xref: /openbmc/linux/kernel/exit.c (revision c1f51218)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *tty;
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 	exit_task_sigqueue_cache(tsk);
166 }
167 
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 
172 	perf_event_delayed_put(tsk);
173 	trace_sched_process_free(tsk);
174 	put_task_struct(tsk);
175 }
176 
177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 	if (refcount_dec_and_test(&task->rcu_users))
180 		call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182 
183 void release_task(struct task_struct *p)
184 {
185 	struct task_struct *leader;
186 	struct pid *thread_pid;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	atomic_dec(&__task_cred(p)->user->processes);
193 	rcu_read_unlock();
194 
195 	cgroup_release(p);
196 
197 	write_lock_irq(&tasklist_lock);
198 	ptrace_release_task(p);
199 	thread_pid = get_pid(p->thread_pid);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	seccomp_filter_release(p);
223 	proc_flush_pid(thread_pid);
224 	put_pid(thread_pid);
225 	release_thread(p);
226 	put_task_struct_rcu_user(p);
227 
228 	p = leader;
229 	if (unlikely(zap_leader))
230 		goto repeat;
231 }
232 
233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 	int ret = 0;
236 	struct task_struct *task;
237 
238 	rcu_read_lock();
239 
240 	/*
241 	 * Order condition vs @task, such that everything prior to the load
242 	 * of @task is visible. This is the condition as to why the user called
243 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 	 * barrier (A) in rcuwait_wait_event().
245 	 *
246 	 *    WAIT                WAKE
247 	 *    [S] tsk = current	  [S] cond = true
248 	 *        MB (A)	      MB (B)
249 	 *    [L] cond		  [L] tsk
250 	 */
251 	smp_mb(); /* (B) */
252 
253 	task = rcu_dereference(w->task);
254 	if (task)
255 		ret = wake_up_process(task);
256 	rcu_read_unlock();
257 
258 	return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261 
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 					struct task_struct *ignored_task)
272 {
273 	struct task_struct *p;
274 
275 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 		if ((p == ignored_task) ||
277 		    (p->exit_state && thread_group_empty(p)) ||
278 		    is_global_init(p->real_parent))
279 			continue;
280 
281 		if (task_pgrp(p->real_parent) != pgrp &&
282 		    task_session(p->real_parent) == task_session(p))
283 			return 0;
284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 
286 	return 1;
287 }
288 
289 int is_current_pgrp_orphaned(void)
290 {
291 	int retval;
292 
293 	read_lock(&tasklist_lock);
294 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 	read_unlock(&tasklist_lock);
296 
297 	return retval;
298 }
299 
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 	struct task_struct *p;
303 
304 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 			return true;
307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308 
309 	return false;
310 }
311 
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 	struct pid *pgrp = task_pgrp(tsk);
321 	struct task_struct *ignored_task = tsk;
322 
323 	if (!parent)
324 		/* exit: our father is in a different pgrp than
325 		 * we are and we were the only connection outside.
326 		 */
327 		parent = tsk->real_parent;
328 	else
329 		/* reparent: our child is in a different pgrp than
330 		 * we are, and it was the only connection outside.
331 		 */
332 		ignored_task = NULL;
333 
334 	if (task_pgrp(parent) != pgrp &&
335 	    task_session(parent) == task_session(tsk) &&
336 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 	    has_stopped_jobs(pgrp)) {
338 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 	}
341 }
342 
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 	struct task_struct *c, *g, *p = current;
350 
351 retry:
352 	/*
353 	 * If the exiting or execing task is not the owner, it's
354 	 * someone else's problem.
355 	 */
356 	if (mm->owner != p)
357 		return;
358 	/*
359 	 * The current owner is exiting/execing and there are no other
360 	 * candidates.  Do not leave the mm pointing to a possibly
361 	 * freed task structure.
362 	 */
363 	if (atomic_read(&mm->mm_users) <= 1) {
364 		WRITE_ONCE(mm->owner, NULL);
365 		return;
366 	}
367 
368 	read_lock(&tasklist_lock);
369 	/*
370 	 * Search in the children
371 	 */
372 	list_for_each_entry(c, &p->children, sibling) {
373 		if (c->mm == mm)
374 			goto assign_new_owner;
375 	}
376 
377 	/*
378 	 * Search in the siblings
379 	 */
380 	list_for_each_entry(c, &p->real_parent->children, sibling) {
381 		if (c->mm == mm)
382 			goto assign_new_owner;
383 	}
384 
385 	/*
386 	 * Search through everything else, we should not get here often.
387 	 */
388 	for_each_process(g) {
389 		if (g->flags & PF_KTHREAD)
390 			continue;
391 		for_each_thread(g, c) {
392 			if (c->mm == mm)
393 				goto assign_new_owner;
394 			if (c->mm)
395 				break;
396 		}
397 	}
398 	read_unlock(&tasklist_lock);
399 	/*
400 	 * We found no owner yet mm_users > 1: this implies that we are
401 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403 	 */
404 	WRITE_ONCE(mm->owner, NULL);
405 	return;
406 
407 assign_new_owner:
408 	BUG_ON(c == p);
409 	get_task_struct(c);
410 	/*
411 	 * The task_lock protects c->mm from changing.
412 	 * We always want mm->owner->mm == mm
413 	 */
414 	task_lock(c);
415 	/*
416 	 * Delay read_unlock() till we have the task_lock()
417 	 * to ensure that c does not slip away underneath us
418 	 */
419 	read_unlock(&tasklist_lock);
420 	if (c->mm != mm) {
421 		task_unlock(c);
422 		put_task_struct(c);
423 		goto retry;
424 	}
425 	WRITE_ONCE(mm->owner, c);
426 	task_unlock(c);
427 	put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430 
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
435 static void exit_mm(void)
436 {
437 	struct mm_struct *mm = current->mm;
438 	struct core_state *core_state;
439 
440 	exit_mm_release(current, mm);
441 	if (!mm)
442 		return;
443 	sync_mm_rss(mm);
444 	/*
445 	 * Serialize with any possible pending coredump.
446 	 * We must hold mmap_lock around checking core_state
447 	 * and clearing tsk->mm.  The core-inducing thread
448 	 * will increment ->nr_threads for each thread in the
449 	 * group with ->mm != NULL.
450 	 */
451 	mmap_read_lock(mm);
452 	core_state = mm->core_state;
453 	if (core_state) {
454 		struct core_thread self;
455 
456 		mmap_read_unlock(mm);
457 
458 		self.task = current;
459 		if (self.task->flags & PF_SIGNALED)
460 			self.next = xchg(&core_state->dumper.next, &self);
461 		else
462 			self.task = NULL;
463 		/*
464 		 * Implies mb(), the result of xchg() must be visible
465 		 * to core_state->dumper.
466 		 */
467 		if (atomic_dec_and_test(&core_state->nr_threads))
468 			complete(&core_state->startup);
469 
470 		for (;;) {
471 			set_current_state(TASK_UNINTERRUPTIBLE);
472 			if (!self.task) /* see coredump_finish() */
473 				break;
474 			freezable_schedule();
475 		}
476 		__set_current_state(TASK_RUNNING);
477 		mmap_read_lock(mm);
478 	}
479 	mmgrab(mm);
480 	BUG_ON(mm != current->active_mm);
481 	/* more a memory barrier than a real lock */
482 	task_lock(current);
483 	/*
484 	 * When a thread stops operating on an address space, the loop
485 	 * in membarrier_private_expedited() may not observe that
486 	 * tsk->mm, and the loop in membarrier_global_expedited() may
487 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
488 	 * rq->membarrier_state, so those would not issue an IPI.
489 	 * Membarrier requires a memory barrier after accessing
490 	 * user-space memory, before clearing tsk->mm or the
491 	 * rq->membarrier_state.
492 	 */
493 	smp_mb__after_spinlock();
494 	local_irq_disable();
495 	current->mm = NULL;
496 	membarrier_update_current_mm(NULL);
497 	enter_lazy_tlb(mm, current);
498 	local_irq_enable();
499 	task_unlock(current);
500 	mmap_read_unlock(mm);
501 	mm_update_next_owner(mm);
502 	mmput(mm);
503 	if (test_thread_flag(TIF_MEMDIE))
504 		exit_oom_victim();
505 }
506 
507 static struct task_struct *find_alive_thread(struct task_struct *p)
508 {
509 	struct task_struct *t;
510 
511 	for_each_thread(p, t) {
512 		if (!(t->flags & PF_EXITING))
513 			return t;
514 	}
515 	return NULL;
516 }
517 
518 static struct task_struct *find_child_reaper(struct task_struct *father,
519 						struct list_head *dead)
520 	__releases(&tasklist_lock)
521 	__acquires(&tasklist_lock)
522 {
523 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
524 	struct task_struct *reaper = pid_ns->child_reaper;
525 	struct task_struct *p, *n;
526 
527 	if (likely(reaper != father))
528 		return reaper;
529 
530 	reaper = find_alive_thread(father);
531 	if (reaper) {
532 		pid_ns->child_reaper = reaper;
533 		return reaper;
534 	}
535 
536 	write_unlock_irq(&tasklist_lock);
537 
538 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
539 		list_del_init(&p->ptrace_entry);
540 		release_task(p);
541 	}
542 
543 	zap_pid_ns_processes(pid_ns);
544 	write_lock_irq(&tasklist_lock);
545 
546 	return father;
547 }
548 
549 /*
550  * When we die, we re-parent all our children, and try to:
551  * 1. give them to another thread in our thread group, if such a member exists
552  * 2. give it to the first ancestor process which prctl'd itself as a
553  *    child_subreaper for its children (like a service manager)
554  * 3. give it to the init process (PID 1) in our pid namespace
555  */
556 static struct task_struct *find_new_reaper(struct task_struct *father,
557 					   struct task_struct *child_reaper)
558 {
559 	struct task_struct *thread, *reaper;
560 
561 	thread = find_alive_thread(father);
562 	if (thread)
563 		return thread;
564 
565 	if (father->signal->has_child_subreaper) {
566 		unsigned int ns_level = task_pid(father)->level;
567 		/*
568 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
569 		 * We can't check reaper != child_reaper to ensure we do not
570 		 * cross the namespaces, the exiting parent could be injected
571 		 * by setns() + fork().
572 		 * We check pid->level, this is slightly more efficient than
573 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
574 		 */
575 		for (reaper = father->real_parent;
576 		     task_pid(reaper)->level == ns_level;
577 		     reaper = reaper->real_parent) {
578 			if (reaper == &init_task)
579 				break;
580 			if (!reaper->signal->is_child_subreaper)
581 				continue;
582 			thread = find_alive_thread(reaper);
583 			if (thread)
584 				return thread;
585 		}
586 	}
587 
588 	return child_reaper;
589 }
590 
591 /*
592 * Any that need to be release_task'd are put on the @dead list.
593  */
594 static void reparent_leader(struct task_struct *father, struct task_struct *p,
595 				struct list_head *dead)
596 {
597 	if (unlikely(p->exit_state == EXIT_DEAD))
598 		return;
599 
600 	/* We don't want people slaying init. */
601 	p->exit_signal = SIGCHLD;
602 
603 	/* If it has exited notify the new parent about this child's death. */
604 	if (!p->ptrace &&
605 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
606 		if (do_notify_parent(p, p->exit_signal)) {
607 			p->exit_state = EXIT_DEAD;
608 			list_add(&p->ptrace_entry, dead);
609 		}
610 	}
611 
612 	kill_orphaned_pgrp(p, father);
613 }
614 
615 /*
616  * This does two things:
617  *
618  * A.  Make init inherit all the child processes
619  * B.  Check to see if any process groups have become orphaned
620  *	as a result of our exiting, and if they have any stopped
621  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
622  */
623 static void forget_original_parent(struct task_struct *father,
624 					struct list_head *dead)
625 {
626 	struct task_struct *p, *t, *reaper;
627 
628 	if (unlikely(!list_empty(&father->ptraced)))
629 		exit_ptrace(father, dead);
630 
631 	/* Can drop and reacquire tasklist_lock */
632 	reaper = find_child_reaper(father, dead);
633 	if (list_empty(&father->children))
634 		return;
635 
636 	reaper = find_new_reaper(father, reaper);
637 	list_for_each_entry(p, &father->children, sibling) {
638 		for_each_thread(p, t) {
639 			RCU_INIT_POINTER(t->real_parent, reaper);
640 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
641 			if (likely(!t->ptrace))
642 				t->parent = t->real_parent;
643 			if (t->pdeath_signal)
644 				group_send_sig_info(t->pdeath_signal,
645 						    SEND_SIG_NOINFO, t,
646 						    PIDTYPE_TGID);
647 		}
648 		/*
649 		 * If this is a threaded reparent there is no need to
650 		 * notify anyone anything has happened.
651 		 */
652 		if (!same_thread_group(reaper, father))
653 			reparent_leader(father, p, dead);
654 	}
655 	list_splice_tail_init(&father->children, &reaper->children);
656 }
657 
658 /*
659  * Send signals to all our closest relatives so that they know
660  * to properly mourn us..
661  */
662 static void exit_notify(struct task_struct *tsk, int group_dead)
663 {
664 	bool autoreap;
665 	struct task_struct *p, *n;
666 	LIST_HEAD(dead);
667 
668 	write_lock_irq(&tasklist_lock);
669 	forget_original_parent(tsk, &dead);
670 
671 	if (group_dead)
672 		kill_orphaned_pgrp(tsk->group_leader, NULL);
673 
674 	tsk->exit_state = EXIT_ZOMBIE;
675 	if (unlikely(tsk->ptrace)) {
676 		int sig = thread_group_leader(tsk) &&
677 				thread_group_empty(tsk) &&
678 				!ptrace_reparented(tsk) ?
679 			tsk->exit_signal : SIGCHLD;
680 		autoreap = do_notify_parent(tsk, sig);
681 	} else if (thread_group_leader(tsk)) {
682 		autoreap = thread_group_empty(tsk) &&
683 			do_notify_parent(tsk, tsk->exit_signal);
684 	} else {
685 		autoreap = true;
686 	}
687 
688 	if (autoreap) {
689 		tsk->exit_state = EXIT_DEAD;
690 		list_add(&tsk->ptrace_entry, &dead);
691 	}
692 
693 	/* mt-exec, de_thread() is waiting for group leader */
694 	if (unlikely(tsk->signal->notify_count < 0))
695 		wake_up_process(tsk->signal->group_exit_task);
696 	write_unlock_irq(&tasklist_lock);
697 
698 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
699 		list_del_init(&p->ptrace_entry);
700 		release_task(p);
701 	}
702 }
703 
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
706 {
707 	static DEFINE_SPINLOCK(low_water_lock);
708 	static int lowest_to_date = THREAD_SIZE;
709 	unsigned long free;
710 
711 	free = stack_not_used(current);
712 
713 	if (free >= lowest_to_date)
714 		return;
715 
716 	spin_lock(&low_water_lock);
717 	if (free < lowest_to_date) {
718 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 			current->comm, task_pid_nr(current), free);
720 		lowest_to_date = free;
721 	}
722 	spin_unlock(&low_water_lock);
723 }
724 #else
725 static inline void check_stack_usage(void) {}
726 #endif
727 
728 void __noreturn do_exit(long code)
729 {
730 	struct task_struct *tsk = current;
731 	int group_dead;
732 
733 	/*
734 	 * We can get here from a kernel oops, sometimes with preemption off.
735 	 * Start by checking for critical errors.
736 	 * Then fix up important state like USER_DS and preemption.
737 	 * Then do everything else.
738 	 */
739 
740 	WARN_ON(blk_needs_flush_plug(tsk));
741 
742 	if (unlikely(in_interrupt()))
743 		panic("Aiee, killing interrupt handler!");
744 	if (unlikely(!tsk->pid))
745 		panic("Attempted to kill the idle task!");
746 
747 	/*
748 	 * If do_exit is called because this processes oopsed, it's possible
749 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
750 	 * continuing. Amongst other possible reasons, this is to prevent
751 	 * mm_release()->clear_child_tid() from writing to a user-controlled
752 	 * kernel address.
753 	 */
754 	force_uaccess_begin();
755 
756 	if (unlikely(in_atomic())) {
757 		pr_info("note: %s[%d] exited with preempt_count %d\n",
758 			current->comm, task_pid_nr(current),
759 			preempt_count());
760 		preempt_count_set(PREEMPT_ENABLED);
761 	}
762 
763 	profile_task_exit(tsk);
764 	kcov_task_exit(tsk);
765 
766 	ptrace_event(PTRACE_EVENT_EXIT, code);
767 
768 	validate_creds_for_do_exit(tsk);
769 
770 	/*
771 	 * We're taking recursive faults here in do_exit. Safest is to just
772 	 * leave this task alone and wait for reboot.
773 	 */
774 	if (unlikely(tsk->flags & PF_EXITING)) {
775 		pr_alert("Fixing recursive fault but reboot is needed!\n");
776 		futex_exit_recursive(tsk);
777 		set_current_state(TASK_UNINTERRUPTIBLE);
778 		schedule();
779 	}
780 
781 	io_uring_files_cancel(tsk->files);
782 	exit_signals(tsk);  /* sets PF_EXITING */
783 
784 	/* sync mm's RSS info before statistics gathering */
785 	if (tsk->mm)
786 		sync_mm_rss(tsk->mm);
787 	acct_update_integrals(tsk);
788 	group_dead = atomic_dec_and_test(&tsk->signal->live);
789 	if (group_dead) {
790 		/*
791 		 * If the last thread of global init has exited, panic
792 		 * immediately to get a useable coredump.
793 		 */
794 		if (unlikely(is_global_init(tsk)))
795 			panic("Attempted to kill init! exitcode=0x%08x\n",
796 				tsk->signal->group_exit_code ?: (int)code);
797 
798 #ifdef CONFIG_POSIX_TIMERS
799 		hrtimer_cancel(&tsk->signal->real_timer);
800 		exit_itimers(tsk->signal);
801 #endif
802 		if (tsk->mm)
803 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
804 	}
805 	acct_collect(code, group_dead);
806 	if (group_dead)
807 		tty_audit_exit();
808 	audit_free(tsk);
809 
810 	tsk->exit_code = code;
811 	taskstats_exit(tsk, group_dead);
812 
813 	exit_mm();
814 
815 	if (group_dead)
816 		acct_process();
817 	trace_sched_process_exit(tsk);
818 
819 	exit_sem(tsk);
820 	exit_shm(tsk);
821 	exit_files(tsk);
822 	exit_fs(tsk);
823 	if (group_dead)
824 		disassociate_ctty(1);
825 	exit_task_namespaces(tsk);
826 	exit_task_work(tsk);
827 	exit_thread(tsk);
828 
829 	/*
830 	 * Flush inherited counters to the parent - before the parent
831 	 * gets woken up by child-exit notifications.
832 	 *
833 	 * because of cgroup mode, must be called before cgroup_exit()
834 	 */
835 	perf_event_exit_task(tsk);
836 
837 	sched_autogroup_exit_task(tsk);
838 	cgroup_exit(tsk);
839 
840 	/*
841 	 * FIXME: do that only when needed, using sched_exit tracepoint
842 	 */
843 	flush_ptrace_hw_breakpoint(tsk);
844 
845 	exit_tasks_rcu_start();
846 	exit_notify(tsk, group_dead);
847 	proc_exit_connector(tsk);
848 	mpol_put_task_policy(tsk);
849 #ifdef CONFIG_FUTEX
850 	if (unlikely(current->pi_state_cache))
851 		kfree(current->pi_state_cache);
852 #endif
853 	/*
854 	 * Make sure we are holding no locks:
855 	 */
856 	debug_check_no_locks_held();
857 
858 	if (tsk->io_context)
859 		exit_io_context(tsk);
860 
861 	if (tsk->splice_pipe)
862 		free_pipe_info(tsk->splice_pipe);
863 
864 	if (tsk->task_frag.page)
865 		put_page(tsk->task_frag.page);
866 
867 	validate_creds_for_do_exit(tsk);
868 
869 	check_stack_usage();
870 	preempt_disable();
871 	if (tsk->nr_dirtied)
872 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
873 	exit_rcu();
874 	exit_tasks_rcu_finish();
875 
876 	lockdep_free_task(tsk);
877 	do_task_dead();
878 }
879 EXPORT_SYMBOL_GPL(do_exit);
880 
881 void complete_and_exit(struct completion *comp, long code)
882 {
883 	if (comp)
884 		complete(comp);
885 
886 	do_exit(code);
887 }
888 EXPORT_SYMBOL(complete_and_exit);
889 
890 SYSCALL_DEFINE1(exit, int, error_code)
891 {
892 	do_exit((error_code&0xff)<<8);
893 }
894 
895 /*
896  * Take down every thread in the group.  This is called by fatal signals
897  * as well as by sys_exit_group (below).
898  */
899 void
900 do_group_exit(int exit_code)
901 {
902 	struct signal_struct *sig = current->signal;
903 
904 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
905 
906 	if (signal_group_exit(sig))
907 		exit_code = sig->group_exit_code;
908 	else if (!thread_group_empty(current)) {
909 		struct sighand_struct *const sighand = current->sighand;
910 
911 		spin_lock_irq(&sighand->siglock);
912 		if (signal_group_exit(sig))
913 			/* Another thread got here before we took the lock.  */
914 			exit_code = sig->group_exit_code;
915 		else {
916 			sig->group_exit_code = exit_code;
917 			sig->flags = SIGNAL_GROUP_EXIT;
918 			zap_other_threads(current);
919 		}
920 		spin_unlock_irq(&sighand->siglock);
921 	}
922 
923 	do_exit(exit_code);
924 	/* NOTREACHED */
925 }
926 
927 /*
928  * this kills every thread in the thread group. Note that any externally
929  * wait4()-ing process will get the correct exit code - even if this
930  * thread is not the thread group leader.
931  */
932 SYSCALL_DEFINE1(exit_group, int, error_code)
933 {
934 	do_group_exit((error_code & 0xff) << 8);
935 	/* NOTREACHED */
936 	return 0;
937 }
938 
939 struct waitid_info {
940 	pid_t pid;
941 	uid_t uid;
942 	int status;
943 	int cause;
944 };
945 
946 struct wait_opts {
947 	enum pid_type		wo_type;
948 	int			wo_flags;
949 	struct pid		*wo_pid;
950 
951 	struct waitid_info	*wo_info;
952 	int			wo_stat;
953 	struct rusage		*wo_rusage;
954 
955 	wait_queue_entry_t		child_wait;
956 	int			notask_error;
957 };
958 
959 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
960 {
961 	return	wo->wo_type == PIDTYPE_MAX ||
962 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
963 }
964 
965 static int
966 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
967 {
968 	if (!eligible_pid(wo, p))
969 		return 0;
970 
971 	/*
972 	 * Wait for all children (clone and not) if __WALL is set or
973 	 * if it is traced by us.
974 	 */
975 	if (ptrace || (wo->wo_flags & __WALL))
976 		return 1;
977 
978 	/*
979 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
980 	 * otherwise, wait for non-clone children *only*.
981 	 *
982 	 * Note: a "clone" child here is one that reports to its parent
983 	 * using a signal other than SIGCHLD, or a non-leader thread which
984 	 * we can only see if it is traced by us.
985 	 */
986 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
987 		return 0;
988 
989 	return 1;
990 }
991 
992 /*
993  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
994  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
995  * the lock and this task is uninteresting.  If we return nonzero, we have
996  * released the lock and the system call should return.
997  */
998 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
999 {
1000 	int state, status;
1001 	pid_t pid = task_pid_vnr(p);
1002 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1003 	struct waitid_info *infop;
1004 
1005 	if (!likely(wo->wo_flags & WEXITED))
1006 		return 0;
1007 
1008 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1009 		status = p->exit_code;
1010 		get_task_struct(p);
1011 		read_unlock(&tasklist_lock);
1012 		sched_annotate_sleep();
1013 		if (wo->wo_rusage)
1014 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1015 		put_task_struct(p);
1016 		goto out_info;
1017 	}
1018 	/*
1019 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1020 	 */
1021 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1022 		EXIT_TRACE : EXIT_DEAD;
1023 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1024 		return 0;
1025 	/*
1026 	 * We own this thread, nobody else can reap it.
1027 	 */
1028 	read_unlock(&tasklist_lock);
1029 	sched_annotate_sleep();
1030 
1031 	/*
1032 	 * Check thread_group_leader() to exclude the traced sub-threads.
1033 	 */
1034 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1035 		struct signal_struct *sig = p->signal;
1036 		struct signal_struct *psig = current->signal;
1037 		unsigned long maxrss;
1038 		u64 tgutime, tgstime;
1039 
1040 		/*
1041 		 * The resource counters for the group leader are in its
1042 		 * own task_struct.  Those for dead threads in the group
1043 		 * are in its signal_struct, as are those for the child
1044 		 * processes it has previously reaped.  All these
1045 		 * accumulate in the parent's signal_struct c* fields.
1046 		 *
1047 		 * We don't bother to take a lock here to protect these
1048 		 * p->signal fields because the whole thread group is dead
1049 		 * and nobody can change them.
1050 		 *
1051 		 * psig->stats_lock also protects us from our sub-theads
1052 		 * which can reap other children at the same time. Until
1053 		 * we change k_getrusage()-like users to rely on this lock
1054 		 * we have to take ->siglock as well.
1055 		 *
1056 		 * We use thread_group_cputime_adjusted() to get times for
1057 		 * the thread group, which consolidates times for all threads
1058 		 * in the group including the group leader.
1059 		 */
1060 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1061 		spin_lock_irq(&current->sighand->siglock);
1062 		write_seqlock(&psig->stats_lock);
1063 		psig->cutime += tgutime + sig->cutime;
1064 		psig->cstime += tgstime + sig->cstime;
1065 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1066 		psig->cmin_flt +=
1067 			p->min_flt + sig->min_flt + sig->cmin_flt;
1068 		psig->cmaj_flt +=
1069 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1070 		psig->cnvcsw +=
1071 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1072 		psig->cnivcsw +=
1073 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1074 		psig->cinblock +=
1075 			task_io_get_inblock(p) +
1076 			sig->inblock + sig->cinblock;
1077 		psig->coublock +=
1078 			task_io_get_oublock(p) +
1079 			sig->oublock + sig->coublock;
1080 		maxrss = max(sig->maxrss, sig->cmaxrss);
1081 		if (psig->cmaxrss < maxrss)
1082 			psig->cmaxrss = maxrss;
1083 		task_io_accounting_add(&psig->ioac, &p->ioac);
1084 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1085 		write_sequnlock(&psig->stats_lock);
1086 		spin_unlock_irq(&current->sighand->siglock);
1087 	}
1088 
1089 	if (wo->wo_rusage)
1090 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1091 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1092 		? p->signal->group_exit_code : p->exit_code;
1093 	wo->wo_stat = status;
1094 
1095 	if (state == EXIT_TRACE) {
1096 		write_lock_irq(&tasklist_lock);
1097 		/* We dropped tasklist, ptracer could die and untrace */
1098 		ptrace_unlink(p);
1099 
1100 		/* If parent wants a zombie, don't release it now */
1101 		state = EXIT_ZOMBIE;
1102 		if (do_notify_parent(p, p->exit_signal))
1103 			state = EXIT_DEAD;
1104 		p->exit_state = state;
1105 		write_unlock_irq(&tasklist_lock);
1106 	}
1107 	if (state == EXIT_DEAD)
1108 		release_task(p);
1109 
1110 out_info:
1111 	infop = wo->wo_info;
1112 	if (infop) {
1113 		if ((status & 0x7f) == 0) {
1114 			infop->cause = CLD_EXITED;
1115 			infop->status = status >> 8;
1116 		} else {
1117 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1118 			infop->status = status & 0x7f;
1119 		}
1120 		infop->pid = pid;
1121 		infop->uid = uid;
1122 	}
1123 
1124 	return pid;
1125 }
1126 
1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 	if (ptrace) {
1130 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1131 			return &p->exit_code;
1132 	} else {
1133 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1134 			return &p->signal->group_exit_code;
1135 	}
1136 	return NULL;
1137 }
1138 
1139 /**
1140  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1141  * @wo: wait options
1142  * @ptrace: is the wait for ptrace
1143  * @p: task to wait for
1144  *
1145  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1146  *
1147  * CONTEXT:
1148  * read_lock(&tasklist_lock), which is released if return value is
1149  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1150  *
1151  * RETURNS:
1152  * 0 if wait condition didn't exist and search for other wait conditions
1153  * should continue.  Non-zero return, -errno on failure and @p's pid on
1154  * success, implies that tasklist_lock is released and wait condition
1155  * search should terminate.
1156  */
1157 static int wait_task_stopped(struct wait_opts *wo,
1158 				int ptrace, struct task_struct *p)
1159 {
1160 	struct waitid_info *infop;
1161 	int exit_code, *p_code, why;
1162 	uid_t uid = 0; /* unneeded, required by compiler */
1163 	pid_t pid;
1164 
1165 	/*
1166 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1167 	 */
1168 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1169 		return 0;
1170 
1171 	if (!task_stopped_code(p, ptrace))
1172 		return 0;
1173 
1174 	exit_code = 0;
1175 	spin_lock_irq(&p->sighand->siglock);
1176 
1177 	p_code = task_stopped_code(p, ptrace);
1178 	if (unlikely(!p_code))
1179 		goto unlock_sig;
1180 
1181 	exit_code = *p_code;
1182 	if (!exit_code)
1183 		goto unlock_sig;
1184 
1185 	if (!unlikely(wo->wo_flags & WNOWAIT))
1186 		*p_code = 0;
1187 
1188 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1189 unlock_sig:
1190 	spin_unlock_irq(&p->sighand->siglock);
1191 	if (!exit_code)
1192 		return 0;
1193 
1194 	/*
1195 	 * Now we are pretty sure this task is interesting.
1196 	 * Make sure it doesn't get reaped out from under us while we
1197 	 * give up the lock and then examine it below.  We don't want to
1198 	 * keep holding onto the tasklist_lock while we call getrusage and
1199 	 * possibly take page faults for user memory.
1200 	 */
1201 	get_task_struct(p);
1202 	pid = task_pid_vnr(p);
1203 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1204 	read_unlock(&tasklist_lock);
1205 	sched_annotate_sleep();
1206 	if (wo->wo_rusage)
1207 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1208 	put_task_struct(p);
1209 
1210 	if (likely(!(wo->wo_flags & WNOWAIT)))
1211 		wo->wo_stat = (exit_code << 8) | 0x7f;
1212 
1213 	infop = wo->wo_info;
1214 	if (infop) {
1215 		infop->cause = why;
1216 		infop->status = exit_code;
1217 		infop->pid = pid;
1218 		infop->uid = uid;
1219 	}
1220 	return pid;
1221 }
1222 
1223 /*
1224  * Handle do_wait work for one task in a live, non-stopped state.
1225  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1226  * the lock and this task is uninteresting.  If we return nonzero, we have
1227  * released the lock and the system call should return.
1228  */
1229 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1230 {
1231 	struct waitid_info *infop;
1232 	pid_t pid;
1233 	uid_t uid;
1234 
1235 	if (!unlikely(wo->wo_flags & WCONTINUED))
1236 		return 0;
1237 
1238 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1239 		return 0;
1240 
1241 	spin_lock_irq(&p->sighand->siglock);
1242 	/* Re-check with the lock held.  */
1243 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1244 		spin_unlock_irq(&p->sighand->siglock);
1245 		return 0;
1246 	}
1247 	if (!unlikely(wo->wo_flags & WNOWAIT))
1248 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1249 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1250 	spin_unlock_irq(&p->sighand->siglock);
1251 
1252 	pid = task_pid_vnr(p);
1253 	get_task_struct(p);
1254 	read_unlock(&tasklist_lock);
1255 	sched_annotate_sleep();
1256 	if (wo->wo_rusage)
1257 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1258 	put_task_struct(p);
1259 
1260 	infop = wo->wo_info;
1261 	if (!infop) {
1262 		wo->wo_stat = 0xffff;
1263 	} else {
1264 		infop->cause = CLD_CONTINUED;
1265 		infop->pid = pid;
1266 		infop->uid = uid;
1267 		infop->status = SIGCONT;
1268 	}
1269 	return pid;
1270 }
1271 
1272 /*
1273  * Consider @p for a wait by @parent.
1274  *
1275  * -ECHILD should be in ->notask_error before the first call.
1276  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1277  * Returns zero if the search for a child should continue;
1278  * then ->notask_error is 0 if @p is an eligible child,
1279  * or still -ECHILD.
1280  */
1281 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1282 				struct task_struct *p)
1283 {
1284 	/*
1285 	 * We can race with wait_task_zombie() from another thread.
1286 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1287 	 * can't confuse the checks below.
1288 	 */
1289 	int exit_state = READ_ONCE(p->exit_state);
1290 	int ret;
1291 
1292 	if (unlikely(exit_state == EXIT_DEAD))
1293 		return 0;
1294 
1295 	ret = eligible_child(wo, ptrace, p);
1296 	if (!ret)
1297 		return ret;
1298 
1299 	if (unlikely(exit_state == EXIT_TRACE)) {
1300 		/*
1301 		 * ptrace == 0 means we are the natural parent. In this case
1302 		 * we should clear notask_error, debugger will notify us.
1303 		 */
1304 		if (likely(!ptrace))
1305 			wo->notask_error = 0;
1306 		return 0;
1307 	}
1308 
1309 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1310 		/*
1311 		 * If it is traced by its real parent's group, just pretend
1312 		 * the caller is ptrace_do_wait() and reap this child if it
1313 		 * is zombie.
1314 		 *
1315 		 * This also hides group stop state from real parent; otherwise
1316 		 * a single stop can be reported twice as group and ptrace stop.
1317 		 * If a ptracer wants to distinguish these two events for its
1318 		 * own children it should create a separate process which takes
1319 		 * the role of real parent.
1320 		 */
1321 		if (!ptrace_reparented(p))
1322 			ptrace = 1;
1323 	}
1324 
1325 	/* slay zombie? */
1326 	if (exit_state == EXIT_ZOMBIE) {
1327 		/* we don't reap group leaders with subthreads */
1328 		if (!delay_group_leader(p)) {
1329 			/*
1330 			 * A zombie ptracee is only visible to its ptracer.
1331 			 * Notification and reaping will be cascaded to the
1332 			 * real parent when the ptracer detaches.
1333 			 */
1334 			if (unlikely(ptrace) || likely(!p->ptrace))
1335 				return wait_task_zombie(wo, p);
1336 		}
1337 
1338 		/*
1339 		 * Allow access to stopped/continued state via zombie by
1340 		 * falling through.  Clearing of notask_error is complex.
1341 		 *
1342 		 * When !@ptrace:
1343 		 *
1344 		 * If WEXITED is set, notask_error should naturally be
1345 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1346 		 * so, if there are live subthreads, there are events to
1347 		 * wait for.  If all subthreads are dead, it's still safe
1348 		 * to clear - this function will be called again in finite
1349 		 * amount time once all the subthreads are released and
1350 		 * will then return without clearing.
1351 		 *
1352 		 * When @ptrace:
1353 		 *
1354 		 * Stopped state is per-task and thus can't change once the
1355 		 * target task dies.  Only continued and exited can happen.
1356 		 * Clear notask_error if WCONTINUED | WEXITED.
1357 		 */
1358 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1359 			wo->notask_error = 0;
1360 	} else {
1361 		/*
1362 		 * @p is alive and it's gonna stop, continue or exit, so
1363 		 * there always is something to wait for.
1364 		 */
1365 		wo->notask_error = 0;
1366 	}
1367 
1368 	/*
1369 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1370 	 * is used and the two don't interact with each other.
1371 	 */
1372 	ret = wait_task_stopped(wo, ptrace, p);
1373 	if (ret)
1374 		return ret;
1375 
1376 	/*
1377 	 * Wait for continued.  There's only one continued state and the
1378 	 * ptracer can consume it which can confuse the real parent.  Don't
1379 	 * use WCONTINUED from ptracer.  You don't need or want it.
1380 	 */
1381 	return wait_task_continued(wo, p);
1382 }
1383 
1384 /*
1385  * Do the work of do_wait() for one thread in the group, @tsk.
1386  *
1387  * -ECHILD should be in ->notask_error before the first call.
1388  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1389  * Returns zero if the search for a child should continue; then
1390  * ->notask_error is 0 if there were any eligible children,
1391  * or still -ECHILD.
1392  */
1393 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1394 {
1395 	struct task_struct *p;
1396 
1397 	list_for_each_entry(p, &tsk->children, sibling) {
1398 		int ret = wait_consider_task(wo, 0, p);
1399 
1400 		if (ret)
1401 			return ret;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1408 {
1409 	struct task_struct *p;
1410 
1411 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1412 		int ret = wait_consider_task(wo, 1, p);
1413 
1414 		if (ret)
1415 			return ret;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1422 				int sync, void *key)
1423 {
1424 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1425 						child_wait);
1426 	struct task_struct *p = key;
1427 
1428 	if (!eligible_pid(wo, p))
1429 		return 0;
1430 
1431 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1432 		return 0;
1433 
1434 	return default_wake_function(wait, mode, sync, key);
1435 }
1436 
1437 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1438 {
1439 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1440 			   TASK_INTERRUPTIBLE, p);
1441 }
1442 
1443 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1444 				 struct task_struct *target)
1445 {
1446 	struct task_struct *parent =
1447 		!ptrace ? target->real_parent : target->parent;
1448 
1449 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1450 				     same_thread_group(current, parent));
1451 }
1452 
1453 /*
1454  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1455  * and tracee lists to find the target task.
1456  */
1457 static int do_wait_pid(struct wait_opts *wo)
1458 {
1459 	bool ptrace;
1460 	struct task_struct *target;
1461 	int retval;
1462 
1463 	ptrace = false;
1464 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1465 	if (target && is_effectively_child(wo, ptrace, target)) {
1466 		retval = wait_consider_task(wo, ptrace, target);
1467 		if (retval)
1468 			return retval;
1469 	}
1470 
1471 	ptrace = true;
1472 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1473 	if (target && target->ptrace &&
1474 	    is_effectively_child(wo, ptrace, target)) {
1475 		retval = wait_consider_task(wo, ptrace, target);
1476 		if (retval)
1477 			return retval;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static long do_wait(struct wait_opts *wo)
1484 {
1485 	int retval;
1486 
1487 	trace_sched_process_wait(wo->wo_pid);
1488 
1489 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1490 	wo->child_wait.private = current;
1491 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1492 repeat:
1493 	/*
1494 	 * If there is nothing that can match our criteria, just get out.
1495 	 * We will clear ->notask_error to zero if we see any child that
1496 	 * might later match our criteria, even if we are not able to reap
1497 	 * it yet.
1498 	 */
1499 	wo->notask_error = -ECHILD;
1500 	if ((wo->wo_type < PIDTYPE_MAX) &&
1501 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1502 		goto notask;
1503 
1504 	set_current_state(TASK_INTERRUPTIBLE);
1505 	read_lock(&tasklist_lock);
1506 
1507 	if (wo->wo_type == PIDTYPE_PID) {
1508 		retval = do_wait_pid(wo);
1509 		if (retval)
1510 			goto end;
1511 	} else {
1512 		struct task_struct *tsk = current;
1513 
1514 		do {
1515 			retval = do_wait_thread(wo, tsk);
1516 			if (retval)
1517 				goto end;
1518 
1519 			retval = ptrace_do_wait(wo, tsk);
1520 			if (retval)
1521 				goto end;
1522 
1523 			if (wo->wo_flags & __WNOTHREAD)
1524 				break;
1525 		} while_each_thread(current, tsk);
1526 	}
1527 	read_unlock(&tasklist_lock);
1528 
1529 notask:
1530 	retval = wo->notask_error;
1531 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1532 		retval = -ERESTARTSYS;
1533 		if (!signal_pending(current)) {
1534 			schedule();
1535 			goto repeat;
1536 		}
1537 	}
1538 end:
1539 	__set_current_state(TASK_RUNNING);
1540 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1541 	return retval;
1542 }
1543 
1544 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1545 			  int options, struct rusage *ru)
1546 {
1547 	struct wait_opts wo;
1548 	struct pid *pid = NULL;
1549 	enum pid_type type;
1550 	long ret;
1551 	unsigned int f_flags = 0;
1552 
1553 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1554 			__WNOTHREAD|__WCLONE|__WALL))
1555 		return -EINVAL;
1556 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1557 		return -EINVAL;
1558 
1559 	switch (which) {
1560 	case P_ALL:
1561 		type = PIDTYPE_MAX;
1562 		break;
1563 	case P_PID:
1564 		type = PIDTYPE_PID;
1565 		if (upid <= 0)
1566 			return -EINVAL;
1567 
1568 		pid = find_get_pid(upid);
1569 		break;
1570 	case P_PGID:
1571 		type = PIDTYPE_PGID;
1572 		if (upid < 0)
1573 			return -EINVAL;
1574 
1575 		if (upid)
1576 			pid = find_get_pid(upid);
1577 		else
1578 			pid = get_task_pid(current, PIDTYPE_PGID);
1579 		break;
1580 	case P_PIDFD:
1581 		type = PIDTYPE_PID;
1582 		if (upid < 0)
1583 			return -EINVAL;
1584 
1585 		pid = pidfd_get_pid(upid, &f_flags);
1586 		if (IS_ERR(pid))
1587 			return PTR_ERR(pid);
1588 
1589 		break;
1590 	default:
1591 		return -EINVAL;
1592 	}
1593 
1594 	wo.wo_type	= type;
1595 	wo.wo_pid	= pid;
1596 	wo.wo_flags	= options;
1597 	wo.wo_info	= infop;
1598 	wo.wo_rusage	= ru;
1599 	if (f_flags & O_NONBLOCK)
1600 		wo.wo_flags |= WNOHANG;
1601 
1602 	ret = do_wait(&wo);
1603 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1604 		ret = -EAGAIN;
1605 
1606 	put_pid(pid);
1607 	return ret;
1608 }
1609 
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 		infop, int, options, struct rusage __user *, ru)
1612 {
1613 	struct rusage r;
1614 	struct waitid_info info = {.status = 0};
1615 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1616 	int signo = 0;
1617 
1618 	if (err > 0) {
1619 		signo = SIGCHLD;
1620 		err = 0;
1621 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1622 			return -EFAULT;
1623 	}
1624 	if (!infop)
1625 		return err;
1626 
1627 	if (!user_write_access_begin(infop, sizeof(*infop)))
1628 		return -EFAULT;
1629 
1630 	unsafe_put_user(signo, &infop->si_signo, Efault);
1631 	unsafe_put_user(0, &infop->si_errno, Efault);
1632 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1633 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1634 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1635 	unsafe_put_user(info.status, &infop->si_status, Efault);
1636 	user_write_access_end();
1637 	return err;
1638 Efault:
1639 	user_write_access_end();
1640 	return -EFAULT;
1641 }
1642 
1643 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1644 		  struct rusage *ru)
1645 {
1646 	struct wait_opts wo;
1647 	struct pid *pid = NULL;
1648 	enum pid_type type;
1649 	long ret;
1650 
1651 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1652 			__WNOTHREAD|__WCLONE|__WALL))
1653 		return -EINVAL;
1654 
1655 	/* -INT_MIN is not defined */
1656 	if (upid == INT_MIN)
1657 		return -ESRCH;
1658 
1659 	if (upid == -1)
1660 		type = PIDTYPE_MAX;
1661 	else if (upid < 0) {
1662 		type = PIDTYPE_PGID;
1663 		pid = find_get_pid(-upid);
1664 	} else if (upid == 0) {
1665 		type = PIDTYPE_PGID;
1666 		pid = get_task_pid(current, PIDTYPE_PGID);
1667 	} else /* upid > 0 */ {
1668 		type = PIDTYPE_PID;
1669 		pid = find_get_pid(upid);
1670 	}
1671 
1672 	wo.wo_type	= type;
1673 	wo.wo_pid	= pid;
1674 	wo.wo_flags	= options | WEXITED;
1675 	wo.wo_info	= NULL;
1676 	wo.wo_stat	= 0;
1677 	wo.wo_rusage	= ru;
1678 	ret = do_wait(&wo);
1679 	put_pid(pid);
1680 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1681 		ret = -EFAULT;
1682 
1683 	return ret;
1684 }
1685 
1686 int kernel_wait(pid_t pid, int *stat)
1687 {
1688 	struct wait_opts wo = {
1689 		.wo_type	= PIDTYPE_PID,
1690 		.wo_pid		= find_get_pid(pid),
1691 		.wo_flags	= WEXITED,
1692 	};
1693 	int ret;
1694 
1695 	ret = do_wait(&wo);
1696 	if (ret > 0 && wo.wo_stat)
1697 		*stat = wo.wo_stat;
1698 	put_pid(wo.wo_pid);
1699 	return ret;
1700 }
1701 
1702 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1703 		int, options, struct rusage __user *, ru)
1704 {
1705 	struct rusage r;
1706 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1707 
1708 	if (err > 0) {
1709 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1710 			return -EFAULT;
1711 	}
1712 	return err;
1713 }
1714 
1715 #ifdef __ARCH_WANT_SYS_WAITPID
1716 
1717 /*
1718  * sys_waitpid() remains for compatibility. waitpid() should be
1719  * implemented by calling sys_wait4() from libc.a.
1720  */
1721 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1722 {
1723 	return kernel_wait4(pid, stat_addr, options, NULL);
1724 }
1725 
1726 #endif
1727 
1728 #ifdef CONFIG_COMPAT
1729 COMPAT_SYSCALL_DEFINE4(wait4,
1730 	compat_pid_t, pid,
1731 	compat_uint_t __user *, stat_addr,
1732 	int, options,
1733 	struct compat_rusage __user *, ru)
1734 {
1735 	struct rusage r;
1736 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1737 	if (err > 0) {
1738 		if (ru && put_compat_rusage(&r, ru))
1739 			return -EFAULT;
1740 	}
1741 	return err;
1742 }
1743 
1744 COMPAT_SYSCALL_DEFINE5(waitid,
1745 		int, which, compat_pid_t, pid,
1746 		struct compat_siginfo __user *, infop, int, options,
1747 		struct compat_rusage __user *, uru)
1748 {
1749 	struct rusage ru;
1750 	struct waitid_info info = {.status = 0};
1751 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1752 	int signo = 0;
1753 	if (err > 0) {
1754 		signo = SIGCHLD;
1755 		err = 0;
1756 		if (uru) {
1757 			/* kernel_waitid() overwrites everything in ru */
1758 			if (COMPAT_USE_64BIT_TIME)
1759 				err = copy_to_user(uru, &ru, sizeof(ru));
1760 			else
1761 				err = put_compat_rusage(&ru, uru);
1762 			if (err)
1763 				return -EFAULT;
1764 		}
1765 	}
1766 
1767 	if (!infop)
1768 		return err;
1769 
1770 	if (!user_write_access_begin(infop, sizeof(*infop)))
1771 		return -EFAULT;
1772 
1773 	unsafe_put_user(signo, &infop->si_signo, Efault);
1774 	unsafe_put_user(0, &infop->si_errno, Efault);
1775 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1776 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1777 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1778 	unsafe_put_user(info.status, &infop->si_status, Efault);
1779 	user_write_access_end();
1780 	return err;
1781 Efault:
1782 	user_write_access_end();
1783 	return -EFAULT;
1784 }
1785 #endif
1786 
1787 /**
1788  * thread_group_exited - check that a thread group has exited
1789  * @pid: tgid of thread group to be checked.
1790  *
1791  * Test if the thread group represented by tgid has exited (all
1792  * threads are zombies, dead or completely gone).
1793  *
1794  * Return: true if the thread group has exited. false otherwise.
1795  */
1796 bool thread_group_exited(struct pid *pid)
1797 {
1798 	struct task_struct *task;
1799 	bool exited;
1800 
1801 	rcu_read_lock();
1802 	task = pid_task(pid, PIDTYPE_PID);
1803 	exited = !task ||
1804 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1805 	rcu_read_unlock();
1806 
1807 	return exited;
1808 }
1809 EXPORT_SYMBOL(thread_group_exited);
1810 
1811 __weak void abort(void)
1812 {
1813 	BUG();
1814 
1815 	/* if that doesn't kill us, halt */
1816 	panic("Oops failed to kill thread");
1817 }
1818 EXPORT_SYMBOL(abort);
1819