xref: /openbmc/linux/kernel/exit.c (revision cd354f1a)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/mnt_namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/cpuset.h>
34 #include <linux/syscalls.h>
35 #include <linux/signal.h>
36 #include <linux/posix-timers.h>
37 #include <linux/cn_proc.h>
38 #include <linux/mutex.h>
39 #include <linux/futex.h>
40 #include <linux/compat.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/pgtable.h>
49 #include <asm/mmu_context.h>
50 
51 extern void sem_exit (void);
52 
53 static void exit_mm(struct task_struct * tsk);
54 
55 static void __unhash_process(struct task_struct *p)
56 {
57 	nr_threads--;
58 	detach_pid(p, PIDTYPE_PID);
59 	if (thread_group_leader(p)) {
60 		detach_pid(p, PIDTYPE_PGID);
61 		detach_pid(p, PIDTYPE_SID);
62 
63 		list_del_rcu(&p->tasks);
64 		__get_cpu_var(process_counts)--;
65 	}
66 	list_del_rcu(&p->thread_group);
67 	remove_parent(p);
68 }
69 
70 /*
71  * This function expects the tasklist_lock write-locked.
72  */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 	struct signal_struct *sig = tsk->signal;
76 	struct sighand_struct *sighand;
77 
78 	BUG_ON(!sig);
79 	BUG_ON(!atomic_read(&sig->count));
80 
81 	rcu_read_lock();
82 	sighand = rcu_dereference(tsk->sighand);
83 	spin_lock(&sighand->siglock);
84 
85 	posix_cpu_timers_exit(tsk);
86 	if (atomic_dec_and_test(&sig->count))
87 		posix_cpu_timers_exit_group(tsk);
88 	else {
89 		/*
90 		 * If there is any task waiting for the group exit
91 		 * then notify it:
92 		 */
93 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 			wake_up_process(sig->group_exit_task);
95 			sig->group_exit_task = NULL;
96 		}
97 		if (tsk == sig->curr_target)
98 			sig->curr_target = next_thread(tsk);
99 		/*
100 		 * Accumulate here the counters for all threads but the
101 		 * group leader as they die, so they can be added into
102 		 * the process-wide totals when those are taken.
103 		 * The group leader stays around as a zombie as long
104 		 * as there are other threads.  When it gets reaped,
105 		 * the exit.c code will add its counts into these totals.
106 		 * We won't ever get here for the group leader, since it
107 		 * will have been the last reference on the signal_struct.
108 		 */
109 		sig->utime = cputime_add(sig->utime, tsk->utime);
110 		sig->stime = cputime_add(sig->stime, tsk->stime);
111 		sig->min_flt += tsk->min_flt;
112 		sig->maj_flt += tsk->maj_flt;
113 		sig->nvcsw += tsk->nvcsw;
114 		sig->nivcsw += tsk->nivcsw;
115 		sig->sched_time += tsk->sched_time;
116 		sig = NULL; /* Marker for below. */
117 	}
118 
119 	__unhash_process(tsk);
120 
121 	tsk->signal = NULL;
122 	tsk->sighand = NULL;
123 	spin_unlock(&sighand->siglock);
124 	rcu_read_unlock();
125 
126 	__cleanup_sighand(sighand);
127 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 	flush_sigqueue(&tsk->pending);
129 	if (sig) {
130 		flush_sigqueue(&sig->shared_pending);
131 		taskstats_tgid_free(sig);
132 		__cleanup_signal(sig);
133 	}
134 }
135 
136 static void delayed_put_task_struct(struct rcu_head *rhp)
137 {
138 	put_task_struct(container_of(rhp, struct task_struct, rcu));
139 }
140 
141 void release_task(struct task_struct * p)
142 {
143 	struct task_struct *leader;
144 	int zap_leader;
145 repeat:
146 	atomic_dec(&p->user->processes);
147 	write_lock_irq(&tasklist_lock);
148 	ptrace_unlink(p);
149 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 	__exit_signal(p);
151 
152 	/*
153 	 * If we are the last non-leader member of the thread
154 	 * group, and the leader is zombie, then notify the
155 	 * group leader's parent process. (if it wants notification.)
156 	 */
157 	zap_leader = 0;
158 	leader = p->group_leader;
159 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 		BUG_ON(leader->exit_signal == -1);
161 		do_notify_parent(leader, leader->exit_signal);
162 		/*
163 		 * If we were the last child thread and the leader has
164 		 * exited already, and the leader's parent ignores SIGCHLD,
165 		 * then we are the one who should release the leader.
166 		 *
167 		 * do_notify_parent() will have marked it self-reaping in
168 		 * that case.
169 		 */
170 		zap_leader = (leader->exit_signal == -1);
171 	}
172 
173 	sched_exit(p);
174 	write_unlock_irq(&tasklist_lock);
175 	proc_flush_task(p);
176 	release_thread(p);
177 	call_rcu(&p->rcu, delayed_put_task_struct);
178 
179 	p = leader;
180 	if (unlikely(zap_leader))
181 		goto repeat;
182 }
183 
184 /*
185  * This checks not only the pgrp, but falls back on the pid if no
186  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187  * without this...
188  *
189  * The caller must hold rcu lock or the tasklist lock.
190  */
191 struct pid *session_of_pgrp(struct pid *pgrp)
192 {
193 	struct task_struct *p;
194 	struct pid *sid = NULL;
195 
196 	p = pid_task(pgrp, PIDTYPE_PGID);
197 	if (p == NULL)
198 		p = pid_task(pgrp, PIDTYPE_PID);
199 	if (p != NULL)
200 		sid = task_session(p);
201 
202 	return sid;
203 }
204 
205 /*
206  * Determine if a process group is "orphaned", according to the POSIX
207  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
208  * by terminal-generated stop signals.  Newly orphaned process groups are
209  * to receive a SIGHUP and a SIGCONT.
210  *
211  * "I ask you, have you ever known what it is to be an orphan?"
212  */
213 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
214 {
215 	struct task_struct *p;
216 	int ret = 1;
217 
218 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
219 		if (p == ignored_task
220 				|| p->exit_state
221 				|| is_init(p->real_parent))
222 			continue;
223 		if (task_pgrp(p->real_parent) != pgrp &&
224 		    task_session(p->real_parent) == task_session(p)) {
225 			ret = 0;
226 			break;
227 		}
228 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
229 	return ret;	/* (sighing) "Often!" */
230 }
231 
232 int is_current_pgrp_orphaned(void)
233 {
234 	int retval;
235 
236 	read_lock(&tasklist_lock);
237 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
238 	read_unlock(&tasklist_lock);
239 
240 	return retval;
241 }
242 
243 static int has_stopped_jobs(struct pid *pgrp)
244 {
245 	int retval = 0;
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if (p->state != TASK_STOPPED)
250 			continue;
251 		retval = 1;
252 		break;
253 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 	return retval;
255 }
256 
257 /**
258  * reparent_to_init - Reparent the calling kernel thread to the init task of the pid space that the thread belongs to.
259  *
260  * If a kernel thread is launched as a result of a system call, or if
261  * it ever exits, it should generally reparent itself to init so that
262  * it is correctly cleaned up on exit.
263  *
264  * The various task state such as scheduling policy and priority may have
265  * been inherited from a user process, so we reset them to sane values here.
266  *
267  * NOTE that reparent_to_init() gives the caller full capabilities.
268  */
269 static void reparent_to_init(void)
270 {
271 	write_lock_irq(&tasklist_lock);
272 
273 	ptrace_unlink(current);
274 	/* Reparent to init */
275 	remove_parent(current);
276 	current->parent = child_reaper(current);
277 	current->real_parent = child_reaper(current);
278 	add_parent(current);
279 
280 	/* Set the exit signal to SIGCHLD so we signal init on exit */
281 	current->exit_signal = SIGCHLD;
282 
283 	if (!has_rt_policy(current) && (task_nice(current) < 0))
284 		set_user_nice(current, 0);
285 	/* cpus_allowed? */
286 	/* rt_priority? */
287 	/* signals? */
288 	security_task_reparent_to_init(current);
289 	memcpy(current->signal->rlim, init_task.signal->rlim,
290 	       sizeof(current->signal->rlim));
291 	atomic_inc(&(INIT_USER->__count));
292 	write_unlock_irq(&tasklist_lock);
293 	switch_uid(INIT_USER);
294 }
295 
296 void __set_special_pids(pid_t session, pid_t pgrp)
297 {
298 	struct task_struct *curr = current->group_leader;
299 
300 	if (process_session(curr) != session) {
301 		detach_pid(curr, PIDTYPE_SID);
302 		set_signal_session(curr->signal, session);
303 		attach_pid(curr, PIDTYPE_SID, session);
304 	}
305 	if (process_group(curr) != pgrp) {
306 		detach_pid(curr, PIDTYPE_PGID);
307 		curr->signal->pgrp = pgrp;
308 		attach_pid(curr, PIDTYPE_PGID, pgrp);
309 	}
310 }
311 
312 static void set_special_pids(pid_t session, pid_t pgrp)
313 {
314 	write_lock_irq(&tasklist_lock);
315 	__set_special_pids(session, pgrp);
316 	write_unlock_irq(&tasklist_lock);
317 }
318 
319 /*
320  * Let kernel threads use this to say that they
321  * allow a certain signal (since daemonize() will
322  * have disabled all of them by default).
323  */
324 int allow_signal(int sig)
325 {
326 	if (!valid_signal(sig) || sig < 1)
327 		return -EINVAL;
328 
329 	spin_lock_irq(&current->sighand->siglock);
330 	sigdelset(&current->blocked, sig);
331 	if (!current->mm) {
332 		/* Kernel threads handle their own signals.
333 		   Let the signal code know it'll be handled, so
334 		   that they don't get converted to SIGKILL or
335 		   just silently dropped */
336 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
337 	}
338 	recalc_sigpending();
339 	spin_unlock_irq(&current->sighand->siglock);
340 	return 0;
341 }
342 
343 EXPORT_SYMBOL(allow_signal);
344 
345 int disallow_signal(int sig)
346 {
347 	if (!valid_signal(sig) || sig < 1)
348 		return -EINVAL;
349 
350 	spin_lock_irq(&current->sighand->siglock);
351 	sigaddset(&current->blocked, sig);
352 	recalc_sigpending();
353 	spin_unlock_irq(&current->sighand->siglock);
354 	return 0;
355 }
356 
357 EXPORT_SYMBOL(disallow_signal);
358 
359 /*
360  *	Put all the gunge required to become a kernel thread without
361  *	attached user resources in one place where it belongs.
362  */
363 
364 void daemonize(const char *name, ...)
365 {
366 	va_list args;
367 	struct fs_struct *fs;
368 	sigset_t blocked;
369 
370 	va_start(args, name);
371 	vsnprintf(current->comm, sizeof(current->comm), name, args);
372 	va_end(args);
373 
374 	/*
375 	 * If we were started as result of loading a module, close all of the
376 	 * user space pages.  We don't need them, and if we didn't close them
377 	 * they would be locked into memory.
378 	 */
379 	exit_mm(current);
380 
381 	set_special_pids(1, 1);
382 	proc_clear_tty(current);
383 
384 	/* Block and flush all signals */
385 	sigfillset(&blocked);
386 	sigprocmask(SIG_BLOCK, &blocked, NULL);
387 	flush_signals(current);
388 
389 	/* Become as one with the init task */
390 
391 	exit_fs(current);	/* current->fs->count--; */
392 	fs = init_task.fs;
393 	current->fs = fs;
394 	atomic_inc(&fs->count);
395 
396 	exit_task_namespaces(current);
397 	current->nsproxy = init_task.nsproxy;
398 	get_task_namespaces(current);
399 
400  	exit_files(current);
401 	current->files = init_task.files;
402 	atomic_inc(&current->files->count);
403 
404 	reparent_to_init();
405 }
406 
407 EXPORT_SYMBOL(daemonize);
408 
409 static void close_files(struct files_struct * files)
410 {
411 	int i, j;
412 	struct fdtable *fdt;
413 
414 	j = 0;
415 
416 	/*
417 	 * It is safe to dereference the fd table without RCU or
418 	 * ->file_lock because this is the last reference to the
419 	 * files structure.
420 	 */
421 	fdt = files_fdtable(files);
422 	for (;;) {
423 		unsigned long set;
424 		i = j * __NFDBITS;
425 		if (i >= fdt->max_fds)
426 			break;
427 		set = fdt->open_fds->fds_bits[j++];
428 		while (set) {
429 			if (set & 1) {
430 				struct file * file = xchg(&fdt->fd[i], NULL);
431 				if (file) {
432 					filp_close(file, files);
433 					cond_resched();
434 				}
435 			}
436 			i++;
437 			set >>= 1;
438 		}
439 	}
440 }
441 
442 struct files_struct *get_files_struct(struct task_struct *task)
443 {
444 	struct files_struct *files;
445 
446 	task_lock(task);
447 	files = task->files;
448 	if (files)
449 		atomic_inc(&files->count);
450 	task_unlock(task);
451 
452 	return files;
453 }
454 
455 void fastcall put_files_struct(struct files_struct *files)
456 {
457 	struct fdtable *fdt;
458 
459 	if (atomic_dec_and_test(&files->count)) {
460 		close_files(files);
461 		/*
462 		 * Free the fd and fdset arrays if we expanded them.
463 		 * If the fdtable was embedded, pass files for freeing
464 		 * at the end of the RCU grace period. Otherwise,
465 		 * you can free files immediately.
466 		 */
467 		fdt = files_fdtable(files);
468 		if (fdt != &files->fdtab)
469 			kmem_cache_free(files_cachep, files);
470 		free_fdtable(fdt);
471 	}
472 }
473 
474 EXPORT_SYMBOL(put_files_struct);
475 
476 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
477 {
478 	struct files_struct *old;
479 
480 	old = tsk->files;
481 	task_lock(tsk);
482 	tsk->files = files;
483 	task_unlock(tsk);
484 	put_files_struct(old);
485 }
486 EXPORT_SYMBOL(reset_files_struct);
487 
488 static inline void __exit_files(struct task_struct *tsk)
489 {
490 	struct files_struct * files = tsk->files;
491 
492 	if (files) {
493 		task_lock(tsk);
494 		tsk->files = NULL;
495 		task_unlock(tsk);
496 		put_files_struct(files);
497 	}
498 }
499 
500 void exit_files(struct task_struct *tsk)
501 {
502 	__exit_files(tsk);
503 }
504 
505 static inline void __put_fs_struct(struct fs_struct *fs)
506 {
507 	/* No need to hold fs->lock if we are killing it */
508 	if (atomic_dec_and_test(&fs->count)) {
509 		dput(fs->root);
510 		mntput(fs->rootmnt);
511 		dput(fs->pwd);
512 		mntput(fs->pwdmnt);
513 		if (fs->altroot) {
514 			dput(fs->altroot);
515 			mntput(fs->altrootmnt);
516 		}
517 		kmem_cache_free(fs_cachep, fs);
518 	}
519 }
520 
521 void put_fs_struct(struct fs_struct *fs)
522 {
523 	__put_fs_struct(fs);
524 }
525 
526 static inline void __exit_fs(struct task_struct *tsk)
527 {
528 	struct fs_struct * fs = tsk->fs;
529 
530 	if (fs) {
531 		task_lock(tsk);
532 		tsk->fs = NULL;
533 		task_unlock(tsk);
534 		__put_fs_struct(fs);
535 	}
536 }
537 
538 void exit_fs(struct task_struct *tsk)
539 {
540 	__exit_fs(tsk);
541 }
542 
543 EXPORT_SYMBOL_GPL(exit_fs);
544 
545 /*
546  * Turn us into a lazy TLB process if we
547  * aren't already..
548  */
549 static void exit_mm(struct task_struct * tsk)
550 {
551 	struct mm_struct *mm = tsk->mm;
552 
553 	mm_release(tsk, mm);
554 	if (!mm)
555 		return;
556 	/*
557 	 * Serialize with any possible pending coredump.
558 	 * We must hold mmap_sem around checking core_waiters
559 	 * and clearing tsk->mm.  The core-inducing thread
560 	 * will increment core_waiters for each thread in the
561 	 * group with ->mm != NULL.
562 	 */
563 	down_read(&mm->mmap_sem);
564 	if (mm->core_waiters) {
565 		up_read(&mm->mmap_sem);
566 		down_write(&mm->mmap_sem);
567 		if (!--mm->core_waiters)
568 			complete(mm->core_startup_done);
569 		up_write(&mm->mmap_sem);
570 
571 		wait_for_completion(&mm->core_done);
572 		down_read(&mm->mmap_sem);
573 	}
574 	atomic_inc(&mm->mm_count);
575 	BUG_ON(mm != tsk->active_mm);
576 	/* more a memory barrier than a real lock */
577 	task_lock(tsk);
578 	tsk->mm = NULL;
579 	up_read(&mm->mmap_sem);
580 	enter_lazy_tlb(mm, current);
581 	task_unlock(tsk);
582 	mmput(mm);
583 }
584 
585 static inline void
586 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
587 {
588 	/*
589 	 * Make sure we're not reparenting to ourselves and that
590 	 * the parent is not a zombie.
591 	 */
592 	BUG_ON(p == reaper || reaper->exit_state);
593 	p->real_parent = reaper;
594 }
595 
596 static void
597 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
598 {
599 	if (p->pdeath_signal)
600 		/* We already hold the tasklist_lock here.  */
601 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
602 
603 	/* Move the child from its dying parent to the new one.  */
604 	if (unlikely(traced)) {
605 		/* Preserve ptrace links if someone else is tracing this child.  */
606 		list_del_init(&p->ptrace_list);
607 		if (p->parent != p->real_parent)
608 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
609 	} else {
610 		/* If this child is being traced, then we're the one tracing it
611 		 * anyway, so let go of it.
612 		 */
613 		p->ptrace = 0;
614 		remove_parent(p);
615 		p->parent = p->real_parent;
616 		add_parent(p);
617 
618 		if (p->state == TASK_TRACED) {
619 			/*
620 			 * If it was at a trace stop, turn it into
621 			 * a normal stop since it's no longer being
622 			 * traced.
623 			 */
624 			ptrace_untrace(p);
625 		}
626 	}
627 
628 	/* If this is a threaded reparent there is no need to
629 	 * notify anyone anything has happened.
630 	 */
631 	if (p->real_parent->group_leader == father->group_leader)
632 		return;
633 
634 	/* We don't want people slaying init.  */
635 	if (p->exit_signal != -1)
636 		p->exit_signal = SIGCHLD;
637 
638 	/* If we'd notified the old parent about this child's death,
639 	 * also notify the new parent.
640 	 */
641 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
642 	    p->exit_signal != -1 && thread_group_empty(p))
643 		do_notify_parent(p, p->exit_signal);
644 
645 	/*
646 	 * process group orphan check
647 	 * Case ii: Our child is in a different pgrp
648 	 * than we are, and it was the only connection
649 	 * outside, so the child pgrp is now orphaned.
650 	 */
651 	if ((task_pgrp(p) != task_pgrp(father)) &&
652 	    (task_session(p) == task_session(father))) {
653 		struct pid *pgrp = task_pgrp(p);
654 
655 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
656 		    has_stopped_jobs(pgrp)) {
657 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
658 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
659 		}
660 	}
661 }
662 
663 /*
664  * When we die, we re-parent all our children.
665  * Try to give them to another thread in our thread
666  * group, and if no such member exists, give it to
667  * the child reaper process (ie "init") in our pid
668  * space.
669  */
670 static void
671 forget_original_parent(struct task_struct *father, struct list_head *to_release)
672 {
673 	struct task_struct *p, *reaper = father;
674 	struct list_head *_p, *_n;
675 
676 	do {
677 		reaper = next_thread(reaper);
678 		if (reaper == father) {
679 			reaper = child_reaper(father);
680 			break;
681 		}
682 	} while (reaper->exit_state);
683 
684 	/*
685 	 * There are only two places where our children can be:
686 	 *
687 	 * - in our child list
688 	 * - in our ptraced child list
689 	 *
690 	 * Search them and reparent children.
691 	 */
692 	list_for_each_safe(_p, _n, &father->children) {
693 		int ptrace;
694 		p = list_entry(_p, struct task_struct, sibling);
695 
696 		ptrace = p->ptrace;
697 
698 		/* if father isn't the real parent, then ptrace must be enabled */
699 		BUG_ON(father != p->real_parent && !ptrace);
700 
701 		if (father == p->real_parent) {
702 			/* reparent with a reaper, real father it's us */
703 			choose_new_parent(p, reaper);
704 			reparent_thread(p, father, 0);
705 		} else {
706 			/* reparent ptraced task to its real parent */
707 			__ptrace_unlink (p);
708 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
709 			    thread_group_empty(p))
710 				do_notify_parent(p, p->exit_signal);
711 		}
712 
713 		/*
714 		 * if the ptraced child is a zombie with exit_signal == -1
715 		 * we must collect it before we exit, or it will remain
716 		 * zombie forever since we prevented it from self-reap itself
717 		 * while it was being traced by us, to be able to see it in wait4.
718 		 */
719 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
720 			list_add(&p->ptrace_list, to_release);
721 	}
722 	list_for_each_safe(_p, _n, &father->ptrace_children) {
723 		p = list_entry(_p, struct task_struct, ptrace_list);
724 		choose_new_parent(p, reaper);
725 		reparent_thread(p, father, 1);
726 	}
727 }
728 
729 /*
730  * Send signals to all our closest relatives so that they know
731  * to properly mourn us..
732  */
733 static void exit_notify(struct task_struct *tsk)
734 {
735 	int state;
736 	struct task_struct *t;
737 	struct list_head ptrace_dead, *_p, *_n;
738 	struct pid *pgrp;
739 
740 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
741 	    && !thread_group_empty(tsk)) {
742 		/*
743 		 * This occurs when there was a race between our exit
744 		 * syscall and a group signal choosing us as the one to
745 		 * wake up.  It could be that we are the only thread
746 		 * alerted to check for pending signals, but another thread
747 		 * should be woken now to take the signal since we will not.
748 		 * Now we'll wake all the threads in the group just to make
749 		 * sure someone gets all the pending signals.
750 		 */
751 		read_lock(&tasklist_lock);
752 		spin_lock_irq(&tsk->sighand->siglock);
753 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
754 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
755 				recalc_sigpending_tsk(t);
756 				if (signal_pending(t))
757 					signal_wake_up(t, 0);
758 			}
759 		spin_unlock_irq(&tsk->sighand->siglock);
760 		read_unlock(&tasklist_lock);
761 	}
762 
763 	write_lock_irq(&tasklist_lock);
764 
765 	/*
766 	 * This does two things:
767 	 *
768   	 * A.  Make init inherit all the child processes
769 	 * B.  Check to see if any process groups have become orphaned
770 	 *	as a result of our exiting, and if they have any stopped
771 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
772 	 */
773 
774 	INIT_LIST_HEAD(&ptrace_dead);
775 	forget_original_parent(tsk, &ptrace_dead);
776 	BUG_ON(!list_empty(&tsk->children));
777 	BUG_ON(!list_empty(&tsk->ptrace_children));
778 
779 	/*
780 	 * Check to see if any process groups have become orphaned
781 	 * as a result of our exiting, and if they have any stopped
782 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
783 	 *
784 	 * Case i: Our father is in a different pgrp than we are
785 	 * and we were the only connection outside, so our pgrp
786 	 * is about to become orphaned.
787 	 */
788 
789 	t = tsk->real_parent;
790 
791 	pgrp = task_pgrp(tsk);
792 	if ((task_pgrp(t) != pgrp) &&
793 	    (task_session(t) != task_session(tsk)) &&
794 	    will_become_orphaned_pgrp(pgrp, tsk) &&
795 	    has_stopped_jobs(pgrp)) {
796 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
797 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
798 	}
799 
800 	/* Let father know we died
801 	 *
802 	 * Thread signals are configurable, but you aren't going to use
803 	 * that to send signals to arbitary processes.
804 	 * That stops right now.
805 	 *
806 	 * If the parent exec id doesn't match the exec id we saved
807 	 * when we started then we know the parent has changed security
808 	 * domain.
809 	 *
810 	 * If our self_exec id doesn't match our parent_exec_id then
811 	 * we have changed execution domain as these two values started
812 	 * the same after a fork.
813 	 *
814 	 */
815 
816 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
817 	    ( tsk->parent_exec_id != t->self_exec_id  ||
818 	      tsk->self_exec_id != tsk->parent_exec_id)
819 	    && !capable(CAP_KILL))
820 		tsk->exit_signal = SIGCHLD;
821 
822 
823 	/* If something other than our normal parent is ptracing us, then
824 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
825 	 * only has special meaning to our real parent.
826 	 */
827 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
828 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
829 		do_notify_parent(tsk, signal);
830 	} else if (tsk->ptrace) {
831 		do_notify_parent(tsk, SIGCHLD);
832 	}
833 
834 	state = EXIT_ZOMBIE;
835 	if (tsk->exit_signal == -1 &&
836 	    (likely(tsk->ptrace == 0) ||
837 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
838 		state = EXIT_DEAD;
839 	tsk->exit_state = state;
840 
841 	write_unlock_irq(&tasklist_lock);
842 
843 	list_for_each_safe(_p, _n, &ptrace_dead) {
844 		list_del_init(_p);
845 		t = list_entry(_p, struct task_struct, ptrace_list);
846 		release_task(t);
847 	}
848 
849 	/* If the process is dead, release it - nobody will wait for it */
850 	if (state == EXIT_DEAD)
851 		release_task(tsk);
852 }
853 
854 fastcall NORET_TYPE void do_exit(long code)
855 {
856 	struct task_struct *tsk = current;
857 	int group_dead;
858 
859 	profile_task_exit(tsk);
860 
861 	WARN_ON(atomic_read(&tsk->fs_excl));
862 
863 	if (unlikely(in_interrupt()))
864 		panic("Aiee, killing interrupt handler!");
865 	if (unlikely(!tsk->pid))
866 		panic("Attempted to kill the idle task!");
867 	if (unlikely(tsk == child_reaper(tsk))) {
868 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
869 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
870 		else
871 			panic("Attempted to kill init!");
872 	}
873 
874 
875 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
876 		current->ptrace_message = code;
877 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
878 	}
879 
880 	/*
881 	 * We're taking recursive faults here in do_exit. Safest is to just
882 	 * leave this task alone and wait for reboot.
883 	 */
884 	if (unlikely(tsk->flags & PF_EXITING)) {
885 		printk(KERN_ALERT
886 			"Fixing recursive fault but reboot is needed!\n");
887 		if (tsk->io_context)
888 			exit_io_context();
889 		set_current_state(TASK_UNINTERRUPTIBLE);
890 		schedule();
891 	}
892 
893 	tsk->flags |= PF_EXITING;
894 
895 	if (unlikely(in_atomic()))
896 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
897 				current->comm, current->pid,
898 				preempt_count());
899 
900 	acct_update_integrals(tsk);
901 	if (tsk->mm) {
902 		update_hiwater_rss(tsk->mm);
903 		update_hiwater_vm(tsk->mm);
904 	}
905 	group_dead = atomic_dec_and_test(&tsk->signal->live);
906 	if (group_dead) {
907  		hrtimer_cancel(&tsk->signal->real_timer);
908 		exit_itimers(tsk->signal);
909 	}
910 	acct_collect(code, group_dead);
911 	if (unlikely(tsk->robust_list))
912 		exit_robust_list(tsk);
913 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
914 	if (unlikely(tsk->compat_robust_list))
915 		compat_exit_robust_list(tsk);
916 #endif
917 	if (unlikely(tsk->audit_context))
918 		audit_free(tsk);
919 
920 	taskstats_exit(tsk, group_dead);
921 
922 	exit_mm(tsk);
923 
924 	if (group_dead)
925 		acct_process();
926 	exit_sem(tsk);
927 	__exit_files(tsk);
928 	__exit_fs(tsk);
929 	exit_thread();
930 	cpuset_exit(tsk);
931 	exit_keys(tsk);
932 
933 	if (group_dead && tsk->signal->leader)
934 		disassociate_ctty(1);
935 
936 	module_put(task_thread_info(tsk)->exec_domain->module);
937 	if (tsk->binfmt)
938 		module_put(tsk->binfmt->module);
939 
940 	tsk->exit_code = code;
941 	proc_exit_connector(tsk);
942 	exit_task_namespaces(tsk);
943 	exit_notify(tsk);
944 #ifdef CONFIG_NUMA
945 	mpol_free(tsk->mempolicy);
946 	tsk->mempolicy = NULL;
947 #endif
948 	/*
949 	 * This must happen late, after the PID is not
950 	 * hashed anymore:
951 	 */
952 	if (unlikely(!list_empty(&tsk->pi_state_list)))
953 		exit_pi_state_list(tsk);
954 	if (unlikely(current->pi_state_cache))
955 		kfree(current->pi_state_cache);
956 	/*
957 	 * Make sure we are holding no locks:
958 	 */
959 	debug_check_no_locks_held(tsk);
960 
961 	if (tsk->io_context)
962 		exit_io_context();
963 
964 	if (tsk->splice_pipe)
965 		__free_pipe_info(tsk->splice_pipe);
966 
967 	preempt_disable();
968 	/* causes final put_task_struct in finish_task_switch(). */
969 	tsk->state = TASK_DEAD;
970 
971 	schedule();
972 	BUG();
973 	/* Avoid "noreturn function does return".  */
974 	for (;;)
975 		cpu_relax();	/* For when BUG is null */
976 }
977 
978 EXPORT_SYMBOL_GPL(do_exit);
979 
980 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
981 {
982 	if (comp)
983 		complete(comp);
984 
985 	do_exit(code);
986 }
987 
988 EXPORT_SYMBOL(complete_and_exit);
989 
990 asmlinkage long sys_exit(int error_code)
991 {
992 	do_exit((error_code&0xff)<<8);
993 }
994 
995 /*
996  * Take down every thread in the group.  This is called by fatal signals
997  * as well as by sys_exit_group (below).
998  */
999 NORET_TYPE void
1000 do_group_exit(int exit_code)
1001 {
1002 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1003 
1004 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1005 		exit_code = current->signal->group_exit_code;
1006 	else if (!thread_group_empty(current)) {
1007 		struct signal_struct *const sig = current->signal;
1008 		struct sighand_struct *const sighand = current->sighand;
1009 		spin_lock_irq(&sighand->siglock);
1010 		if (sig->flags & SIGNAL_GROUP_EXIT)
1011 			/* Another thread got here before we took the lock.  */
1012 			exit_code = sig->group_exit_code;
1013 		else {
1014 			sig->group_exit_code = exit_code;
1015 			zap_other_threads(current);
1016 		}
1017 		spin_unlock_irq(&sighand->siglock);
1018 	}
1019 
1020 	do_exit(exit_code);
1021 	/* NOTREACHED */
1022 }
1023 
1024 /*
1025  * this kills every thread in the thread group. Note that any externally
1026  * wait4()-ing process will get the correct exit code - even if this
1027  * thread is not the thread group leader.
1028  */
1029 asmlinkage void sys_exit_group(int error_code)
1030 {
1031 	do_group_exit((error_code & 0xff) << 8);
1032 }
1033 
1034 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1035 {
1036 	if (pid > 0) {
1037 		if (p->pid != pid)
1038 			return 0;
1039 	} else if (!pid) {
1040 		if (process_group(p) != process_group(current))
1041 			return 0;
1042 	} else if (pid != -1) {
1043 		if (process_group(p) != -pid)
1044 			return 0;
1045 	}
1046 
1047 	/*
1048 	 * Do not consider detached threads that are
1049 	 * not ptraced:
1050 	 */
1051 	if (p->exit_signal == -1 && !p->ptrace)
1052 		return 0;
1053 
1054 	/* Wait for all children (clone and not) if __WALL is set;
1055 	 * otherwise, wait for clone children *only* if __WCLONE is
1056 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1057 	 * A "clone" child here is one that reports to its parent
1058 	 * using a signal other than SIGCHLD.) */
1059 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1060 	    && !(options & __WALL))
1061 		return 0;
1062 	/*
1063 	 * Do not consider thread group leaders that are
1064 	 * in a non-empty thread group:
1065 	 */
1066 	if (delay_group_leader(p))
1067 		return 2;
1068 
1069 	if (security_task_wait(p))
1070 		return 0;
1071 
1072 	return 1;
1073 }
1074 
1075 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1076 			       int why, int status,
1077 			       struct siginfo __user *infop,
1078 			       struct rusage __user *rusagep)
1079 {
1080 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1081 
1082 	put_task_struct(p);
1083 	if (!retval)
1084 		retval = put_user(SIGCHLD, &infop->si_signo);
1085 	if (!retval)
1086 		retval = put_user(0, &infop->si_errno);
1087 	if (!retval)
1088 		retval = put_user((short)why, &infop->si_code);
1089 	if (!retval)
1090 		retval = put_user(pid, &infop->si_pid);
1091 	if (!retval)
1092 		retval = put_user(uid, &infop->si_uid);
1093 	if (!retval)
1094 		retval = put_user(status, &infop->si_status);
1095 	if (!retval)
1096 		retval = pid;
1097 	return retval;
1098 }
1099 
1100 /*
1101  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1102  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1103  * the lock and this task is uninteresting.  If we return nonzero, we have
1104  * released the lock and the system call should return.
1105  */
1106 static int wait_task_zombie(struct task_struct *p, int noreap,
1107 			    struct siginfo __user *infop,
1108 			    int __user *stat_addr, struct rusage __user *ru)
1109 {
1110 	unsigned long state;
1111 	int retval;
1112 	int status;
1113 
1114 	if (unlikely(noreap)) {
1115 		pid_t pid = p->pid;
1116 		uid_t uid = p->uid;
1117 		int exit_code = p->exit_code;
1118 		int why, status;
1119 
1120 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1121 			return 0;
1122 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1123 			return 0;
1124 		get_task_struct(p);
1125 		read_unlock(&tasklist_lock);
1126 		if ((exit_code & 0x7f) == 0) {
1127 			why = CLD_EXITED;
1128 			status = exit_code >> 8;
1129 		} else {
1130 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1131 			status = exit_code & 0x7f;
1132 		}
1133 		return wait_noreap_copyout(p, pid, uid, why,
1134 					   status, infop, ru);
1135 	}
1136 
1137 	/*
1138 	 * Try to move the task's state to DEAD
1139 	 * only one thread is allowed to do this:
1140 	 */
1141 	state = xchg(&p->exit_state, EXIT_DEAD);
1142 	if (state != EXIT_ZOMBIE) {
1143 		BUG_ON(state != EXIT_DEAD);
1144 		return 0;
1145 	}
1146 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1147 		/*
1148 		 * This can only happen in a race with a ptraced thread
1149 		 * dying on another processor.
1150 		 */
1151 		return 0;
1152 	}
1153 
1154 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1155 		struct signal_struct *psig;
1156 		struct signal_struct *sig;
1157 
1158 		/*
1159 		 * The resource counters for the group leader are in its
1160 		 * own task_struct.  Those for dead threads in the group
1161 		 * are in its signal_struct, as are those for the child
1162 		 * processes it has previously reaped.  All these
1163 		 * accumulate in the parent's signal_struct c* fields.
1164 		 *
1165 		 * We don't bother to take a lock here to protect these
1166 		 * p->signal fields, because they are only touched by
1167 		 * __exit_signal, which runs with tasklist_lock
1168 		 * write-locked anyway, and so is excluded here.  We do
1169 		 * need to protect the access to p->parent->signal fields,
1170 		 * as other threads in the parent group can be right
1171 		 * here reaping other children at the same time.
1172 		 */
1173 		spin_lock_irq(&p->parent->sighand->siglock);
1174 		psig = p->parent->signal;
1175 		sig = p->signal;
1176 		psig->cutime =
1177 			cputime_add(psig->cutime,
1178 			cputime_add(p->utime,
1179 			cputime_add(sig->utime,
1180 				    sig->cutime)));
1181 		psig->cstime =
1182 			cputime_add(psig->cstime,
1183 			cputime_add(p->stime,
1184 			cputime_add(sig->stime,
1185 				    sig->cstime)));
1186 		psig->cmin_flt +=
1187 			p->min_flt + sig->min_flt + sig->cmin_flt;
1188 		psig->cmaj_flt +=
1189 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1190 		psig->cnvcsw +=
1191 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1192 		psig->cnivcsw +=
1193 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1194 		spin_unlock_irq(&p->parent->sighand->siglock);
1195 	}
1196 
1197 	/*
1198 	 * Now we are sure this task is interesting, and no other
1199 	 * thread can reap it because we set its state to EXIT_DEAD.
1200 	 */
1201 	read_unlock(&tasklist_lock);
1202 
1203 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1204 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1205 		? p->signal->group_exit_code : p->exit_code;
1206 	if (!retval && stat_addr)
1207 		retval = put_user(status, stat_addr);
1208 	if (!retval && infop)
1209 		retval = put_user(SIGCHLD, &infop->si_signo);
1210 	if (!retval && infop)
1211 		retval = put_user(0, &infop->si_errno);
1212 	if (!retval && infop) {
1213 		int why;
1214 
1215 		if ((status & 0x7f) == 0) {
1216 			why = CLD_EXITED;
1217 			status >>= 8;
1218 		} else {
1219 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 			status &= 0x7f;
1221 		}
1222 		retval = put_user((short)why, &infop->si_code);
1223 		if (!retval)
1224 			retval = put_user(status, &infop->si_status);
1225 	}
1226 	if (!retval && infop)
1227 		retval = put_user(p->pid, &infop->si_pid);
1228 	if (!retval && infop)
1229 		retval = put_user(p->uid, &infop->si_uid);
1230 	if (retval) {
1231 		// TODO: is this safe?
1232 		p->exit_state = EXIT_ZOMBIE;
1233 		return retval;
1234 	}
1235 	retval = p->pid;
1236 	if (p->real_parent != p->parent) {
1237 		write_lock_irq(&tasklist_lock);
1238 		/* Double-check with lock held.  */
1239 		if (p->real_parent != p->parent) {
1240 			__ptrace_unlink(p);
1241 			// TODO: is this safe?
1242 			p->exit_state = EXIT_ZOMBIE;
1243 			/*
1244 			 * If this is not a detached task, notify the parent.
1245 			 * If it's still not detached after that, don't release
1246 			 * it now.
1247 			 */
1248 			if (p->exit_signal != -1) {
1249 				do_notify_parent(p, p->exit_signal);
1250 				if (p->exit_signal != -1)
1251 					p = NULL;
1252 			}
1253 		}
1254 		write_unlock_irq(&tasklist_lock);
1255 	}
1256 	if (p != NULL)
1257 		release_task(p);
1258 	BUG_ON(!retval);
1259 	return retval;
1260 }
1261 
1262 /*
1263  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1264  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1265  * the lock and this task is uninteresting.  If we return nonzero, we have
1266  * released the lock and the system call should return.
1267  */
1268 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1269 			     int noreap, struct siginfo __user *infop,
1270 			     int __user *stat_addr, struct rusage __user *ru)
1271 {
1272 	int retval, exit_code;
1273 
1274 	if (!p->exit_code)
1275 		return 0;
1276 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1277 	    p->signal && p->signal->group_stop_count > 0)
1278 		/*
1279 		 * A group stop is in progress and this is the group leader.
1280 		 * We won't report until all threads have stopped.
1281 		 */
1282 		return 0;
1283 
1284 	/*
1285 	 * Now we are pretty sure this task is interesting.
1286 	 * Make sure it doesn't get reaped out from under us while we
1287 	 * give up the lock and then examine it below.  We don't want to
1288 	 * keep holding onto the tasklist_lock while we call getrusage and
1289 	 * possibly take page faults for user memory.
1290 	 */
1291 	get_task_struct(p);
1292 	read_unlock(&tasklist_lock);
1293 
1294 	if (unlikely(noreap)) {
1295 		pid_t pid = p->pid;
1296 		uid_t uid = p->uid;
1297 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1298 
1299 		exit_code = p->exit_code;
1300 		if (unlikely(!exit_code) ||
1301 		    unlikely(p->state & TASK_TRACED))
1302 			goto bail_ref;
1303 		return wait_noreap_copyout(p, pid, uid,
1304 					   why, (exit_code << 8) | 0x7f,
1305 					   infop, ru);
1306 	}
1307 
1308 	write_lock_irq(&tasklist_lock);
1309 
1310 	/*
1311 	 * This uses xchg to be atomic with the thread resuming and setting
1312 	 * it.  It must also be done with the write lock held to prevent a
1313 	 * race with the EXIT_ZOMBIE case.
1314 	 */
1315 	exit_code = xchg(&p->exit_code, 0);
1316 	if (unlikely(p->exit_state)) {
1317 		/*
1318 		 * The task resumed and then died.  Let the next iteration
1319 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1320 		 * already be zero here if it resumed and did _exit(0).
1321 		 * The task itself is dead and won't touch exit_code again;
1322 		 * other processors in this function are locked out.
1323 		 */
1324 		p->exit_code = exit_code;
1325 		exit_code = 0;
1326 	}
1327 	if (unlikely(exit_code == 0)) {
1328 		/*
1329 		 * Another thread in this function got to it first, or it
1330 		 * resumed, or it resumed and then died.
1331 		 */
1332 		write_unlock_irq(&tasklist_lock);
1333 bail_ref:
1334 		put_task_struct(p);
1335 		/*
1336 		 * We are returning to the wait loop without having successfully
1337 		 * removed the process and having released the lock. We cannot
1338 		 * continue, since the "p" task pointer is potentially stale.
1339 		 *
1340 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1341 		 * beginning. Do _not_ re-acquire the lock.
1342 		 */
1343 		return -EAGAIN;
1344 	}
1345 
1346 	/* move to end of parent's list to avoid starvation */
1347 	remove_parent(p);
1348 	add_parent(p);
1349 
1350 	write_unlock_irq(&tasklist_lock);
1351 
1352 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1353 	if (!retval && stat_addr)
1354 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1355 	if (!retval && infop)
1356 		retval = put_user(SIGCHLD, &infop->si_signo);
1357 	if (!retval && infop)
1358 		retval = put_user(0, &infop->si_errno);
1359 	if (!retval && infop)
1360 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1361 					  ? CLD_TRAPPED : CLD_STOPPED),
1362 				  &infop->si_code);
1363 	if (!retval && infop)
1364 		retval = put_user(exit_code, &infop->si_status);
1365 	if (!retval && infop)
1366 		retval = put_user(p->pid, &infop->si_pid);
1367 	if (!retval && infop)
1368 		retval = put_user(p->uid, &infop->si_uid);
1369 	if (!retval)
1370 		retval = p->pid;
1371 	put_task_struct(p);
1372 
1373 	BUG_ON(!retval);
1374 	return retval;
1375 }
1376 
1377 /*
1378  * Handle do_wait work for one task in a live, non-stopped state.
1379  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1380  * the lock and this task is uninteresting.  If we return nonzero, we have
1381  * released the lock and the system call should return.
1382  */
1383 static int wait_task_continued(struct task_struct *p, int noreap,
1384 			       struct siginfo __user *infop,
1385 			       int __user *stat_addr, struct rusage __user *ru)
1386 {
1387 	int retval;
1388 	pid_t pid;
1389 	uid_t uid;
1390 
1391 	if (unlikely(!p->signal))
1392 		return 0;
1393 
1394 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1395 		return 0;
1396 
1397 	spin_lock_irq(&p->sighand->siglock);
1398 	/* Re-check with the lock held.  */
1399 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1400 		spin_unlock_irq(&p->sighand->siglock);
1401 		return 0;
1402 	}
1403 	if (!noreap)
1404 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1405 	spin_unlock_irq(&p->sighand->siglock);
1406 
1407 	pid = p->pid;
1408 	uid = p->uid;
1409 	get_task_struct(p);
1410 	read_unlock(&tasklist_lock);
1411 
1412 	if (!infop) {
1413 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1414 		put_task_struct(p);
1415 		if (!retval && stat_addr)
1416 			retval = put_user(0xffff, stat_addr);
1417 		if (!retval)
1418 			retval = p->pid;
1419 	} else {
1420 		retval = wait_noreap_copyout(p, pid, uid,
1421 					     CLD_CONTINUED, SIGCONT,
1422 					     infop, ru);
1423 		BUG_ON(retval == 0);
1424 	}
1425 
1426 	return retval;
1427 }
1428 
1429 
1430 static inline int my_ptrace_child(struct task_struct *p)
1431 {
1432 	if (!(p->ptrace & PT_PTRACED))
1433 		return 0;
1434 	if (!(p->ptrace & PT_ATTACHED))
1435 		return 1;
1436 	/*
1437 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1438 	 * we are the attacher.  If we are the real parent, this is a race
1439 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1440 	 * which we have to switch the parent links, but has already set
1441 	 * the flags in p->ptrace.
1442 	 */
1443 	return (p->parent != p->real_parent);
1444 }
1445 
1446 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1447 		    int __user *stat_addr, struct rusage __user *ru)
1448 {
1449 	DECLARE_WAITQUEUE(wait, current);
1450 	struct task_struct *tsk;
1451 	int flag, retval;
1452 
1453 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1454 repeat:
1455 	/*
1456 	 * We will set this flag if we see any child that might later
1457 	 * match our criteria, even if we are not able to reap it yet.
1458 	 */
1459 	flag = 0;
1460 	current->state = TASK_INTERRUPTIBLE;
1461 	read_lock(&tasklist_lock);
1462 	tsk = current;
1463 	do {
1464 		struct task_struct *p;
1465 		struct list_head *_p;
1466 		int ret;
1467 
1468 		list_for_each(_p,&tsk->children) {
1469 			p = list_entry(_p, struct task_struct, sibling);
1470 
1471 			ret = eligible_child(pid, options, p);
1472 			if (!ret)
1473 				continue;
1474 
1475 			switch (p->state) {
1476 			case TASK_TRACED:
1477 				/*
1478 				 * When we hit the race with PTRACE_ATTACH,
1479 				 * we will not report this child.  But the
1480 				 * race means it has not yet been moved to
1481 				 * our ptrace_children list, so we need to
1482 				 * set the flag here to avoid a spurious ECHILD
1483 				 * when the race happens with the only child.
1484 				 */
1485 				flag = 1;
1486 				if (!my_ptrace_child(p))
1487 					continue;
1488 				/*FALLTHROUGH*/
1489 			case TASK_STOPPED:
1490 				/*
1491 				 * It's stopped now, so it might later
1492 				 * continue, exit, or stop again.
1493 				 */
1494 				flag = 1;
1495 				if (!(options & WUNTRACED) &&
1496 				    !my_ptrace_child(p))
1497 					continue;
1498 				retval = wait_task_stopped(p, ret == 2,
1499 							   (options & WNOWAIT),
1500 							   infop,
1501 							   stat_addr, ru);
1502 				if (retval == -EAGAIN)
1503 					goto repeat;
1504 				if (retval != 0) /* He released the lock.  */
1505 					goto end;
1506 				break;
1507 			default:
1508 			// case EXIT_DEAD:
1509 				if (p->exit_state == EXIT_DEAD)
1510 					continue;
1511 			// case EXIT_ZOMBIE:
1512 				if (p->exit_state == EXIT_ZOMBIE) {
1513 					/*
1514 					 * Eligible but we cannot release
1515 					 * it yet:
1516 					 */
1517 					if (ret == 2)
1518 						goto check_continued;
1519 					if (!likely(options & WEXITED))
1520 						continue;
1521 					retval = wait_task_zombie(
1522 						p, (options & WNOWAIT),
1523 						infop, stat_addr, ru);
1524 					/* He released the lock.  */
1525 					if (retval != 0)
1526 						goto end;
1527 					break;
1528 				}
1529 check_continued:
1530 				/*
1531 				 * It's running now, so it might later
1532 				 * exit, stop, or stop and then continue.
1533 				 */
1534 				flag = 1;
1535 				if (!unlikely(options & WCONTINUED))
1536 					continue;
1537 				retval = wait_task_continued(
1538 					p, (options & WNOWAIT),
1539 					infop, stat_addr, ru);
1540 				if (retval != 0) /* He released the lock.  */
1541 					goto end;
1542 				break;
1543 			}
1544 		}
1545 		if (!flag) {
1546 			list_for_each(_p, &tsk->ptrace_children) {
1547 				p = list_entry(_p, struct task_struct,
1548 						ptrace_list);
1549 				if (!eligible_child(pid, options, p))
1550 					continue;
1551 				flag = 1;
1552 				break;
1553 			}
1554 		}
1555 		if (options & __WNOTHREAD)
1556 			break;
1557 		tsk = next_thread(tsk);
1558 		BUG_ON(tsk->signal != current->signal);
1559 	} while (tsk != current);
1560 
1561 	read_unlock(&tasklist_lock);
1562 	if (flag) {
1563 		retval = 0;
1564 		if (options & WNOHANG)
1565 			goto end;
1566 		retval = -ERESTARTSYS;
1567 		if (signal_pending(current))
1568 			goto end;
1569 		schedule();
1570 		goto repeat;
1571 	}
1572 	retval = -ECHILD;
1573 end:
1574 	current->state = TASK_RUNNING;
1575 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1576 	if (infop) {
1577 		if (retval > 0)
1578 		retval = 0;
1579 		else {
1580 			/*
1581 			 * For a WNOHANG return, clear out all the fields
1582 			 * we would set so the user can easily tell the
1583 			 * difference.
1584 			 */
1585 			if (!retval)
1586 				retval = put_user(0, &infop->si_signo);
1587 			if (!retval)
1588 				retval = put_user(0, &infop->si_errno);
1589 			if (!retval)
1590 				retval = put_user(0, &infop->si_code);
1591 			if (!retval)
1592 				retval = put_user(0, &infop->si_pid);
1593 			if (!retval)
1594 				retval = put_user(0, &infop->si_uid);
1595 			if (!retval)
1596 				retval = put_user(0, &infop->si_status);
1597 		}
1598 	}
1599 	return retval;
1600 }
1601 
1602 asmlinkage long sys_waitid(int which, pid_t pid,
1603 			   struct siginfo __user *infop, int options,
1604 			   struct rusage __user *ru)
1605 {
1606 	long ret;
1607 
1608 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1609 		return -EINVAL;
1610 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1611 		return -EINVAL;
1612 
1613 	switch (which) {
1614 	case P_ALL:
1615 		pid = -1;
1616 		break;
1617 	case P_PID:
1618 		if (pid <= 0)
1619 			return -EINVAL;
1620 		break;
1621 	case P_PGID:
1622 		if (pid <= 0)
1623 			return -EINVAL;
1624 		pid = -pid;
1625 		break;
1626 	default:
1627 		return -EINVAL;
1628 	}
1629 
1630 	ret = do_wait(pid, options, infop, NULL, ru);
1631 
1632 	/* avoid REGPARM breakage on x86: */
1633 	prevent_tail_call(ret);
1634 	return ret;
1635 }
1636 
1637 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1638 			  int options, struct rusage __user *ru)
1639 {
1640 	long ret;
1641 
1642 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1643 			__WNOTHREAD|__WCLONE|__WALL))
1644 		return -EINVAL;
1645 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1646 
1647 	/* avoid REGPARM breakage on x86: */
1648 	prevent_tail_call(ret);
1649 	return ret;
1650 }
1651 
1652 #ifdef __ARCH_WANT_SYS_WAITPID
1653 
1654 /*
1655  * sys_waitpid() remains for compatibility. waitpid() should be
1656  * implemented by calling sys_wait4() from libc.a.
1657  */
1658 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1659 {
1660 	return sys_wait4(pid, stat_addr, options, NULL);
1661 }
1662 
1663 #endif
1664