1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/stat.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/sched/cputime.h> 15 #include <linux/interrupt.h> 16 #include <linux/module.h> 17 #include <linux/capability.h> 18 #include <linux/completion.h> 19 #include <linux/personality.h> 20 #include <linux/tty.h> 21 #include <linux/iocontext.h> 22 #include <linux/key.h> 23 #include <linux/cpu.h> 24 #include <linux/acct.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/blkdev.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/random.h> 63 #include <linux/rcuwait.h> 64 #include <linux/compat.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/unistd.h> 68 #include <asm/pgtable.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_TGID); 77 detach_pid(p, PIDTYPE_PGID); 78 detach_pid(p, PIDTYPE_SID); 79 80 list_del_rcu(&p->tasks); 81 list_del_init(&p->sibling); 82 __this_cpu_dec(process_counts); 83 } 84 list_del_rcu(&p->thread_group); 85 list_del_rcu(&p->thread_node); 86 } 87 88 /* 89 * This function expects the tasklist_lock write-locked. 90 */ 91 static void __exit_signal(struct task_struct *tsk) 92 { 93 struct signal_struct *sig = tsk->signal; 94 bool group_dead = thread_group_leader(tsk); 95 struct sighand_struct *sighand; 96 struct tty_struct *uninitialized_var(tty); 97 u64 utime, stime; 98 99 sighand = rcu_dereference_check(tsk->sighand, 100 lockdep_tasklist_lock_is_held()); 101 spin_lock(&sighand->siglock); 102 103 #ifdef CONFIG_POSIX_TIMERS 104 posix_cpu_timers_exit(tsk); 105 if (group_dead) { 106 posix_cpu_timers_exit_group(tsk); 107 } else { 108 /* 109 * This can only happen if the caller is de_thread(). 110 * FIXME: this is the temporary hack, we should teach 111 * posix-cpu-timers to handle this case correctly. 112 */ 113 if (unlikely(has_group_leader_pid(tsk))) 114 posix_cpu_timers_exit_group(tsk); 115 } 116 #endif 117 118 if (group_dead) { 119 tty = sig->tty; 120 sig->tty = NULL; 121 } else { 122 /* 123 * If there is any task waiting for the group exit 124 * then notify it: 125 */ 126 if (sig->notify_count > 0 && !--sig->notify_count) 127 wake_up_process(sig->group_exit_task); 128 129 if (tsk == sig->curr_target) 130 sig->curr_target = next_thread(tsk); 131 } 132 133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 134 sizeof(unsigned long long)); 135 136 /* 137 * Accumulate here the counters for all threads as they die. We could 138 * skip the group leader because it is the last user of signal_struct, 139 * but we want to avoid the race with thread_group_cputime() which can 140 * see the empty ->thread_head list. 141 */ 142 task_cputime(tsk, &utime, &stime); 143 write_seqlock(&sig->stats_lock); 144 sig->utime += utime; 145 sig->stime += stime; 146 sig->gtime += task_gtime(tsk); 147 sig->min_flt += tsk->min_flt; 148 sig->maj_flt += tsk->maj_flt; 149 sig->nvcsw += tsk->nvcsw; 150 sig->nivcsw += tsk->nivcsw; 151 sig->inblock += task_io_get_inblock(tsk); 152 sig->oublock += task_io_get_oublock(tsk); 153 task_io_accounting_add(&sig->ioac, &tsk->ioac); 154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 155 sig->nr_threads--; 156 __unhash_process(tsk, group_dead); 157 write_sequnlock(&sig->stats_lock); 158 159 /* 160 * Do this under ->siglock, we can race with another thread 161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 162 */ 163 flush_sigqueue(&tsk->pending); 164 tsk->sighand = NULL; 165 spin_unlock(&sighand->siglock); 166 167 __cleanup_sighand(sighand); 168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 169 if (group_dead) { 170 flush_sigqueue(&sig->shared_pending); 171 tty_kref_put(tty); 172 } 173 } 174 175 static void delayed_put_task_struct(struct rcu_head *rhp) 176 { 177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 178 179 perf_event_delayed_put(tsk); 180 trace_sched_process_free(tsk); 181 put_task_struct(tsk); 182 } 183 184 185 void release_task(struct task_struct *p) 186 { 187 struct task_struct *leader; 188 int zap_leader; 189 repeat: 190 /* don't need to get the RCU readlock here - the process is dead and 191 * can't be modifying its own credentials. But shut RCU-lockdep up */ 192 rcu_read_lock(); 193 atomic_dec(&__task_cred(p)->user->processes); 194 rcu_read_unlock(); 195 196 proc_flush_task(p); 197 198 write_lock_irq(&tasklist_lock); 199 ptrace_release_task(p); 200 __exit_signal(p); 201 202 /* 203 * If we are the last non-leader member of the thread 204 * group, and the leader is zombie, then notify the 205 * group leader's parent process. (if it wants notification.) 206 */ 207 zap_leader = 0; 208 leader = p->group_leader; 209 if (leader != p && thread_group_empty(leader) 210 && leader->exit_state == EXIT_ZOMBIE) { 211 /* 212 * If we were the last child thread and the leader has 213 * exited already, and the leader's parent ignores SIGCHLD, 214 * then we are the one who should release the leader. 215 */ 216 zap_leader = do_notify_parent(leader, leader->exit_signal); 217 if (zap_leader) 218 leader->exit_state = EXIT_DEAD; 219 } 220 221 write_unlock_irq(&tasklist_lock); 222 cgroup_release(p); 223 release_thread(p); 224 call_rcu(&p->rcu, delayed_put_task_struct); 225 226 p = leader; 227 if (unlikely(zap_leader)) 228 goto repeat; 229 } 230 231 /* 232 * Note that if this function returns a valid task_struct pointer (!NULL) 233 * task->usage must remain >0 for the duration of the RCU critical section. 234 */ 235 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 236 { 237 struct sighand_struct *sighand; 238 struct task_struct *task; 239 240 /* 241 * We need to verify that release_task() was not called and thus 242 * delayed_put_task_struct() can't run and drop the last reference 243 * before rcu_read_unlock(). We check task->sighand != NULL, 244 * but we can read the already freed and reused memory. 245 */ 246 retry: 247 task = rcu_dereference(*ptask); 248 if (!task) 249 return NULL; 250 251 probe_kernel_address(&task->sighand, sighand); 252 253 /* 254 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 255 * was already freed we can not miss the preceding update of this 256 * pointer. 257 */ 258 smp_rmb(); 259 if (unlikely(task != READ_ONCE(*ptask))) 260 goto retry; 261 262 /* 263 * We've re-checked that "task == *ptask", now we have two different 264 * cases: 265 * 266 * 1. This is actually the same task/task_struct. In this case 267 * sighand != NULL tells us it is still alive. 268 * 269 * 2. This is another task which got the same memory for task_struct. 270 * We can't know this of course, and we can not trust 271 * sighand != NULL. 272 * 273 * In this case we actually return a random value, but this is 274 * correct. 275 * 276 * If we return NULL - we can pretend that we actually noticed that 277 * *ptask was updated when the previous task has exited. Or pretend 278 * that probe_slab_address(&sighand) reads NULL. 279 * 280 * If we return the new task (because sighand is not NULL for any 281 * reason) - this is fine too. This (new) task can't go away before 282 * another gp pass. 283 * 284 * And note: We could even eliminate the false positive if re-read 285 * task->sighand once again to avoid the falsely NULL. But this case 286 * is very unlikely so we don't care. 287 */ 288 if (!sighand) 289 return NULL; 290 291 return task; 292 } 293 294 void rcuwait_wake_up(struct rcuwait *w) 295 { 296 struct task_struct *task; 297 298 rcu_read_lock(); 299 300 /* 301 * Order condition vs @task, such that everything prior to the load 302 * of @task is visible. This is the condition as to why the user called 303 * rcuwait_trywake() in the first place. Pairs with set_current_state() 304 * barrier (A) in rcuwait_wait_event(). 305 * 306 * WAIT WAKE 307 * [S] tsk = current [S] cond = true 308 * MB (A) MB (B) 309 * [L] cond [L] tsk 310 */ 311 smp_mb(); /* (B) */ 312 313 /* 314 * Avoid using task_rcu_dereference() magic as long as we are careful, 315 * see comment in rcuwait_wait_event() regarding ->exit_state. 316 */ 317 task = rcu_dereference(w->task); 318 if (task) 319 wake_up_process(task); 320 rcu_read_unlock(); 321 } 322 323 /* 324 * Determine if a process group is "orphaned", according to the POSIX 325 * definition in 2.2.2.52. Orphaned process groups are not to be affected 326 * by terminal-generated stop signals. Newly orphaned process groups are 327 * to receive a SIGHUP and a SIGCONT. 328 * 329 * "I ask you, have you ever known what it is to be an orphan?" 330 */ 331 static int will_become_orphaned_pgrp(struct pid *pgrp, 332 struct task_struct *ignored_task) 333 { 334 struct task_struct *p; 335 336 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 337 if ((p == ignored_task) || 338 (p->exit_state && thread_group_empty(p)) || 339 is_global_init(p->real_parent)) 340 continue; 341 342 if (task_pgrp(p->real_parent) != pgrp && 343 task_session(p->real_parent) == task_session(p)) 344 return 0; 345 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 346 347 return 1; 348 } 349 350 int is_current_pgrp_orphaned(void) 351 { 352 int retval; 353 354 read_lock(&tasklist_lock); 355 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 356 read_unlock(&tasklist_lock); 357 358 return retval; 359 } 360 361 static bool has_stopped_jobs(struct pid *pgrp) 362 { 363 struct task_struct *p; 364 365 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 366 if (p->signal->flags & SIGNAL_STOP_STOPPED) 367 return true; 368 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 369 370 return false; 371 } 372 373 /* 374 * Check to see if any process groups have become orphaned as 375 * a result of our exiting, and if they have any stopped jobs, 376 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 377 */ 378 static void 379 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 380 { 381 struct pid *pgrp = task_pgrp(tsk); 382 struct task_struct *ignored_task = tsk; 383 384 if (!parent) 385 /* exit: our father is in a different pgrp than 386 * we are and we were the only connection outside. 387 */ 388 parent = tsk->real_parent; 389 else 390 /* reparent: our child is in a different pgrp than 391 * we are, and it was the only connection outside. 392 */ 393 ignored_task = NULL; 394 395 if (task_pgrp(parent) != pgrp && 396 task_session(parent) == task_session(tsk) && 397 will_become_orphaned_pgrp(pgrp, ignored_task) && 398 has_stopped_jobs(pgrp)) { 399 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 400 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 401 } 402 } 403 404 #ifdef CONFIG_MEMCG 405 /* 406 * A task is exiting. If it owned this mm, find a new owner for the mm. 407 */ 408 void mm_update_next_owner(struct mm_struct *mm) 409 { 410 struct task_struct *c, *g, *p = current; 411 412 retry: 413 /* 414 * If the exiting or execing task is not the owner, it's 415 * someone else's problem. 416 */ 417 if (mm->owner != p) 418 return; 419 /* 420 * The current owner is exiting/execing and there are no other 421 * candidates. Do not leave the mm pointing to a possibly 422 * freed task structure. 423 */ 424 if (atomic_read(&mm->mm_users) <= 1) { 425 WRITE_ONCE(mm->owner, NULL); 426 return; 427 } 428 429 read_lock(&tasklist_lock); 430 /* 431 * Search in the children 432 */ 433 list_for_each_entry(c, &p->children, sibling) { 434 if (c->mm == mm) 435 goto assign_new_owner; 436 } 437 438 /* 439 * Search in the siblings 440 */ 441 list_for_each_entry(c, &p->real_parent->children, sibling) { 442 if (c->mm == mm) 443 goto assign_new_owner; 444 } 445 446 /* 447 * Search through everything else, we should not get here often. 448 */ 449 for_each_process(g) { 450 if (g->flags & PF_KTHREAD) 451 continue; 452 for_each_thread(g, c) { 453 if (c->mm == mm) 454 goto assign_new_owner; 455 if (c->mm) 456 break; 457 } 458 } 459 read_unlock(&tasklist_lock); 460 /* 461 * We found no owner yet mm_users > 1: this implies that we are 462 * most likely racing with swapoff (try_to_unuse()) or /proc or 463 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 464 */ 465 WRITE_ONCE(mm->owner, NULL); 466 return; 467 468 assign_new_owner: 469 BUG_ON(c == p); 470 get_task_struct(c); 471 /* 472 * The task_lock protects c->mm from changing. 473 * We always want mm->owner->mm == mm 474 */ 475 task_lock(c); 476 /* 477 * Delay read_unlock() till we have the task_lock() 478 * to ensure that c does not slip away underneath us 479 */ 480 read_unlock(&tasklist_lock); 481 if (c->mm != mm) { 482 task_unlock(c); 483 put_task_struct(c); 484 goto retry; 485 } 486 WRITE_ONCE(mm->owner, c); 487 task_unlock(c); 488 put_task_struct(c); 489 } 490 #endif /* CONFIG_MEMCG */ 491 492 /* 493 * Turn us into a lazy TLB process if we 494 * aren't already.. 495 */ 496 static void exit_mm(void) 497 { 498 struct mm_struct *mm = current->mm; 499 struct core_state *core_state; 500 501 mm_release(current, mm); 502 if (!mm) 503 return; 504 sync_mm_rss(mm); 505 /* 506 * Serialize with any possible pending coredump. 507 * We must hold mmap_sem around checking core_state 508 * and clearing tsk->mm. The core-inducing thread 509 * will increment ->nr_threads for each thread in the 510 * group with ->mm != NULL. 511 */ 512 down_read(&mm->mmap_sem); 513 core_state = mm->core_state; 514 if (core_state) { 515 struct core_thread self; 516 517 up_read(&mm->mmap_sem); 518 519 self.task = current; 520 self.next = xchg(&core_state->dumper.next, &self); 521 /* 522 * Implies mb(), the result of xchg() must be visible 523 * to core_state->dumper. 524 */ 525 if (atomic_dec_and_test(&core_state->nr_threads)) 526 complete(&core_state->startup); 527 528 for (;;) { 529 set_current_state(TASK_UNINTERRUPTIBLE); 530 if (!self.task) /* see coredump_finish() */ 531 break; 532 freezable_schedule(); 533 } 534 __set_current_state(TASK_RUNNING); 535 down_read(&mm->mmap_sem); 536 } 537 mmgrab(mm); 538 BUG_ON(mm != current->active_mm); 539 /* more a memory barrier than a real lock */ 540 task_lock(current); 541 current->mm = NULL; 542 up_read(&mm->mmap_sem); 543 enter_lazy_tlb(mm, current); 544 task_unlock(current); 545 mm_update_next_owner(mm); 546 mmput(mm); 547 if (test_thread_flag(TIF_MEMDIE)) 548 exit_oom_victim(); 549 } 550 551 static struct task_struct *find_alive_thread(struct task_struct *p) 552 { 553 struct task_struct *t; 554 555 for_each_thread(p, t) { 556 if (!(t->flags & PF_EXITING)) 557 return t; 558 } 559 return NULL; 560 } 561 562 static struct task_struct *find_child_reaper(struct task_struct *father, 563 struct list_head *dead) 564 __releases(&tasklist_lock) 565 __acquires(&tasklist_lock) 566 { 567 struct pid_namespace *pid_ns = task_active_pid_ns(father); 568 struct task_struct *reaper = pid_ns->child_reaper; 569 struct task_struct *p, *n; 570 571 if (likely(reaper != father)) 572 return reaper; 573 574 reaper = find_alive_thread(father); 575 if (reaper) { 576 pid_ns->child_reaper = reaper; 577 return reaper; 578 } 579 580 write_unlock_irq(&tasklist_lock); 581 if (unlikely(pid_ns == &init_pid_ns)) { 582 panic("Attempted to kill init! exitcode=0x%08x\n", 583 father->signal->group_exit_code ?: father->exit_code); 584 } 585 586 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 587 list_del_init(&p->ptrace_entry); 588 release_task(p); 589 } 590 591 zap_pid_ns_processes(pid_ns); 592 write_lock_irq(&tasklist_lock); 593 594 return father; 595 } 596 597 /* 598 * When we die, we re-parent all our children, and try to: 599 * 1. give them to another thread in our thread group, if such a member exists 600 * 2. give it to the first ancestor process which prctl'd itself as a 601 * child_subreaper for its children (like a service manager) 602 * 3. give it to the init process (PID 1) in our pid namespace 603 */ 604 static struct task_struct *find_new_reaper(struct task_struct *father, 605 struct task_struct *child_reaper) 606 { 607 struct task_struct *thread, *reaper; 608 609 thread = find_alive_thread(father); 610 if (thread) 611 return thread; 612 613 if (father->signal->has_child_subreaper) { 614 unsigned int ns_level = task_pid(father)->level; 615 /* 616 * Find the first ->is_child_subreaper ancestor in our pid_ns. 617 * We can't check reaper != child_reaper to ensure we do not 618 * cross the namespaces, the exiting parent could be injected 619 * by setns() + fork(). 620 * We check pid->level, this is slightly more efficient than 621 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 622 */ 623 for (reaper = father->real_parent; 624 task_pid(reaper)->level == ns_level; 625 reaper = reaper->real_parent) { 626 if (reaper == &init_task) 627 break; 628 if (!reaper->signal->is_child_subreaper) 629 continue; 630 thread = find_alive_thread(reaper); 631 if (thread) 632 return thread; 633 } 634 } 635 636 return child_reaper; 637 } 638 639 /* 640 * Any that need to be release_task'd are put on the @dead list. 641 */ 642 static void reparent_leader(struct task_struct *father, struct task_struct *p, 643 struct list_head *dead) 644 { 645 if (unlikely(p->exit_state == EXIT_DEAD)) 646 return; 647 648 /* We don't want people slaying init. */ 649 p->exit_signal = SIGCHLD; 650 651 /* If it has exited notify the new parent about this child's death. */ 652 if (!p->ptrace && 653 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 654 if (do_notify_parent(p, p->exit_signal)) { 655 p->exit_state = EXIT_DEAD; 656 list_add(&p->ptrace_entry, dead); 657 } 658 } 659 660 kill_orphaned_pgrp(p, father); 661 } 662 663 /* 664 * This does two things: 665 * 666 * A. Make init inherit all the child processes 667 * B. Check to see if any process groups have become orphaned 668 * as a result of our exiting, and if they have any stopped 669 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 670 */ 671 static void forget_original_parent(struct task_struct *father, 672 struct list_head *dead) 673 { 674 struct task_struct *p, *t, *reaper; 675 676 if (unlikely(!list_empty(&father->ptraced))) 677 exit_ptrace(father, dead); 678 679 /* Can drop and reacquire tasklist_lock */ 680 reaper = find_child_reaper(father, dead); 681 if (list_empty(&father->children)) 682 return; 683 684 reaper = find_new_reaper(father, reaper); 685 list_for_each_entry(p, &father->children, sibling) { 686 for_each_thread(p, t) { 687 t->real_parent = reaper; 688 BUG_ON((!t->ptrace) != (t->parent == father)); 689 if (likely(!t->ptrace)) 690 t->parent = t->real_parent; 691 if (t->pdeath_signal) 692 group_send_sig_info(t->pdeath_signal, 693 SEND_SIG_NOINFO, t, 694 PIDTYPE_TGID); 695 } 696 /* 697 * If this is a threaded reparent there is no need to 698 * notify anyone anything has happened. 699 */ 700 if (!same_thread_group(reaper, father)) 701 reparent_leader(father, p, dead); 702 } 703 list_splice_tail_init(&father->children, &reaper->children); 704 } 705 706 /* 707 * Send signals to all our closest relatives so that they know 708 * to properly mourn us.. 709 */ 710 static void exit_notify(struct task_struct *tsk, int group_dead) 711 { 712 bool autoreap; 713 struct task_struct *p, *n; 714 LIST_HEAD(dead); 715 716 write_lock_irq(&tasklist_lock); 717 forget_original_parent(tsk, &dead); 718 719 if (group_dead) 720 kill_orphaned_pgrp(tsk->group_leader, NULL); 721 722 if (unlikely(tsk->ptrace)) { 723 int sig = thread_group_leader(tsk) && 724 thread_group_empty(tsk) && 725 !ptrace_reparented(tsk) ? 726 tsk->exit_signal : SIGCHLD; 727 autoreap = do_notify_parent(tsk, sig); 728 } else if (thread_group_leader(tsk)) { 729 autoreap = thread_group_empty(tsk) && 730 do_notify_parent(tsk, tsk->exit_signal); 731 } else { 732 autoreap = true; 733 } 734 735 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 736 if (tsk->exit_state == EXIT_DEAD) 737 list_add(&tsk->ptrace_entry, &dead); 738 739 /* mt-exec, de_thread() is waiting for group leader */ 740 if (unlikely(tsk->signal->notify_count < 0)) 741 wake_up_process(tsk->signal->group_exit_task); 742 write_unlock_irq(&tasklist_lock); 743 744 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 745 list_del_init(&p->ptrace_entry); 746 release_task(p); 747 } 748 } 749 750 #ifdef CONFIG_DEBUG_STACK_USAGE 751 static void check_stack_usage(void) 752 { 753 static DEFINE_SPINLOCK(low_water_lock); 754 static int lowest_to_date = THREAD_SIZE; 755 unsigned long free; 756 757 free = stack_not_used(current); 758 759 if (free >= lowest_to_date) 760 return; 761 762 spin_lock(&low_water_lock); 763 if (free < lowest_to_date) { 764 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 765 current->comm, task_pid_nr(current), free); 766 lowest_to_date = free; 767 } 768 spin_unlock(&low_water_lock); 769 } 770 #else 771 static inline void check_stack_usage(void) {} 772 #endif 773 774 void __noreturn do_exit(long code) 775 { 776 struct task_struct *tsk = current; 777 int group_dead; 778 779 profile_task_exit(tsk); 780 kcov_task_exit(tsk); 781 782 WARN_ON(blk_needs_flush_plug(tsk)); 783 784 if (unlikely(in_interrupt())) 785 panic("Aiee, killing interrupt handler!"); 786 if (unlikely(!tsk->pid)) 787 panic("Attempted to kill the idle task!"); 788 789 /* 790 * If do_exit is called because this processes oopsed, it's possible 791 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 792 * continuing. Amongst other possible reasons, this is to prevent 793 * mm_release()->clear_child_tid() from writing to a user-controlled 794 * kernel address. 795 */ 796 set_fs(USER_DS); 797 798 ptrace_event(PTRACE_EVENT_EXIT, code); 799 800 validate_creds_for_do_exit(tsk); 801 802 /* 803 * We're taking recursive faults here in do_exit. Safest is to just 804 * leave this task alone and wait for reboot. 805 */ 806 if (unlikely(tsk->flags & PF_EXITING)) { 807 pr_alert("Fixing recursive fault but reboot is needed!\n"); 808 /* 809 * We can do this unlocked here. The futex code uses 810 * this flag just to verify whether the pi state 811 * cleanup has been done or not. In the worst case it 812 * loops once more. We pretend that the cleanup was 813 * done as there is no way to return. Either the 814 * OWNER_DIED bit is set by now or we push the blocked 815 * task into the wait for ever nirwana as well. 816 */ 817 tsk->flags |= PF_EXITPIDONE; 818 set_current_state(TASK_UNINTERRUPTIBLE); 819 schedule(); 820 } 821 822 exit_signals(tsk); /* sets PF_EXITING */ 823 /* 824 * Ensure that all new tsk->pi_lock acquisitions must observe 825 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 826 */ 827 smp_mb(); 828 /* 829 * Ensure that we must observe the pi_state in exit_mm() -> 830 * mm_release() -> exit_pi_state_list(). 831 */ 832 raw_spin_lock_irq(&tsk->pi_lock); 833 raw_spin_unlock_irq(&tsk->pi_lock); 834 835 if (unlikely(in_atomic())) { 836 pr_info("note: %s[%d] exited with preempt_count %d\n", 837 current->comm, task_pid_nr(current), 838 preempt_count()); 839 preempt_count_set(PREEMPT_ENABLED); 840 } 841 842 /* sync mm's RSS info before statistics gathering */ 843 if (tsk->mm) 844 sync_mm_rss(tsk->mm); 845 acct_update_integrals(tsk); 846 group_dead = atomic_dec_and_test(&tsk->signal->live); 847 if (group_dead) { 848 #ifdef CONFIG_POSIX_TIMERS 849 hrtimer_cancel(&tsk->signal->real_timer); 850 exit_itimers(tsk->signal); 851 #endif 852 if (tsk->mm) 853 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 854 } 855 acct_collect(code, group_dead); 856 if (group_dead) 857 tty_audit_exit(); 858 audit_free(tsk); 859 860 tsk->exit_code = code; 861 taskstats_exit(tsk, group_dead); 862 863 exit_mm(); 864 865 if (group_dead) 866 acct_process(); 867 trace_sched_process_exit(tsk); 868 869 exit_sem(tsk); 870 exit_shm(tsk); 871 exit_files(tsk); 872 exit_fs(tsk); 873 if (group_dead) 874 disassociate_ctty(1); 875 exit_task_namespaces(tsk); 876 exit_task_work(tsk); 877 exit_thread(tsk); 878 exit_umh(tsk); 879 880 /* 881 * Flush inherited counters to the parent - before the parent 882 * gets woken up by child-exit notifications. 883 * 884 * because of cgroup mode, must be called before cgroup_exit() 885 */ 886 perf_event_exit_task(tsk); 887 888 sched_autogroup_exit_task(tsk); 889 cgroup_exit(tsk); 890 891 /* 892 * FIXME: do that only when needed, using sched_exit tracepoint 893 */ 894 flush_ptrace_hw_breakpoint(tsk); 895 896 exit_tasks_rcu_start(); 897 exit_notify(tsk, group_dead); 898 proc_exit_connector(tsk); 899 mpol_put_task_policy(tsk); 900 #ifdef CONFIG_FUTEX 901 if (unlikely(current->pi_state_cache)) 902 kfree(current->pi_state_cache); 903 #endif 904 /* 905 * Make sure we are holding no locks: 906 */ 907 debug_check_no_locks_held(); 908 /* 909 * We can do this unlocked here. The futex code uses this flag 910 * just to verify whether the pi state cleanup has been done 911 * or not. In the worst case it loops once more. 912 */ 913 tsk->flags |= PF_EXITPIDONE; 914 915 if (tsk->io_context) 916 exit_io_context(tsk); 917 918 if (tsk->splice_pipe) 919 free_pipe_info(tsk->splice_pipe); 920 921 if (tsk->task_frag.page) 922 put_page(tsk->task_frag.page); 923 924 validate_creds_for_do_exit(tsk); 925 926 check_stack_usage(); 927 preempt_disable(); 928 if (tsk->nr_dirtied) 929 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 930 exit_rcu(); 931 exit_tasks_rcu_finish(); 932 933 lockdep_free_task(tsk); 934 do_task_dead(); 935 } 936 EXPORT_SYMBOL_GPL(do_exit); 937 938 void complete_and_exit(struct completion *comp, long code) 939 { 940 if (comp) 941 complete(comp); 942 943 do_exit(code); 944 } 945 EXPORT_SYMBOL(complete_and_exit); 946 947 SYSCALL_DEFINE1(exit, int, error_code) 948 { 949 do_exit((error_code&0xff)<<8); 950 } 951 952 /* 953 * Take down every thread in the group. This is called by fatal signals 954 * as well as by sys_exit_group (below). 955 */ 956 void 957 do_group_exit(int exit_code) 958 { 959 struct signal_struct *sig = current->signal; 960 961 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 962 963 if (signal_group_exit(sig)) 964 exit_code = sig->group_exit_code; 965 else if (!thread_group_empty(current)) { 966 struct sighand_struct *const sighand = current->sighand; 967 968 spin_lock_irq(&sighand->siglock); 969 if (signal_group_exit(sig)) 970 /* Another thread got here before we took the lock. */ 971 exit_code = sig->group_exit_code; 972 else { 973 sig->group_exit_code = exit_code; 974 sig->flags = SIGNAL_GROUP_EXIT; 975 zap_other_threads(current); 976 } 977 spin_unlock_irq(&sighand->siglock); 978 } 979 980 do_exit(exit_code); 981 /* NOTREACHED */ 982 } 983 984 /* 985 * this kills every thread in the thread group. Note that any externally 986 * wait4()-ing process will get the correct exit code - even if this 987 * thread is not the thread group leader. 988 */ 989 SYSCALL_DEFINE1(exit_group, int, error_code) 990 { 991 do_group_exit((error_code & 0xff) << 8); 992 /* NOTREACHED */ 993 return 0; 994 } 995 996 struct waitid_info { 997 pid_t pid; 998 uid_t uid; 999 int status; 1000 int cause; 1001 }; 1002 1003 struct wait_opts { 1004 enum pid_type wo_type; 1005 int wo_flags; 1006 struct pid *wo_pid; 1007 1008 struct waitid_info *wo_info; 1009 int wo_stat; 1010 struct rusage *wo_rusage; 1011 1012 wait_queue_entry_t child_wait; 1013 int notask_error; 1014 }; 1015 1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1017 { 1018 return wo->wo_type == PIDTYPE_MAX || 1019 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1020 } 1021 1022 static int 1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1024 { 1025 if (!eligible_pid(wo, p)) 1026 return 0; 1027 1028 /* 1029 * Wait for all children (clone and not) if __WALL is set or 1030 * if it is traced by us. 1031 */ 1032 if (ptrace || (wo->wo_flags & __WALL)) 1033 return 1; 1034 1035 /* 1036 * Otherwise, wait for clone children *only* if __WCLONE is set; 1037 * otherwise, wait for non-clone children *only*. 1038 * 1039 * Note: a "clone" child here is one that reports to its parent 1040 * using a signal other than SIGCHLD, or a non-leader thread which 1041 * we can only see if it is traced by us. 1042 */ 1043 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1044 return 0; 1045 1046 return 1; 1047 } 1048 1049 /* 1050 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1051 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1052 * the lock and this task is uninteresting. If we return nonzero, we have 1053 * released the lock and the system call should return. 1054 */ 1055 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1056 { 1057 int state, status; 1058 pid_t pid = task_pid_vnr(p); 1059 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1060 struct waitid_info *infop; 1061 1062 if (!likely(wo->wo_flags & WEXITED)) 1063 return 0; 1064 1065 if (unlikely(wo->wo_flags & WNOWAIT)) { 1066 status = p->exit_code; 1067 get_task_struct(p); 1068 read_unlock(&tasklist_lock); 1069 sched_annotate_sleep(); 1070 if (wo->wo_rusage) 1071 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1072 put_task_struct(p); 1073 goto out_info; 1074 } 1075 /* 1076 * Move the task's state to DEAD/TRACE, only one thread can do this. 1077 */ 1078 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1079 EXIT_TRACE : EXIT_DEAD; 1080 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1081 return 0; 1082 /* 1083 * We own this thread, nobody else can reap it. 1084 */ 1085 read_unlock(&tasklist_lock); 1086 sched_annotate_sleep(); 1087 1088 /* 1089 * Check thread_group_leader() to exclude the traced sub-threads. 1090 */ 1091 if (state == EXIT_DEAD && thread_group_leader(p)) { 1092 struct signal_struct *sig = p->signal; 1093 struct signal_struct *psig = current->signal; 1094 unsigned long maxrss; 1095 u64 tgutime, tgstime; 1096 1097 /* 1098 * The resource counters for the group leader are in its 1099 * own task_struct. Those for dead threads in the group 1100 * are in its signal_struct, as are those for the child 1101 * processes it has previously reaped. All these 1102 * accumulate in the parent's signal_struct c* fields. 1103 * 1104 * We don't bother to take a lock here to protect these 1105 * p->signal fields because the whole thread group is dead 1106 * and nobody can change them. 1107 * 1108 * psig->stats_lock also protects us from our sub-theads 1109 * which can reap other children at the same time. Until 1110 * we change k_getrusage()-like users to rely on this lock 1111 * we have to take ->siglock as well. 1112 * 1113 * We use thread_group_cputime_adjusted() to get times for 1114 * the thread group, which consolidates times for all threads 1115 * in the group including the group leader. 1116 */ 1117 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1118 spin_lock_irq(¤t->sighand->siglock); 1119 write_seqlock(&psig->stats_lock); 1120 psig->cutime += tgutime + sig->cutime; 1121 psig->cstime += tgstime + sig->cstime; 1122 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1123 psig->cmin_flt += 1124 p->min_flt + sig->min_flt + sig->cmin_flt; 1125 psig->cmaj_flt += 1126 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1127 psig->cnvcsw += 1128 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1129 psig->cnivcsw += 1130 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1131 psig->cinblock += 1132 task_io_get_inblock(p) + 1133 sig->inblock + sig->cinblock; 1134 psig->coublock += 1135 task_io_get_oublock(p) + 1136 sig->oublock + sig->coublock; 1137 maxrss = max(sig->maxrss, sig->cmaxrss); 1138 if (psig->cmaxrss < maxrss) 1139 psig->cmaxrss = maxrss; 1140 task_io_accounting_add(&psig->ioac, &p->ioac); 1141 task_io_accounting_add(&psig->ioac, &sig->ioac); 1142 write_sequnlock(&psig->stats_lock); 1143 spin_unlock_irq(¤t->sighand->siglock); 1144 } 1145 1146 if (wo->wo_rusage) 1147 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1148 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1149 ? p->signal->group_exit_code : p->exit_code; 1150 wo->wo_stat = status; 1151 1152 if (state == EXIT_TRACE) { 1153 write_lock_irq(&tasklist_lock); 1154 /* We dropped tasklist, ptracer could die and untrace */ 1155 ptrace_unlink(p); 1156 1157 /* If parent wants a zombie, don't release it now */ 1158 state = EXIT_ZOMBIE; 1159 if (do_notify_parent(p, p->exit_signal)) 1160 state = EXIT_DEAD; 1161 p->exit_state = state; 1162 write_unlock_irq(&tasklist_lock); 1163 } 1164 if (state == EXIT_DEAD) 1165 release_task(p); 1166 1167 out_info: 1168 infop = wo->wo_info; 1169 if (infop) { 1170 if ((status & 0x7f) == 0) { 1171 infop->cause = CLD_EXITED; 1172 infop->status = status >> 8; 1173 } else { 1174 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1175 infop->status = status & 0x7f; 1176 } 1177 infop->pid = pid; 1178 infop->uid = uid; 1179 } 1180 1181 return pid; 1182 } 1183 1184 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1185 { 1186 if (ptrace) { 1187 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1188 return &p->exit_code; 1189 } else { 1190 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1191 return &p->signal->group_exit_code; 1192 } 1193 return NULL; 1194 } 1195 1196 /** 1197 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1198 * @wo: wait options 1199 * @ptrace: is the wait for ptrace 1200 * @p: task to wait for 1201 * 1202 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1203 * 1204 * CONTEXT: 1205 * read_lock(&tasklist_lock), which is released if return value is 1206 * non-zero. Also, grabs and releases @p->sighand->siglock. 1207 * 1208 * RETURNS: 1209 * 0 if wait condition didn't exist and search for other wait conditions 1210 * should continue. Non-zero return, -errno on failure and @p's pid on 1211 * success, implies that tasklist_lock is released and wait condition 1212 * search should terminate. 1213 */ 1214 static int wait_task_stopped(struct wait_opts *wo, 1215 int ptrace, struct task_struct *p) 1216 { 1217 struct waitid_info *infop; 1218 int exit_code, *p_code, why; 1219 uid_t uid = 0; /* unneeded, required by compiler */ 1220 pid_t pid; 1221 1222 /* 1223 * Traditionally we see ptrace'd stopped tasks regardless of options. 1224 */ 1225 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1226 return 0; 1227 1228 if (!task_stopped_code(p, ptrace)) 1229 return 0; 1230 1231 exit_code = 0; 1232 spin_lock_irq(&p->sighand->siglock); 1233 1234 p_code = task_stopped_code(p, ptrace); 1235 if (unlikely(!p_code)) 1236 goto unlock_sig; 1237 1238 exit_code = *p_code; 1239 if (!exit_code) 1240 goto unlock_sig; 1241 1242 if (!unlikely(wo->wo_flags & WNOWAIT)) 1243 *p_code = 0; 1244 1245 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1246 unlock_sig: 1247 spin_unlock_irq(&p->sighand->siglock); 1248 if (!exit_code) 1249 return 0; 1250 1251 /* 1252 * Now we are pretty sure this task is interesting. 1253 * Make sure it doesn't get reaped out from under us while we 1254 * give up the lock and then examine it below. We don't want to 1255 * keep holding onto the tasklist_lock while we call getrusage and 1256 * possibly take page faults for user memory. 1257 */ 1258 get_task_struct(p); 1259 pid = task_pid_vnr(p); 1260 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1261 read_unlock(&tasklist_lock); 1262 sched_annotate_sleep(); 1263 if (wo->wo_rusage) 1264 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1265 put_task_struct(p); 1266 1267 if (likely(!(wo->wo_flags & WNOWAIT))) 1268 wo->wo_stat = (exit_code << 8) | 0x7f; 1269 1270 infop = wo->wo_info; 1271 if (infop) { 1272 infop->cause = why; 1273 infop->status = exit_code; 1274 infop->pid = pid; 1275 infop->uid = uid; 1276 } 1277 return pid; 1278 } 1279 1280 /* 1281 * Handle do_wait work for one task in a live, non-stopped state. 1282 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1283 * the lock and this task is uninteresting. If we return nonzero, we have 1284 * released the lock and the system call should return. 1285 */ 1286 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1287 { 1288 struct waitid_info *infop; 1289 pid_t pid; 1290 uid_t uid; 1291 1292 if (!unlikely(wo->wo_flags & WCONTINUED)) 1293 return 0; 1294 1295 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1296 return 0; 1297 1298 spin_lock_irq(&p->sighand->siglock); 1299 /* Re-check with the lock held. */ 1300 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1301 spin_unlock_irq(&p->sighand->siglock); 1302 return 0; 1303 } 1304 if (!unlikely(wo->wo_flags & WNOWAIT)) 1305 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1306 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1307 spin_unlock_irq(&p->sighand->siglock); 1308 1309 pid = task_pid_vnr(p); 1310 get_task_struct(p); 1311 read_unlock(&tasklist_lock); 1312 sched_annotate_sleep(); 1313 if (wo->wo_rusage) 1314 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1315 put_task_struct(p); 1316 1317 infop = wo->wo_info; 1318 if (!infop) { 1319 wo->wo_stat = 0xffff; 1320 } else { 1321 infop->cause = CLD_CONTINUED; 1322 infop->pid = pid; 1323 infop->uid = uid; 1324 infop->status = SIGCONT; 1325 } 1326 return pid; 1327 } 1328 1329 /* 1330 * Consider @p for a wait by @parent. 1331 * 1332 * -ECHILD should be in ->notask_error before the first call. 1333 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1334 * Returns zero if the search for a child should continue; 1335 * then ->notask_error is 0 if @p is an eligible child, 1336 * or still -ECHILD. 1337 */ 1338 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1339 struct task_struct *p) 1340 { 1341 /* 1342 * We can race with wait_task_zombie() from another thread. 1343 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1344 * can't confuse the checks below. 1345 */ 1346 int exit_state = READ_ONCE(p->exit_state); 1347 int ret; 1348 1349 if (unlikely(exit_state == EXIT_DEAD)) 1350 return 0; 1351 1352 ret = eligible_child(wo, ptrace, p); 1353 if (!ret) 1354 return ret; 1355 1356 if (unlikely(exit_state == EXIT_TRACE)) { 1357 /* 1358 * ptrace == 0 means we are the natural parent. In this case 1359 * we should clear notask_error, debugger will notify us. 1360 */ 1361 if (likely(!ptrace)) 1362 wo->notask_error = 0; 1363 return 0; 1364 } 1365 1366 if (likely(!ptrace) && unlikely(p->ptrace)) { 1367 /* 1368 * If it is traced by its real parent's group, just pretend 1369 * the caller is ptrace_do_wait() and reap this child if it 1370 * is zombie. 1371 * 1372 * This also hides group stop state from real parent; otherwise 1373 * a single stop can be reported twice as group and ptrace stop. 1374 * If a ptracer wants to distinguish these two events for its 1375 * own children it should create a separate process which takes 1376 * the role of real parent. 1377 */ 1378 if (!ptrace_reparented(p)) 1379 ptrace = 1; 1380 } 1381 1382 /* slay zombie? */ 1383 if (exit_state == EXIT_ZOMBIE) { 1384 /* we don't reap group leaders with subthreads */ 1385 if (!delay_group_leader(p)) { 1386 /* 1387 * A zombie ptracee is only visible to its ptracer. 1388 * Notification and reaping will be cascaded to the 1389 * real parent when the ptracer detaches. 1390 */ 1391 if (unlikely(ptrace) || likely(!p->ptrace)) 1392 return wait_task_zombie(wo, p); 1393 } 1394 1395 /* 1396 * Allow access to stopped/continued state via zombie by 1397 * falling through. Clearing of notask_error is complex. 1398 * 1399 * When !@ptrace: 1400 * 1401 * If WEXITED is set, notask_error should naturally be 1402 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1403 * so, if there are live subthreads, there are events to 1404 * wait for. If all subthreads are dead, it's still safe 1405 * to clear - this function will be called again in finite 1406 * amount time once all the subthreads are released and 1407 * will then return without clearing. 1408 * 1409 * When @ptrace: 1410 * 1411 * Stopped state is per-task and thus can't change once the 1412 * target task dies. Only continued and exited can happen. 1413 * Clear notask_error if WCONTINUED | WEXITED. 1414 */ 1415 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1416 wo->notask_error = 0; 1417 } else { 1418 /* 1419 * @p is alive and it's gonna stop, continue or exit, so 1420 * there always is something to wait for. 1421 */ 1422 wo->notask_error = 0; 1423 } 1424 1425 /* 1426 * Wait for stopped. Depending on @ptrace, different stopped state 1427 * is used and the two don't interact with each other. 1428 */ 1429 ret = wait_task_stopped(wo, ptrace, p); 1430 if (ret) 1431 return ret; 1432 1433 /* 1434 * Wait for continued. There's only one continued state and the 1435 * ptracer can consume it which can confuse the real parent. Don't 1436 * use WCONTINUED from ptracer. You don't need or want it. 1437 */ 1438 return wait_task_continued(wo, p); 1439 } 1440 1441 /* 1442 * Do the work of do_wait() for one thread in the group, @tsk. 1443 * 1444 * -ECHILD should be in ->notask_error before the first call. 1445 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1446 * Returns zero if the search for a child should continue; then 1447 * ->notask_error is 0 if there were any eligible children, 1448 * or still -ECHILD. 1449 */ 1450 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1451 { 1452 struct task_struct *p; 1453 1454 list_for_each_entry(p, &tsk->children, sibling) { 1455 int ret = wait_consider_task(wo, 0, p); 1456 1457 if (ret) 1458 return ret; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1465 { 1466 struct task_struct *p; 1467 1468 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1469 int ret = wait_consider_task(wo, 1, p); 1470 1471 if (ret) 1472 return ret; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1479 int sync, void *key) 1480 { 1481 struct wait_opts *wo = container_of(wait, struct wait_opts, 1482 child_wait); 1483 struct task_struct *p = key; 1484 1485 if (!eligible_pid(wo, p)) 1486 return 0; 1487 1488 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1489 return 0; 1490 1491 return default_wake_function(wait, mode, sync, key); 1492 } 1493 1494 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1495 { 1496 __wake_up_sync_key(&parent->signal->wait_chldexit, 1497 TASK_INTERRUPTIBLE, 1, p); 1498 } 1499 1500 static long do_wait(struct wait_opts *wo) 1501 { 1502 struct task_struct *tsk; 1503 int retval; 1504 1505 trace_sched_process_wait(wo->wo_pid); 1506 1507 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1508 wo->child_wait.private = current; 1509 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1510 repeat: 1511 /* 1512 * If there is nothing that can match our criteria, just get out. 1513 * We will clear ->notask_error to zero if we see any child that 1514 * might later match our criteria, even if we are not able to reap 1515 * it yet. 1516 */ 1517 wo->notask_error = -ECHILD; 1518 if ((wo->wo_type < PIDTYPE_MAX) && 1519 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1520 goto notask; 1521 1522 set_current_state(TASK_INTERRUPTIBLE); 1523 read_lock(&tasklist_lock); 1524 tsk = current; 1525 do { 1526 retval = do_wait_thread(wo, tsk); 1527 if (retval) 1528 goto end; 1529 1530 retval = ptrace_do_wait(wo, tsk); 1531 if (retval) 1532 goto end; 1533 1534 if (wo->wo_flags & __WNOTHREAD) 1535 break; 1536 } while_each_thread(current, tsk); 1537 read_unlock(&tasklist_lock); 1538 1539 notask: 1540 retval = wo->notask_error; 1541 if (!retval && !(wo->wo_flags & WNOHANG)) { 1542 retval = -ERESTARTSYS; 1543 if (!signal_pending(current)) { 1544 schedule(); 1545 goto repeat; 1546 } 1547 } 1548 end: 1549 __set_current_state(TASK_RUNNING); 1550 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1551 return retval; 1552 } 1553 1554 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1555 int options, struct rusage *ru) 1556 { 1557 struct wait_opts wo; 1558 struct pid *pid = NULL; 1559 enum pid_type type; 1560 long ret; 1561 1562 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1563 __WNOTHREAD|__WCLONE|__WALL)) 1564 return -EINVAL; 1565 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1566 return -EINVAL; 1567 1568 switch (which) { 1569 case P_ALL: 1570 type = PIDTYPE_MAX; 1571 break; 1572 case P_PID: 1573 type = PIDTYPE_PID; 1574 if (upid <= 0) 1575 return -EINVAL; 1576 break; 1577 case P_PGID: 1578 type = PIDTYPE_PGID; 1579 if (upid <= 0) 1580 return -EINVAL; 1581 break; 1582 default: 1583 return -EINVAL; 1584 } 1585 1586 if (type < PIDTYPE_MAX) 1587 pid = find_get_pid(upid); 1588 1589 wo.wo_type = type; 1590 wo.wo_pid = pid; 1591 wo.wo_flags = options; 1592 wo.wo_info = infop; 1593 wo.wo_rusage = ru; 1594 ret = do_wait(&wo); 1595 1596 put_pid(pid); 1597 return ret; 1598 } 1599 1600 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1601 infop, int, options, struct rusage __user *, ru) 1602 { 1603 struct rusage r; 1604 struct waitid_info info = {.status = 0}; 1605 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1606 int signo = 0; 1607 1608 if (err > 0) { 1609 signo = SIGCHLD; 1610 err = 0; 1611 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1612 return -EFAULT; 1613 } 1614 if (!infop) 1615 return err; 1616 1617 if (!user_access_begin(infop, sizeof(*infop))) 1618 return -EFAULT; 1619 1620 unsafe_put_user(signo, &infop->si_signo, Efault); 1621 unsafe_put_user(0, &infop->si_errno, Efault); 1622 unsafe_put_user(info.cause, &infop->si_code, Efault); 1623 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1624 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1625 unsafe_put_user(info.status, &infop->si_status, Efault); 1626 user_access_end(); 1627 return err; 1628 Efault: 1629 user_access_end(); 1630 return -EFAULT; 1631 } 1632 1633 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1634 struct rusage *ru) 1635 { 1636 struct wait_opts wo; 1637 struct pid *pid = NULL; 1638 enum pid_type type; 1639 long ret; 1640 1641 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1642 __WNOTHREAD|__WCLONE|__WALL)) 1643 return -EINVAL; 1644 1645 /* -INT_MIN is not defined */ 1646 if (upid == INT_MIN) 1647 return -ESRCH; 1648 1649 if (upid == -1) 1650 type = PIDTYPE_MAX; 1651 else if (upid < 0) { 1652 type = PIDTYPE_PGID; 1653 pid = find_get_pid(-upid); 1654 } else if (upid == 0) { 1655 type = PIDTYPE_PGID; 1656 pid = get_task_pid(current, PIDTYPE_PGID); 1657 } else /* upid > 0 */ { 1658 type = PIDTYPE_PID; 1659 pid = find_get_pid(upid); 1660 } 1661 1662 wo.wo_type = type; 1663 wo.wo_pid = pid; 1664 wo.wo_flags = options | WEXITED; 1665 wo.wo_info = NULL; 1666 wo.wo_stat = 0; 1667 wo.wo_rusage = ru; 1668 ret = do_wait(&wo); 1669 put_pid(pid); 1670 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1671 ret = -EFAULT; 1672 1673 return ret; 1674 } 1675 1676 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1677 int, options, struct rusage __user *, ru) 1678 { 1679 struct rusage r; 1680 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1681 1682 if (err > 0) { 1683 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1684 return -EFAULT; 1685 } 1686 return err; 1687 } 1688 1689 #ifdef __ARCH_WANT_SYS_WAITPID 1690 1691 /* 1692 * sys_waitpid() remains for compatibility. waitpid() should be 1693 * implemented by calling sys_wait4() from libc.a. 1694 */ 1695 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1696 { 1697 return kernel_wait4(pid, stat_addr, options, NULL); 1698 } 1699 1700 #endif 1701 1702 #ifdef CONFIG_COMPAT 1703 COMPAT_SYSCALL_DEFINE4(wait4, 1704 compat_pid_t, pid, 1705 compat_uint_t __user *, stat_addr, 1706 int, options, 1707 struct compat_rusage __user *, ru) 1708 { 1709 struct rusage r; 1710 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1711 if (err > 0) { 1712 if (ru && put_compat_rusage(&r, ru)) 1713 return -EFAULT; 1714 } 1715 return err; 1716 } 1717 1718 COMPAT_SYSCALL_DEFINE5(waitid, 1719 int, which, compat_pid_t, pid, 1720 struct compat_siginfo __user *, infop, int, options, 1721 struct compat_rusage __user *, uru) 1722 { 1723 struct rusage ru; 1724 struct waitid_info info = {.status = 0}; 1725 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1726 int signo = 0; 1727 if (err > 0) { 1728 signo = SIGCHLD; 1729 err = 0; 1730 if (uru) { 1731 /* kernel_waitid() overwrites everything in ru */ 1732 if (COMPAT_USE_64BIT_TIME) 1733 err = copy_to_user(uru, &ru, sizeof(ru)); 1734 else 1735 err = put_compat_rusage(&ru, uru); 1736 if (err) 1737 return -EFAULT; 1738 } 1739 } 1740 1741 if (!infop) 1742 return err; 1743 1744 if (!user_access_begin(infop, sizeof(*infop))) 1745 return -EFAULT; 1746 1747 unsafe_put_user(signo, &infop->si_signo, Efault); 1748 unsafe_put_user(0, &infop->si_errno, Efault); 1749 unsafe_put_user(info.cause, &infop->si_code, Efault); 1750 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1751 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1752 unsafe_put_user(info.status, &infop->si_status, Efault); 1753 user_access_end(); 1754 return err; 1755 Efault: 1756 user_access_end(); 1757 return -EFAULT; 1758 } 1759 #endif 1760 1761 __weak void abort(void) 1762 { 1763 BUG(); 1764 1765 /* if that doesn't kill us, halt */ 1766 panic("Oops failed to kill thread"); 1767 } 1768 EXPORT_SYMBOL(abort); 1769