1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 perf_event_delayed_put(tsk); 172 trace_sched_process_free(tsk); 173 put_task_struct(tsk); 174 } 175 176 void put_task_struct_rcu_user(struct task_struct *task) 177 { 178 if (refcount_dec_and_test(&task->rcu_users)) 179 call_rcu(&task->rcu, delayed_put_task_struct); 180 } 181 182 void release_task(struct task_struct *p) 183 { 184 struct task_struct *leader; 185 int zap_leader; 186 repeat: 187 /* don't need to get the RCU readlock here - the process is dead and 188 * can't be modifying its own credentials. But shut RCU-lockdep up */ 189 rcu_read_lock(); 190 atomic_dec(&__task_cred(p)->user->processes); 191 rcu_read_unlock(); 192 193 proc_flush_task(p); 194 cgroup_release(p); 195 196 write_lock_irq(&tasklist_lock); 197 ptrace_release_task(p); 198 __exit_signal(p); 199 200 /* 201 * If we are the last non-leader member of the thread 202 * group, and the leader is zombie, then notify the 203 * group leader's parent process. (if it wants notification.) 204 */ 205 zap_leader = 0; 206 leader = p->group_leader; 207 if (leader != p && thread_group_empty(leader) 208 && leader->exit_state == EXIT_ZOMBIE) { 209 /* 210 * If we were the last child thread and the leader has 211 * exited already, and the leader's parent ignores SIGCHLD, 212 * then we are the one who should release the leader. 213 */ 214 zap_leader = do_notify_parent(leader, leader->exit_signal); 215 if (zap_leader) 216 leader->exit_state = EXIT_DEAD; 217 } 218 219 write_unlock_irq(&tasklist_lock); 220 release_thread(p); 221 put_task_struct_rcu_user(p); 222 223 p = leader; 224 if (unlikely(zap_leader)) 225 goto repeat; 226 } 227 228 void rcuwait_wake_up(struct rcuwait *w) 229 { 230 struct task_struct *task; 231 232 rcu_read_lock(); 233 234 /* 235 * Order condition vs @task, such that everything prior to the load 236 * of @task is visible. This is the condition as to why the user called 237 * rcuwait_trywake() in the first place. Pairs with set_current_state() 238 * barrier (A) in rcuwait_wait_event(). 239 * 240 * WAIT WAKE 241 * [S] tsk = current [S] cond = true 242 * MB (A) MB (B) 243 * [L] cond [L] tsk 244 */ 245 smp_mb(); /* (B) */ 246 247 task = rcu_dereference(w->task); 248 if (task) 249 wake_up_process(task); 250 rcu_read_unlock(); 251 } 252 253 /* 254 * Determine if a process group is "orphaned", according to the POSIX 255 * definition in 2.2.2.52. Orphaned process groups are not to be affected 256 * by terminal-generated stop signals. Newly orphaned process groups are 257 * to receive a SIGHUP and a SIGCONT. 258 * 259 * "I ask you, have you ever known what it is to be an orphan?" 260 */ 261 static int will_become_orphaned_pgrp(struct pid *pgrp, 262 struct task_struct *ignored_task) 263 { 264 struct task_struct *p; 265 266 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 267 if ((p == ignored_task) || 268 (p->exit_state && thread_group_empty(p)) || 269 is_global_init(p->real_parent)) 270 continue; 271 272 if (task_pgrp(p->real_parent) != pgrp && 273 task_session(p->real_parent) == task_session(p)) 274 return 0; 275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 276 277 return 1; 278 } 279 280 int is_current_pgrp_orphaned(void) 281 { 282 int retval; 283 284 read_lock(&tasklist_lock); 285 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 286 read_unlock(&tasklist_lock); 287 288 return retval; 289 } 290 291 static bool has_stopped_jobs(struct pid *pgrp) 292 { 293 struct task_struct *p; 294 295 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 296 if (p->signal->flags & SIGNAL_STOP_STOPPED) 297 return true; 298 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 299 300 return false; 301 } 302 303 /* 304 * Check to see if any process groups have become orphaned as 305 * a result of our exiting, and if they have any stopped jobs, 306 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 307 */ 308 static void 309 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 310 { 311 struct pid *pgrp = task_pgrp(tsk); 312 struct task_struct *ignored_task = tsk; 313 314 if (!parent) 315 /* exit: our father is in a different pgrp than 316 * we are and we were the only connection outside. 317 */ 318 parent = tsk->real_parent; 319 else 320 /* reparent: our child is in a different pgrp than 321 * we are, and it was the only connection outside. 322 */ 323 ignored_task = NULL; 324 325 if (task_pgrp(parent) != pgrp && 326 task_session(parent) == task_session(tsk) && 327 will_become_orphaned_pgrp(pgrp, ignored_task) && 328 has_stopped_jobs(pgrp)) { 329 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 330 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 331 } 332 } 333 334 #ifdef CONFIG_MEMCG 335 /* 336 * A task is exiting. If it owned this mm, find a new owner for the mm. 337 */ 338 void mm_update_next_owner(struct mm_struct *mm) 339 { 340 struct task_struct *c, *g, *p = current; 341 342 retry: 343 /* 344 * If the exiting or execing task is not the owner, it's 345 * someone else's problem. 346 */ 347 if (mm->owner != p) 348 return; 349 /* 350 * The current owner is exiting/execing and there are no other 351 * candidates. Do not leave the mm pointing to a possibly 352 * freed task structure. 353 */ 354 if (atomic_read(&mm->mm_users) <= 1) { 355 WRITE_ONCE(mm->owner, NULL); 356 return; 357 } 358 359 read_lock(&tasklist_lock); 360 /* 361 * Search in the children 362 */ 363 list_for_each_entry(c, &p->children, sibling) { 364 if (c->mm == mm) 365 goto assign_new_owner; 366 } 367 368 /* 369 * Search in the siblings 370 */ 371 list_for_each_entry(c, &p->real_parent->children, sibling) { 372 if (c->mm == mm) 373 goto assign_new_owner; 374 } 375 376 /* 377 * Search through everything else, we should not get here often. 378 */ 379 for_each_process(g) { 380 if (g->flags & PF_KTHREAD) 381 continue; 382 for_each_thread(g, c) { 383 if (c->mm == mm) 384 goto assign_new_owner; 385 if (c->mm) 386 break; 387 } 388 } 389 read_unlock(&tasklist_lock); 390 /* 391 * We found no owner yet mm_users > 1: this implies that we are 392 * most likely racing with swapoff (try_to_unuse()) or /proc or 393 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 394 */ 395 WRITE_ONCE(mm->owner, NULL); 396 return; 397 398 assign_new_owner: 399 BUG_ON(c == p); 400 get_task_struct(c); 401 /* 402 * The task_lock protects c->mm from changing. 403 * We always want mm->owner->mm == mm 404 */ 405 task_lock(c); 406 /* 407 * Delay read_unlock() till we have the task_lock() 408 * to ensure that c does not slip away underneath us 409 */ 410 read_unlock(&tasklist_lock); 411 if (c->mm != mm) { 412 task_unlock(c); 413 put_task_struct(c); 414 goto retry; 415 } 416 WRITE_ONCE(mm->owner, c); 417 task_unlock(c); 418 put_task_struct(c); 419 } 420 #endif /* CONFIG_MEMCG */ 421 422 /* 423 * Turn us into a lazy TLB process if we 424 * aren't already.. 425 */ 426 static void exit_mm(void) 427 { 428 struct mm_struct *mm = current->mm; 429 struct core_state *core_state; 430 431 exit_mm_release(current, mm); 432 if (!mm) 433 return; 434 sync_mm_rss(mm); 435 /* 436 * Serialize with any possible pending coredump. 437 * We must hold mmap_sem around checking core_state 438 * and clearing tsk->mm. The core-inducing thread 439 * will increment ->nr_threads for each thread in the 440 * group with ->mm != NULL. 441 */ 442 down_read(&mm->mmap_sem); 443 core_state = mm->core_state; 444 if (core_state) { 445 struct core_thread self; 446 447 up_read(&mm->mmap_sem); 448 449 self.task = current; 450 self.next = xchg(&core_state->dumper.next, &self); 451 /* 452 * Implies mb(), the result of xchg() must be visible 453 * to core_state->dumper. 454 */ 455 if (atomic_dec_and_test(&core_state->nr_threads)) 456 complete(&core_state->startup); 457 458 for (;;) { 459 set_current_state(TASK_UNINTERRUPTIBLE); 460 if (!self.task) /* see coredump_finish() */ 461 break; 462 freezable_schedule(); 463 } 464 __set_current_state(TASK_RUNNING); 465 down_read(&mm->mmap_sem); 466 } 467 mmgrab(mm); 468 BUG_ON(mm != current->active_mm); 469 /* more a memory barrier than a real lock */ 470 task_lock(current); 471 current->mm = NULL; 472 up_read(&mm->mmap_sem); 473 enter_lazy_tlb(mm, current); 474 task_unlock(current); 475 mm_update_next_owner(mm); 476 mmput(mm); 477 if (test_thread_flag(TIF_MEMDIE)) 478 exit_oom_victim(); 479 } 480 481 static struct task_struct *find_alive_thread(struct task_struct *p) 482 { 483 struct task_struct *t; 484 485 for_each_thread(p, t) { 486 if (!(t->flags & PF_EXITING)) 487 return t; 488 } 489 return NULL; 490 } 491 492 static struct task_struct *find_child_reaper(struct task_struct *father, 493 struct list_head *dead) 494 __releases(&tasklist_lock) 495 __acquires(&tasklist_lock) 496 { 497 struct pid_namespace *pid_ns = task_active_pid_ns(father); 498 struct task_struct *reaper = pid_ns->child_reaper; 499 struct task_struct *p, *n; 500 501 if (likely(reaper != father)) 502 return reaper; 503 504 reaper = find_alive_thread(father); 505 if (reaper) { 506 pid_ns->child_reaper = reaper; 507 return reaper; 508 } 509 510 write_unlock_irq(&tasklist_lock); 511 512 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 513 list_del_init(&p->ptrace_entry); 514 release_task(p); 515 } 516 517 zap_pid_ns_processes(pid_ns); 518 write_lock_irq(&tasklist_lock); 519 520 return father; 521 } 522 523 /* 524 * When we die, we re-parent all our children, and try to: 525 * 1. give them to another thread in our thread group, if such a member exists 526 * 2. give it to the first ancestor process which prctl'd itself as a 527 * child_subreaper for its children (like a service manager) 528 * 3. give it to the init process (PID 1) in our pid namespace 529 */ 530 static struct task_struct *find_new_reaper(struct task_struct *father, 531 struct task_struct *child_reaper) 532 { 533 struct task_struct *thread, *reaper; 534 535 thread = find_alive_thread(father); 536 if (thread) 537 return thread; 538 539 if (father->signal->has_child_subreaper) { 540 unsigned int ns_level = task_pid(father)->level; 541 /* 542 * Find the first ->is_child_subreaper ancestor in our pid_ns. 543 * We can't check reaper != child_reaper to ensure we do not 544 * cross the namespaces, the exiting parent could be injected 545 * by setns() + fork(). 546 * We check pid->level, this is slightly more efficient than 547 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 548 */ 549 for (reaper = father->real_parent; 550 task_pid(reaper)->level == ns_level; 551 reaper = reaper->real_parent) { 552 if (reaper == &init_task) 553 break; 554 if (!reaper->signal->is_child_subreaper) 555 continue; 556 thread = find_alive_thread(reaper); 557 if (thread) 558 return thread; 559 } 560 } 561 562 return child_reaper; 563 } 564 565 /* 566 * Any that need to be release_task'd are put on the @dead list. 567 */ 568 static void reparent_leader(struct task_struct *father, struct task_struct *p, 569 struct list_head *dead) 570 { 571 if (unlikely(p->exit_state == EXIT_DEAD)) 572 return; 573 574 /* We don't want people slaying init. */ 575 p->exit_signal = SIGCHLD; 576 577 /* If it has exited notify the new parent about this child's death. */ 578 if (!p->ptrace && 579 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 580 if (do_notify_parent(p, p->exit_signal)) { 581 p->exit_state = EXIT_DEAD; 582 list_add(&p->ptrace_entry, dead); 583 } 584 } 585 586 kill_orphaned_pgrp(p, father); 587 } 588 589 /* 590 * This does two things: 591 * 592 * A. Make init inherit all the child processes 593 * B. Check to see if any process groups have become orphaned 594 * as a result of our exiting, and if they have any stopped 595 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 596 */ 597 static void forget_original_parent(struct task_struct *father, 598 struct list_head *dead) 599 { 600 struct task_struct *p, *t, *reaper; 601 602 if (unlikely(!list_empty(&father->ptraced))) 603 exit_ptrace(father, dead); 604 605 /* Can drop and reacquire tasklist_lock */ 606 reaper = find_child_reaper(father, dead); 607 if (list_empty(&father->children)) 608 return; 609 610 reaper = find_new_reaper(father, reaper); 611 list_for_each_entry(p, &father->children, sibling) { 612 for_each_thread(p, t) { 613 t->real_parent = reaper; 614 BUG_ON((!t->ptrace) != (t->parent == father)); 615 if (likely(!t->ptrace)) 616 t->parent = t->real_parent; 617 if (t->pdeath_signal) 618 group_send_sig_info(t->pdeath_signal, 619 SEND_SIG_NOINFO, t, 620 PIDTYPE_TGID); 621 } 622 /* 623 * If this is a threaded reparent there is no need to 624 * notify anyone anything has happened. 625 */ 626 if (!same_thread_group(reaper, father)) 627 reparent_leader(father, p, dead); 628 } 629 list_splice_tail_init(&father->children, &reaper->children); 630 } 631 632 /* 633 * Send signals to all our closest relatives so that they know 634 * to properly mourn us.. 635 */ 636 static void exit_notify(struct task_struct *tsk, int group_dead) 637 { 638 bool autoreap; 639 struct task_struct *p, *n; 640 LIST_HEAD(dead); 641 642 write_lock_irq(&tasklist_lock); 643 forget_original_parent(tsk, &dead); 644 645 if (group_dead) 646 kill_orphaned_pgrp(tsk->group_leader, NULL); 647 648 tsk->exit_state = EXIT_ZOMBIE; 649 if (unlikely(tsk->ptrace)) { 650 int sig = thread_group_leader(tsk) && 651 thread_group_empty(tsk) && 652 !ptrace_reparented(tsk) ? 653 tsk->exit_signal : SIGCHLD; 654 autoreap = do_notify_parent(tsk, sig); 655 } else if (thread_group_leader(tsk)) { 656 autoreap = thread_group_empty(tsk) && 657 do_notify_parent(tsk, tsk->exit_signal); 658 } else { 659 autoreap = true; 660 } 661 662 if (autoreap) { 663 tsk->exit_state = EXIT_DEAD; 664 list_add(&tsk->ptrace_entry, &dead); 665 } 666 667 /* mt-exec, de_thread() is waiting for group leader */ 668 if (unlikely(tsk->signal->notify_count < 0)) 669 wake_up_process(tsk->signal->group_exit_task); 670 write_unlock_irq(&tasklist_lock); 671 672 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 673 list_del_init(&p->ptrace_entry); 674 release_task(p); 675 } 676 } 677 678 #ifdef CONFIG_DEBUG_STACK_USAGE 679 static void check_stack_usage(void) 680 { 681 static DEFINE_SPINLOCK(low_water_lock); 682 static int lowest_to_date = THREAD_SIZE; 683 unsigned long free; 684 685 free = stack_not_used(current); 686 687 if (free >= lowest_to_date) 688 return; 689 690 spin_lock(&low_water_lock); 691 if (free < lowest_to_date) { 692 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 693 current->comm, task_pid_nr(current), free); 694 lowest_to_date = free; 695 } 696 spin_unlock(&low_water_lock); 697 } 698 #else 699 static inline void check_stack_usage(void) {} 700 #endif 701 702 void __noreturn do_exit(long code) 703 { 704 struct task_struct *tsk = current; 705 int group_dead; 706 707 profile_task_exit(tsk); 708 kcov_task_exit(tsk); 709 710 WARN_ON(blk_needs_flush_plug(tsk)); 711 712 if (unlikely(in_interrupt())) 713 panic("Aiee, killing interrupt handler!"); 714 if (unlikely(!tsk->pid)) 715 panic("Attempted to kill the idle task!"); 716 717 /* 718 * If do_exit is called because this processes oopsed, it's possible 719 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 720 * continuing. Amongst other possible reasons, this is to prevent 721 * mm_release()->clear_child_tid() from writing to a user-controlled 722 * kernel address. 723 */ 724 set_fs(USER_DS); 725 726 ptrace_event(PTRACE_EVENT_EXIT, code); 727 728 validate_creds_for_do_exit(tsk); 729 730 /* 731 * We're taking recursive faults here in do_exit. Safest is to just 732 * leave this task alone and wait for reboot. 733 */ 734 if (unlikely(tsk->flags & PF_EXITING)) { 735 pr_alert("Fixing recursive fault but reboot is needed!\n"); 736 futex_exit_recursive(tsk); 737 set_current_state(TASK_UNINTERRUPTIBLE); 738 schedule(); 739 } 740 741 exit_signals(tsk); /* sets PF_EXITING */ 742 743 if (unlikely(in_atomic())) { 744 pr_info("note: %s[%d] exited with preempt_count %d\n", 745 current->comm, task_pid_nr(current), 746 preempt_count()); 747 preempt_count_set(PREEMPT_ENABLED); 748 } 749 750 /* sync mm's RSS info before statistics gathering */ 751 if (tsk->mm) 752 sync_mm_rss(tsk->mm); 753 acct_update_integrals(tsk); 754 group_dead = atomic_dec_and_test(&tsk->signal->live); 755 if (group_dead) { 756 /* 757 * If the last thread of global init has exited, panic 758 * immediately to get a useable coredump. 759 */ 760 if (unlikely(is_global_init(tsk))) 761 panic("Attempted to kill init! exitcode=0x%08x\n", 762 tsk->signal->group_exit_code ?: (int)code); 763 764 #ifdef CONFIG_POSIX_TIMERS 765 hrtimer_cancel(&tsk->signal->real_timer); 766 exit_itimers(tsk->signal); 767 #endif 768 if (tsk->mm) 769 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 770 } 771 acct_collect(code, group_dead); 772 if (group_dead) 773 tty_audit_exit(); 774 audit_free(tsk); 775 776 tsk->exit_code = code; 777 taskstats_exit(tsk, group_dead); 778 779 exit_mm(); 780 781 if (group_dead) 782 acct_process(); 783 trace_sched_process_exit(tsk); 784 785 exit_sem(tsk); 786 exit_shm(tsk); 787 exit_files(tsk); 788 exit_fs(tsk); 789 if (group_dead) 790 disassociate_ctty(1); 791 exit_task_namespaces(tsk); 792 exit_task_work(tsk); 793 exit_thread(tsk); 794 exit_umh(tsk); 795 796 /* 797 * Flush inherited counters to the parent - before the parent 798 * gets woken up by child-exit notifications. 799 * 800 * because of cgroup mode, must be called before cgroup_exit() 801 */ 802 perf_event_exit_task(tsk); 803 804 sched_autogroup_exit_task(tsk); 805 cgroup_exit(tsk); 806 807 /* 808 * FIXME: do that only when needed, using sched_exit tracepoint 809 */ 810 flush_ptrace_hw_breakpoint(tsk); 811 812 exit_tasks_rcu_start(); 813 exit_notify(tsk, group_dead); 814 proc_exit_connector(tsk); 815 mpol_put_task_policy(tsk); 816 #ifdef CONFIG_FUTEX 817 if (unlikely(current->pi_state_cache)) 818 kfree(current->pi_state_cache); 819 #endif 820 /* 821 * Make sure we are holding no locks: 822 */ 823 debug_check_no_locks_held(); 824 825 if (tsk->io_context) 826 exit_io_context(tsk); 827 828 if (tsk->splice_pipe) 829 free_pipe_info(tsk->splice_pipe); 830 831 if (tsk->task_frag.page) 832 put_page(tsk->task_frag.page); 833 834 validate_creds_for_do_exit(tsk); 835 836 check_stack_usage(); 837 preempt_disable(); 838 if (tsk->nr_dirtied) 839 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 840 exit_rcu(); 841 exit_tasks_rcu_finish(); 842 843 lockdep_free_task(tsk); 844 do_task_dead(); 845 } 846 EXPORT_SYMBOL_GPL(do_exit); 847 848 void complete_and_exit(struct completion *comp, long code) 849 { 850 if (comp) 851 complete(comp); 852 853 do_exit(code); 854 } 855 EXPORT_SYMBOL(complete_and_exit); 856 857 SYSCALL_DEFINE1(exit, int, error_code) 858 { 859 do_exit((error_code&0xff)<<8); 860 } 861 862 /* 863 * Take down every thread in the group. This is called by fatal signals 864 * as well as by sys_exit_group (below). 865 */ 866 void 867 do_group_exit(int exit_code) 868 { 869 struct signal_struct *sig = current->signal; 870 871 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 872 873 if (signal_group_exit(sig)) 874 exit_code = sig->group_exit_code; 875 else if (!thread_group_empty(current)) { 876 struct sighand_struct *const sighand = current->sighand; 877 878 spin_lock_irq(&sighand->siglock); 879 if (signal_group_exit(sig)) 880 /* Another thread got here before we took the lock. */ 881 exit_code = sig->group_exit_code; 882 else { 883 sig->group_exit_code = exit_code; 884 sig->flags = SIGNAL_GROUP_EXIT; 885 zap_other_threads(current); 886 } 887 spin_unlock_irq(&sighand->siglock); 888 } 889 890 do_exit(exit_code); 891 /* NOTREACHED */ 892 } 893 894 /* 895 * this kills every thread in the thread group. Note that any externally 896 * wait4()-ing process will get the correct exit code - even if this 897 * thread is not the thread group leader. 898 */ 899 SYSCALL_DEFINE1(exit_group, int, error_code) 900 { 901 do_group_exit((error_code & 0xff) << 8); 902 /* NOTREACHED */ 903 return 0; 904 } 905 906 struct waitid_info { 907 pid_t pid; 908 uid_t uid; 909 int status; 910 int cause; 911 }; 912 913 struct wait_opts { 914 enum pid_type wo_type; 915 int wo_flags; 916 struct pid *wo_pid; 917 918 struct waitid_info *wo_info; 919 int wo_stat; 920 struct rusage *wo_rusage; 921 922 wait_queue_entry_t child_wait; 923 int notask_error; 924 }; 925 926 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 927 { 928 return wo->wo_type == PIDTYPE_MAX || 929 task_pid_type(p, wo->wo_type) == wo->wo_pid; 930 } 931 932 static int 933 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 934 { 935 if (!eligible_pid(wo, p)) 936 return 0; 937 938 /* 939 * Wait for all children (clone and not) if __WALL is set or 940 * if it is traced by us. 941 */ 942 if (ptrace || (wo->wo_flags & __WALL)) 943 return 1; 944 945 /* 946 * Otherwise, wait for clone children *only* if __WCLONE is set; 947 * otherwise, wait for non-clone children *only*. 948 * 949 * Note: a "clone" child here is one that reports to its parent 950 * using a signal other than SIGCHLD, or a non-leader thread which 951 * we can only see if it is traced by us. 952 */ 953 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 954 return 0; 955 956 return 1; 957 } 958 959 /* 960 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 961 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 962 * the lock and this task is uninteresting. If we return nonzero, we have 963 * released the lock and the system call should return. 964 */ 965 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 966 { 967 int state, status; 968 pid_t pid = task_pid_vnr(p); 969 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 970 struct waitid_info *infop; 971 972 if (!likely(wo->wo_flags & WEXITED)) 973 return 0; 974 975 if (unlikely(wo->wo_flags & WNOWAIT)) { 976 status = p->exit_code; 977 get_task_struct(p); 978 read_unlock(&tasklist_lock); 979 sched_annotate_sleep(); 980 if (wo->wo_rusage) 981 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 982 put_task_struct(p); 983 goto out_info; 984 } 985 /* 986 * Move the task's state to DEAD/TRACE, only one thread can do this. 987 */ 988 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 989 EXIT_TRACE : EXIT_DEAD; 990 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 991 return 0; 992 /* 993 * We own this thread, nobody else can reap it. 994 */ 995 read_unlock(&tasklist_lock); 996 sched_annotate_sleep(); 997 998 /* 999 * Check thread_group_leader() to exclude the traced sub-threads. 1000 */ 1001 if (state == EXIT_DEAD && thread_group_leader(p)) { 1002 struct signal_struct *sig = p->signal; 1003 struct signal_struct *psig = current->signal; 1004 unsigned long maxrss; 1005 u64 tgutime, tgstime; 1006 1007 /* 1008 * The resource counters for the group leader are in its 1009 * own task_struct. Those for dead threads in the group 1010 * are in its signal_struct, as are those for the child 1011 * processes it has previously reaped. All these 1012 * accumulate in the parent's signal_struct c* fields. 1013 * 1014 * We don't bother to take a lock here to protect these 1015 * p->signal fields because the whole thread group is dead 1016 * and nobody can change them. 1017 * 1018 * psig->stats_lock also protects us from our sub-theads 1019 * which can reap other children at the same time. Until 1020 * we change k_getrusage()-like users to rely on this lock 1021 * we have to take ->siglock as well. 1022 * 1023 * We use thread_group_cputime_adjusted() to get times for 1024 * the thread group, which consolidates times for all threads 1025 * in the group including the group leader. 1026 */ 1027 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1028 spin_lock_irq(¤t->sighand->siglock); 1029 write_seqlock(&psig->stats_lock); 1030 psig->cutime += tgutime + sig->cutime; 1031 psig->cstime += tgstime + sig->cstime; 1032 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1033 psig->cmin_flt += 1034 p->min_flt + sig->min_flt + sig->cmin_flt; 1035 psig->cmaj_flt += 1036 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1037 psig->cnvcsw += 1038 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1039 psig->cnivcsw += 1040 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1041 psig->cinblock += 1042 task_io_get_inblock(p) + 1043 sig->inblock + sig->cinblock; 1044 psig->coublock += 1045 task_io_get_oublock(p) + 1046 sig->oublock + sig->coublock; 1047 maxrss = max(sig->maxrss, sig->cmaxrss); 1048 if (psig->cmaxrss < maxrss) 1049 psig->cmaxrss = maxrss; 1050 task_io_accounting_add(&psig->ioac, &p->ioac); 1051 task_io_accounting_add(&psig->ioac, &sig->ioac); 1052 write_sequnlock(&psig->stats_lock); 1053 spin_unlock_irq(¤t->sighand->siglock); 1054 } 1055 1056 if (wo->wo_rusage) 1057 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1058 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1059 ? p->signal->group_exit_code : p->exit_code; 1060 wo->wo_stat = status; 1061 1062 if (state == EXIT_TRACE) { 1063 write_lock_irq(&tasklist_lock); 1064 /* We dropped tasklist, ptracer could die and untrace */ 1065 ptrace_unlink(p); 1066 1067 /* If parent wants a zombie, don't release it now */ 1068 state = EXIT_ZOMBIE; 1069 if (do_notify_parent(p, p->exit_signal)) 1070 state = EXIT_DEAD; 1071 p->exit_state = state; 1072 write_unlock_irq(&tasklist_lock); 1073 } 1074 if (state == EXIT_DEAD) 1075 release_task(p); 1076 1077 out_info: 1078 infop = wo->wo_info; 1079 if (infop) { 1080 if ((status & 0x7f) == 0) { 1081 infop->cause = CLD_EXITED; 1082 infop->status = status >> 8; 1083 } else { 1084 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1085 infop->status = status & 0x7f; 1086 } 1087 infop->pid = pid; 1088 infop->uid = uid; 1089 } 1090 1091 return pid; 1092 } 1093 1094 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1095 { 1096 if (ptrace) { 1097 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1098 return &p->exit_code; 1099 } else { 1100 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1101 return &p->signal->group_exit_code; 1102 } 1103 return NULL; 1104 } 1105 1106 /** 1107 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1108 * @wo: wait options 1109 * @ptrace: is the wait for ptrace 1110 * @p: task to wait for 1111 * 1112 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1113 * 1114 * CONTEXT: 1115 * read_lock(&tasklist_lock), which is released if return value is 1116 * non-zero. Also, grabs and releases @p->sighand->siglock. 1117 * 1118 * RETURNS: 1119 * 0 if wait condition didn't exist and search for other wait conditions 1120 * should continue. Non-zero return, -errno on failure and @p's pid on 1121 * success, implies that tasklist_lock is released and wait condition 1122 * search should terminate. 1123 */ 1124 static int wait_task_stopped(struct wait_opts *wo, 1125 int ptrace, struct task_struct *p) 1126 { 1127 struct waitid_info *infop; 1128 int exit_code, *p_code, why; 1129 uid_t uid = 0; /* unneeded, required by compiler */ 1130 pid_t pid; 1131 1132 /* 1133 * Traditionally we see ptrace'd stopped tasks regardless of options. 1134 */ 1135 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1136 return 0; 1137 1138 if (!task_stopped_code(p, ptrace)) 1139 return 0; 1140 1141 exit_code = 0; 1142 spin_lock_irq(&p->sighand->siglock); 1143 1144 p_code = task_stopped_code(p, ptrace); 1145 if (unlikely(!p_code)) 1146 goto unlock_sig; 1147 1148 exit_code = *p_code; 1149 if (!exit_code) 1150 goto unlock_sig; 1151 1152 if (!unlikely(wo->wo_flags & WNOWAIT)) 1153 *p_code = 0; 1154 1155 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1156 unlock_sig: 1157 spin_unlock_irq(&p->sighand->siglock); 1158 if (!exit_code) 1159 return 0; 1160 1161 /* 1162 * Now we are pretty sure this task is interesting. 1163 * Make sure it doesn't get reaped out from under us while we 1164 * give up the lock and then examine it below. We don't want to 1165 * keep holding onto the tasklist_lock while we call getrusage and 1166 * possibly take page faults for user memory. 1167 */ 1168 get_task_struct(p); 1169 pid = task_pid_vnr(p); 1170 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1171 read_unlock(&tasklist_lock); 1172 sched_annotate_sleep(); 1173 if (wo->wo_rusage) 1174 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1175 put_task_struct(p); 1176 1177 if (likely(!(wo->wo_flags & WNOWAIT))) 1178 wo->wo_stat = (exit_code << 8) | 0x7f; 1179 1180 infop = wo->wo_info; 1181 if (infop) { 1182 infop->cause = why; 1183 infop->status = exit_code; 1184 infop->pid = pid; 1185 infop->uid = uid; 1186 } 1187 return pid; 1188 } 1189 1190 /* 1191 * Handle do_wait work for one task in a live, non-stopped state. 1192 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1193 * the lock and this task is uninteresting. If we return nonzero, we have 1194 * released the lock and the system call should return. 1195 */ 1196 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1197 { 1198 struct waitid_info *infop; 1199 pid_t pid; 1200 uid_t uid; 1201 1202 if (!unlikely(wo->wo_flags & WCONTINUED)) 1203 return 0; 1204 1205 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1206 return 0; 1207 1208 spin_lock_irq(&p->sighand->siglock); 1209 /* Re-check with the lock held. */ 1210 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1211 spin_unlock_irq(&p->sighand->siglock); 1212 return 0; 1213 } 1214 if (!unlikely(wo->wo_flags & WNOWAIT)) 1215 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1216 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1217 spin_unlock_irq(&p->sighand->siglock); 1218 1219 pid = task_pid_vnr(p); 1220 get_task_struct(p); 1221 read_unlock(&tasklist_lock); 1222 sched_annotate_sleep(); 1223 if (wo->wo_rusage) 1224 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1225 put_task_struct(p); 1226 1227 infop = wo->wo_info; 1228 if (!infop) { 1229 wo->wo_stat = 0xffff; 1230 } else { 1231 infop->cause = CLD_CONTINUED; 1232 infop->pid = pid; 1233 infop->uid = uid; 1234 infop->status = SIGCONT; 1235 } 1236 return pid; 1237 } 1238 1239 /* 1240 * Consider @p for a wait by @parent. 1241 * 1242 * -ECHILD should be in ->notask_error before the first call. 1243 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1244 * Returns zero if the search for a child should continue; 1245 * then ->notask_error is 0 if @p is an eligible child, 1246 * or still -ECHILD. 1247 */ 1248 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1249 struct task_struct *p) 1250 { 1251 /* 1252 * We can race with wait_task_zombie() from another thread. 1253 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1254 * can't confuse the checks below. 1255 */ 1256 int exit_state = READ_ONCE(p->exit_state); 1257 int ret; 1258 1259 if (unlikely(exit_state == EXIT_DEAD)) 1260 return 0; 1261 1262 ret = eligible_child(wo, ptrace, p); 1263 if (!ret) 1264 return ret; 1265 1266 if (unlikely(exit_state == EXIT_TRACE)) { 1267 /* 1268 * ptrace == 0 means we are the natural parent. In this case 1269 * we should clear notask_error, debugger will notify us. 1270 */ 1271 if (likely(!ptrace)) 1272 wo->notask_error = 0; 1273 return 0; 1274 } 1275 1276 if (likely(!ptrace) && unlikely(p->ptrace)) { 1277 /* 1278 * If it is traced by its real parent's group, just pretend 1279 * the caller is ptrace_do_wait() and reap this child if it 1280 * is zombie. 1281 * 1282 * This also hides group stop state from real parent; otherwise 1283 * a single stop can be reported twice as group and ptrace stop. 1284 * If a ptracer wants to distinguish these two events for its 1285 * own children it should create a separate process which takes 1286 * the role of real parent. 1287 */ 1288 if (!ptrace_reparented(p)) 1289 ptrace = 1; 1290 } 1291 1292 /* slay zombie? */ 1293 if (exit_state == EXIT_ZOMBIE) { 1294 /* we don't reap group leaders with subthreads */ 1295 if (!delay_group_leader(p)) { 1296 /* 1297 * A zombie ptracee is only visible to its ptracer. 1298 * Notification and reaping will be cascaded to the 1299 * real parent when the ptracer detaches. 1300 */ 1301 if (unlikely(ptrace) || likely(!p->ptrace)) 1302 return wait_task_zombie(wo, p); 1303 } 1304 1305 /* 1306 * Allow access to stopped/continued state via zombie by 1307 * falling through. Clearing of notask_error is complex. 1308 * 1309 * When !@ptrace: 1310 * 1311 * If WEXITED is set, notask_error should naturally be 1312 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1313 * so, if there are live subthreads, there are events to 1314 * wait for. If all subthreads are dead, it's still safe 1315 * to clear - this function will be called again in finite 1316 * amount time once all the subthreads are released and 1317 * will then return without clearing. 1318 * 1319 * When @ptrace: 1320 * 1321 * Stopped state is per-task and thus can't change once the 1322 * target task dies. Only continued and exited can happen. 1323 * Clear notask_error if WCONTINUED | WEXITED. 1324 */ 1325 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1326 wo->notask_error = 0; 1327 } else { 1328 /* 1329 * @p is alive and it's gonna stop, continue or exit, so 1330 * there always is something to wait for. 1331 */ 1332 wo->notask_error = 0; 1333 } 1334 1335 /* 1336 * Wait for stopped. Depending on @ptrace, different stopped state 1337 * is used and the two don't interact with each other. 1338 */ 1339 ret = wait_task_stopped(wo, ptrace, p); 1340 if (ret) 1341 return ret; 1342 1343 /* 1344 * Wait for continued. There's only one continued state and the 1345 * ptracer can consume it which can confuse the real parent. Don't 1346 * use WCONTINUED from ptracer. You don't need or want it. 1347 */ 1348 return wait_task_continued(wo, p); 1349 } 1350 1351 /* 1352 * Do the work of do_wait() for one thread in the group, @tsk. 1353 * 1354 * -ECHILD should be in ->notask_error before the first call. 1355 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1356 * Returns zero if the search for a child should continue; then 1357 * ->notask_error is 0 if there were any eligible children, 1358 * or still -ECHILD. 1359 */ 1360 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1361 { 1362 struct task_struct *p; 1363 1364 list_for_each_entry(p, &tsk->children, sibling) { 1365 int ret = wait_consider_task(wo, 0, p); 1366 1367 if (ret) 1368 return ret; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1375 { 1376 struct task_struct *p; 1377 1378 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1379 int ret = wait_consider_task(wo, 1, p); 1380 1381 if (ret) 1382 return ret; 1383 } 1384 1385 return 0; 1386 } 1387 1388 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1389 int sync, void *key) 1390 { 1391 struct wait_opts *wo = container_of(wait, struct wait_opts, 1392 child_wait); 1393 struct task_struct *p = key; 1394 1395 if (!eligible_pid(wo, p)) 1396 return 0; 1397 1398 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1399 return 0; 1400 1401 return default_wake_function(wait, mode, sync, key); 1402 } 1403 1404 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1405 { 1406 __wake_up_sync_key(&parent->signal->wait_chldexit, 1407 TASK_INTERRUPTIBLE, p); 1408 } 1409 1410 static long do_wait(struct wait_opts *wo) 1411 { 1412 struct task_struct *tsk; 1413 int retval; 1414 1415 trace_sched_process_wait(wo->wo_pid); 1416 1417 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1418 wo->child_wait.private = current; 1419 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1420 repeat: 1421 /* 1422 * If there is nothing that can match our criteria, just get out. 1423 * We will clear ->notask_error to zero if we see any child that 1424 * might later match our criteria, even if we are not able to reap 1425 * it yet. 1426 */ 1427 wo->notask_error = -ECHILD; 1428 if ((wo->wo_type < PIDTYPE_MAX) && 1429 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1430 goto notask; 1431 1432 set_current_state(TASK_INTERRUPTIBLE); 1433 read_lock(&tasklist_lock); 1434 tsk = current; 1435 do { 1436 retval = do_wait_thread(wo, tsk); 1437 if (retval) 1438 goto end; 1439 1440 retval = ptrace_do_wait(wo, tsk); 1441 if (retval) 1442 goto end; 1443 1444 if (wo->wo_flags & __WNOTHREAD) 1445 break; 1446 } while_each_thread(current, tsk); 1447 read_unlock(&tasklist_lock); 1448 1449 notask: 1450 retval = wo->notask_error; 1451 if (!retval && !(wo->wo_flags & WNOHANG)) { 1452 retval = -ERESTARTSYS; 1453 if (!signal_pending(current)) { 1454 schedule(); 1455 goto repeat; 1456 } 1457 } 1458 end: 1459 __set_current_state(TASK_RUNNING); 1460 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1461 return retval; 1462 } 1463 1464 static struct pid *pidfd_get_pid(unsigned int fd) 1465 { 1466 struct fd f; 1467 struct pid *pid; 1468 1469 f = fdget(fd); 1470 if (!f.file) 1471 return ERR_PTR(-EBADF); 1472 1473 pid = pidfd_pid(f.file); 1474 if (!IS_ERR(pid)) 1475 get_pid(pid); 1476 1477 fdput(f); 1478 return pid; 1479 } 1480 1481 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1482 int options, struct rusage *ru) 1483 { 1484 struct wait_opts wo; 1485 struct pid *pid = NULL; 1486 enum pid_type type; 1487 long ret; 1488 1489 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1490 __WNOTHREAD|__WCLONE|__WALL)) 1491 return -EINVAL; 1492 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1493 return -EINVAL; 1494 1495 switch (which) { 1496 case P_ALL: 1497 type = PIDTYPE_MAX; 1498 break; 1499 case P_PID: 1500 type = PIDTYPE_PID; 1501 if (upid <= 0) 1502 return -EINVAL; 1503 1504 pid = find_get_pid(upid); 1505 break; 1506 case P_PGID: 1507 type = PIDTYPE_PGID; 1508 if (upid < 0) 1509 return -EINVAL; 1510 1511 if (upid) 1512 pid = find_get_pid(upid); 1513 else 1514 pid = get_task_pid(current, PIDTYPE_PGID); 1515 break; 1516 case P_PIDFD: 1517 type = PIDTYPE_PID; 1518 if (upid < 0) 1519 return -EINVAL; 1520 1521 pid = pidfd_get_pid(upid); 1522 if (IS_ERR(pid)) 1523 return PTR_ERR(pid); 1524 break; 1525 default: 1526 return -EINVAL; 1527 } 1528 1529 wo.wo_type = type; 1530 wo.wo_pid = pid; 1531 wo.wo_flags = options; 1532 wo.wo_info = infop; 1533 wo.wo_rusage = ru; 1534 ret = do_wait(&wo); 1535 1536 put_pid(pid); 1537 return ret; 1538 } 1539 1540 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1541 infop, int, options, struct rusage __user *, ru) 1542 { 1543 struct rusage r; 1544 struct waitid_info info = {.status = 0}; 1545 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1546 int signo = 0; 1547 1548 if (err > 0) { 1549 signo = SIGCHLD; 1550 err = 0; 1551 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1552 return -EFAULT; 1553 } 1554 if (!infop) 1555 return err; 1556 1557 if (!user_access_begin(infop, sizeof(*infop))) 1558 return -EFAULT; 1559 1560 unsafe_put_user(signo, &infop->si_signo, Efault); 1561 unsafe_put_user(0, &infop->si_errno, Efault); 1562 unsafe_put_user(info.cause, &infop->si_code, Efault); 1563 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1564 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1565 unsafe_put_user(info.status, &infop->si_status, Efault); 1566 user_access_end(); 1567 return err; 1568 Efault: 1569 user_access_end(); 1570 return -EFAULT; 1571 } 1572 1573 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1574 struct rusage *ru) 1575 { 1576 struct wait_opts wo; 1577 struct pid *pid = NULL; 1578 enum pid_type type; 1579 long ret; 1580 1581 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1582 __WNOTHREAD|__WCLONE|__WALL)) 1583 return -EINVAL; 1584 1585 /* -INT_MIN is not defined */ 1586 if (upid == INT_MIN) 1587 return -ESRCH; 1588 1589 if (upid == -1) 1590 type = PIDTYPE_MAX; 1591 else if (upid < 0) { 1592 type = PIDTYPE_PGID; 1593 pid = find_get_pid(-upid); 1594 } else if (upid == 0) { 1595 type = PIDTYPE_PGID; 1596 pid = get_task_pid(current, PIDTYPE_PGID); 1597 } else /* upid > 0 */ { 1598 type = PIDTYPE_PID; 1599 pid = find_get_pid(upid); 1600 } 1601 1602 wo.wo_type = type; 1603 wo.wo_pid = pid; 1604 wo.wo_flags = options | WEXITED; 1605 wo.wo_info = NULL; 1606 wo.wo_stat = 0; 1607 wo.wo_rusage = ru; 1608 ret = do_wait(&wo); 1609 put_pid(pid); 1610 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1611 ret = -EFAULT; 1612 1613 return ret; 1614 } 1615 1616 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1617 int, options, struct rusage __user *, ru) 1618 { 1619 struct rusage r; 1620 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1621 1622 if (err > 0) { 1623 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1624 return -EFAULT; 1625 } 1626 return err; 1627 } 1628 1629 #ifdef __ARCH_WANT_SYS_WAITPID 1630 1631 /* 1632 * sys_waitpid() remains for compatibility. waitpid() should be 1633 * implemented by calling sys_wait4() from libc.a. 1634 */ 1635 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1636 { 1637 return kernel_wait4(pid, stat_addr, options, NULL); 1638 } 1639 1640 #endif 1641 1642 #ifdef CONFIG_COMPAT 1643 COMPAT_SYSCALL_DEFINE4(wait4, 1644 compat_pid_t, pid, 1645 compat_uint_t __user *, stat_addr, 1646 int, options, 1647 struct compat_rusage __user *, ru) 1648 { 1649 struct rusage r; 1650 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1651 if (err > 0) { 1652 if (ru && put_compat_rusage(&r, ru)) 1653 return -EFAULT; 1654 } 1655 return err; 1656 } 1657 1658 COMPAT_SYSCALL_DEFINE5(waitid, 1659 int, which, compat_pid_t, pid, 1660 struct compat_siginfo __user *, infop, int, options, 1661 struct compat_rusage __user *, uru) 1662 { 1663 struct rusage ru; 1664 struct waitid_info info = {.status = 0}; 1665 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1666 int signo = 0; 1667 if (err > 0) { 1668 signo = SIGCHLD; 1669 err = 0; 1670 if (uru) { 1671 /* kernel_waitid() overwrites everything in ru */ 1672 if (COMPAT_USE_64BIT_TIME) 1673 err = copy_to_user(uru, &ru, sizeof(ru)); 1674 else 1675 err = put_compat_rusage(&ru, uru); 1676 if (err) 1677 return -EFAULT; 1678 } 1679 } 1680 1681 if (!infop) 1682 return err; 1683 1684 if (!user_access_begin(infop, sizeof(*infop))) 1685 return -EFAULT; 1686 1687 unsafe_put_user(signo, &infop->si_signo, Efault); 1688 unsafe_put_user(0, &infop->si_errno, Efault); 1689 unsafe_put_user(info.cause, &infop->si_code, Efault); 1690 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1691 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1692 unsafe_put_user(info.status, &infop->si_status, Efault); 1693 user_access_end(); 1694 return err; 1695 Efault: 1696 user_access_end(); 1697 return -EFAULT; 1698 } 1699 #endif 1700 1701 __weak void abort(void) 1702 { 1703 BUG(); 1704 1705 /* if that doesn't kill us, halt */ 1706 panic("Oops failed to kill thread"); 1707 } 1708 EXPORT_SYMBOL(abort); 1709