xref: /openbmc/linux/kernel/exit.c (revision ca79522c)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 	cputime_t utime, stime;
89 
90 	sighand = rcu_dereference_check(tsk->sighand,
91 					lockdep_tasklist_lock_is_held());
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (group_dead) {
96 		posix_cpu_timers_exit_group(tsk);
97 		tty = sig->tty;
98 		sig->tty = NULL;
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 
108 		/*
109 		 * If there is any task waiting for the group exit
110 		 * then notify it:
111 		 */
112 		if (sig->notify_count > 0 && !--sig->notify_count)
113 			wake_up_process(sig->group_exit_task);
114 
115 		if (tsk == sig->curr_target)
116 			sig->curr_target = next_thread(tsk);
117 		/*
118 		 * Accumulate here the counters for all threads but the
119 		 * group leader as they die, so they can be added into
120 		 * the process-wide totals when those are taken.
121 		 * The group leader stays around as a zombie as long
122 		 * as there are other threads.  When it gets reaped,
123 		 * the exit.c code will add its counts into these totals.
124 		 * We won't ever get here for the group leader, since it
125 		 * will have been the last reference on the signal_struct.
126 		 */
127 		task_cputime(tsk, &utime, &stime);
128 		sig->utime += utime;
129 		sig->stime += stime;
130 		sig->gtime += task_gtime(tsk);
131 		sig->min_flt += tsk->min_flt;
132 		sig->maj_flt += tsk->maj_flt;
133 		sig->nvcsw += tsk->nvcsw;
134 		sig->nivcsw += tsk->nivcsw;
135 		sig->inblock += task_io_get_inblock(tsk);
136 		sig->oublock += task_io_get_oublock(tsk);
137 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 	}
140 
141 	sig->nr_threads--;
142 	__unhash_process(tsk, group_dead);
143 
144 	/*
145 	 * Do this under ->siglock, we can race with another thread
146 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
147 	 */
148 	flush_sigqueue(&tsk->pending);
149 	tsk->sighand = NULL;
150 	spin_unlock(&sighand->siglock);
151 
152 	__cleanup_sighand(sighand);
153 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154 	if (group_dead) {
155 		flush_sigqueue(&sig->shared_pending);
156 		tty_kref_put(tty);
157 	}
158 }
159 
160 static void delayed_put_task_struct(struct rcu_head *rhp)
161 {
162 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
163 
164 	perf_event_delayed_put(tsk);
165 	trace_sched_process_free(tsk);
166 	put_task_struct(tsk);
167 }
168 
169 
170 void release_task(struct task_struct * p)
171 {
172 	struct task_struct *leader;
173 	int zap_leader;
174 repeat:
175 	/* don't need to get the RCU readlock here - the process is dead and
176 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
177 	rcu_read_lock();
178 	atomic_dec(&__task_cred(p)->user->processes);
179 	rcu_read_unlock();
180 
181 	proc_flush_task(p);
182 
183 	write_lock_irq(&tasklist_lock);
184 	ptrace_release_task(p);
185 	__exit_signal(p);
186 
187 	/*
188 	 * If we are the last non-leader member of the thread
189 	 * group, and the leader is zombie, then notify the
190 	 * group leader's parent process. (if it wants notification.)
191 	 */
192 	zap_leader = 0;
193 	leader = p->group_leader;
194 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 */
200 		zap_leader = do_notify_parent(leader, leader->exit_signal);
201 		if (zap_leader)
202 			leader->exit_state = EXIT_DEAD;
203 	}
204 
205 	write_unlock_irq(&tasklist_lock);
206 	release_thread(p);
207 	call_rcu(&p->rcu, delayed_put_task_struct);
208 
209 	p = leader;
210 	if (unlikely(zap_leader))
211 		goto repeat;
212 }
213 
214 /*
215  * This checks not only the pgrp, but falls back on the pid if no
216  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217  * without this...
218  *
219  * The caller must hold rcu lock or the tasklist lock.
220  */
221 struct pid *session_of_pgrp(struct pid *pgrp)
222 {
223 	struct task_struct *p;
224 	struct pid *sid = NULL;
225 
226 	p = pid_task(pgrp, PIDTYPE_PGID);
227 	if (p == NULL)
228 		p = pid_task(pgrp, PIDTYPE_PID);
229 	if (p != NULL)
230 		sid = task_session(p);
231 
232 	return sid;
233 }
234 
235 /*
236  * Determine if a process group is "orphaned", according to the POSIX
237  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
238  * by terminal-generated stop signals.  Newly orphaned process groups are
239  * to receive a SIGHUP and a SIGCONT.
240  *
241  * "I ask you, have you ever known what it is to be an orphan?"
242  */
243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
244 {
245 	struct task_struct *p;
246 
247 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 		if ((p == ignored_task) ||
249 		    (p->exit_state && thread_group_empty(p)) ||
250 		    is_global_init(p->real_parent))
251 			continue;
252 
253 		if (task_pgrp(p->real_parent) != pgrp &&
254 		    task_session(p->real_parent) == task_session(p))
255 			return 0;
256 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257 
258 	return 1;
259 }
260 
261 int is_current_pgrp_orphaned(void)
262 {
263 	int retval;
264 
265 	read_lock(&tasklist_lock);
266 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 	read_unlock(&tasklist_lock);
268 
269 	return retval;
270 }
271 
272 static bool has_stopped_jobs(struct pid *pgrp)
273 {
274 	struct task_struct *p;
275 
276 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
278 			return true;
279 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280 
281 	return false;
282 }
283 
284 /*
285  * Check to see if any process groups have become orphaned as
286  * a result of our exiting, and if they have any stopped jobs,
287  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
288  */
289 static void
290 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
291 {
292 	struct pid *pgrp = task_pgrp(tsk);
293 	struct task_struct *ignored_task = tsk;
294 
295 	if (!parent)
296 		 /* exit: our father is in a different pgrp than
297 		  * we are and we were the only connection outside.
298 		  */
299 		parent = tsk->real_parent;
300 	else
301 		/* reparent: our child is in a different pgrp than
302 		 * we are, and it was the only connection outside.
303 		 */
304 		ignored_task = NULL;
305 
306 	if (task_pgrp(parent) != pgrp &&
307 	    task_session(parent) == task_session(tsk) &&
308 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
309 	    has_stopped_jobs(pgrp)) {
310 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
311 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
312 	}
313 }
314 
315 void __set_special_pids(struct pid *pid)
316 {
317 	struct task_struct *curr = current->group_leader;
318 
319 	if (task_session(curr) != pid)
320 		change_pid(curr, PIDTYPE_SID, pid);
321 
322 	if (task_pgrp(curr) != pid)
323 		change_pid(curr, PIDTYPE_PGID, pid);
324 }
325 
326 /*
327  * Let kernel threads use this to say that they allow a certain signal.
328  * Must not be used if kthread was cloned with CLONE_SIGHAND.
329  */
330 int allow_signal(int sig)
331 {
332 	if (!valid_signal(sig) || sig < 1)
333 		return -EINVAL;
334 
335 	spin_lock_irq(&current->sighand->siglock);
336 	/* This is only needed for daemonize()'ed kthreads */
337 	sigdelset(&current->blocked, sig);
338 	/*
339 	 * Kernel threads handle their own signals. Let the signal code
340 	 * know it'll be handled, so that they don't get converted to
341 	 * SIGKILL or just silently dropped.
342 	 */
343 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
344 	recalc_sigpending();
345 	spin_unlock_irq(&current->sighand->siglock);
346 	return 0;
347 }
348 
349 EXPORT_SYMBOL(allow_signal);
350 
351 int disallow_signal(int sig)
352 {
353 	if (!valid_signal(sig) || sig < 1)
354 		return -EINVAL;
355 
356 	spin_lock_irq(&current->sighand->siglock);
357 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
358 	recalc_sigpending();
359 	spin_unlock_irq(&current->sighand->siglock);
360 	return 0;
361 }
362 
363 EXPORT_SYMBOL(disallow_signal);
364 
365 #ifdef CONFIG_MM_OWNER
366 /*
367  * A task is exiting.   If it owned this mm, find a new owner for the mm.
368  */
369 void mm_update_next_owner(struct mm_struct *mm)
370 {
371 	struct task_struct *c, *g, *p = current;
372 
373 retry:
374 	/*
375 	 * If the exiting or execing task is not the owner, it's
376 	 * someone else's problem.
377 	 */
378 	if (mm->owner != p)
379 		return;
380 	/*
381 	 * The current owner is exiting/execing and there are no other
382 	 * candidates.  Do not leave the mm pointing to a possibly
383 	 * freed task structure.
384 	 */
385 	if (atomic_read(&mm->mm_users) <= 1) {
386 		mm->owner = NULL;
387 		return;
388 	}
389 
390 	read_lock(&tasklist_lock);
391 	/*
392 	 * Search in the children
393 	 */
394 	list_for_each_entry(c, &p->children, sibling) {
395 		if (c->mm == mm)
396 			goto assign_new_owner;
397 	}
398 
399 	/*
400 	 * Search in the siblings
401 	 */
402 	list_for_each_entry(c, &p->real_parent->children, sibling) {
403 		if (c->mm == mm)
404 			goto assign_new_owner;
405 	}
406 
407 	/*
408 	 * Search through everything else. We should not get
409 	 * here often
410 	 */
411 	do_each_thread(g, c) {
412 		if (c->mm == mm)
413 			goto assign_new_owner;
414 	} while_each_thread(g, c);
415 
416 	read_unlock(&tasklist_lock);
417 	/*
418 	 * We found no owner yet mm_users > 1: this implies that we are
419 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
420 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
421 	 */
422 	mm->owner = NULL;
423 	return;
424 
425 assign_new_owner:
426 	BUG_ON(c == p);
427 	get_task_struct(c);
428 	/*
429 	 * The task_lock protects c->mm from changing.
430 	 * We always want mm->owner->mm == mm
431 	 */
432 	task_lock(c);
433 	/*
434 	 * Delay read_unlock() till we have the task_lock()
435 	 * to ensure that c does not slip away underneath us
436 	 */
437 	read_unlock(&tasklist_lock);
438 	if (c->mm != mm) {
439 		task_unlock(c);
440 		put_task_struct(c);
441 		goto retry;
442 	}
443 	mm->owner = c;
444 	task_unlock(c);
445 	put_task_struct(c);
446 }
447 #endif /* CONFIG_MM_OWNER */
448 
449 /*
450  * Turn us into a lazy TLB process if we
451  * aren't already..
452  */
453 static void exit_mm(struct task_struct * tsk)
454 {
455 	struct mm_struct *mm = tsk->mm;
456 	struct core_state *core_state;
457 
458 	mm_release(tsk, mm);
459 	if (!mm)
460 		return;
461 	sync_mm_rss(mm);
462 	/*
463 	 * Serialize with any possible pending coredump.
464 	 * We must hold mmap_sem around checking core_state
465 	 * and clearing tsk->mm.  The core-inducing thread
466 	 * will increment ->nr_threads for each thread in the
467 	 * group with ->mm != NULL.
468 	 */
469 	down_read(&mm->mmap_sem);
470 	core_state = mm->core_state;
471 	if (core_state) {
472 		struct core_thread self;
473 		up_read(&mm->mmap_sem);
474 
475 		self.task = tsk;
476 		self.next = xchg(&core_state->dumper.next, &self);
477 		/*
478 		 * Implies mb(), the result of xchg() must be visible
479 		 * to core_state->dumper.
480 		 */
481 		if (atomic_dec_and_test(&core_state->nr_threads))
482 			complete(&core_state->startup);
483 
484 		for (;;) {
485 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
486 			if (!self.task) /* see coredump_finish() */
487 				break;
488 			freezable_schedule();
489 		}
490 		__set_task_state(tsk, TASK_RUNNING);
491 		down_read(&mm->mmap_sem);
492 	}
493 	atomic_inc(&mm->mm_count);
494 	BUG_ON(mm != tsk->active_mm);
495 	/* more a memory barrier than a real lock */
496 	task_lock(tsk);
497 	tsk->mm = NULL;
498 	up_read(&mm->mmap_sem);
499 	enter_lazy_tlb(mm, current);
500 	task_unlock(tsk);
501 	mm_update_next_owner(mm);
502 	mmput(mm);
503 }
504 
505 /*
506  * When we die, we re-parent all our children, and try to:
507  * 1. give them to another thread in our thread group, if such a member exists
508  * 2. give it to the first ancestor process which prctl'd itself as a
509  *    child_subreaper for its children (like a service manager)
510  * 3. give it to the init process (PID 1) in our pid namespace
511  */
512 static struct task_struct *find_new_reaper(struct task_struct *father)
513 	__releases(&tasklist_lock)
514 	__acquires(&tasklist_lock)
515 {
516 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
517 	struct task_struct *thread;
518 
519 	thread = father;
520 	while_each_thread(father, thread) {
521 		if (thread->flags & PF_EXITING)
522 			continue;
523 		if (unlikely(pid_ns->child_reaper == father))
524 			pid_ns->child_reaper = thread;
525 		return thread;
526 	}
527 
528 	if (unlikely(pid_ns->child_reaper == father)) {
529 		write_unlock_irq(&tasklist_lock);
530 		if (unlikely(pid_ns == &init_pid_ns)) {
531 			panic("Attempted to kill init! exitcode=0x%08x\n",
532 				father->signal->group_exit_code ?:
533 					father->exit_code);
534 		}
535 
536 		zap_pid_ns_processes(pid_ns);
537 		write_lock_irq(&tasklist_lock);
538 	} else if (father->signal->has_child_subreaper) {
539 		struct task_struct *reaper;
540 
541 		/*
542 		 * Find the first ancestor marked as child_subreaper.
543 		 * Note that the code below checks same_thread_group(reaper,
544 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
545 		 * PID namespace. However we still need the check above, see
546 		 * http://marc.info/?l=linux-kernel&m=131385460420380
547 		 */
548 		for (reaper = father->real_parent;
549 		     reaper != &init_task;
550 		     reaper = reaper->real_parent) {
551 			if (same_thread_group(reaper, pid_ns->child_reaper))
552 				break;
553 			if (!reaper->signal->is_child_subreaper)
554 				continue;
555 			thread = reaper;
556 			do {
557 				if (!(thread->flags & PF_EXITING))
558 					return reaper;
559 			} while_each_thread(reaper, thread);
560 		}
561 	}
562 
563 	return pid_ns->child_reaper;
564 }
565 
566 /*
567 * Any that need to be release_task'd are put on the @dead list.
568  */
569 static void reparent_leader(struct task_struct *father, struct task_struct *p,
570 				struct list_head *dead)
571 {
572 	list_move_tail(&p->sibling, &p->real_parent->children);
573 
574 	if (p->exit_state == EXIT_DEAD)
575 		return;
576 	/*
577 	 * If this is a threaded reparent there is no need to
578 	 * notify anyone anything has happened.
579 	 */
580 	if (same_thread_group(p->real_parent, father))
581 		return;
582 
583 	/* We don't want people slaying init.  */
584 	p->exit_signal = SIGCHLD;
585 
586 	/* If it has exited notify the new parent about this child's death. */
587 	if (!p->ptrace &&
588 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
589 		if (do_notify_parent(p, p->exit_signal)) {
590 			p->exit_state = EXIT_DEAD;
591 			list_move_tail(&p->sibling, dead);
592 		}
593 	}
594 
595 	kill_orphaned_pgrp(p, father);
596 }
597 
598 static void forget_original_parent(struct task_struct *father)
599 {
600 	struct task_struct *p, *n, *reaper;
601 	LIST_HEAD(dead_children);
602 
603 	write_lock_irq(&tasklist_lock);
604 	/*
605 	 * Note that exit_ptrace() and find_new_reaper() might
606 	 * drop tasklist_lock and reacquire it.
607 	 */
608 	exit_ptrace(father);
609 	reaper = find_new_reaper(father);
610 
611 	list_for_each_entry_safe(p, n, &father->children, sibling) {
612 		struct task_struct *t = p;
613 		do {
614 			t->real_parent = reaper;
615 			if (t->parent == father) {
616 				BUG_ON(t->ptrace);
617 				t->parent = t->real_parent;
618 			}
619 			if (t->pdeath_signal)
620 				group_send_sig_info(t->pdeath_signal,
621 						    SEND_SIG_NOINFO, t);
622 		} while_each_thread(p, t);
623 		reparent_leader(father, p, &dead_children);
624 	}
625 	write_unlock_irq(&tasklist_lock);
626 
627 	BUG_ON(!list_empty(&father->children));
628 
629 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
630 		list_del_init(&p->sibling);
631 		release_task(p);
632 	}
633 }
634 
635 /*
636  * Send signals to all our closest relatives so that they know
637  * to properly mourn us..
638  */
639 static void exit_notify(struct task_struct *tsk, int group_dead)
640 {
641 	bool autoreap;
642 
643 	/*
644 	 * This does two things:
645 	 *
646   	 * A.  Make init inherit all the child processes
647 	 * B.  Check to see if any process groups have become orphaned
648 	 *	as a result of our exiting, and if they have any stopped
649 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
650 	 */
651 	forget_original_parent(tsk);
652 	exit_task_namespaces(tsk);
653 
654 	write_lock_irq(&tasklist_lock);
655 	if (group_dead)
656 		kill_orphaned_pgrp(tsk->group_leader, NULL);
657 
658 	if (unlikely(tsk->ptrace)) {
659 		int sig = thread_group_leader(tsk) &&
660 				thread_group_empty(tsk) &&
661 				!ptrace_reparented(tsk) ?
662 			tsk->exit_signal : SIGCHLD;
663 		autoreap = do_notify_parent(tsk, sig);
664 	} else if (thread_group_leader(tsk)) {
665 		autoreap = thread_group_empty(tsk) &&
666 			do_notify_parent(tsk, tsk->exit_signal);
667 	} else {
668 		autoreap = true;
669 	}
670 
671 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
672 
673 	/* mt-exec, de_thread() is waiting for group leader */
674 	if (unlikely(tsk->signal->notify_count < 0))
675 		wake_up_process(tsk->signal->group_exit_task);
676 	write_unlock_irq(&tasklist_lock);
677 
678 	/* If the process is dead, release it - nobody will wait for it */
679 	if (autoreap)
680 		release_task(tsk);
681 }
682 
683 #ifdef CONFIG_DEBUG_STACK_USAGE
684 static void check_stack_usage(void)
685 {
686 	static DEFINE_SPINLOCK(low_water_lock);
687 	static int lowest_to_date = THREAD_SIZE;
688 	unsigned long free;
689 
690 	free = stack_not_used(current);
691 
692 	if (free >= lowest_to_date)
693 		return;
694 
695 	spin_lock(&low_water_lock);
696 	if (free < lowest_to_date) {
697 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
698 				"%lu bytes left\n",
699 				current->comm, task_pid_nr(current), free);
700 		lowest_to_date = free;
701 	}
702 	spin_unlock(&low_water_lock);
703 }
704 #else
705 static inline void check_stack_usage(void) {}
706 #endif
707 
708 void do_exit(long code)
709 {
710 	struct task_struct *tsk = current;
711 	int group_dead;
712 
713 	profile_task_exit(tsk);
714 
715 	WARN_ON(blk_needs_flush_plug(tsk));
716 
717 	if (unlikely(in_interrupt()))
718 		panic("Aiee, killing interrupt handler!");
719 	if (unlikely(!tsk->pid))
720 		panic("Attempted to kill the idle task!");
721 
722 	/*
723 	 * If do_exit is called because this processes oopsed, it's possible
724 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
725 	 * continuing. Amongst other possible reasons, this is to prevent
726 	 * mm_release()->clear_child_tid() from writing to a user-controlled
727 	 * kernel address.
728 	 */
729 	set_fs(USER_DS);
730 
731 	ptrace_event(PTRACE_EVENT_EXIT, code);
732 
733 	validate_creds_for_do_exit(tsk);
734 
735 	/*
736 	 * We're taking recursive faults here in do_exit. Safest is to just
737 	 * leave this task alone and wait for reboot.
738 	 */
739 	if (unlikely(tsk->flags & PF_EXITING)) {
740 		printk(KERN_ALERT
741 			"Fixing recursive fault but reboot is needed!\n");
742 		/*
743 		 * We can do this unlocked here. The futex code uses
744 		 * this flag just to verify whether the pi state
745 		 * cleanup has been done or not. In the worst case it
746 		 * loops once more. We pretend that the cleanup was
747 		 * done as there is no way to return. Either the
748 		 * OWNER_DIED bit is set by now or we push the blocked
749 		 * task into the wait for ever nirwana as well.
750 		 */
751 		tsk->flags |= PF_EXITPIDONE;
752 		set_current_state(TASK_UNINTERRUPTIBLE);
753 		schedule();
754 	}
755 
756 	exit_signals(tsk);  /* sets PF_EXITING */
757 	/*
758 	 * tsk->flags are checked in the futex code to protect against
759 	 * an exiting task cleaning up the robust pi futexes.
760 	 */
761 	smp_mb();
762 	raw_spin_unlock_wait(&tsk->pi_lock);
763 
764 	if (unlikely(in_atomic()))
765 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
766 				current->comm, task_pid_nr(current),
767 				preempt_count());
768 
769 	acct_update_integrals(tsk);
770 	/* sync mm's RSS info before statistics gathering */
771 	if (tsk->mm)
772 		sync_mm_rss(tsk->mm);
773 	group_dead = atomic_dec_and_test(&tsk->signal->live);
774 	if (group_dead) {
775 		hrtimer_cancel(&tsk->signal->real_timer);
776 		exit_itimers(tsk->signal);
777 		if (tsk->mm)
778 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 	}
780 	acct_collect(code, group_dead);
781 	if (group_dead)
782 		tty_audit_exit();
783 	audit_free(tsk);
784 
785 	tsk->exit_code = code;
786 	taskstats_exit(tsk, group_dead);
787 
788 	exit_mm(tsk);
789 
790 	if (group_dead)
791 		acct_process();
792 	trace_sched_process_exit(tsk);
793 
794 	exit_sem(tsk);
795 	exit_shm(tsk);
796 	exit_files(tsk);
797 	exit_fs(tsk);
798 	exit_task_work(tsk);
799 	check_stack_usage();
800 	exit_thread();
801 
802 	/*
803 	 * Flush inherited counters to the parent - before the parent
804 	 * gets woken up by child-exit notifications.
805 	 *
806 	 * because of cgroup mode, must be called before cgroup_exit()
807 	 */
808 	perf_event_exit_task(tsk);
809 
810 	cgroup_exit(tsk, 1);
811 
812 	if (group_dead)
813 		disassociate_ctty(1);
814 
815 	module_put(task_thread_info(tsk)->exec_domain->module);
816 
817 	proc_exit_connector(tsk);
818 
819 	/*
820 	 * FIXME: do that only when needed, using sched_exit tracepoint
821 	 */
822 	ptrace_put_breakpoints(tsk);
823 
824 	exit_notify(tsk, group_dead);
825 #ifdef CONFIG_NUMA
826 	task_lock(tsk);
827 	mpol_put(tsk->mempolicy);
828 	tsk->mempolicy = NULL;
829 	task_unlock(tsk);
830 #endif
831 #ifdef CONFIG_FUTEX
832 	if (unlikely(current->pi_state_cache))
833 		kfree(current->pi_state_cache);
834 #endif
835 	/*
836 	 * Make sure we are holding no locks:
837 	 */
838 	debug_check_no_locks_held(tsk);
839 	/*
840 	 * We can do this unlocked here. The futex code uses this flag
841 	 * just to verify whether the pi state cleanup has been done
842 	 * or not. In the worst case it loops once more.
843 	 */
844 	tsk->flags |= PF_EXITPIDONE;
845 
846 	if (tsk->io_context)
847 		exit_io_context(tsk);
848 
849 	if (tsk->splice_pipe)
850 		free_pipe_info(tsk->splice_pipe);
851 
852 	if (tsk->task_frag.page)
853 		put_page(tsk->task_frag.page);
854 
855 	validate_creds_for_do_exit(tsk);
856 
857 	preempt_disable();
858 	if (tsk->nr_dirtied)
859 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
860 	exit_rcu();
861 
862 	/*
863 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
864 	 * when the following two conditions become true.
865 	 *   - There is race condition of mmap_sem (It is acquired by
866 	 *     exit_mm()), and
867 	 *   - SMI occurs before setting TASK_RUNINNG.
868 	 *     (or hypervisor of virtual machine switches to other guest)
869 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
870 	 *
871 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
872 	 * is held by try_to_wake_up()
873 	 */
874 	smp_mb();
875 	raw_spin_unlock_wait(&tsk->pi_lock);
876 
877 	/* causes final put_task_struct in finish_task_switch(). */
878 	tsk->state = TASK_DEAD;
879 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
880 	schedule();
881 	BUG();
882 	/* Avoid "noreturn function does return".  */
883 	for (;;)
884 		cpu_relax();	/* For when BUG is null */
885 }
886 
887 EXPORT_SYMBOL_GPL(do_exit);
888 
889 void complete_and_exit(struct completion *comp, long code)
890 {
891 	if (comp)
892 		complete(comp);
893 
894 	do_exit(code);
895 }
896 
897 EXPORT_SYMBOL(complete_and_exit);
898 
899 SYSCALL_DEFINE1(exit, int, error_code)
900 {
901 	do_exit((error_code&0xff)<<8);
902 }
903 
904 /*
905  * Take down every thread in the group.  This is called by fatal signals
906  * as well as by sys_exit_group (below).
907  */
908 void
909 do_group_exit(int exit_code)
910 {
911 	struct signal_struct *sig = current->signal;
912 
913 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
914 
915 	if (signal_group_exit(sig))
916 		exit_code = sig->group_exit_code;
917 	else if (!thread_group_empty(current)) {
918 		struct sighand_struct *const sighand = current->sighand;
919 		spin_lock_irq(&sighand->siglock);
920 		if (signal_group_exit(sig))
921 			/* Another thread got here before we took the lock.  */
922 			exit_code = sig->group_exit_code;
923 		else {
924 			sig->group_exit_code = exit_code;
925 			sig->flags = SIGNAL_GROUP_EXIT;
926 			zap_other_threads(current);
927 		}
928 		spin_unlock_irq(&sighand->siglock);
929 	}
930 
931 	do_exit(exit_code);
932 	/* NOTREACHED */
933 }
934 
935 /*
936  * this kills every thread in the thread group. Note that any externally
937  * wait4()-ing process will get the correct exit code - even if this
938  * thread is not the thread group leader.
939  */
940 SYSCALL_DEFINE1(exit_group, int, error_code)
941 {
942 	do_group_exit((error_code & 0xff) << 8);
943 	/* NOTREACHED */
944 	return 0;
945 }
946 
947 struct wait_opts {
948 	enum pid_type		wo_type;
949 	int			wo_flags;
950 	struct pid		*wo_pid;
951 
952 	struct siginfo __user	*wo_info;
953 	int __user		*wo_stat;
954 	struct rusage __user	*wo_rusage;
955 
956 	wait_queue_t		child_wait;
957 	int			notask_error;
958 };
959 
960 static inline
961 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
962 {
963 	if (type != PIDTYPE_PID)
964 		task = task->group_leader;
965 	return task->pids[type].pid;
966 }
967 
968 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
969 {
970 	return	wo->wo_type == PIDTYPE_MAX ||
971 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
972 }
973 
974 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
975 {
976 	if (!eligible_pid(wo, p))
977 		return 0;
978 	/* Wait for all children (clone and not) if __WALL is set;
979 	 * otherwise, wait for clone children *only* if __WCLONE is
980 	 * set; otherwise, wait for non-clone children *only*.  (Note:
981 	 * A "clone" child here is one that reports to its parent
982 	 * using a signal other than SIGCHLD.) */
983 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
984 	    && !(wo->wo_flags & __WALL))
985 		return 0;
986 
987 	return 1;
988 }
989 
990 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
991 				pid_t pid, uid_t uid, int why, int status)
992 {
993 	struct siginfo __user *infop;
994 	int retval = wo->wo_rusage
995 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
996 
997 	put_task_struct(p);
998 	infop = wo->wo_info;
999 	if (infop) {
1000 		if (!retval)
1001 			retval = put_user(SIGCHLD, &infop->si_signo);
1002 		if (!retval)
1003 			retval = put_user(0, &infop->si_errno);
1004 		if (!retval)
1005 			retval = put_user((short)why, &infop->si_code);
1006 		if (!retval)
1007 			retval = put_user(pid, &infop->si_pid);
1008 		if (!retval)
1009 			retval = put_user(uid, &infop->si_uid);
1010 		if (!retval)
1011 			retval = put_user(status, &infop->si_status);
1012 	}
1013 	if (!retval)
1014 		retval = pid;
1015 	return retval;
1016 }
1017 
1018 /*
1019  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1020  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1021  * the lock and this task is uninteresting.  If we return nonzero, we have
1022  * released the lock and the system call should return.
1023  */
1024 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1025 {
1026 	unsigned long state;
1027 	int retval, status, traced;
1028 	pid_t pid = task_pid_vnr(p);
1029 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1030 	struct siginfo __user *infop;
1031 
1032 	if (!likely(wo->wo_flags & WEXITED))
1033 		return 0;
1034 
1035 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1036 		int exit_code = p->exit_code;
1037 		int why;
1038 
1039 		get_task_struct(p);
1040 		read_unlock(&tasklist_lock);
1041 		if ((exit_code & 0x7f) == 0) {
1042 			why = CLD_EXITED;
1043 			status = exit_code >> 8;
1044 		} else {
1045 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1046 			status = exit_code & 0x7f;
1047 		}
1048 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1049 	}
1050 
1051 	/*
1052 	 * Try to move the task's state to DEAD
1053 	 * only one thread is allowed to do this:
1054 	 */
1055 	state = xchg(&p->exit_state, EXIT_DEAD);
1056 	if (state != EXIT_ZOMBIE) {
1057 		BUG_ON(state != EXIT_DEAD);
1058 		return 0;
1059 	}
1060 
1061 	traced = ptrace_reparented(p);
1062 	/*
1063 	 * It can be ptraced but not reparented, check
1064 	 * thread_group_leader() to filter out sub-threads.
1065 	 */
1066 	if (likely(!traced) && thread_group_leader(p)) {
1067 		struct signal_struct *psig;
1068 		struct signal_struct *sig;
1069 		unsigned long maxrss;
1070 		cputime_t tgutime, tgstime;
1071 
1072 		/*
1073 		 * The resource counters for the group leader are in its
1074 		 * own task_struct.  Those for dead threads in the group
1075 		 * are in its signal_struct, as are those for the child
1076 		 * processes it has previously reaped.  All these
1077 		 * accumulate in the parent's signal_struct c* fields.
1078 		 *
1079 		 * We don't bother to take a lock here to protect these
1080 		 * p->signal fields, because they are only touched by
1081 		 * __exit_signal, which runs with tasklist_lock
1082 		 * write-locked anyway, and so is excluded here.  We do
1083 		 * need to protect the access to parent->signal fields,
1084 		 * as other threads in the parent group can be right
1085 		 * here reaping other children at the same time.
1086 		 *
1087 		 * We use thread_group_cputime_adjusted() to get times for the thread
1088 		 * group, which consolidates times for all threads in the
1089 		 * group including the group leader.
1090 		 */
1091 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1092 		spin_lock_irq(&p->real_parent->sighand->siglock);
1093 		psig = p->real_parent->signal;
1094 		sig = p->signal;
1095 		psig->cutime += tgutime + sig->cutime;
1096 		psig->cstime += tgstime + sig->cstime;
1097 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1098 		psig->cmin_flt +=
1099 			p->min_flt + sig->min_flt + sig->cmin_flt;
1100 		psig->cmaj_flt +=
1101 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1102 		psig->cnvcsw +=
1103 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1104 		psig->cnivcsw +=
1105 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1106 		psig->cinblock +=
1107 			task_io_get_inblock(p) +
1108 			sig->inblock + sig->cinblock;
1109 		psig->coublock +=
1110 			task_io_get_oublock(p) +
1111 			sig->oublock + sig->coublock;
1112 		maxrss = max(sig->maxrss, sig->cmaxrss);
1113 		if (psig->cmaxrss < maxrss)
1114 			psig->cmaxrss = maxrss;
1115 		task_io_accounting_add(&psig->ioac, &p->ioac);
1116 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1117 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1118 	}
1119 
1120 	/*
1121 	 * Now we are sure this task is interesting, and no other
1122 	 * thread can reap it because we set its state to EXIT_DEAD.
1123 	 */
1124 	read_unlock(&tasklist_lock);
1125 
1126 	retval = wo->wo_rusage
1127 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1128 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1129 		? p->signal->group_exit_code : p->exit_code;
1130 	if (!retval && wo->wo_stat)
1131 		retval = put_user(status, wo->wo_stat);
1132 
1133 	infop = wo->wo_info;
1134 	if (!retval && infop)
1135 		retval = put_user(SIGCHLD, &infop->si_signo);
1136 	if (!retval && infop)
1137 		retval = put_user(0, &infop->si_errno);
1138 	if (!retval && infop) {
1139 		int why;
1140 
1141 		if ((status & 0x7f) == 0) {
1142 			why = CLD_EXITED;
1143 			status >>= 8;
1144 		} else {
1145 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1146 			status &= 0x7f;
1147 		}
1148 		retval = put_user((short)why, &infop->si_code);
1149 		if (!retval)
1150 			retval = put_user(status, &infop->si_status);
1151 	}
1152 	if (!retval && infop)
1153 		retval = put_user(pid, &infop->si_pid);
1154 	if (!retval && infop)
1155 		retval = put_user(uid, &infop->si_uid);
1156 	if (!retval)
1157 		retval = pid;
1158 
1159 	if (traced) {
1160 		write_lock_irq(&tasklist_lock);
1161 		/* We dropped tasklist, ptracer could die and untrace */
1162 		ptrace_unlink(p);
1163 		/*
1164 		 * If this is not a sub-thread, notify the parent.
1165 		 * If parent wants a zombie, don't release it now.
1166 		 */
1167 		if (thread_group_leader(p) &&
1168 		    !do_notify_parent(p, p->exit_signal)) {
1169 			p->exit_state = EXIT_ZOMBIE;
1170 			p = NULL;
1171 		}
1172 		write_unlock_irq(&tasklist_lock);
1173 	}
1174 	if (p != NULL)
1175 		release_task(p);
1176 
1177 	return retval;
1178 }
1179 
1180 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1181 {
1182 	if (ptrace) {
1183 		if (task_is_stopped_or_traced(p) &&
1184 		    !(p->jobctl & JOBCTL_LISTENING))
1185 			return &p->exit_code;
1186 	} else {
1187 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1188 			return &p->signal->group_exit_code;
1189 	}
1190 	return NULL;
1191 }
1192 
1193 /**
1194  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1195  * @wo: wait options
1196  * @ptrace: is the wait for ptrace
1197  * @p: task to wait for
1198  *
1199  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1200  *
1201  * CONTEXT:
1202  * read_lock(&tasklist_lock), which is released if return value is
1203  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1204  *
1205  * RETURNS:
1206  * 0 if wait condition didn't exist and search for other wait conditions
1207  * should continue.  Non-zero return, -errno on failure and @p's pid on
1208  * success, implies that tasklist_lock is released and wait condition
1209  * search should terminate.
1210  */
1211 static int wait_task_stopped(struct wait_opts *wo,
1212 				int ptrace, struct task_struct *p)
1213 {
1214 	struct siginfo __user *infop;
1215 	int retval, exit_code, *p_code, why;
1216 	uid_t uid = 0; /* unneeded, required by compiler */
1217 	pid_t pid;
1218 
1219 	/*
1220 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1221 	 */
1222 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1223 		return 0;
1224 
1225 	if (!task_stopped_code(p, ptrace))
1226 		return 0;
1227 
1228 	exit_code = 0;
1229 	spin_lock_irq(&p->sighand->siglock);
1230 
1231 	p_code = task_stopped_code(p, ptrace);
1232 	if (unlikely(!p_code))
1233 		goto unlock_sig;
1234 
1235 	exit_code = *p_code;
1236 	if (!exit_code)
1237 		goto unlock_sig;
1238 
1239 	if (!unlikely(wo->wo_flags & WNOWAIT))
1240 		*p_code = 0;
1241 
1242 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1243 unlock_sig:
1244 	spin_unlock_irq(&p->sighand->siglock);
1245 	if (!exit_code)
1246 		return 0;
1247 
1248 	/*
1249 	 * Now we are pretty sure this task is interesting.
1250 	 * Make sure it doesn't get reaped out from under us while we
1251 	 * give up the lock and then examine it below.  We don't want to
1252 	 * keep holding onto the tasklist_lock while we call getrusage and
1253 	 * possibly take page faults for user memory.
1254 	 */
1255 	get_task_struct(p);
1256 	pid = task_pid_vnr(p);
1257 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1258 	read_unlock(&tasklist_lock);
1259 
1260 	if (unlikely(wo->wo_flags & WNOWAIT))
1261 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1262 
1263 	retval = wo->wo_rusage
1264 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1265 	if (!retval && wo->wo_stat)
1266 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1267 
1268 	infop = wo->wo_info;
1269 	if (!retval && infop)
1270 		retval = put_user(SIGCHLD, &infop->si_signo);
1271 	if (!retval && infop)
1272 		retval = put_user(0, &infop->si_errno);
1273 	if (!retval && infop)
1274 		retval = put_user((short)why, &infop->si_code);
1275 	if (!retval && infop)
1276 		retval = put_user(exit_code, &infop->si_status);
1277 	if (!retval && infop)
1278 		retval = put_user(pid, &infop->si_pid);
1279 	if (!retval && infop)
1280 		retval = put_user(uid, &infop->si_uid);
1281 	if (!retval)
1282 		retval = pid;
1283 	put_task_struct(p);
1284 
1285 	BUG_ON(!retval);
1286 	return retval;
1287 }
1288 
1289 /*
1290  * Handle do_wait work for one task in a live, non-stopped state.
1291  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1292  * the lock and this task is uninteresting.  If we return nonzero, we have
1293  * released the lock and the system call should return.
1294  */
1295 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1296 {
1297 	int retval;
1298 	pid_t pid;
1299 	uid_t uid;
1300 
1301 	if (!unlikely(wo->wo_flags & WCONTINUED))
1302 		return 0;
1303 
1304 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1305 		return 0;
1306 
1307 	spin_lock_irq(&p->sighand->siglock);
1308 	/* Re-check with the lock held.  */
1309 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1310 		spin_unlock_irq(&p->sighand->siglock);
1311 		return 0;
1312 	}
1313 	if (!unlikely(wo->wo_flags & WNOWAIT))
1314 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1315 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1316 	spin_unlock_irq(&p->sighand->siglock);
1317 
1318 	pid = task_pid_vnr(p);
1319 	get_task_struct(p);
1320 	read_unlock(&tasklist_lock);
1321 
1322 	if (!wo->wo_info) {
1323 		retval = wo->wo_rusage
1324 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1325 		put_task_struct(p);
1326 		if (!retval && wo->wo_stat)
1327 			retval = put_user(0xffff, wo->wo_stat);
1328 		if (!retval)
1329 			retval = pid;
1330 	} else {
1331 		retval = wait_noreap_copyout(wo, p, pid, uid,
1332 					     CLD_CONTINUED, SIGCONT);
1333 		BUG_ON(retval == 0);
1334 	}
1335 
1336 	return retval;
1337 }
1338 
1339 /*
1340  * Consider @p for a wait by @parent.
1341  *
1342  * -ECHILD should be in ->notask_error before the first call.
1343  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1344  * Returns zero if the search for a child should continue;
1345  * then ->notask_error is 0 if @p is an eligible child,
1346  * or another error from security_task_wait(), or still -ECHILD.
1347  */
1348 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1349 				struct task_struct *p)
1350 {
1351 	int ret = eligible_child(wo, p);
1352 	if (!ret)
1353 		return ret;
1354 
1355 	ret = security_task_wait(p);
1356 	if (unlikely(ret < 0)) {
1357 		/*
1358 		 * If we have not yet seen any eligible child,
1359 		 * then let this error code replace -ECHILD.
1360 		 * A permission error will give the user a clue
1361 		 * to look for security policy problems, rather
1362 		 * than for mysterious wait bugs.
1363 		 */
1364 		if (wo->notask_error)
1365 			wo->notask_error = ret;
1366 		return 0;
1367 	}
1368 
1369 	/* dead body doesn't have much to contribute */
1370 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1371 		/*
1372 		 * But do not ignore this task until the tracer does
1373 		 * wait_task_zombie()->do_notify_parent().
1374 		 */
1375 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1376 			wo->notask_error = 0;
1377 		return 0;
1378 	}
1379 
1380 	/* slay zombie? */
1381 	if (p->exit_state == EXIT_ZOMBIE) {
1382 		/*
1383 		 * A zombie ptracee is only visible to its ptracer.
1384 		 * Notification and reaping will be cascaded to the real
1385 		 * parent when the ptracer detaches.
1386 		 */
1387 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1388 			/* it will become visible, clear notask_error */
1389 			wo->notask_error = 0;
1390 			return 0;
1391 		}
1392 
1393 		/* we don't reap group leaders with subthreads */
1394 		if (!delay_group_leader(p))
1395 			return wait_task_zombie(wo, p);
1396 
1397 		/*
1398 		 * Allow access to stopped/continued state via zombie by
1399 		 * falling through.  Clearing of notask_error is complex.
1400 		 *
1401 		 * When !@ptrace:
1402 		 *
1403 		 * If WEXITED is set, notask_error should naturally be
1404 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1405 		 * so, if there are live subthreads, there are events to
1406 		 * wait for.  If all subthreads are dead, it's still safe
1407 		 * to clear - this function will be called again in finite
1408 		 * amount time once all the subthreads are released and
1409 		 * will then return without clearing.
1410 		 *
1411 		 * When @ptrace:
1412 		 *
1413 		 * Stopped state is per-task and thus can't change once the
1414 		 * target task dies.  Only continued and exited can happen.
1415 		 * Clear notask_error if WCONTINUED | WEXITED.
1416 		 */
1417 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1418 			wo->notask_error = 0;
1419 	} else {
1420 		/*
1421 		 * If @p is ptraced by a task in its real parent's group,
1422 		 * hide group stop/continued state when looking at @p as
1423 		 * the real parent; otherwise, a single stop can be
1424 		 * reported twice as group and ptrace stops.
1425 		 *
1426 		 * If a ptracer wants to distinguish the two events for its
1427 		 * own children, it should create a separate process which
1428 		 * takes the role of real parent.
1429 		 */
1430 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1431 			return 0;
1432 
1433 		/*
1434 		 * @p is alive and it's gonna stop, continue or exit, so
1435 		 * there always is something to wait for.
1436 		 */
1437 		wo->notask_error = 0;
1438 	}
1439 
1440 	/*
1441 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1442 	 * is used and the two don't interact with each other.
1443 	 */
1444 	ret = wait_task_stopped(wo, ptrace, p);
1445 	if (ret)
1446 		return ret;
1447 
1448 	/*
1449 	 * Wait for continued.  There's only one continued state and the
1450 	 * ptracer can consume it which can confuse the real parent.  Don't
1451 	 * use WCONTINUED from ptracer.  You don't need or want it.
1452 	 */
1453 	return wait_task_continued(wo, p);
1454 }
1455 
1456 /*
1457  * Do the work of do_wait() for one thread in the group, @tsk.
1458  *
1459  * -ECHILD should be in ->notask_error before the first call.
1460  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1461  * Returns zero if the search for a child should continue; then
1462  * ->notask_error is 0 if there were any eligible children,
1463  * or another error from security_task_wait(), or still -ECHILD.
1464  */
1465 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1466 {
1467 	struct task_struct *p;
1468 
1469 	list_for_each_entry(p, &tsk->children, sibling) {
1470 		int ret = wait_consider_task(wo, 0, p);
1471 		if (ret)
1472 			return ret;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1479 {
1480 	struct task_struct *p;
1481 
1482 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1483 		int ret = wait_consider_task(wo, 1, p);
1484 		if (ret)
1485 			return ret;
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1492 				int sync, void *key)
1493 {
1494 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1495 						child_wait);
1496 	struct task_struct *p = key;
1497 
1498 	if (!eligible_pid(wo, p))
1499 		return 0;
1500 
1501 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1502 		return 0;
1503 
1504 	return default_wake_function(wait, mode, sync, key);
1505 }
1506 
1507 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1508 {
1509 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1510 				TASK_INTERRUPTIBLE, 1, p);
1511 }
1512 
1513 static long do_wait(struct wait_opts *wo)
1514 {
1515 	struct task_struct *tsk;
1516 	int retval;
1517 
1518 	trace_sched_process_wait(wo->wo_pid);
1519 
1520 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1521 	wo->child_wait.private = current;
1522 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1523 repeat:
1524 	/*
1525 	 * If there is nothing that can match our critiera just get out.
1526 	 * We will clear ->notask_error to zero if we see any child that
1527 	 * might later match our criteria, even if we are not able to reap
1528 	 * it yet.
1529 	 */
1530 	wo->notask_error = -ECHILD;
1531 	if ((wo->wo_type < PIDTYPE_MAX) &&
1532 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1533 		goto notask;
1534 
1535 	set_current_state(TASK_INTERRUPTIBLE);
1536 	read_lock(&tasklist_lock);
1537 	tsk = current;
1538 	do {
1539 		retval = do_wait_thread(wo, tsk);
1540 		if (retval)
1541 			goto end;
1542 
1543 		retval = ptrace_do_wait(wo, tsk);
1544 		if (retval)
1545 			goto end;
1546 
1547 		if (wo->wo_flags & __WNOTHREAD)
1548 			break;
1549 	} while_each_thread(current, tsk);
1550 	read_unlock(&tasklist_lock);
1551 
1552 notask:
1553 	retval = wo->notask_error;
1554 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1555 		retval = -ERESTARTSYS;
1556 		if (!signal_pending(current)) {
1557 			schedule();
1558 			goto repeat;
1559 		}
1560 	}
1561 end:
1562 	__set_current_state(TASK_RUNNING);
1563 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1564 	return retval;
1565 }
1566 
1567 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1568 		infop, int, options, struct rusage __user *, ru)
1569 {
1570 	struct wait_opts wo;
1571 	struct pid *pid = NULL;
1572 	enum pid_type type;
1573 	long ret;
1574 
1575 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1576 		return -EINVAL;
1577 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1578 		return -EINVAL;
1579 
1580 	switch (which) {
1581 	case P_ALL:
1582 		type = PIDTYPE_MAX;
1583 		break;
1584 	case P_PID:
1585 		type = PIDTYPE_PID;
1586 		if (upid <= 0)
1587 			return -EINVAL;
1588 		break;
1589 	case P_PGID:
1590 		type = PIDTYPE_PGID;
1591 		if (upid <= 0)
1592 			return -EINVAL;
1593 		break;
1594 	default:
1595 		return -EINVAL;
1596 	}
1597 
1598 	if (type < PIDTYPE_MAX)
1599 		pid = find_get_pid(upid);
1600 
1601 	wo.wo_type	= type;
1602 	wo.wo_pid	= pid;
1603 	wo.wo_flags	= options;
1604 	wo.wo_info	= infop;
1605 	wo.wo_stat	= NULL;
1606 	wo.wo_rusage	= ru;
1607 	ret = do_wait(&wo);
1608 
1609 	if (ret > 0) {
1610 		ret = 0;
1611 	} else if (infop) {
1612 		/*
1613 		 * For a WNOHANG return, clear out all the fields
1614 		 * we would set so the user can easily tell the
1615 		 * difference.
1616 		 */
1617 		if (!ret)
1618 			ret = put_user(0, &infop->si_signo);
1619 		if (!ret)
1620 			ret = put_user(0, &infop->si_errno);
1621 		if (!ret)
1622 			ret = put_user(0, &infop->si_code);
1623 		if (!ret)
1624 			ret = put_user(0, &infop->si_pid);
1625 		if (!ret)
1626 			ret = put_user(0, &infop->si_uid);
1627 		if (!ret)
1628 			ret = put_user(0, &infop->si_status);
1629 	}
1630 
1631 	put_pid(pid);
1632 	return ret;
1633 }
1634 
1635 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1636 		int, options, struct rusage __user *, ru)
1637 {
1638 	struct wait_opts wo;
1639 	struct pid *pid = NULL;
1640 	enum pid_type type;
1641 	long ret;
1642 
1643 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1644 			__WNOTHREAD|__WCLONE|__WALL))
1645 		return -EINVAL;
1646 
1647 	if (upid == -1)
1648 		type = PIDTYPE_MAX;
1649 	else if (upid < 0) {
1650 		type = PIDTYPE_PGID;
1651 		pid = find_get_pid(-upid);
1652 	} else if (upid == 0) {
1653 		type = PIDTYPE_PGID;
1654 		pid = get_task_pid(current, PIDTYPE_PGID);
1655 	} else /* upid > 0 */ {
1656 		type = PIDTYPE_PID;
1657 		pid = find_get_pid(upid);
1658 	}
1659 
1660 	wo.wo_type	= type;
1661 	wo.wo_pid	= pid;
1662 	wo.wo_flags	= options | WEXITED;
1663 	wo.wo_info	= NULL;
1664 	wo.wo_stat	= stat_addr;
1665 	wo.wo_rusage	= ru;
1666 	ret = do_wait(&wo);
1667 	put_pid(pid);
1668 
1669 	return ret;
1670 }
1671 
1672 #ifdef __ARCH_WANT_SYS_WAITPID
1673 
1674 /*
1675  * sys_waitpid() remains for compatibility. waitpid() should be
1676  * implemented by calling sys_wait4() from libc.a.
1677  */
1678 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1679 {
1680 	return sys_wait4(pid, stat_addr, options, NULL);
1681 }
1682 
1683 #endif
1684