1030 * thread is not the thread group leader. 1031 */ 1032 SYSCALL_DEFINE1(exit_group, int, error_code) 1033 { 1034 do_group_exit((error_code & 0xff) << 8); 1035 /* NOTREACHED */ 1036 return 0; 1037 } 1038 1039 struct waitid_info { 1040 pid_t pid; 1041 uid_t uid; 1042 int status; 1043 int cause; 1044 }; 1045 1046 struct wait_opts { 1047 enum pid_type wo_type; 1048 int wo_flags; 1049 struct pid *wo_pid; 1050 1051 struct waitid_info *wo_info; 1052 int wo_stat; 1053 struct rusage *wo_rusage; 1054 1055 wait_queue_entry_t child_wait; 1056 int notask_error; 1057 }; 1058 1059 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1060 { 1061 return wo->wo_type == PIDTYPE_MAX || 1062 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1063 } 1064 1065 static int 1066 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1067 { 1068 if (!eligible_pid(wo, p)) 1069 return 0; 1070 1071 /* 1072 * Wait for all children (clone and not) if __WALL is set or 1073 * if it is traced by us. 1074 */ 1075 if (ptrace || (wo->wo_flags & __WALL)) 1076 return 1; 1077 1078 /* 1079 * Otherwise, wait for clone children *only* if __WCLONE is set; 1080 * otherwise, wait for non-clone children *only*. 1081 * 1082 * Note: a "clone" child here is one that reports to its parent 1083 * using a signal other than SIGCHLD, or a non-leader thread which 1084 * we can only see if it is traced by us. 1085 */ 1086 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1087 return 0; 1088 1089 return 1; 1090 } 1091 1092 /* 1093 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1094 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1095 * the lock and this task is uninteresting. If we return nonzero, we have 1096 * released the lock and the system call should return. 1097 */ 1098 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1099 { 1100 int state, status; 1101 pid_t pid = task_pid_vnr(p); 1102 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1103 struct waitid_info *infop; 1104 1105 if (!likely(wo->wo_flags & WEXITED)) 1106 return 0; 1107 1108 if (unlikely(wo->wo_flags & WNOWAIT)) { 1109 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1110 ? p->signal->group_exit_code : p->exit_code; 1111 get_task_struct(p); 1112 read_unlock(&tasklist_lock); 1113 sched_annotate_sleep(); 1114 if (wo->wo_rusage) 1115 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1116 put_task_struct(p); 1117 goto out_info; 1118 } 1119 /* 1120 * Move the task's state to DEAD/TRACE, only one thread can do this. 1121 */ 1122 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1123 EXIT_TRACE : EXIT_DEAD; 1124 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1125 return 0; 1126 /* 1127 * We own this thread, nobody else can reap it. 1128 */ 1129 read_unlock(&tasklist_lock); 1130 sched_annotate_sleep(); 1131 1132 /* 1133 * Check thread_group_leader() to exclude the traced sub-threads. 1134 */ 1135 if (state == EXIT_DEAD && thread_group_leader(p)) { 1136 struct signal_struct *sig = p->signal; 1137 struct signal_struct *psig = current->signal; 1138 unsigned long maxrss; 1139 u64 tgutime, tgstime; 1140 1141 /* 1142 * The resource counters for the group leader are in its 1143 * own task_struct. Those for dead threads in the group 1144 * are in its signal_struct, as are those for the child 1145 * processes it has previously reaped. All these 1146 * accumulate in the parent's signal_struct c* fields. 1147 * 1148 * We don't bother to take a lock here to protect these 1149 * p->signal fields because the whole thread group is dead 1150 * and nobody can change them. 1151 * 1152 * psig->stats_lock also protects us from our sub-threads 1153 * which can reap other children at the same time. Until 1154 * we change k_getrusage()-like users to rely on this lock 1155 * we have to take ->siglock as well. 1156 * 1157 * We use thread_group_cputime_adjusted() to get times for 1158 * the thread group, which consolidates times for all threads 1159 * in the group including the group leader. 1160 */ 1161 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1162 spin_lock_irq(¤t->sighand->siglock); 1163 write_seqlock(&psig->stats_lock); 1164 psig->cutime += tgutime + sig->cutime; 1165 psig->cstime += tgstime + sig->cstime; 1166 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1167 psig->cmin_flt += 1168 p->min_flt + sig->min_flt + sig->cmin_flt; 1169 psig->cmaj_flt += 1170 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1171 psig->cnvcsw += 1172 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1173 psig->cnivcsw += 1174 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1175 psig->cinblock += 1176 task_io_get_inblock(p) + 1177 sig->inblock + sig->cinblock; 1178 psig->coublock += 1179 task_io_get_oublock(p) + 1180 sig->oublock + sig->coublock; 1181 maxrss = max(sig->maxrss, sig->cmaxrss); 1182 if (psig->cmaxrss < maxrss) 1183 psig->cmaxrss = maxrss; 1184 task_io_accounting_add(&psig->ioac, &p->ioac); 1185 task_io_accounting_add(&psig->ioac, &sig->ioac); 1186 write_sequnlock(&psig->stats_lock); 1187 spin_unlock_irq(¤t->sighand->siglock); 1188 } 1189 1190 if (wo->wo_rusage) 1191 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1192 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1193 ? p->signal->group_exit_code : p->exit_code; 1194 wo->wo_stat = status; 1195 1196 if (state == EXIT_TRACE) { 1197 write_lock_irq(&tasklist_lock); 1198 /* We dropped tasklist, ptracer could die and untrace */ 1199 ptrace_unlink(p); 1200 1201 /* If parent wants a zombie, don't release it now */ 1202 state = EXIT_ZOMBIE; 1203 if (do_notify_parent(p, p->exit_signal)) 1204 state = EXIT_DEAD; 1205 p->exit_state = state; 1206 write_unlock_irq(&tasklist_lock); 1207 } 1208 if (state == EXIT_DEAD) 1209 release_task(p); 1210 1211 out_info: 1212 infop = wo->wo_info; 1213 if (infop) { 1214 if ((status & 0x7f) == 0) { 1215 infop->cause = CLD_EXITED; 1216 infop->status = status >> 8; 1217 } else { 1218 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1219 infop->status = status & 0x7f; 1220 } 1221 infop->pid = pid; 1222 infop->uid = uid; 1223 } 1224 1225 return pid; 1226 } 1227 1228 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1229 { 1230 if (ptrace) { 1231 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1232 return &p->exit_code; 1233 } else { 1234 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1235 return &p->signal->group_exit_code; 1236 } 1237 return NULL; 1238 } 1239 1240 /** 1241 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1242 * @wo: wait options 1243 * @ptrace: is the wait for ptrace 1244 * @p: task to wait for 1245 * 1246 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1247 * 1248 * CONTEXT: 1249 * read_lock(&tasklist_lock), which is released if return value is 1250 * non-zero. Also, grabs and releases @p->sighand->siglock. 1251 * 1252 * RETURNS: 1253 * 0 if wait condition didn't exist and search for other wait conditions 1254 * should continue. Non-zero return, -errno on failure and @p's pid on 1255 * success, implies that tasklist_lock is released and wait condition 1256 * search should terminate. 1257 */ 1258 static int wait_task_stopped(struct wait_opts *wo, 1259 int ptrace, struct task_struct *p) 1260 { 1261 struct waitid_info *infop; 1262 int exit_code, *p_code, why; 1263 uid_t uid = 0; /* unneeded, required by compiler */ 1264 pid_t pid; 1265 1266 /* 1267 * Traditionally we see ptrace'd stopped tasks regardless of options. 1268 */ 1269 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1270 return 0; 1271 1272 if (!task_stopped_code(p, ptrace)) 1273 return 0; 1274 1275 exit_code = 0; 1276 spin_lock_irq(&p->sighand->siglock); 1277 1278 p_code = task_stopped_code(p, ptrace); 1279 if (unlikely(!p_code)) 1280 goto unlock_sig; 1281 1282 exit_code = *p_code; 1283 if (!exit_code) 1284 goto unlock_sig; 1285 1286 if (!unlikely(wo->wo_flags & WNOWAIT)) 1287 *p_code = 0; 1288 1289 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1290 unlock_sig: 1291 spin_unlock_irq(&p->sighand->siglock); 1292 if (!exit_code) 1293 return 0; 1294 1295 /* 1296 * Now we are pretty sure this task is interesting. 1297 * Make sure it doesn't get reaped out from under us while we 1298 * give up the lock and then examine it below. We don't want to 1299 * keep holding onto the tasklist_lock while we call getrusage and 1300 * possibly take page faults for user memory. 1301 */ 1302 get_task_struct(p); 1303 pid = task_pid_vnr(p); 1304 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1305 read_unlock(&tasklist_lock); 1306 sched_annotate_sleep(); 1307 if (wo->wo_rusage) 1308 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1309 put_task_struct(p); 1310 1311 if (likely(!(wo->wo_flags & WNOWAIT))) 1312 wo->wo_stat = (exit_code << 8) | 0x7f; 1313 1314 infop = wo->wo_info; 1315 if (infop) { 1316 infop->cause = why; 1317 infop->status = exit_code; 1318 infop->pid = pid; 1319 infop->uid = uid; 1320 } 1321 return pid; 1322 } 1323 1324 /* 1325 * Handle do_wait work for one task in a live, non-stopped state. 1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1327 * the lock and this task is uninteresting. If we return nonzero, we have 1328 * released the lock and the system call should return. 1329 */ 1330 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1331 { 1332 struct waitid_info *infop; 1333 pid_t pid; 1334 uid_t uid; 1335 1336 if (!unlikely(wo->wo_flags & WCONTINUED)) 1337 return 0; 1338 1339 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1340 return 0; 1341 1342 spin_lock_irq(&p->sighand->siglock); 1343 /* Re-check with the lock held. */ 1344 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1345 spin_unlock_irq(&p->sighand->siglock); 1346 return 0; 1347 } 1348 if (!unlikely(wo->wo_flags & WNOWAIT)) 1349 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1350 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1351 spin_unlock_irq(&p->sighand->siglock); 1352 1353 pid = task_pid_vnr(p); 1354 get_task_struct(p); 1355 read_unlock(&tasklist_lock); 1356 sched_annotate_sleep(); 1357 if (wo->wo_rusage) 1358 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1359 put_task_struct(p); 1360 1361 infop = wo->wo_info; 1362 if (!infop) { 1363 wo->wo_stat = 0xffff; 1364 } else { 1365 infop->cause = CLD_CONTINUED; 1366 infop->pid = pid; 1367 infop->uid = uid; 1368 infop->status = SIGCONT; 1369 } 1370 return pid; 1371 } 1372 1373 /* 1374 * Consider @p for a wait by @parent. 1375 * 1376 * -ECHILD should be in ->notask_error before the first call. 1377 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1378 * Returns zero if the search for a child should continue; 1379 * then ->notask_error is 0 if @p is an eligible child, 1380 * or still -ECHILD. 1381 */ 1382 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1383 struct task_struct *p) 1384 { 1385 /* 1386 * We can race with wait_task_zombie() from another thread. 1387 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1388 * can't confuse the checks below. 1389 */ 1390 int exit_state = READ_ONCE(p->exit_state); 1391 int ret; 1392 1393 if (unlikely(exit_state == EXIT_DEAD)) 1394 return 0; 1395 1396 ret = eligible_child(wo, ptrace, p); 1397 if (!ret) 1398 return ret; 1399 1400 if (unlikely(exit_state == EXIT_TRACE)) { 1401 /* 1402 * ptrace == 0 means we are the natural parent. In this case 1403 * we should clear notask_error, debugger will notify us. 1404 */ 1405 if (likely(!ptrace)) 1406 wo->notask_error = 0; 1407 return 0; 1408 } 1409 1410 if (likely(!ptrace) && unlikely(p->ptrace)) { 1411 /* 1412 * If it is traced by its real parent's group, just pretend 1413 * the caller is ptrace_do_wait() and reap this child if it 1414 * is zombie. 1415 * 1416 * This also hides group stop state from real parent; otherwise 1417 * a single stop can be reported twice as group and ptrace stop. 1418 * If a ptracer wants to distinguish these two events for its 1419 * own children it should create a separate process which takes 1420 * the role of real parent. 1421 */ 1422 if (!ptrace_reparented(p)) 1423 ptrace = 1; 1424 } 1425 1426 /* slay zombie? */ 1427 if (exit_state == EXIT_ZOMBIE) { 1428 /* we don't reap group leaders with subthreads */ 1429 if (!delay_group_leader(p)) { 1430 /* 1431 * A zombie ptracee is only visible to its ptracer. 1432 * Notification and reaping will be cascaded to the 1433 * real parent when the ptracer detaches. 1434 */ 1435 if (unlikely(ptrace) || likely(!p->ptrace)) 1436 return wait_task_zombie(wo, p); 1437 } 1438 1439 /* 1440 * Allow access to stopped/continued state via zombie by 1441 * falling through. Clearing of notask_error is complex. 1442 * 1443 * When !@ptrace: 1444 * 1445 * If WEXITED is set, notask_error should naturally be 1446 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1447 * so, if there are live subthreads, there are events to 1448 * wait for. If all subthreads are dead, it's still safe 1449 * to clear - this function will be called again in finite 1450 * amount time once all the subthreads are released and 1451 * will then return without clearing. 1452 * 1453 * When @ptrace: 1454 * 1455 * Stopped state is per-task and thus can't change once the 1456 * target task dies. Only continued and exited can happen. 1457 * Clear notask_error if WCONTINUED | WEXITED. 1458 */ 1459 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1460 wo->notask_error = 0; 1461 } else { 1462 /* 1463 * @p is alive and it's gonna stop, continue or exit, so 1464 * there always is something to wait for. 1465 */ 1466 wo->notask_error = 0; 1467 } 1468 1469 /* 1470 * Wait for stopped. Depending on @ptrace, different stopped state 1471 * is used and the two don't interact with each other. 1472 */ 1473 ret = wait_task_stopped(wo, ptrace, p); 1474 if (ret) 1475 return ret; 1476 1477 /* 1478 * Wait for continued. There's only one continued state and the 1479 * ptracer can consume it which can confuse the real parent. Don't 1480 * use WCONTINUED from ptracer. You don't need or want it. 1481 */ 1482 return wait_task_continued(wo, p); 1483 } 1484 1485 /* 1486 * Do the work of do_wait() for one thread in the group, @tsk. 1487 * 1488 * -ECHILD should be in ->notask_error before the first call. 1489 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1490 * Returns zero if the search for a child should continue; then 1491 * ->notask_error is 0 if there were any eligible children, 1492 * or still -ECHILD. 1493 */ 1494 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1495 { 1496 struct task_struct *p; 1497 1498 list_for_each_entry(p, &tsk->children, sibling) { 1499 int ret = wait_consider_task(wo, 0, p); 1500 1501 if (ret) 1502 return ret; 1503 } 1504 1505 return 0; 1506 } 1507 1508 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1509 { 1510 struct task_struct *p; 1511 1512 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1513 int ret = wait_consider_task(wo, 1, p); 1514 1515 if (ret) 1516 return ret; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1523 int sync, void *key) 1524 { 1525 struct wait_opts *wo = container_of(wait, struct wait_opts, 1526 child_wait); 1527 struct task_struct *p = key; 1528 1529 if (!eligible_pid(wo, p)) 1530 return 0; 1531 1532 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1533 return 0; 1534 1535 return default_wake_function(wait, mode, sync, key); 1536 } 1537 1538 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1539 { 1540 __wake_up_sync_key(&parent->signal->wait_chldexit, 1541 TASK_INTERRUPTIBLE, p); 1542 } 1543 1544 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1545 struct task_struct *target) 1546 { 1547 struct task_struct *parent = 1548 !ptrace ? target->real_parent : target->parent; 1549 1550 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1551 same_thread_group(current, parent)); 1552 } 1553 1554 /* 1555 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1556 * and tracee lists to find the target task. 1557 */ 1558 static int do_wait_pid(struct wait_opts *wo) 1559 { 1560 bool ptrace; 1561 struct task_struct *target; 1562 int retval; 1563 1564 ptrace = false; 1565 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1566 if (target && is_effectively_child(wo, ptrace, target)) { 1567 retval = wait_consider_task(wo, ptrace, target); 1568 if (retval) 1569 return retval; 1570 } 1571 1572 ptrace = true; 1573 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1574 if (target && target->ptrace && 1575 is_effectively_child(wo, ptrace, target)) { 1576 retval = wait_consider_task(wo, ptrace, target); 1577 if (retval) 1578 return retval; 1579 } 1580 1581 return 0; 1582 } 1583 1584 static long do_wait(struct wait_opts *wo) 1585 { 1586 int retval; 1587 1588 trace_sched_process_wait(wo->wo_pid); 1589 1590 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1591 wo->child_wait.private = current; 1592 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1593 repeat: 1594 /* 1595 * If there is nothing that can match our criteria, just get out. 1596 * We will clear ->notask_error to zero if we see any child that 1597 * might later match our criteria, even if we are not able to reap 1598 * it yet. 1599 */ 1600 wo->notask_error = -ECHILD; 1601 if ((wo->wo_type < PIDTYPE_MAX) && 1602 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1603 goto notask; 1604 1605 set_current_state(TASK_INTERRUPTIBLE); 1606 read_lock(&tasklist_lock); 1607 1608 if (wo->wo_type == PIDTYPE_PID) { 1609 retval = do_wait_pid(wo); 1610 if (retval) 1611 goto end; 1612 } else { 1613 struct task_struct *tsk = current; 1614 1615 do { 1616 retval = do_wait_thread(wo, tsk); 1617 if (retval) 1618 goto end; 1619 1620 retval = ptrace_do_wait(wo, tsk); 1621 if (retval) 1622 goto end; 1623 1624 if (wo->wo_flags & __WNOTHREAD) 1625 break; 1626 } while_each_thread(current, tsk); 1627 } 1628 read_unlock(&tasklist_lock); 1629 1630 notask: 1631 retval = wo->notask_error; 1632 if (!retval && !(wo->wo_flags & WNOHANG)) { 1633 retval = -ERESTARTSYS; 1634 if (!signal_pending(current)) { 1635 schedule(); 1636 goto repeat; 1637 } 1638 } 1639 end: 1640 __set_current_state(TASK_RUNNING); 1641 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1642 return retval; 1643 } 1644 1645 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1646 int options, struct rusage *ru) 1647 { 1648 struct wait_opts wo; 1649 struct pid *pid = NULL; 1650 enum pid_type type; 1651 long ret; 1652 unsigned int f_flags = 0; 1653 1654 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1655 __WNOTHREAD|__WCLONE|__WALL)) 1656 return -EINVAL; 1657 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1658 return -EINVAL; 1659 1660 switch (which) { 1661 case P_ALL: 1662 type = PIDTYPE_MAX; 1663 break; 1664 case P_PID: 1665 type = PIDTYPE_PID; 1666 if (upid <= 0) 1667 return -EINVAL; 1668 1669 pid = find_get_pid(upid); 1670 break; 1671 case P_PGID: 1672 type = PIDTYPE_PGID; 1673 if (upid < 0) 1674 return -EINVAL; 1675 1676 if (upid) 1677 pid = find_get_pid(upid); 1678 else 1679 pid = get_task_pid(current, PIDTYPE_PGID); 1680 break; 1681 case P_PIDFD: 1682 type = PIDTYPE_PID; 1683 if (upid < 0) 1684 return -EINVAL; 1685 1686 pid = pidfd_get_pid(upid, &f_flags); 1687 if (IS_ERR(pid)) 1688 return PTR_ERR(pid); 1689 1690 break; 1691 default: 1692 return -EINVAL; 1693 } 1694 1695 wo.wo_type = type; 1696 wo.wo_pid = pid; 1697 wo.wo_flags = options; 1698 wo.wo_info = infop; 1699 wo.wo_rusage = ru; 1700 if (f_flags & O_NONBLOCK) 1701 wo.wo_flags |= WNOHANG; 1702 1703 ret = do_wait(&wo); 1704 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1705 ret = -EAGAIN; 1706 1707 put_pid(pid); 1708 return ret; 1709 } 1710 1711 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1712 infop, int, options, struct rusage __user *, ru) 1713 { 1714 struct rusage r; 1715 struct waitid_info info = {.status = 0}; 1716 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1717 int signo = 0; 1718 1719 if (err > 0) { 1720 signo = SIGCHLD; 1721 err = 0; 1722 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1723 return -EFAULT; 1724 } 1725 if (!infop) 1726 return err; 1727 1728 if (!user_write_access_begin(infop, sizeof(*infop))) 1729 return -EFAULT; 1730 1731 unsafe_put_user(signo, &infop->si_signo, Efault); 1732 unsafe_put_user(0, &infop->si_errno, Efault); 1733 unsafe_put_user(info.cause, &infop->si_code, Efault); 1734 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1735 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1736 unsafe_put_user(info.status, &infop->si_status, Efault); 1737 user_write_access_end(); 1738 return err; 1739 Efault: 1740 user_write_access_end(); 1741 return -EFAULT; 1742 } 1743 1744 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1745 struct rusage *ru) 1746 { 1747 struct wait_opts wo; 1748 struct pid *pid = NULL; 1749 enum pid_type type; 1750 long ret; 1751 1752 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1753 __WNOTHREAD|__WCLONE|__WALL)) 1754 return -EINVAL; 1755 1756 /* -INT_MIN is not defined */ 1757 if (upid == INT_MIN) 1758 return -ESRCH; 1759 1760 if (upid == -1) 1761 type = PIDTYPE_MAX; 1762 else if (upid < 0) { 1763 type = PIDTYPE_PGID; 1764 pid = find_get_pid(-upid); 1765 } else if (upid == 0) { 1766 type = PIDTYPE_PGID; 1767 pid = get_task_pid(current, PIDTYPE_PGID); 1768 } else /* upid > 0 */ { 1769 type = PIDTYPE_PID; 1770 pid = find_get_pid(upid); 1771 } 1772 1773 wo.wo_type = type; 1774 wo.wo_pid = pid; 1775 wo.wo_flags = options | WEXITED; 1776 wo.wo_info = NULL; 1777 wo.wo_stat = 0; 1778 wo.wo_rusage = ru; 1779 ret = do_wait(&wo); 1780 put_pid(pid); 1781 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1782 ret = -EFAULT; 1783 1784 return ret; 1785 } 1786 1787 int kernel_wait(pid_t pid, int *stat) 1788 { 1789 struct wait_opts wo = { 1790 .wo_type = PIDTYPE_PID, 1791 .wo_pid = find_get_pid(pid), 1792 .wo_flags = WEXITED, 1793 }; 1794 int ret; 1795 1796 ret = do_wait(&wo); 1797 if (ret > 0 && wo.wo_stat) 1798 *stat = wo.wo_stat; 1799 put_pid(wo.wo_pid); 1800 return ret; 1801 } 1802 1803 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1804 int, options, struct rusage __user *, ru) 1805 { 1806 struct rusage r; 1807 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1808 1809 if (err > 0) { 1810 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1811 return -EFAULT; 1812 } 1813 return err; 1814 } 1815 1816 #ifdef __ARCH_WANT_SYS_WAITPID 1817 1818 /* 1819 * sys_waitpid() remains for compatibility. waitpid() should be 1820 * implemented by calling sys_wait4() from libc.a. 1821 */ 1822 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1823 { 1824 return kernel_wait4(pid, stat_addr, options, NULL); 1825 } 1826 1827 #endif 1828 1829 #ifdef CONFIG_COMPAT 1830 COMPAT_SYSCALL_DEFINE4(wait4, 1831 compat_pid_t, pid, 1832 compat_uint_t __user *, stat_addr, 1833 int, options, 1834 struct compat_rusage __user *, ru) 1835 { 1836 struct rusage r; 1837 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1838 if (err > 0) { 1839 if (ru && put_compat_rusage(&r, ru)) 1840 return -EFAULT; 1841 } 1842 return err; 1843 } 1844 1845 COMPAT_SYSCALL_DEFINE5(waitid, 1846 int, which, compat_pid_t, pid, 1847 struct compat_siginfo __user *, infop, int, options, 1848 struct compat_rusage __user *, uru) 1849 { 1850 struct rusage ru; 1851 struct waitid_info info = {.status = 0}; 1852 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1853 int signo = 0; 1854 if (err > 0) { 1855 signo = SIGCHLD; 1856 err = 0; 1857 if (uru) { 1858 /* kernel_waitid() overwrites everything in ru */ 1859 if (COMPAT_USE_64BIT_TIME) 1860 err = copy_to_user(uru, &ru, sizeof(ru)); 1861 else 1862 err = put_compat_rusage(&ru, uru); 1863 if (err) 1864 return -EFAULT; 1865 } 1866 } 1867 1868 if (!infop) 1869 return err; 1870 1871 if (!user_write_access_begin(infop, sizeof(*infop))) 1872 return -EFAULT; 1873 1874 unsafe_put_user(signo, &infop->si_signo, Efault); 1875 unsafe_put_user(0, &infop->si_errno, Efault); 1876 unsafe_put_user(info.cause, &infop->si_code, Efault); 1877 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1878 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1879 unsafe_put_user(info.status, &infop->si_status, Efault); 1880 user_write_access_end(); 1881 return err; 1882 Efault: 1883 user_write_access_end(); 1884 return -EFAULT; 1885 } 1886 #endif 1887 1888 /** 1889 * thread_group_exited - check that a thread group has exited 1890 * @pid: tgid of thread group to be checked. 1891 * 1892 * Test if the thread group represented by tgid has exited (all 1893 * threads are zombies, dead or completely gone). 1894 * 1895 * Return: true if the thread group has exited. false otherwise. 1896 */ 1897 bool thread_group_exited(struct pid *pid) 1898 { 1899 struct task_struct *task; 1900 bool exited; 1901 1902 rcu_read_lock(); 1903 task = pid_task(pid, PIDTYPE_PID); 1904 exited = !task || 1905 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1906 rcu_read_unlock(); 1907 1908 return exited; 1909 } 1910 EXPORT_SYMBOL(thread_group_exited); 1911 1912 /* 1913 * This needs to be __function_aligned as GCC implicitly makes any 1914 * implementation of abort() cold and drops alignment specified by 1915 * -falign-functions=N. 1916 * 1917 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1918 */ 1919 __weak __function_aligned void abort(void) 1920 { 1921 BUG(); 1922 1923 /* if that doesn't kill us, halt */ 1924 panic("Oops failed to kill thread"); 1925 } 1926 EXPORT_SYMBOL(abort); 1927