1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_TGID); 77 detach_pid(p, PIDTYPE_PGID); 78 detach_pid(p, PIDTYPE_SID); 79 80 list_del_rcu(&p->tasks); 81 list_del_init(&p->sibling); 82 __this_cpu_dec(process_counts); 83 } 84 list_del_rcu(&p->thread_group); 85 list_del_rcu(&p->thread_node); 86 } 87 88 /* 89 * This function expects the tasklist_lock write-locked. 90 */ 91 static void __exit_signal(struct task_struct *tsk) 92 { 93 struct signal_struct *sig = tsk->signal; 94 bool group_dead = thread_group_leader(tsk); 95 struct sighand_struct *sighand; 96 struct tty_struct *tty; 97 u64 utime, stime; 98 99 sighand = rcu_dereference_check(tsk->sighand, 100 lockdep_tasklist_lock_is_held()); 101 spin_lock(&sighand->siglock); 102 103 #ifdef CONFIG_POSIX_TIMERS 104 posix_cpu_timers_exit(tsk); 105 if (group_dead) 106 posix_cpu_timers_exit_group(tsk); 107 #endif 108 109 if (group_dead) { 110 tty = sig->tty; 111 sig->tty = NULL; 112 } else { 113 /* 114 * If there is any task waiting for the group exit 115 * then notify it: 116 */ 117 if (sig->notify_count > 0 && !--sig->notify_count) 118 wake_up_process(sig->group_exit_task); 119 120 if (tsk == sig->curr_target) 121 sig->curr_target = next_thread(tsk); 122 } 123 124 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 125 sizeof(unsigned long long)); 126 127 /* 128 * Accumulate here the counters for all threads as they die. We could 129 * skip the group leader because it is the last user of signal_struct, 130 * but we want to avoid the race with thread_group_cputime() which can 131 * see the empty ->thread_head list. 132 */ 133 task_cputime(tsk, &utime, &stime); 134 write_seqlock(&sig->stats_lock); 135 sig->utime += utime; 136 sig->stime += stime; 137 sig->gtime += task_gtime(tsk); 138 sig->min_flt += tsk->min_flt; 139 sig->maj_flt += tsk->maj_flt; 140 sig->nvcsw += tsk->nvcsw; 141 sig->nivcsw += tsk->nivcsw; 142 sig->inblock += task_io_get_inblock(tsk); 143 sig->oublock += task_io_get_oublock(tsk); 144 task_io_accounting_add(&sig->ioac, &tsk->ioac); 145 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 146 sig->nr_threads--; 147 __unhash_process(tsk, group_dead); 148 write_sequnlock(&sig->stats_lock); 149 150 /* 151 * Do this under ->siglock, we can race with another thread 152 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 153 */ 154 flush_sigqueue(&tsk->pending); 155 tsk->sighand = NULL; 156 spin_unlock(&sighand->siglock); 157 158 __cleanup_sighand(sighand); 159 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 160 if (group_dead) { 161 flush_sigqueue(&sig->shared_pending); 162 tty_kref_put(tty); 163 } 164 } 165 166 static void delayed_put_task_struct(struct rcu_head *rhp) 167 { 168 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 169 170 perf_event_delayed_put(tsk); 171 trace_sched_process_free(tsk); 172 put_task_struct(tsk); 173 } 174 175 void put_task_struct_rcu_user(struct task_struct *task) 176 { 177 if (refcount_dec_and_test(&task->rcu_users)) 178 call_rcu(&task->rcu, delayed_put_task_struct); 179 } 180 181 void release_task(struct task_struct *p) 182 { 183 struct task_struct *leader; 184 struct pid *thread_pid; 185 int zap_leader; 186 repeat: 187 /* don't need to get the RCU readlock here - the process is dead and 188 * can't be modifying its own credentials. But shut RCU-lockdep up */ 189 rcu_read_lock(); 190 atomic_dec(&__task_cred(p)->user->processes); 191 rcu_read_unlock(); 192 193 cgroup_release(p); 194 195 write_lock_irq(&tasklist_lock); 196 ptrace_release_task(p); 197 thread_pid = get_pid(p->thread_pid); 198 __exit_signal(p); 199 200 /* 201 * If we are the last non-leader member of the thread 202 * group, and the leader is zombie, then notify the 203 * group leader's parent process. (if it wants notification.) 204 */ 205 zap_leader = 0; 206 leader = p->group_leader; 207 if (leader != p && thread_group_empty(leader) 208 && leader->exit_state == EXIT_ZOMBIE) { 209 /* 210 * If we were the last child thread and the leader has 211 * exited already, and the leader's parent ignores SIGCHLD, 212 * then we are the one who should release the leader. 213 */ 214 zap_leader = do_notify_parent(leader, leader->exit_signal); 215 if (zap_leader) 216 leader->exit_state = EXIT_DEAD; 217 } 218 219 write_unlock_irq(&tasklist_lock); 220 seccomp_filter_release(p); 221 proc_flush_pid(thread_pid); 222 put_pid(thread_pid); 223 release_thread(p); 224 put_task_struct_rcu_user(p); 225 226 p = leader; 227 if (unlikely(zap_leader)) 228 goto repeat; 229 } 230 231 int rcuwait_wake_up(struct rcuwait *w) 232 { 233 int ret = 0; 234 struct task_struct *task; 235 236 rcu_read_lock(); 237 238 /* 239 * Order condition vs @task, such that everything prior to the load 240 * of @task is visible. This is the condition as to why the user called 241 * rcuwait_wake() in the first place. Pairs with set_current_state() 242 * barrier (A) in rcuwait_wait_event(). 243 * 244 * WAIT WAKE 245 * [S] tsk = current [S] cond = true 246 * MB (A) MB (B) 247 * [L] cond [L] tsk 248 */ 249 smp_mb(); /* (B) */ 250 251 task = rcu_dereference(w->task); 252 if (task) 253 ret = wake_up_process(task); 254 rcu_read_unlock(); 255 256 return ret; 257 } 258 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 259 260 /* 261 * Determine if a process group is "orphaned", according to the POSIX 262 * definition in 2.2.2.52. Orphaned process groups are not to be affected 263 * by terminal-generated stop signals. Newly orphaned process groups are 264 * to receive a SIGHUP and a SIGCONT. 265 * 266 * "I ask you, have you ever known what it is to be an orphan?" 267 */ 268 static int will_become_orphaned_pgrp(struct pid *pgrp, 269 struct task_struct *ignored_task) 270 { 271 struct task_struct *p; 272 273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 274 if ((p == ignored_task) || 275 (p->exit_state && thread_group_empty(p)) || 276 is_global_init(p->real_parent)) 277 continue; 278 279 if (task_pgrp(p->real_parent) != pgrp && 280 task_session(p->real_parent) == task_session(p)) 281 return 0; 282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 284 return 1; 285 } 286 287 int is_current_pgrp_orphaned(void) 288 { 289 int retval; 290 291 read_lock(&tasklist_lock); 292 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 293 read_unlock(&tasklist_lock); 294 295 return retval; 296 } 297 298 static bool has_stopped_jobs(struct pid *pgrp) 299 { 300 struct task_struct *p; 301 302 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 303 if (p->signal->flags & SIGNAL_STOP_STOPPED) 304 return true; 305 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 306 307 return false; 308 } 309 310 /* 311 * Check to see if any process groups have become orphaned as 312 * a result of our exiting, and if they have any stopped jobs, 313 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 314 */ 315 static void 316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 317 { 318 struct pid *pgrp = task_pgrp(tsk); 319 struct task_struct *ignored_task = tsk; 320 321 if (!parent) 322 /* exit: our father is in a different pgrp than 323 * we are and we were the only connection outside. 324 */ 325 parent = tsk->real_parent; 326 else 327 /* reparent: our child is in a different pgrp than 328 * we are, and it was the only connection outside. 329 */ 330 ignored_task = NULL; 331 332 if (task_pgrp(parent) != pgrp && 333 task_session(parent) == task_session(tsk) && 334 will_become_orphaned_pgrp(pgrp, ignored_task) && 335 has_stopped_jobs(pgrp)) { 336 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 337 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 338 } 339 } 340 341 #ifdef CONFIG_MEMCG 342 /* 343 * A task is exiting. If it owned this mm, find a new owner for the mm. 344 */ 345 void mm_update_next_owner(struct mm_struct *mm) 346 { 347 struct task_struct *c, *g, *p = current; 348 349 retry: 350 /* 351 * If the exiting or execing task is not the owner, it's 352 * someone else's problem. 353 */ 354 if (mm->owner != p) 355 return; 356 /* 357 * The current owner is exiting/execing and there are no other 358 * candidates. Do not leave the mm pointing to a possibly 359 * freed task structure. 360 */ 361 if (atomic_read(&mm->mm_users) <= 1) { 362 WRITE_ONCE(mm->owner, NULL); 363 return; 364 } 365 366 read_lock(&tasklist_lock); 367 /* 368 * Search in the children 369 */ 370 list_for_each_entry(c, &p->children, sibling) { 371 if (c->mm == mm) 372 goto assign_new_owner; 373 } 374 375 /* 376 * Search in the siblings 377 */ 378 list_for_each_entry(c, &p->real_parent->children, sibling) { 379 if (c->mm == mm) 380 goto assign_new_owner; 381 } 382 383 /* 384 * Search through everything else, we should not get here often. 385 */ 386 for_each_process(g) { 387 if (g->flags & PF_KTHREAD) 388 continue; 389 for_each_thread(g, c) { 390 if (c->mm == mm) 391 goto assign_new_owner; 392 if (c->mm) 393 break; 394 } 395 } 396 read_unlock(&tasklist_lock); 397 /* 398 * We found no owner yet mm_users > 1: this implies that we are 399 * most likely racing with swapoff (try_to_unuse()) or /proc or 400 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 401 */ 402 WRITE_ONCE(mm->owner, NULL); 403 return; 404 405 assign_new_owner: 406 BUG_ON(c == p); 407 get_task_struct(c); 408 /* 409 * The task_lock protects c->mm from changing. 410 * We always want mm->owner->mm == mm 411 */ 412 task_lock(c); 413 /* 414 * Delay read_unlock() till we have the task_lock() 415 * to ensure that c does not slip away underneath us 416 */ 417 read_unlock(&tasklist_lock); 418 if (c->mm != mm) { 419 task_unlock(c); 420 put_task_struct(c); 421 goto retry; 422 } 423 WRITE_ONCE(mm->owner, c); 424 task_unlock(c); 425 put_task_struct(c); 426 } 427 #endif /* CONFIG_MEMCG */ 428 429 /* 430 * Turn us into a lazy TLB process if we 431 * aren't already.. 432 */ 433 static void exit_mm(void) 434 { 435 struct mm_struct *mm = current->mm; 436 struct core_state *core_state; 437 438 exit_mm_release(current, mm); 439 if (!mm) 440 return; 441 sync_mm_rss(mm); 442 /* 443 * Serialize with any possible pending coredump. 444 * We must hold mmap_lock around checking core_state 445 * and clearing tsk->mm. The core-inducing thread 446 * will increment ->nr_threads for each thread in the 447 * group with ->mm != NULL. 448 */ 449 mmap_read_lock(mm); 450 core_state = mm->core_state; 451 if (core_state) { 452 struct core_thread self; 453 454 mmap_read_unlock(mm); 455 456 self.task = current; 457 if (self.task->flags & PF_SIGNALED) 458 self.next = xchg(&core_state->dumper.next, &self); 459 else 460 self.task = NULL; 461 /* 462 * Implies mb(), the result of xchg() must be visible 463 * to core_state->dumper. 464 */ 465 if (atomic_dec_and_test(&core_state->nr_threads)) 466 complete(&core_state->startup); 467 468 for (;;) { 469 set_current_state(TASK_UNINTERRUPTIBLE); 470 if (!self.task) /* see coredump_finish() */ 471 break; 472 freezable_schedule(); 473 } 474 __set_current_state(TASK_RUNNING); 475 mmap_read_lock(mm); 476 } 477 mmgrab(mm); 478 BUG_ON(mm != current->active_mm); 479 /* more a memory barrier than a real lock */ 480 task_lock(current); 481 current->mm = NULL; 482 mmap_read_unlock(mm); 483 enter_lazy_tlb(mm, current); 484 task_unlock(current); 485 mm_update_next_owner(mm); 486 mmput(mm); 487 if (test_thread_flag(TIF_MEMDIE)) 488 exit_oom_victim(); 489 } 490 491 static struct task_struct *find_alive_thread(struct task_struct *p) 492 { 493 struct task_struct *t; 494 495 for_each_thread(p, t) { 496 if (!(t->flags & PF_EXITING)) 497 return t; 498 } 499 return NULL; 500 } 501 502 static struct task_struct *find_child_reaper(struct task_struct *father, 503 struct list_head *dead) 504 __releases(&tasklist_lock) 505 __acquires(&tasklist_lock) 506 { 507 struct pid_namespace *pid_ns = task_active_pid_ns(father); 508 struct task_struct *reaper = pid_ns->child_reaper; 509 struct task_struct *p, *n; 510 511 if (likely(reaper != father)) 512 return reaper; 513 514 reaper = find_alive_thread(father); 515 if (reaper) { 516 pid_ns->child_reaper = reaper; 517 return reaper; 518 } 519 520 write_unlock_irq(&tasklist_lock); 521 522 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 523 list_del_init(&p->ptrace_entry); 524 release_task(p); 525 } 526 527 zap_pid_ns_processes(pid_ns); 528 write_lock_irq(&tasklist_lock); 529 530 return father; 531 } 532 533 /* 534 * When we die, we re-parent all our children, and try to: 535 * 1. give them to another thread in our thread group, if such a member exists 536 * 2. give it to the first ancestor process which prctl'd itself as a 537 * child_subreaper for its children (like a service manager) 538 * 3. give it to the init process (PID 1) in our pid namespace 539 */ 540 static struct task_struct *find_new_reaper(struct task_struct *father, 541 struct task_struct *child_reaper) 542 { 543 struct task_struct *thread, *reaper; 544 545 thread = find_alive_thread(father); 546 if (thread) 547 return thread; 548 549 if (father->signal->has_child_subreaper) { 550 unsigned int ns_level = task_pid(father)->level; 551 /* 552 * Find the first ->is_child_subreaper ancestor in our pid_ns. 553 * We can't check reaper != child_reaper to ensure we do not 554 * cross the namespaces, the exiting parent could be injected 555 * by setns() + fork(). 556 * We check pid->level, this is slightly more efficient than 557 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 558 */ 559 for (reaper = father->real_parent; 560 task_pid(reaper)->level == ns_level; 561 reaper = reaper->real_parent) { 562 if (reaper == &init_task) 563 break; 564 if (!reaper->signal->is_child_subreaper) 565 continue; 566 thread = find_alive_thread(reaper); 567 if (thread) 568 return thread; 569 } 570 } 571 572 return child_reaper; 573 } 574 575 /* 576 * Any that need to be release_task'd are put on the @dead list. 577 */ 578 static void reparent_leader(struct task_struct *father, struct task_struct *p, 579 struct list_head *dead) 580 { 581 if (unlikely(p->exit_state == EXIT_DEAD)) 582 return; 583 584 /* We don't want people slaying init. */ 585 p->exit_signal = SIGCHLD; 586 587 /* If it has exited notify the new parent about this child's death. */ 588 if (!p->ptrace && 589 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 590 if (do_notify_parent(p, p->exit_signal)) { 591 p->exit_state = EXIT_DEAD; 592 list_add(&p->ptrace_entry, dead); 593 } 594 } 595 596 kill_orphaned_pgrp(p, father); 597 } 598 599 /* 600 * This does two things: 601 * 602 * A. Make init inherit all the child processes 603 * B. Check to see if any process groups have become orphaned 604 * as a result of our exiting, and if they have any stopped 605 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 606 */ 607 static void forget_original_parent(struct task_struct *father, 608 struct list_head *dead) 609 { 610 struct task_struct *p, *t, *reaper; 611 612 if (unlikely(!list_empty(&father->ptraced))) 613 exit_ptrace(father, dead); 614 615 /* Can drop and reacquire tasklist_lock */ 616 reaper = find_child_reaper(father, dead); 617 if (list_empty(&father->children)) 618 return; 619 620 reaper = find_new_reaper(father, reaper); 621 list_for_each_entry(p, &father->children, sibling) { 622 for_each_thread(p, t) { 623 RCU_INIT_POINTER(t->real_parent, reaper); 624 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 625 if (likely(!t->ptrace)) 626 t->parent = t->real_parent; 627 if (t->pdeath_signal) 628 group_send_sig_info(t->pdeath_signal, 629 SEND_SIG_NOINFO, t, 630 PIDTYPE_TGID); 631 } 632 /* 633 * If this is a threaded reparent there is no need to 634 * notify anyone anything has happened. 635 */ 636 if (!same_thread_group(reaper, father)) 637 reparent_leader(father, p, dead); 638 } 639 list_splice_tail_init(&father->children, &reaper->children); 640 } 641 642 /* 643 * Send signals to all our closest relatives so that they know 644 * to properly mourn us.. 645 */ 646 static void exit_notify(struct task_struct *tsk, int group_dead) 647 { 648 bool autoreap; 649 struct task_struct *p, *n; 650 LIST_HEAD(dead); 651 652 write_lock_irq(&tasklist_lock); 653 forget_original_parent(tsk, &dead); 654 655 if (group_dead) 656 kill_orphaned_pgrp(tsk->group_leader, NULL); 657 658 tsk->exit_state = EXIT_ZOMBIE; 659 if (unlikely(tsk->ptrace)) { 660 int sig = thread_group_leader(tsk) && 661 thread_group_empty(tsk) && 662 !ptrace_reparented(tsk) ? 663 tsk->exit_signal : SIGCHLD; 664 autoreap = do_notify_parent(tsk, sig); 665 } else if (thread_group_leader(tsk)) { 666 autoreap = thread_group_empty(tsk) && 667 do_notify_parent(tsk, tsk->exit_signal); 668 } else { 669 autoreap = true; 670 } 671 672 if (autoreap) { 673 tsk->exit_state = EXIT_DEAD; 674 list_add(&tsk->ptrace_entry, &dead); 675 } 676 677 /* mt-exec, de_thread() is waiting for group leader */ 678 if (unlikely(tsk->signal->notify_count < 0)) 679 wake_up_process(tsk->signal->group_exit_task); 680 write_unlock_irq(&tasklist_lock); 681 682 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 683 list_del_init(&p->ptrace_entry); 684 release_task(p); 685 } 686 } 687 688 #ifdef CONFIG_DEBUG_STACK_USAGE 689 static void check_stack_usage(void) 690 { 691 static DEFINE_SPINLOCK(low_water_lock); 692 static int lowest_to_date = THREAD_SIZE; 693 unsigned long free; 694 695 free = stack_not_used(current); 696 697 if (free >= lowest_to_date) 698 return; 699 700 spin_lock(&low_water_lock); 701 if (free < lowest_to_date) { 702 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 703 current->comm, task_pid_nr(current), free); 704 lowest_to_date = free; 705 } 706 spin_unlock(&low_water_lock); 707 } 708 #else 709 static inline void check_stack_usage(void) {} 710 #endif 711 712 void __noreturn do_exit(long code) 713 { 714 struct task_struct *tsk = current; 715 int group_dead; 716 717 /* 718 * We can get here from a kernel oops, sometimes with preemption off. 719 * Start by checking for critical errors. 720 * Then fix up important state like USER_DS and preemption. 721 * Then do everything else. 722 */ 723 724 WARN_ON(blk_needs_flush_plug(tsk)); 725 726 if (unlikely(in_interrupt())) 727 panic("Aiee, killing interrupt handler!"); 728 if (unlikely(!tsk->pid)) 729 panic("Attempted to kill the idle task!"); 730 731 /* 732 * If do_exit is called because this processes oopsed, it's possible 733 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 734 * continuing. Amongst other possible reasons, this is to prevent 735 * mm_release()->clear_child_tid() from writing to a user-controlled 736 * kernel address. 737 */ 738 force_uaccess_begin(); 739 740 if (unlikely(in_atomic())) { 741 pr_info("note: %s[%d] exited with preempt_count %d\n", 742 current->comm, task_pid_nr(current), 743 preempt_count()); 744 preempt_count_set(PREEMPT_ENABLED); 745 } 746 747 profile_task_exit(tsk); 748 kcov_task_exit(tsk); 749 750 ptrace_event(PTRACE_EVENT_EXIT, code); 751 752 validate_creds_for_do_exit(tsk); 753 754 /* 755 * We're taking recursive faults here in do_exit. Safest is to just 756 * leave this task alone and wait for reboot. 757 */ 758 if (unlikely(tsk->flags & PF_EXITING)) { 759 pr_alert("Fixing recursive fault but reboot is needed!\n"); 760 futex_exit_recursive(tsk); 761 set_current_state(TASK_UNINTERRUPTIBLE); 762 schedule(); 763 } 764 765 exit_signals(tsk); /* sets PF_EXITING */ 766 767 /* sync mm's RSS info before statistics gathering */ 768 if (tsk->mm) 769 sync_mm_rss(tsk->mm); 770 acct_update_integrals(tsk); 771 group_dead = atomic_dec_and_test(&tsk->signal->live); 772 if (group_dead) { 773 /* 774 * If the last thread of global init has exited, panic 775 * immediately to get a useable coredump. 776 */ 777 if (unlikely(is_global_init(tsk))) 778 panic("Attempted to kill init! exitcode=0x%08x\n", 779 tsk->signal->group_exit_code ?: (int)code); 780 781 #ifdef CONFIG_POSIX_TIMERS 782 hrtimer_cancel(&tsk->signal->real_timer); 783 exit_itimers(tsk->signal); 784 #endif 785 if (tsk->mm) 786 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 787 } 788 acct_collect(code, group_dead); 789 if (group_dead) 790 tty_audit_exit(); 791 audit_free(tsk); 792 793 tsk->exit_code = code; 794 taskstats_exit(tsk, group_dead); 795 796 exit_mm(); 797 798 if (group_dead) 799 acct_process(); 800 trace_sched_process_exit(tsk); 801 802 exit_sem(tsk); 803 exit_shm(tsk); 804 exit_files(tsk); 805 exit_fs(tsk); 806 if (group_dead) 807 disassociate_ctty(1); 808 exit_task_namespaces(tsk); 809 exit_task_work(tsk); 810 exit_thread(tsk); 811 812 /* 813 * Flush inherited counters to the parent - before the parent 814 * gets woken up by child-exit notifications. 815 * 816 * because of cgroup mode, must be called before cgroup_exit() 817 */ 818 perf_event_exit_task(tsk); 819 820 sched_autogroup_exit_task(tsk); 821 cgroup_exit(tsk); 822 823 /* 824 * FIXME: do that only when needed, using sched_exit tracepoint 825 */ 826 flush_ptrace_hw_breakpoint(tsk); 827 828 exit_tasks_rcu_start(); 829 exit_notify(tsk, group_dead); 830 proc_exit_connector(tsk); 831 mpol_put_task_policy(tsk); 832 #ifdef CONFIG_FUTEX 833 if (unlikely(current->pi_state_cache)) 834 kfree(current->pi_state_cache); 835 #endif 836 /* 837 * Make sure we are holding no locks: 838 */ 839 debug_check_no_locks_held(); 840 841 if (tsk->io_context) 842 exit_io_context(tsk); 843 844 if (tsk->splice_pipe) 845 free_pipe_info(tsk->splice_pipe); 846 847 if (tsk->task_frag.page) 848 put_page(tsk->task_frag.page); 849 850 validate_creds_for_do_exit(tsk); 851 852 check_stack_usage(); 853 preempt_disable(); 854 if (tsk->nr_dirtied) 855 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 856 exit_rcu(); 857 exit_tasks_rcu_finish(); 858 859 lockdep_free_task(tsk); 860 do_task_dead(); 861 } 862 EXPORT_SYMBOL_GPL(do_exit); 863 864 void complete_and_exit(struct completion *comp, long code) 865 { 866 if (comp) 867 complete(comp); 868 869 do_exit(code); 870 } 871 EXPORT_SYMBOL(complete_and_exit); 872 873 SYSCALL_DEFINE1(exit, int, error_code) 874 { 875 do_exit((error_code&0xff)<<8); 876 } 877 878 /* 879 * Take down every thread in the group. This is called by fatal signals 880 * as well as by sys_exit_group (below). 881 */ 882 void 883 do_group_exit(int exit_code) 884 { 885 struct signal_struct *sig = current->signal; 886 887 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 888 889 if (signal_group_exit(sig)) 890 exit_code = sig->group_exit_code; 891 else if (!thread_group_empty(current)) { 892 struct sighand_struct *const sighand = current->sighand; 893 894 spin_lock_irq(&sighand->siglock); 895 if (signal_group_exit(sig)) 896 /* Another thread got here before we took the lock. */ 897 exit_code = sig->group_exit_code; 898 else { 899 sig->group_exit_code = exit_code; 900 sig->flags = SIGNAL_GROUP_EXIT; 901 zap_other_threads(current); 902 } 903 spin_unlock_irq(&sighand->siglock); 904 } 905 906 do_exit(exit_code); 907 /* NOTREACHED */ 908 } 909 910 /* 911 * this kills every thread in the thread group. Note that any externally 912 * wait4()-ing process will get the correct exit code - even if this 913 * thread is not the thread group leader. 914 */ 915 SYSCALL_DEFINE1(exit_group, int, error_code) 916 { 917 do_group_exit((error_code & 0xff) << 8); 918 /* NOTREACHED */ 919 return 0; 920 } 921 922 struct waitid_info { 923 pid_t pid; 924 uid_t uid; 925 int status; 926 int cause; 927 }; 928 929 struct wait_opts { 930 enum pid_type wo_type; 931 int wo_flags; 932 struct pid *wo_pid; 933 934 struct waitid_info *wo_info; 935 int wo_stat; 936 struct rusage *wo_rusage; 937 938 wait_queue_entry_t child_wait; 939 int notask_error; 940 }; 941 942 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 943 { 944 return wo->wo_type == PIDTYPE_MAX || 945 task_pid_type(p, wo->wo_type) == wo->wo_pid; 946 } 947 948 static int 949 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 950 { 951 if (!eligible_pid(wo, p)) 952 return 0; 953 954 /* 955 * Wait for all children (clone and not) if __WALL is set or 956 * if it is traced by us. 957 */ 958 if (ptrace || (wo->wo_flags & __WALL)) 959 return 1; 960 961 /* 962 * Otherwise, wait for clone children *only* if __WCLONE is set; 963 * otherwise, wait for non-clone children *only*. 964 * 965 * Note: a "clone" child here is one that reports to its parent 966 * using a signal other than SIGCHLD, or a non-leader thread which 967 * we can only see if it is traced by us. 968 */ 969 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 970 return 0; 971 972 return 1; 973 } 974 975 /* 976 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 977 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 978 * the lock and this task is uninteresting. If we return nonzero, we have 979 * released the lock and the system call should return. 980 */ 981 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 982 { 983 int state, status; 984 pid_t pid = task_pid_vnr(p); 985 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 986 struct waitid_info *infop; 987 988 if (!likely(wo->wo_flags & WEXITED)) 989 return 0; 990 991 if (unlikely(wo->wo_flags & WNOWAIT)) { 992 status = p->exit_code; 993 get_task_struct(p); 994 read_unlock(&tasklist_lock); 995 sched_annotate_sleep(); 996 if (wo->wo_rusage) 997 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 998 put_task_struct(p); 999 goto out_info; 1000 } 1001 /* 1002 * Move the task's state to DEAD/TRACE, only one thread can do this. 1003 */ 1004 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1005 EXIT_TRACE : EXIT_DEAD; 1006 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1007 return 0; 1008 /* 1009 * We own this thread, nobody else can reap it. 1010 */ 1011 read_unlock(&tasklist_lock); 1012 sched_annotate_sleep(); 1013 1014 /* 1015 * Check thread_group_leader() to exclude the traced sub-threads. 1016 */ 1017 if (state == EXIT_DEAD && thread_group_leader(p)) { 1018 struct signal_struct *sig = p->signal; 1019 struct signal_struct *psig = current->signal; 1020 unsigned long maxrss; 1021 u64 tgutime, tgstime; 1022 1023 /* 1024 * The resource counters for the group leader are in its 1025 * own task_struct. Those for dead threads in the group 1026 * are in its signal_struct, as are those for the child 1027 * processes it has previously reaped. All these 1028 * accumulate in the parent's signal_struct c* fields. 1029 * 1030 * We don't bother to take a lock here to protect these 1031 * p->signal fields because the whole thread group is dead 1032 * and nobody can change them. 1033 * 1034 * psig->stats_lock also protects us from our sub-theads 1035 * which can reap other children at the same time. Until 1036 * we change k_getrusage()-like users to rely on this lock 1037 * we have to take ->siglock as well. 1038 * 1039 * We use thread_group_cputime_adjusted() to get times for 1040 * the thread group, which consolidates times for all threads 1041 * in the group including the group leader. 1042 */ 1043 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1044 spin_lock_irq(¤t->sighand->siglock); 1045 write_seqlock(&psig->stats_lock); 1046 psig->cutime += tgutime + sig->cutime; 1047 psig->cstime += tgstime + sig->cstime; 1048 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1049 psig->cmin_flt += 1050 p->min_flt + sig->min_flt + sig->cmin_flt; 1051 psig->cmaj_flt += 1052 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1053 psig->cnvcsw += 1054 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1055 psig->cnivcsw += 1056 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1057 psig->cinblock += 1058 task_io_get_inblock(p) + 1059 sig->inblock + sig->cinblock; 1060 psig->coublock += 1061 task_io_get_oublock(p) + 1062 sig->oublock + sig->coublock; 1063 maxrss = max(sig->maxrss, sig->cmaxrss); 1064 if (psig->cmaxrss < maxrss) 1065 psig->cmaxrss = maxrss; 1066 task_io_accounting_add(&psig->ioac, &p->ioac); 1067 task_io_accounting_add(&psig->ioac, &sig->ioac); 1068 write_sequnlock(&psig->stats_lock); 1069 spin_unlock_irq(¤t->sighand->siglock); 1070 } 1071 1072 if (wo->wo_rusage) 1073 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1074 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1075 ? p->signal->group_exit_code : p->exit_code; 1076 wo->wo_stat = status; 1077 1078 if (state == EXIT_TRACE) { 1079 write_lock_irq(&tasklist_lock); 1080 /* We dropped tasklist, ptracer could die and untrace */ 1081 ptrace_unlink(p); 1082 1083 /* If parent wants a zombie, don't release it now */ 1084 state = EXIT_ZOMBIE; 1085 if (do_notify_parent(p, p->exit_signal)) 1086 state = EXIT_DEAD; 1087 p->exit_state = state; 1088 write_unlock_irq(&tasklist_lock); 1089 } 1090 if (state == EXIT_DEAD) 1091 release_task(p); 1092 1093 out_info: 1094 infop = wo->wo_info; 1095 if (infop) { 1096 if ((status & 0x7f) == 0) { 1097 infop->cause = CLD_EXITED; 1098 infop->status = status >> 8; 1099 } else { 1100 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1101 infop->status = status & 0x7f; 1102 } 1103 infop->pid = pid; 1104 infop->uid = uid; 1105 } 1106 1107 return pid; 1108 } 1109 1110 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1111 { 1112 if (ptrace) { 1113 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1114 return &p->exit_code; 1115 } else { 1116 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1117 return &p->signal->group_exit_code; 1118 } 1119 return NULL; 1120 } 1121 1122 /** 1123 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1124 * @wo: wait options 1125 * @ptrace: is the wait for ptrace 1126 * @p: task to wait for 1127 * 1128 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1129 * 1130 * CONTEXT: 1131 * read_lock(&tasklist_lock), which is released if return value is 1132 * non-zero. Also, grabs and releases @p->sighand->siglock. 1133 * 1134 * RETURNS: 1135 * 0 if wait condition didn't exist and search for other wait conditions 1136 * should continue. Non-zero return, -errno on failure and @p's pid on 1137 * success, implies that tasklist_lock is released and wait condition 1138 * search should terminate. 1139 */ 1140 static int wait_task_stopped(struct wait_opts *wo, 1141 int ptrace, struct task_struct *p) 1142 { 1143 struct waitid_info *infop; 1144 int exit_code, *p_code, why; 1145 uid_t uid = 0; /* unneeded, required by compiler */ 1146 pid_t pid; 1147 1148 /* 1149 * Traditionally we see ptrace'd stopped tasks regardless of options. 1150 */ 1151 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1152 return 0; 1153 1154 if (!task_stopped_code(p, ptrace)) 1155 return 0; 1156 1157 exit_code = 0; 1158 spin_lock_irq(&p->sighand->siglock); 1159 1160 p_code = task_stopped_code(p, ptrace); 1161 if (unlikely(!p_code)) 1162 goto unlock_sig; 1163 1164 exit_code = *p_code; 1165 if (!exit_code) 1166 goto unlock_sig; 1167 1168 if (!unlikely(wo->wo_flags & WNOWAIT)) 1169 *p_code = 0; 1170 1171 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1172 unlock_sig: 1173 spin_unlock_irq(&p->sighand->siglock); 1174 if (!exit_code) 1175 return 0; 1176 1177 /* 1178 * Now we are pretty sure this task is interesting. 1179 * Make sure it doesn't get reaped out from under us while we 1180 * give up the lock and then examine it below. We don't want to 1181 * keep holding onto the tasklist_lock while we call getrusage and 1182 * possibly take page faults for user memory. 1183 */ 1184 get_task_struct(p); 1185 pid = task_pid_vnr(p); 1186 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1187 read_unlock(&tasklist_lock); 1188 sched_annotate_sleep(); 1189 if (wo->wo_rusage) 1190 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1191 put_task_struct(p); 1192 1193 if (likely(!(wo->wo_flags & WNOWAIT))) 1194 wo->wo_stat = (exit_code << 8) | 0x7f; 1195 1196 infop = wo->wo_info; 1197 if (infop) { 1198 infop->cause = why; 1199 infop->status = exit_code; 1200 infop->pid = pid; 1201 infop->uid = uid; 1202 } 1203 return pid; 1204 } 1205 1206 /* 1207 * Handle do_wait work for one task in a live, non-stopped state. 1208 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1209 * the lock and this task is uninteresting. If we return nonzero, we have 1210 * released the lock and the system call should return. 1211 */ 1212 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1213 { 1214 struct waitid_info *infop; 1215 pid_t pid; 1216 uid_t uid; 1217 1218 if (!unlikely(wo->wo_flags & WCONTINUED)) 1219 return 0; 1220 1221 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1222 return 0; 1223 1224 spin_lock_irq(&p->sighand->siglock); 1225 /* Re-check with the lock held. */ 1226 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1227 spin_unlock_irq(&p->sighand->siglock); 1228 return 0; 1229 } 1230 if (!unlikely(wo->wo_flags & WNOWAIT)) 1231 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1232 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1233 spin_unlock_irq(&p->sighand->siglock); 1234 1235 pid = task_pid_vnr(p); 1236 get_task_struct(p); 1237 read_unlock(&tasklist_lock); 1238 sched_annotate_sleep(); 1239 if (wo->wo_rusage) 1240 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1241 put_task_struct(p); 1242 1243 infop = wo->wo_info; 1244 if (!infop) { 1245 wo->wo_stat = 0xffff; 1246 } else { 1247 infop->cause = CLD_CONTINUED; 1248 infop->pid = pid; 1249 infop->uid = uid; 1250 infop->status = SIGCONT; 1251 } 1252 return pid; 1253 } 1254 1255 /* 1256 * Consider @p for a wait by @parent. 1257 * 1258 * -ECHILD should be in ->notask_error before the first call. 1259 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1260 * Returns zero if the search for a child should continue; 1261 * then ->notask_error is 0 if @p is an eligible child, 1262 * or still -ECHILD. 1263 */ 1264 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1265 struct task_struct *p) 1266 { 1267 /* 1268 * We can race with wait_task_zombie() from another thread. 1269 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1270 * can't confuse the checks below. 1271 */ 1272 int exit_state = READ_ONCE(p->exit_state); 1273 int ret; 1274 1275 if (unlikely(exit_state == EXIT_DEAD)) 1276 return 0; 1277 1278 ret = eligible_child(wo, ptrace, p); 1279 if (!ret) 1280 return ret; 1281 1282 if (unlikely(exit_state == EXIT_TRACE)) { 1283 /* 1284 * ptrace == 0 means we are the natural parent. In this case 1285 * we should clear notask_error, debugger will notify us. 1286 */ 1287 if (likely(!ptrace)) 1288 wo->notask_error = 0; 1289 return 0; 1290 } 1291 1292 if (likely(!ptrace) && unlikely(p->ptrace)) { 1293 /* 1294 * If it is traced by its real parent's group, just pretend 1295 * the caller is ptrace_do_wait() and reap this child if it 1296 * is zombie. 1297 * 1298 * This also hides group stop state from real parent; otherwise 1299 * a single stop can be reported twice as group and ptrace stop. 1300 * If a ptracer wants to distinguish these two events for its 1301 * own children it should create a separate process which takes 1302 * the role of real parent. 1303 */ 1304 if (!ptrace_reparented(p)) 1305 ptrace = 1; 1306 } 1307 1308 /* slay zombie? */ 1309 if (exit_state == EXIT_ZOMBIE) { 1310 /* we don't reap group leaders with subthreads */ 1311 if (!delay_group_leader(p)) { 1312 /* 1313 * A zombie ptracee is only visible to its ptracer. 1314 * Notification and reaping will be cascaded to the 1315 * real parent when the ptracer detaches. 1316 */ 1317 if (unlikely(ptrace) || likely(!p->ptrace)) 1318 return wait_task_zombie(wo, p); 1319 } 1320 1321 /* 1322 * Allow access to stopped/continued state via zombie by 1323 * falling through. Clearing of notask_error is complex. 1324 * 1325 * When !@ptrace: 1326 * 1327 * If WEXITED is set, notask_error should naturally be 1328 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1329 * so, if there are live subthreads, there are events to 1330 * wait for. If all subthreads are dead, it's still safe 1331 * to clear - this function will be called again in finite 1332 * amount time once all the subthreads are released and 1333 * will then return without clearing. 1334 * 1335 * When @ptrace: 1336 * 1337 * Stopped state is per-task and thus can't change once the 1338 * target task dies. Only continued and exited can happen. 1339 * Clear notask_error if WCONTINUED | WEXITED. 1340 */ 1341 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1342 wo->notask_error = 0; 1343 } else { 1344 /* 1345 * @p is alive and it's gonna stop, continue or exit, so 1346 * there always is something to wait for. 1347 */ 1348 wo->notask_error = 0; 1349 } 1350 1351 /* 1352 * Wait for stopped. Depending on @ptrace, different stopped state 1353 * is used and the two don't interact with each other. 1354 */ 1355 ret = wait_task_stopped(wo, ptrace, p); 1356 if (ret) 1357 return ret; 1358 1359 /* 1360 * Wait for continued. There's only one continued state and the 1361 * ptracer can consume it which can confuse the real parent. Don't 1362 * use WCONTINUED from ptracer. You don't need or want it. 1363 */ 1364 return wait_task_continued(wo, p); 1365 } 1366 1367 /* 1368 * Do the work of do_wait() for one thread in the group, @tsk. 1369 * 1370 * -ECHILD should be in ->notask_error before the first call. 1371 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1372 * Returns zero if the search for a child should continue; then 1373 * ->notask_error is 0 if there were any eligible children, 1374 * or still -ECHILD. 1375 */ 1376 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1377 { 1378 struct task_struct *p; 1379 1380 list_for_each_entry(p, &tsk->children, sibling) { 1381 int ret = wait_consider_task(wo, 0, p); 1382 1383 if (ret) 1384 return ret; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1391 { 1392 struct task_struct *p; 1393 1394 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1395 int ret = wait_consider_task(wo, 1, p); 1396 1397 if (ret) 1398 return ret; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1405 int sync, void *key) 1406 { 1407 struct wait_opts *wo = container_of(wait, struct wait_opts, 1408 child_wait); 1409 struct task_struct *p = key; 1410 1411 if (!eligible_pid(wo, p)) 1412 return 0; 1413 1414 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1415 return 0; 1416 1417 return default_wake_function(wait, mode, sync, key); 1418 } 1419 1420 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1421 { 1422 __wake_up_sync_key(&parent->signal->wait_chldexit, 1423 TASK_INTERRUPTIBLE, p); 1424 } 1425 1426 static long do_wait(struct wait_opts *wo) 1427 { 1428 struct task_struct *tsk; 1429 int retval; 1430 1431 trace_sched_process_wait(wo->wo_pid); 1432 1433 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1434 wo->child_wait.private = current; 1435 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1436 repeat: 1437 /* 1438 * If there is nothing that can match our criteria, just get out. 1439 * We will clear ->notask_error to zero if we see any child that 1440 * might later match our criteria, even if we are not able to reap 1441 * it yet. 1442 */ 1443 wo->notask_error = -ECHILD; 1444 if ((wo->wo_type < PIDTYPE_MAX) && 1445 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1446 goto notask; 1447 1448 set_current_state(TASK_INTERRUPTIBLE); 1449 read_lock(&tasklist_lock); 1450 tsk = current; 1451 do { 1452 retval = do_wait_thread(wo, tsk); 1453 if (retval) 1454 goto end; 1455 1456 retval = ptrace_do_wait(wo, tsk); 1457 if (retval) 1458 goto end; 1459 1460 if (wo->wo_flags & __WNOTHREAD) 1461 break; 1462 } while_each_thread(current, tsk); 1463 read_unlock(&tasklist_lock); 1464 1465 notask: 1466 retval = wo->notask_error; 1467 if (!retval && !(wo->wo_flags & WNOHANG)) { 1468 retval = -ERESTARTSYS; 1469 if (!signal_pending(current)) { 1470 schedule(); 1471 goto repeat; 1472 } 1473 } 1474 end: 1475 __set_current_state(TASK_RUNNING); 1476 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1477 return retval; 1478 } 1479 1480 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1481 int options, struct rusage *ru) 1482 { 1483 struct wait_opts wo; 1484 struct pid *pid = NULL; 1485 enum pid_type type; 1486 long ret; 1487 unsigned int f_flags = 0; 1488 1489 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1490 __WNOTHREAD|__WCLONE|__WALL)) 1491 return -EINVAL; 1492 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1493 return -EINVAL; 1494 1495 switch (which) { 1496 case P_ALL: 1497 type = PIDTYPE_MAX; 1498 break; 1499 case P_PID: 1500 type = PIDTYPE_PID; 1501 if (upid <= 0) 1502 return -EINVAL; 1503 1504 pid = find_get_pid(upid); 1505 break; 1506 case P_PGID: 1507 type = PIDTYPE_PGID; 1508 if (upid < 0) 1509 return -EINVAL; 1510 1511 if (upid) 1512 pid = find_get_pid(upid); 1513 else 1514 pid = get_task_pid(current, PIDTYPE_PGID); 1515 break; 1516 case P_PIDFD: 1517 type = PIDTYPE_PID; 1518 if (upid < 0) 1519 return -EINVAL; 1520 1521 pid = pidfd_get_pid(upid, &f_flags); 1522 if (IS_ERR(pid)) 1523 return PTR_ERR(pid); 1524 1525 break; 1526 default: 1527 return -EINVAL; 1528 } 1529 1530 wo.wo_type = type; 1531 wo.wo_pid = pid; 1532 wo.wo_flags = options; 1533 wo.wo_info = infop; 1534 wo.wo_rusage = ru; 1535 if (f_flags & O_NONBLOCK) 1536 wo.wo_flags |= WNOHANG; 1537 1538 ret = do_wait(&wo); 1539 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1540 ret = -EAGAIN; 1541 1542 put_pid(pid); 1543 return ret; 1544 } 1545 1546 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1547 infop, int, options, struct rusage __user *, ru) 1548 { 1549 struct rusage r; 1550 struct waitid_info info = {.status = 0}; 1551 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1552 int signo = 0; 1553 1554 if (err > 0) { 1555 signo = SIGCHLD; 1556 err = 0; 1557 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1558 return -EFAULT; 1559 } 1560 if (!infop) 1561 return err; 1562 1563 if (!user_write_access_begin(infop, sizeof(*infop))) 1564 return -EFAULT; 1565 1566 unsafe_put_user(signo, &infop->si_signo, Efault); 1567 unsafe_put_user(0, &infop->si_errno, Efault); 1568 unsafe_put_user(info.cause, &infop->si_code, Efault); 1569 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1570 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1571 unsafe_put_user(info.status, &infop->si_status, Efault); 1572 user_write_access_end(); 1573 return err; 1574 Efault: 1575 user_write_access_end(); 1576 return -EFAULT; 1577 } 1578 1579 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1580 struct rusage *ru) 1581 { 1582 struct wait_opts wo; 1583 struct pid *pid = NULL; 1584 enum pid_type type; 1585 long ret; 1586 1587 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1588 __WNOTHREAD|__WCLONE|__WALL)) 1589 return -EINVAL; 1590 1591 /* -INT_MIN is not defined */ 1592 if (upid == INT_MIN) 1593 return -ESRCH; 1594 1595 if (upid == -1) 1596 type = PIDTYPE_MAX; 1597 else if (upid < 0) { 1598 type = PIDTYPE_PGID; 1599 pid = find_get_pid(-upid); 1600 } else if (upid == 0) { 1601 type = PIDTYPE_PGID; 1602 pid = get_task_pid(current, PIDTYPE_PGID); 1603 } else /* upid > 0 */ { 1604 type = PIDTYPE_PID; 1605 pid = find_get_pid(upid); 1606 } 1607 1608 wo.wo_type = type; 1609 wo.wo_pid = pid; 1610 wo.wo_flags = options | WEXITED; 1611 wo.wo_info = NULL; 1612 wo.wo_stat = 0; 1613 wo.wo_rusage = ru; 1614 ret = do_wait(&wo); 1615 put_pid(pid); 1616 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1617 ret = -EFAULT; 1618 1619 return ret; 1620 } 1621 1622 int kernel_wait(pid_t pid, int *stat) 1623 { 1624 struct wait_opts wo = { 1625 .wo_type = PIDTYPE_PID, 1626 .wo_pid = find_get_pid(pid), 1627 .wo_flags = WEXITED, 1628 }; 1629 int ret; 1630 1631 ret = do_wait(&wo); 1632 if (ret > 0 && wo.wo_stat) 1633 *stat = wo.wo_stat; 1634 put_pid(wo.wo_pid); 1635 return ret; 1636 } 1637 1638 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1639 int, options, struct rusage __user *, ru) 1640 { 1641 struct rusage r; 1642 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1643 1644 if (err > 0) { 1645 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1646 return -EFAULT; 1647 } 1648 return err; 1649 } 1650 1651 #ifdef __ARCH_WANT_SYS_WAITPID 1652 1653 /* 1654 * sys_waitpid() remains for compatibility. waitpid() should be 1655 * implemented by calling sys_wait4() from libc.a. 1656 */ 1657 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1658 { 1659 return kernel_wait4(pid, stat_addr, options, NULL); 1660 } 1661 1662 #endif 1663 1664 #ifdef CONFIG_COMPAT 1665 COMPAT_SYSCALL_DEFINE4(wait4, 1666 compat_pid_t, pid, 1667 compat_uint_t __user *, stat_addr, 1668 int, options, 1669 struct compat_rusage __user *, ru) 1670 { 1671 struct rusage r; 1672 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1673 if (err > 0) { 1674 if (ru && put_compat_rusage(&r, ru)) 1675 return -EFAULT; 1676 } 1677 return err; 1678 } 1679 1680 COMPAT_SYSCALL_DEFINE5(waitid, 1681 int, which, compat_pid_t, pid, 1682 struct compat_siginfo __user *, infop, int, options, 1683 struct compat_rusage __user *, uru) 1684 { 1685 struct rusage ru; 1686 struct waitid_info info = {.status = 0}; 1687 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1688 int signo = 0; 1689 if (err > 0) { 1690 signo = SIGCHLD; 1691 err = 0; 1692 if (uru) { 1693 /* kernel_waitid() overwrites everything in ru */ 1694 if (COMPAT_USE_64BIT_TIME) 1695 err = copy_to_user(uru, &ru, sizeof(ru)); 1696 else 1697 err = put_compat_rusage(&ru, uru); 1698 if (err) 1699 return -EFAULT; 1700 } 1701 } 1702 1703 if (!infop) 1704 return err; 1705 1706 if (!user_write_access_begin(infop, sizeof(*infop))) 1707 return -EFAULT; 1708 1709 unsafe_put_user(signo, &infop->si_signo, Efault); 1710 unsafe_put_user(0, &infop->si_errno, Efault); 1711 unsafe_put_user(info.cause, &infop->si_code, Efault); 1712 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1713 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1714 unsafe_put_user(info.status, &infop->si_status, Efault); 1715 user_write_access_end(); 1716 return err; 1717 Efault: 1718 user_write_access_end(); 1719 return -EFAULT; 1720 } 1721 #endif 1722 1723 /** 1724 * thread_group_exited - check that a thread group has exited 1725 * @pid: tgid of thread group to be checked. 1726 * 1727 * Test if the thread group represented by tgid has exited (all 1728 * threads are zombies, dead or completely gone). 1729 * 1730 * Return: true if the thread group has exited. false otherwise. 1731 */ 1732 bool thread_group_exited(struct pid *pid) 1733 { 1734 struct task_struct *task; 1735 bool exited; 1736 1737 rcu_read_lock(); 1738 task = pid_task(pid, PIDTYPE_PID); 1739 exited = !task || 1740 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1741 rcu_read_unlock(); 1742 1743 return exited; 1744 } 1745 EXPORT_SYMBOL(thread_group_exited); 1746 1747 __weak void abort(void) 1748 { 1749 BUG(); 1750 1751 /* if that doesn't kill us, halt */ 1752 panic("Oops failed to kill thread"); 1753 } 1754 EXPORT_SYMBOL(abort); 1755