xref: /openbmc/linux/kernel/exit.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57 
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61 
62 static void exit_mm(struct task_struct * tsk);
63 
64 static inline int task_detached(struct task_struct *p)
65 {
66 	return p->exit_signal == -1;
67 }
68 
69 static void __unhash_process(struct task_struct *p)
70 {
71 	nr_threads--;
72 	detach_pid(p, PIDTYPE_PID);
73 	if (thread_group_leader(p)) {
74 		detach_pid(p, PIDTYPE_PGID);
75 		detach_pid(p, PIDTYPE_SID);
76 
77 		list_del_rcu(&p->tasks);
78 		__get_cpu_var(process_counts)--;
79 	}
80 	list_del_rcu(&p->thread_group);
81 	list_del_init(&p->sibling);
82 }
83 
84 /*
85  * This function expects the tasklist_lock write-locked.
86  */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89 	struct signal_struct *sig = tsk->signal;
90 	struct sighand_struct *sighand;
91 
92 	BUG_ON(!sig);
93 	BUG_ON(!atomic_read(&sig->count));
94 
95 	sighand = rcu_dereference(tsk->sighand);
96 	spin_lock(&sighand->siglock);
97 
98 	posix_cpu_timers_exit(tsk);
99 	if (atomic_dec_and_test(&sig->count))
100 		posix_cpu_timers_exit_group(tsk);
101 	else {
102 		/*
103 		 * If there is any task waiting for the group exit
104 		 * then notify it:
105 		 */
106 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107 			wake_up_process(sig->group_exit_task);
108 
109 		if (tsk == sig->curr_target)
110 			sig->curr_target = next_thread(tsk);
111 		/*
112 		 * Accumulate here the counters for all threads but the
113 		 * group leader as they die, so they can be added into
114 		 * the process-wide totals when those are taken.
115 		 * The group leader stays around as a zombie as long
116 		 * as there are other threads.  When it gets reaped,
117 		 * the exit.c code will add its counts into these totals.
118 		 * We won't ever get here for the group leader, since it
119 		 * will have been the last reference on the signal_struct.
120 		 */
121 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
122 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
123 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
124 		sig->min_flt += tsk->min_flt;
125 		sig->maj_flt += tsk->maj_flt;
126 		sig->nvcsw += tsk->nvcsw;
127 		sig->nivcsw += tsk->nivcsw;
128 		sig->inblock += task_io_get_inblock(tsk);
129 		sig->oublock += task_io_get_oublock(tsk);
130 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
131 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
132 		sig = NULL; /* Marker for below. */
133 	}
134 
135 	__unhash_process(tsk);
136 
137 	/*
138 	 * Do this under ->siglock, we can race with another thread
139 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
140 	 */
141 	flush_sigqueue(&tsk->pending);
142 
143 	tsk->signal = NULL;
144 	tsk->sighand = NULL;
145 	spin_unlock(&sighand->siglock);
146 
147 	__cleanup_sighand(sighand);
148 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
149 	if (sig) {
150 		flush_sigqueue(&sig->shared_pending);
151 		taskstats_tgid_free(sig);
152 		/*
153 		 * Make sure ->signal can't go away under rq->lock,
154 		 * see account_group_exec_runtime().
155 		 */
156 		task_rq_unlock_wait(tsk);
157 		__cleanup_signal(sig);
158 	}
159 }
160 
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	trace_sched_process_free(tsk);
166 	put_task_struct(tsk);
167 }
168 
169 
170 void release_task(struct task_struct * p)
171 {
172 	struct task_struct *leader;
173 	int zap_leader;
174 repeat:
175 	tracehook_prepare_release_task(p);
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials */
178 	atomic_dec(&__task_cred(p)->user->processes);
179 
180 	proc_flush_task(p);
181 	write_lock_irq(&tasklist_lock);
182 	tracehook_finish_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		BUG_ON(task_detached(leader));
194 		do_notify_parent(leader, leader->exit_signal);
195 		/*
196 		 * If we were the last child thread and the leader has
197 		 * exited already, and the leader's parent ignores SIGCHLD,
198 		 * then we are the one who should release the leader.
199 		 *
200 		 * do_notify_parent() will have marked it self-reaping in
201 		 * that case.
202 		 */
203 		zap_leader = task_detached(leader);
204 
205 		/*
206 		 * This maintains the invariant that release_task()
207 		 * only runs on a task in EXIT_DEAD, just for sanity.
208 		 */
209 		if (zap_leader)
210 			leader->exit_state = EXIT_DEAD;
211 	}
212 
213 	write_unlock_irq(&tasklist_lock);
214 	release_thread(p);
215 	call_rcu(&p->rcu, delayed_put_task_struct);
216 
217 	p = leader;
218 	if (unlikely(zap_leader))
219 		goto repeat;
220 }
221 
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 	struct task_struct *p;
232 	struct pid *sid = NULL;
233 
234 	p = pid_task(pgrp, PIDTYPE_PGID);
235 	if (p == NULL)
236 		p = pid_task(pgrp, PIDTYPE_PID);
237 	if (p != NULL)
238 		sid = task_session(p);
239 
240 	return sid;
241 }
242 
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if ((p == ignored_task) ||
257 		    (p->exit_state && thread_group_empty(p)) ||
258 		    is_global_init(p->real_parent))
259 			continue;
260 
261 		if (task_pgrp(p->real_parent) != pgrp &&
262 		    task_session(p->real_parent) == task_session(p))
263 			return 0;
264 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 
266 	return 1;
267 }
268 
269 int is_current_pgrp_orphaned(void)
270 {
271 	int retval;
272 
273 	read_lock(&tasklist_lock);
274 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 	read_unlock(&tasklist_lock);
276 
277 	return retval;
278 }
279 
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 	int retval = 0;
283 	struct task_struct *p;
284 
285 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 		if (!task_is_stopped(p))
287 			continue;
288 		retval = 1;
289 		break;
290 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 	return retval;
292 }
293 
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 	struct pid *pgrp = task_pgrp(tsk);
303 	struct task_struct *ignored_task = tsk;
304 
305 	if (!parent)
306 		 /* exit: our father is in a different pgrp than
307 		  * we are and we were the only connection outside.
308 		  */
309 		parent = tsk->real_parent;
310 	else
311 		/* reparent: our child is in a different pgrp than
312 		 * we are, and it was the only connection outside.
313 		 */
314 		ignored_task = NULL;
315 
316 	if (task_pgrp(parent) != pgrp &&
317 	    task_session(parent) == task_session(tsk) &&
318 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 	    has_stopped_jobs(pgrp)) {
320 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 	}
323 }
324 
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339 	write_lock_irq(&tasklist_lock);
340 
341 	ptrace_unlink(current);
342 	/* Reparent to init */
343 	current->real_parent = current->parent = kthreadd_task;
344 	list_move_tail(&current->sibling, &current->real_parent->children);
345 
346 	/* Set the exit signal to SIGCHLD so we signal init on exit */
347 	current->exit_signal = SIGCHLD;
348 
349 	if (task_nice(current) < 0)
350 		set_user_nice(current, 0);
351 	/* cpus_allowed? */
352 	/* rt_priority? */
353 	/* signals? */
354 	memcpy(current->signal->rlim, init_task.signal->rlim,
355 	       sizeof(current->signal->rlim));
356 
357 	atomic_inc(&init_cred.usage);
358 	commit_creds(&init_cred);
359 	write_unlock_irq(&tasklist_lock);
360 }
361 
362 void __set_special_pids(struct pid *pid)
363 {
364 	struct task_struct *curr = current->group_leader;
365 	pid_t nr = pid_nr(pid);
366 
367 	if (task_session(curr) != pid) {
368 		change_pid(curr, PIDTYPE_SID, pid);
369 		set_task_session(curr, nr);
370 	}
371 	if (task_pgrp(curr) != pid) {
372 		change_pid(curr, PIDTYPE_PGID, pid);
373 		set_task_pgrp(curr, nr);
374 	}
375 }
376 
377 static void set_special_pids(struct pid *pid)
378 {
379 	write_lock_irq(&tasklist_lock);
380 	__set_special_pids(pid);
381 	write_unlock_irq(&tasklist_lock);
382 }
383 
384 /*
385  * Let kernel threads use this to say that they
386  * allow a certain signal (since daemonize() will
387  * have disabled all of them by default).
388  */
389 int allow_signal(int sig)
390 {
391 	if (!valid_signal(sig) || sig < 1)
392 		return -EINVAL;
393 
394 	spin_lock_irq(&current->sighand->siglock);
395 	sigdelset(&current->blocked, sig);
396 	if (!current->mm) {
397 		/* Kernel threads handle their own signals.
398 		   Let the signal code know it'll be handled, so
399 		   that they don't get converted to SIGKILL or
400 		   just silently dropped */
401 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
402 	}
403 	recalc_sigpending();
404 	spin_unlock_irq(&current->sighand->siglock);
405 	return 0;
406 }
407 
408 EXPORT_SYMBOL(allow_signal);
409 
410 int disallow_signal(int sig)
411 {
412 	if (!valid_signal(sig) || sig < 1)
413 		return -EINVAL;
414 
415 	spin_lock_irq(&current->sighand->siglock);
416 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417 	recalc_sigpending();
418 	spin_unlock_irq(&current->sighand->siglock);
419 	return 0;
420 }
421 
422 EXPORT_SYMBOL(disallow_signal);
423 
424 /*
425  *	Put all the gunge required to become a kernel thread without
426  *	attached user resources in one place where it belongs.
427  */
428 
429 void daemonize(const char *name, ...)
430 {
431 	va_list args;
432 	struct fs_struct *fs;
433 	sigset_t blocked;
434 
435 	va_start(args, name);
436 	vsnprintf(current->comm, sizeof(current->comm), name, args);
437 	va_end(args);
438 
439 	/*
440 	 * If we were started as result of loading a module, close all of the
441 	 * user space pages.  We don't need them, and if we didn't close them
442 	 * they would be locked into memory.
443 	 */
444 	exit_mm(current);
445 	/*
446 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
447 	 * or suspend transition begins right now.
448 	 */
449 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450 
451 	if (current->nsproxy != &init_nsproxy) {
452 		get_nsproxy(&init_nsproxy);
453 		switch_task_namespaces(current, &init_nsproxy);
454 	}
455 	set_special_pids(&init_struct_pid);
456 	proc_clear_tty(current);
457 
458 	/* Block and flush all signals */
459 	sigfillset(&blocked);
460 	sigprocmask(SIG_BLOCK, &blocked, NULL);
461 	flush_signals(current);
462 
463 	/* Become as one with the init task */
464 
465 	exit_fs(current);	/* current->fs->count--; */
466 	fs = init_task.fs;
467 	current->fs = fs;
468 	atomic_inc(&fs->count);
469 
470 	exit_files(current);
471 	current->files = init_task.files;
472 	atomic_inc(&current->files->count);
473 
474 	reparent_to_kthreadd();
475 }
476 
477 EXPORT_SYMBOL(daemonize);
478 
479 static void close_files(struct files_struct * files)
480 {
481 	int i, j;
482 	struct fdtable *fdt;
483 
484 	j = 0;
485 
486 	/*
487 	 * It is safe to dereference the fd table without RCU or
488 	 * ->file_lock because this is the last reference to the
489 	 * files structure.
490 	 */
491 	fdt = files_fdtable(files);
492 	for (;;) {
493 		unsigned long set;
494 		i = j * __NFDBITS;
495 		if (i >= fdt->max_fds)
496 			break;
497 		set = fdt->open_fds->fds_bits[j++];
498 		while (set) {
499 			if (set & 1) {
500 				struct file * file = xchg(&fdt->fd[i], NULL);
501 				if (file) {
502 					filp_close(file, files);
503 					cond_resched();
504 				}
505 			}
506 			i++;
507 			set >>= 1;
508 		}
509 	}
510 }
511 
512 struct files_struct *get_files_struct(struct task_struct *task)
513 {
514 	struct files_struct *files;
515 
516 	task_lock(task);
517 	files = task->files;
518 	if (files)
519 		atomic_inc(&files->count);
520 	task_unlock(task);
521 
522 	return files;
523 }
524 
525 void put_files_struct(struct files_struct *files)
526 {
527 	struct fdtable *fdt;
528 
529 	if (atomic_dec_and_test(&files->count)) {
530 		close_files(files);
531 		/*
532 		 * Free the fd and fdset arrays if we expanded them.
533 		 * If the fdtable was embedded, pass files for freeing
534 		 * at the end of the RCU grace period. Otherwise,
535 		 * you can free files immediately.
536 		 */
537 		fdt = files_fdtable(files);
538 		if (fdt != &files->fdtab)
539 			kmem_cache_free(files_cachep, files);
540 		free_fdtable(fdt);
541 	}
542 }
543 
544 void reset_files_struct(struct files_struct *files)
545 {
546 	struct task_struct *tsk = current;
547 	struct files_struct *old;
548 
549 	old = tsk->files;
550 	task_lock(tsk);
551 	tsk->files = files;
552 	task_unlock(tsk);
553 	put_files_struct(old);
554 }
555 
556 void exit_files(struct task_struct *tsk)
557 {
558 	struct files_struct * files = tsk->files;
559 
560 	if (files) {
561 		task_lock(tsk);
562 		tsk->files = NULL;
563 		task_unlock(tsk);
564 		put_files_struct(files);
565 	}
566 }
567 
568 void put_fs_struct(struct fs_struct *fs)
569 {
570 	/* No need to hold fs->lock if we are killing it */
571 	if (atomic_dec_and_test(&fs->count)) {
572 		path_put(&fs->root);
573 		path_put(&fs->pwd);
574 		kmem_cache_free(fs_cachep, fs);
575 	}
576 }
577 
578 void exit_fs(struct task_struct *tsk)
579 {
580 	struct fs_struct * fs = tsk->fs;
581 
582 	if (fs) {
583 		task_lock(tsk);
584 		tsk->fs = NULL;
585 		task_unlock(tsk);
586 		put_fs_struct(fs);
587 	}
588 }
589 
590 EXPORT_SYMBOL_GPL(exit_fs);
591 
592 #ifdef CONFIG_MM_OWNER
593 /*
594  * Task p is exiting and it owned mm, lets find a new owner for it
595  */
596 static inline int
597 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
598 {
599 	/*
600 	 * If there are other users of the mm and the owner (us) is exiting
601 	 * we need to find a new owner to take on the responsibility.
602 	 */
603 	if (atomic_read(&mm->mm_users) <= 1)
604 		return 0;
605 	if (mm->owner != p)
606 		return 0;
607 	return 1;
608 }
609 
610 void mm_update_next_owner(struct mm_struct *mm)
611 {
612 	struct task_struct *c, *g, *p = current;
613 
614 retry:
615 	if (!mm_need_new_owner(mm, p))
616 		return;
617 
618 	read_lock(&tasklist_lock);
619 	/*
620 	 * Search in the children
621 	 */
622 	list_for_each_entry(c, &p->children, sibling) {
623 		if (c->mm == mm)
624 			goto assign_new_owner;
625 	}
626 
627 	/*
628 	 * Search in the siblings
629 	 */
630 	list_for_each_entry(c, &p->parent->children, sibling) {
631 		if (c->mm == mm)
632 			goto assign_new_owner;
633 	}
634 
635 	/*
636 	 * Search through everything else. We should not get
637 	 * here often
638 	 */
639 	do_each_thread(g, c) {
640 		if (c->mm == mm)
641 			goto assign_new_owner;
642 	} while_each_thread(g, c);
643 
644 	read_unlock(&tasklist_lock);
645 	/*
646 	 * We found no owner yet mm_users > 1: this implies that we are
647 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
648 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
649 	 */
650 	mm->owner = NULL;
651 	return;
652 
653 assign_new_owner:
654 	BUG_ON(c == p);
655 	get_task_struct(c);
656 	/*
657 	 * The task_lock protects c->mm from changing.
658 	 * We always want mm->owner->mm == mm
659 	 */
660 	task_lock(c);
661 	/*
662 	 * Delay read_unlock() till we have the task_lock()
663 	 * to ensure that c does not slip away underneath us
664 	 */
665 	read_unlock(&tasklist_lock);
666 	if (c->mm != mm) {
667 		task_unlock(c);
668 		put_task_struct(c);
669 		goto retry;
670 	}
671 	mm->owner = c;
672 	task_unlock(c);
673 	put_task_struct(c);
674 }
675 #endif /* CONFIG_MM_OWNER */
676 
677 /*
678  * Turn us into a lazy TLB process if we
679  * aren't already..
680  */
681 static void exit_mm(struct task_struct * tsk)
682 {
683 	struct mm_struct *mm = tsk->mm;
684 	struct core_state *core_state;
685 
686 	mm_release(tsk, mm);
687 	if (!mm)
688 		return;
689 	/*
690 	 * Serialize with any possible pending coredump.
691 	 * We must hold mmap_sem around checking core_state
692 	 * and clearing tsk->mm.  The core-inducing thread
693 	 * will increment ->nr_threads for each thread in the
694 	 * group with ->mm != NULL.
695 	 */
696 	down_read(&mm->mmap_sem);
697 	core_state = mm->core_state;
698 	if (core_state) {
699 		struct core_thread self;
700 		up_read(&mm->mmap_sem);
701 
702 		self.task = tsk;
703 		self.next = xchg(&core_state->dumper.next, &self);
704 		/*
705 		 * Implies mb(), the result of xchg() must be visible
706 		 * to core_state->dumper.
707 		 */
708 		if (atomic_dec_and_test(&core_state->nr_threads))
709 			complete(&core_state->startup);
710 
711 		for (;;) {
712 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
713 			if (!self.task) /* see coredump_finish() */
714 				break;
715 			schedule();
716 		}
717 		__set_task_state(tsk, TASK_RUNNING);
718 		down_read(&mm->mmap_sem);
719 	}
720 	atomic_inc(&mm->mm_count);
721 	BUG_ON(mm != tsk->active_mm);
722 	/* more a memory barrier than a real lock */
723 	task_lock(tsk);
724 	tsk->mm = NULL;
725 	up_read(&mm->mmap_sem);
726 	enter_lazy_tlb(mm, current);
727 	/* We don't want this task to be frozen prematurely */
728 	clear_freeze_flag(tsk);
729 	task_unlock(tsk);
730 	mm_update_next_owner(mm);
731 	mmput(mm);
732 }
733 
734 /*
735  * Return nonzero if @parent's children should reap themselves.
736  *
737  * Called with write_lock_irq(&tasklist_lock) held.
738  */
739 static int ignoring_children(struct task_struct *parent)
740 {
741 	int ret;
742 	struct sighand_struct *psig = parent->sighand;
743 	unsigned long flags;
744 	spin_lock_irqsave(&psig->siglock, flags);
745 	ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
746 	       (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
747 	spin_unlock_irqrestore(&psig->siglock, flags);
748 	return ret;
749 }
750 
751 /*
752  * Detach all tasks we were using ptrace on.
753  * Any that need to be release_task'd are put on the @dead list.
754  *
755  * Called with write_lock(&tasklist_lock) held.
756  */
757 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
758 {
759 	struct task_struct *p, *n;
760 	int ign = -1;
761 
762 	list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
763 		__ptrace_unlink(p);
764 
765 		if (p->exit_state != EXIT_ZOMBIE)
766 			continue;
767 
768 		/*
769 		 * If it's a zombie, our attachedness prevented normal
770 		 * parent notification or self-reaping.  Do notification
771 		 * now if it would have happened earlier.  If it should
772 		 * reap itself, add it to the @dead list.  We can't call
773 		 * release_task() here because we already hold tasklist_lock.
774 		 *
775 		 * If it's our own child, there is no notification to do.
776 		 * But if our normal children self-reap, then this child
777 		 * was prevented by ptrace and we must reap it now.
778 		 */
779 		if (!task_detached(p) && thread_group_empty(p)) {
780 			if (!same_thread_group(p->real_parent, parent))
781 				do_notify_parent(p, p->exit_signal);
782 			else {
783 				if (ign < 0)
784 					ign = ignoring_children(parent);
785 				if (ign)
786 					p->exit_signal = -1;
787 			}
788 		}
789 
790 		if (task_detached(p)) {
791 			/*
792 			 * Mark it as in the process of being reaped.
793 			 */
794 			p->exit_state = EXIT_DEAD;
795 			list_add(&p->ptrace_entry, dead);
796 		}
797 	}
798 }
799 
800 /*
801  * Finish up exit-time ptrace cleanup.
802  *
803  * Called without locks.
804  */
805 static void ptrace_exit_finish(struct task_struct *parent,
806 			       struct list_head *dead)
807 {
808 	struct task_struct *p, *n;
809 
810 	BUG_ON(!list_empty(&parent->ptraced));
811 
812 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
813 		list_del_init(&p->ptrace_entry);
814 		release_task(p);
815 	}
816 }
817 
818 static void reparent_thread(struct task_struct *p, struct task_struct *father)
819 {
820 	if (p->pdeath_signal)
821 		/* We already hold the tasklist_lock here.  */
822 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
823 
824 	list_move_tail(&p->sibling, &p->real_parent->children);
825 
826 	/* If this is a threaded reparent there is no need to
827 	 * notify anyone anything has happened.
828 	 */
829 	if (same_thread_group(p->real_parent, father))
830 		return;
831 
832 	/* We don't want people slaying init.  */
833 	if (!task_detached(p))
834 		p->exit_signal = SIGCHLD;
835 
836 	/* If we'd notified the old parent about this child's death,
837 	 * also notify the new parent.
838 	 */
839 	if (!ptrace_reparented(p) &&
840 	    p->exit_state == EXIT_ZOMBIE &&
841 	    !task_detached(p) && thread_group_empty(p))
842 		do_notify_parent(p, p->exit_signal);
843 
844 	kill_orphaned_pgrp(p, father);
845 }
846 
847 /*
848  * When we die, we re-parent all our children.
849  * Try to give them to another thread in our thread
850  * group, and if no such member exists, give it to
851  * the child reaper process (ie "init") in our pid
852  * space.
853  */
854 static struct task_struct *find_new_reaper(struct task_struct *father)
855 {
856 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
857 	struct task_struct *thread;
858 
859 	thread = father;
860 	while_each_thread(father, thread) {
861 		if (thread->flags & PF_EXITING)
862 			continue;
863 		if (unlikely(pid_ns->child_reaper == father))
864 			pid_ns->child_reaper = thread;
865 		return thread;
866 	}
867 
868 	if (unlikely(pid_ns->child_reaper == father)) {
869 		write_unlock_irq(&tasklist_lock);
870 		if (unlikely(pid_ns == &init_pid_ns))
871 			panic("Attempted to kill init!");
872 
873 		zap_pid_ns_processes(pid_ns);
874 		write_lock_irq(&tasklist_lock);
875 		/*
876 		 * We can not clear ->child_reaper or leave it alone.
877 		 * There may by stealth EXIT_DEAD tasks on ->children,
878 		 * forget_original_parent() must move them somewhere.
879 		 */
880 		pid_ns->child_reaper = init_pid_ns.child_reaper;
881 	}
882 
883 	return pid_ns->child_reaper;
884 }
885 
886 static void forget_original_parent(struct task_struct *father)
887 {
888 	struct task_struct *p, *n, *reaper;
889 	LIST_HEAD(ptrace_dead);
890 
891 	write_lock_irq(&tasklist_lock);
892 	reaper = find_new_reaper(father);
893 	/*
894 	 * First clean up ptrace if we were using it.
895 	 */
896 	ptrace_exit(father, &ptrace_dead);
897 
898 	list_for_each_entry_safe(p, n, &father->children, sibling) {
899 		p->real_parent = reaper;
900 		if (p->parent == father) {
901 			BUG_ON(p->ptrace);
902 			p->parent = p->real_parent;
903 		}
904 		reparent_thread(p, father);
905 	}
906 
907 	write_unlock_irq(&tasklist_lock);
908 	BUG_ON(!list_empty(&father->children));
909 
910 	ptrace_exit_finish(father, &ptrace_dead);
911 }
912 
913 /*
914  * Send signals to all our closest relatives so that they know
915  * to properly mourn us..
916  */
917 static void exit_notify(struct task_struct *tsk, int group_dead)
918 {
919 	int signal;
920 	void *cookie;
921 
922 	/*
923 	 * This does two things:
924 	 *
925   	 * A.  Make init inherit all the child processes
926 	 * B.  Check to see if any process groups have become orphaned
927 	 *	as a result of our exiting, and if they have any stopped
928 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
929 	 */
930 	forget_original_parent(tsk);
931 	exit_task_namespaces(tsk);
932 
933 	write_lock_irq(&tasklist_lock);
934 	if (group_dead)
935 		kill_orphaned_pgrp(tsk->group_leader, NULL);
936 
937 	/* Let father know we died
938 	 *
939 	 * Thread signals are configurable, but you aren't going to use
940 	 * that to send signals to arbitary processes.
941 	 * That stops right now.
942 	 *
943 	 * If the parent exec id doesn't match the exec id we saved
944 	 * when we started then we know the parent has changed security
945 	 * domain.
946 	 *
947 	 * If our self_exec id doesn't match our parent_exec_id then
948 	 * we have changed execution domain as these two values started
949 	 * the same after a fork.
950 	 */
951 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
952 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
953 	     tsk->self_exec_id != tsk->parent_exec_id) &&
954 	    !capable(CAP_KILL))
955 		tsk->exit_signal = SIGCHLD;
956 
957 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
958 	if (signal >= 0)
959 		signal = do_notify_parent(tsk, signal);
960 
961 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
962 
963 	/* mt-exec, de_thread() is waiting for us */
964 	if (thread_group_leader(tsk) &&
965 	    tsk->signal->group_exit_task &&
966 	    tsk->signal->notify_count < 0)
967 		wake_up_process(tsk->signal->group_exit_task);
968 
969 	write_unlock_irq(&tasklist_lock);
970 
971 	tracehook_report_death(tsk, signal, cookie, group_dead);
972 
973 	/* If the process is dead, release it - nobody will wait for it */
974 	if (signal == DEATH_REAP)
975 		release_task(tsk);
976 }
977 
978 #ifdef CONFIG_DEBUG_STACK_USAGE
979 static void check_stack_usage(void)
980 {
981 	static DEFINE_SPINLOCK(low_water_lock);
982 	static int lowest_to_date = THREAD_SIZE;
983 	unsigned long free;
984 
985 	free = stack_not_used(current);
986 
987 	if (free >= lowest_to_date)
988 		return;
989 
990 	spin_lock(&low_water_lock);
991 	if (free < lowest_to_date) {
992 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
993 				"left\n",
994 				current->comm, free);
995 		lowest_to_date = free;
996 	}
997 	spin_unlock(&low_water_lock);
998 }
999 #else
1000 static inline void check_stack_usage(void) {}
1001 #endif
1002 
1003 NORET_TYPE void do_exit(long code)
1004 {
1005 	struct task_struct *tsk = current;
1006 	int group_dead;
1007 
1008 	profile_task_exit(tsk);
1009 
1010 	WARN_ON(atomic_read(&tsk->fs_excl));
1011 
1012 	if (unlikely(in_interrupt()))
1013 		panic("Aiee, killing interrupt handler!");
1014 	if (unlikely(!tsk->pid))
1015 		panic("Attempted to kill the idle task!");
1016 
1017 	tracehook_report_exit(&code);
1018 
1019 	/*
1020 	 * We're taking recursive faults here in do_exit. Safest is to just
1021 	 * leave this task alone and wait for reboot.
1022 	 */
1023 	if (unlikely(tsk->flags & PF_EXITING)) {
1024 		printk(KERN_ALERT
1025 			"Fixing recursive fault but reboot is needed!\n");
1026 		/*
1027 		 * We can do this unlocked here. The futex code uses
1028 		 * this flag just to verify whether the pi state
1029 		 * cleanup has been done or not. In the worst case it
1030 		 * loops once more. We pretend that the cleanup was
1031 		 * done as there is no way to return. Either the
1032 		 * OWNER_DIED bit is set by now or we push the blocked
1033 		 * task into the wait for ever nirwana as well.
1034 		 */
1035 		tsk->flags |= PF_EXITPIDONE;
1036 		set_current_state(TASK_UNINTERRUPTIBLE);
1037 		schedule();
1038 	}
1039 
1040 	exit_signals(tsk);  /* sets PF_EXITING */
1041 	/*
1042 	 * tsk->flags are checked in the futex code to protect against
1043 	 * an exiting task cleaning up the robust pi futexes.
1044 	 */
1045 	smp_mb();
1046 	spin_unlock_wait(&tsk->pi_lock);
1047 
1048 	if (unlikely(in_atomic()))
1049 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1050 				current->comm, task_pid_nr(current),
1051 				preempt_count());
1052 
1053 	acct_update_integrals(tsk);
1054 
1055 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1056 	if (group_dead) {
1057 		hrtimer_cancel(&tsk->signal->real_timer);
1058 		exit_itimers(tsk->signal);
1059 	}
1060 	acct_collect(code, group_dead);
1061 	if (group_dead)
1062 		tty_audit_exit();
1063 	if (unlikely(tsk->audit_context))
1064 		audit_free(tsk);
1065 
1066 	tsk->exit_code = code;
1067 	taskstats_exit(tsk, group_dead);
1068 
1069 	exit_mm(tsk);
1070 
1071 	if (group_dead)
1072 		acct_process();
1073 	trace_sched_process_exit(tsk);
1074 
1075 	exit_sem(tsk);
1076 	exit_files(tsk);
1077 	exit_fs(tsk);
1078 	check_stack_usage();
1079 	exit_thread();
1080 	cgroup_exit(tsk, 1);
1081 
1082 	if (group_dead && tsk->signal->leader)
1083 		disassociate_ctty(1);
1084 
1085 	module_put(task_thread_info(tsk)->exec_domain->module);
1086 	if (tsk->binfmt)
1087 		module_put(tsk->binfmt->module);
1088 
1089 	proc_exit_connector(tsk);
1090 	exit_notify(tsk, group_dead);
1091 #ifdef CONFIG_NUMA
1092 	mpol_put(tsk->mempolicy);
1093 	tsk->mempolicy = NULL;
1094 #endif
1095 #ifdef CONFIG_FUTEX
1096 	/*
1097 	 * This must happen late, after the PID is not
1098 	 * hashed anymore:
1099 	 */
1100 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 		exit_pi_state_list(tsk);
1102 	if (unlikely(current->pi_state_cache))
1103 		kfree(current->pi_state_cache);
1104 #endif
1105 	/*
1106 	 * Make sure we are holding no locks:
1107 	 */
1108 	debug_check_no_locks_held(tsk);
1109 	/*
1110 	 * We can do this unlocked here. The futex code uses this flag
1111 	 * just to verify whether the pi state cleanup has been done
1112 	 * or not. In the worst case it loops once more.
1113 	 */
1114 	tsk->flags |= PF_EXITPIDONE;
1115 
1116 	if (tsk->io_context)
1117 		exit_io_context();
1118 
1119 	if (tsk->splice_pipe)
1120 		__free_pipe_info(tsk->splice_pipe);
1121 
1122 	preempt_disable();
1123 	/* causes final put_task_struct in finish_task_switch(). */
1124 	tsk->state = TASK_DEAD;
1125 	schedule();
1126 	BUG();
1127 	/* Avoid "noreturn function does return".  */
1128 	for (;;)
1129 		cpu_relax();	/* For when BUG is null */
1130 }
1131 
1132 EXPORT_SYMBOL_GPL(do_exit);
1133 
1134 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1135 {
1136 	if (comp)
1137 		complete(comp);
1138 
1139 	do_exit(code);
1140 }
1141 
1142 EXPORT_SYMBOL(complete_and_exit);
1143 
1144 SYSCALL_DEFINE1(exit, int, error_code)
1145 {
1146 	do_exit((error_code&0xff)<<8);
1147 }
1148 
1149 /*
1150  * Take down every thread in the group.  This is called by fatal signals
1151  * as well as by sys_exit_group (below).
1152  */
1153 NORET_TYPE void
1154 do_group_exit(int exit_code)
1155 {
1156 	struct signal_struct *sig = current->signal;
1157 
1158 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1159 
1160 	if (signal_group_exit(sig))
1161 		exit_code = sig->group_exit_code;
1162 	else if (!thread_group_empty(current)) {
1163 		struct sighand_struct *const sighand = current->sighand;
1164 		spin_lock_irq(&sighand->siglock);
1165 		if (signal_group_exit(sig))
1166 			/* Another thread got here before we took the lock.  */
1167 			exit_code = sig->group_exit_code;
1168 		else {
1169 			sig->group_exit_code = exit_code;
1170 			sig->flags = SIGNAL_GROUP_EXIT;
1171 			zap_other_threads(current);
1172 		}
1173 		spin_unlock_irq(&sighand->siglock);
1174 	}
1175 
1176 	do_exit(exit_code);
1177 	/* NOTREACHED */
1178 }
1179 
1180 /*
1181  * this kills every thread in the thread group. Note that any externally
1182  * wait4()-ing process will get the correct exit code - even if this
1183  * thread is not the thread group leader.
1184  */
1185 SYSCALL_DEFINE1(exit_group, int, error_code)
1186 {
1187 	do_group_exit((error_code & 0xff) << 8);
1188 	/* NOTREACHED */
1189 	return 0;
1190 }
1191 
1192 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1193 {
1194 	struct pid *pid = NULL;
1195 	if (type == PIDTYPE_PID)
1196 		pid = task->pids[type].pid;
1197 	else if (type < PIDTYPE_MAX)
1198 		pid = task->group_leader->pids[type].pid;
1199 	return pid;
1200 }
1201 
1202 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1203 			  struct task_struct *p)
1204 {
1205 	int err;
1206 
1207 	if (type < PIDTYPE_MAX) {
1208 		if (task_pid_type(p, type) != pid)
1209 			return 0;
1210 	}
1211 
1212 	/* Wait for all children (clone and not) if __WALL is set;
1213 	 * otherwise, wait for clone children *only* if __WCLONE is
1214 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1215 	 * A "clone" child here is one that reports to its parent
1216 	 * using a signal other than SIGCHLD.) */
1217 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1218 	    && !(options & __WALL))
1219 		return 0;
1220 
1221 	err = security_task_wait(p);
1222 	if (err)
1223 		return err;
1224 
1225 	return 1;
1226 }
1227 
1228 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1229 			       int why, int status,
1230 			       struct siginfo __user *infop,
1231 			       struct rusage __user *rusagep)
1232 {
1233 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1234 
1235 	put_task_struct(p);
1236 	if (!retval)
1237 		retval = put_user(SIGCHLD, &infop->si_signo);
1238 	if (!retval)
1239 		retval = put_user(0, &infop->si_errno);
1240 	if (!retval)
1241 		retval = put_user((short)why, &infop->si_code);
1242 	if (!retval)
1243 		retval = put_user(pid, &infop->si_pid);
1244 	if (!retval)
1245 		retval = put_user(uid, &infop->si_uid);
1246 	if (!retval)
1247 		retval = put_user(status, &infop->si_status);
1248 	if (!retval)
1249 		retval = pid;
1250 	return retval;
1251 }
1252 
1253 /*
1254  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1255  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1256  * the lock and this task is uninteresting.  If we return nonzero, we have
1257  * released the lock and the system call should return.
1258  */
1259 static int wait_task_zombie(struct task_struct *p, int options,
1260 			    struct siginfo __user *infop,
1261 			    int __user *stat_addr, struct rusage __user *ru)
1262 {
1263 	unsigned long state;
1264 	int retval, status, traced;
1265 	pid_t pid = task_pid_vnr(p);
1266 	uid_t uid = __task_cred(p)->uid;
1267 
1268 	if (!likely(options & WEXITED))
1269 		return 0;
1270 
1271 	if (unlikely(options & WNOWAIT)) {
1272 		int exit_code = p->exit_code;
1273 		int why, status;
1274 
1275 		get_task_struct(p);
1276 		read_unlock(&tasklist_lock);
1277 		if ((exit_code & 0x7f) == 0) {
1278 			why = CLD_EXITED;
1279 			status = exit_code >> 8;
1280 		} else {
1281 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1282 			status = exit_code & 0x7f;
1283 		}
1284 		return wait_noreap_copyout(p, pid, uid, why,
1285 					   status, infop, ru);
1286 	}
1287 
1288 	/*
1289 	 * Try to move the task's state to DEAD
1290 	 * only one thread is allowed to do this:
1291 	 */
1292 	state = xchg(&p->exit_state, EXIT_DEAD);
1293 	if (state != EXIT_ZOMBIE) {
1294 		BUG_ON(state != EXIT_DEAD);
1295 		return 0;
1296 	}
1297 
1298 	traced = ptrace_reparented(p);
1299 
1300 	if (likely(!traced)) {
1301 		struct signal_struct *psig;
1302 		struct signal_struct *sig;
1303 		struct task_cputime cputime;
1304 
1305 		/*
1306 		 * The resource counters for the group leader are in its
1307 		 * own task_struct.  Those for dead threads in the group
1308 		 * are in its signal_struct, as are those for the child
1309 		 * processes it has previously reaped.  All these
1310 		 * accumulate in the parent's signal_struct c* fields.
1311 		 *
1312 		 * We don't bother to take a lock here to protect these
1313 		 * p->signal fields, because they are only touched by
1314 		 * __exit_signal, which runs with tasklist_lock
1315 		 * write-locked anyway, and so is excluded here.  We do
1316 		 * need to protect the access to p->parent->signal fields,
1317 		 * as other threads in the parent group can be right
1318 		 * here reaping other children at the same time.
1319 		 *
1320 		 * We use thread_group_cputime() to get times for the thread
1321 		 * group, which consolidates times for all threads in the
1322 		 * group including the group leader.
1323 		 */
1324 		thread_group_cputime(p, &cputime);
1325 		spin_lock_irq(&p->parent->sighand->siglock);
1326 		psig = p->parent->signal;
1327 		sig = p->signal;
1328 		psig->cutime =
1329 			cputime_add(psig->cutime,
1330 			cputime_add(cputime.utime,
1331 				    sig->cutime));
1332 		psig->cstime =
1333 			cputime_add(psig->cstime,
1334 			cputime_add(cputime.stime,
1335 				    sig->cstime));
1336 		psig->cgtime =
1337 			cputime_add(psig->cgtime,
1338 			cputime_add(p->gtime,
1339 			cputime_add(sig->gtime,
1340 				    sig->cgtime)));
1341 		psig->cmin_flt +=
1342 			p->min_flt + sig->min_flt + sig->cmin_flt;
1343 		psig->cmaj_flt +=
1344 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1345 		psig->cnvcsw +=
1346 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1347 		psig->cnivcsw +=
1348 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1349 		psig->cinblock +=
1350 			task_io_get_inblock(p) +
1351 			sig->inblock + sig->cinblock;
1352 		psig->coublock +=
1353 			task_io_get_oublock(p) +
1354 			sig->oublock + sig->coublock;
1355 		task_io_accounting_add(&psig->ioac, &p->ioac);
1356 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1357 		spin_unlock_irq(&p->parent->sighand->siglock);
1358 	}
1359 
1360 	/*
1361 	 * Now we are sure this task is interesting, and no other
1362 	 * thread can reap it because we set its state to EXIT_DEAD.
1363 	 */
1364 	read_unlock(&tasklist_lock);
1365 
1366 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1367 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1368 		? p->signal->group_exit_code : p->exit_code;
1369 	if (!retval && stat_addr)
1370 		retval = put_user(status, stat_addr);
1371 	if (!retval && infop)
1372 		retval = put_user(SIGCHLD, &infop->si_signo);
1373 	if (!retval && infop)
1374 		retval = put_user(0, &infop->si_errno);
1375 	if (!retval && infop) {
1376 		int why;
1377 
1378 		if ((status & 0x7f) == 0) {
1379 			why = CLD_EXITED;
1380 			status >>= 8;
1381 		} else {
1382 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1383 			status &= 0x7f;
1384 		}
1385 		retval = put_user((short)why, &infop->si_code);
1386 		if (!retval)
1387 			retval = put_user(status, &infop->si_status);
1388 	}
1389 	if (!retval && infop)
1390 		retval = put_user(pid, &infop->si_pid);
1391 	if (!retval && infop)
1392 		retval = put_user(uid, &infop->si_uid);
1393 	if (!retval)
1394 		retval = pid;
1395 
1396 	if (traced) {
1397 		write_lock_irq(&tasklist_lock);
1398 		/* We dropped tasklist, ptracer could die and untrace */
1399 		ptrace_unlink(p);
1400 		/*
1401 		 * If this is not a detached task, notify the parent.
1402 		 * If it's still not detached after that, don't release
1403 		 * it now.
1404 		 */
1405 		if (!task_detached(p)) {
1406 			do_notify_parent(p, p->exit_signal);
1407 			if (!task_detached(p)) {
1408 				p->exit_state = EXIT_ZOMBIE;
1409 				p = NULL;
1410 			}
1411 		}
1412 		write_unlock_irq(&tasklist_lock);
1413 	}
1414 	if (p != NULL)
1415 		release_task(p);
1416 
1417 	return retval;
1418 }
1419 
1420 /*
1421  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1422  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1423  * the lock and this task is uninteresting.  If we return nonzero, we have
1424  * released the lock and the system call should return.
1425  */
1426 static int wait_task_stopped(int ptrace, struct task_struct *p,
1427 			     int options, struct siginfo __user *infop,
1428 			     int __user *stat_addr, struct rusage __user *ru)
1429 {
1430 	int retval, exit_code, why;
1431 	uid_t uid = 0; /* unneeded, required by compiler */
1432 	pid_t pid;
1433 
1434 	if (!(options & WUNTRACED))
1435 		return 0;
1436 
1437 	exit_code = 0;
1438 	spin_lock_irq(&p->sighand->siglock);
1439 
1440 	if (unlikely(!task_is_stopped_or_traced(p)))
1441 		goto unlock_sig;
1442 
1443 	if (!ptrace && p->signal->group_stop_count > 0)
1444 		/*
1445 		 * A group stop is in progress and this is the group leader.
1446 		 * We won't report until all threads have stopped.
1447 		 */
1448 		goto unlock_sig;
1449 
1450 	exit_code = p->exit_code;
1451 	if (!exit_code)
1452 		goto unlock_sig;
1453 
1454 	if (!unlikely(options & WNOWAIT))
1455 		p->exit_code = 0;
1456 
1457 	/* don't need the RCU readlock here as we're holding a spinlock */
1458 	uid = __task_cred(p)->uid;
1459 unlock_sig:
1460 	spin_unlock_irq(&p->sighand->siglock);
1461 	if (!exit_code)
1462 		return 0;
1463 
1464 	/*
1465 	 * Now we are pretty sure this task is interesting.
1466 	 * Make sure it doesn't get reaped out from under us while we
1467 	 * give up the lock and then examine it below.  We don't want to
1468 	 * keep holding onto the tasklist_lock while we call getrusage and
1469 	 * possibly take page faults for user memory.
1470 	 */
1471 	get_task_struct(p);
1472 	pid = task_pid_vnr(p);
1473 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1474 	read_unlock(&tasklist_lock);
1475 
1476 	if (unlikely(options & WNOWAIT))
1477 		return wait_noreap_copyout(p, pid, uid,
1478 					   why, exit_code,
1479 					   infop, ru);
1480 
1481 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1482 	if (!retval && stat_addr)
1483 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1484 	if (!retval && infop)
1485 		retval = put_user(SIGCHLD, &infop->si_signo);
1486 	if (!retval && infop)
1487 		retval = put_user(0, &infop->si_errno);
1488 	if (!retval && infop)
1489 		retval = put_user((short)why, &infop->si_code);
1490 	if (!retval && infop)
1491 		retval = put_user(exit_code, &infop->si_status);
1492 	if (!retval && infop)
1493 		retval = put_user(pid, &infop->si_pid);
1494 	if (!retval && infop)
1495 		retval = put_user(uid, &infop->si_uid);
1496 	if (!retval)
1497 		retval = pid;
1498 	put_task_struct(p);
1499 
1500 	BUG_ON(!retval);
1501 	return retval;
1502 }
1503 
1504 /*
1505  * Handle do_wait work for one task in a live, non-stopped state.
1506  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1507  * the lock and this task is uninteresting.  If we return nonzero, we have
1508  * released the lock and the system call should return.
1509  */
1510 static int wait_task_continued(struct task_struct *p, int options,
1511 			       struct siginfo __user *infop,
1512 			       int __user *stat_addr, struct rusage __user *ru)
1513 {
1514 	int retval;
1515 	pid_t pid;
1516 	uid_t uid;
1517 
1518 	if (!unlikely(options & WCONTINUED))
1519 		return 0;
1520 
1521 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1522 		return 0;
1523 
1524 	spin_lock_irq(&p->sighand->siglock);
1525 	/* Re-check with the lock held.  */
1526 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1527 		spin_unlock_irq(&p->sighand->siglock);
1528 		return 0;
1529 	}
1530 	if (!unlikely(options & WNOWAIT))
1531 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1532 	uid = __task_cred(p)->uid;
1533 	spin_unlock_irq(&p->sighand->siglock);
1534 
1535 	pid = task_pid_vnr(p);
1536 	get_task_struct(p);
1537 	read_unlock(&tasklist_lock);
1538 
1539 	if (!infop) {
1540 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1541 		put_task_struct(p);
1542 		if (!retval && stat_addr)
1543 			retval = put_user(0xffff, stat_addr);
1544 		if (!retval)
1545 			retval = pid;
1546 	} else {
1547 		retval = wait_noreap_copyout(p, pid, uid,
1548 					     CLD_CONTINUED, SIGCONT,
1549 					     infop, ru);
1550 		BUG_ON(retval == 0);
1551 	}
1552 
1553 	return retval;
1554 }
1555 
1556 /*
1557  * Consider @p for a wait by @parent.
1558  *
1559  * -ECHILD should be in *@notask_error before the first call.
1560  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1561  * Returns zero if the search for a child should continue;
1562  * then *@notask_error is 0 if @p is an eligible child,
1563  * or another error from security_task_wait(), or still -ECHILD.
1564  */
1565 static int wait_consider_task(struct task_struct *parent, int ptrace,
1566 			      struct task_struct *p, int *notask_error,
1567 			      enum pid_type type, struct pid *pid, int options,
1568 			      struct siginfo __user *infop,
1569 			      int __user *stat_addr, struct rusage __user *ru)
1570 {
1571 	int ret = eligible_child(type, pid, options, p);
1572 	if (!ret)
1573 		return ret;
1574 
1575 	if (unlikely(ret < 0)) {
1576 		/*
1577 		 * If we have not yet seen any eligible child,
1578 		 * then let this error code replace -ECHILD.
1579 		 * A permission error will give the user a clue
1580 		 * to look for security policy problems, rather
1581 		 * than for mysterious wait bugs.
1582 		 */
1583 		if (*notask_error)
1584 			*notask_error = ret;
1585 	}
1586 
1587 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1588 		/*
1589 		 * This child is hidden by ptrace.
1590 		 * We aren't allowed to see it now, but eventually we will.
1591 		 */
1592 		*notask_error = 0;
1593 		return 0;
1594 	}
1595 
1596 	if (p->exit_state == EXIT_DEAD)
1597 		return 0;
1598 
1599 	/*
1600 	 * We don't reap group leaders with subthreads.
1601 	 */
1602 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1603 		return wait_task_zombie(p, options, infop, stat_addr, ru);
1604 
1605 	/*
1606 	 * It's stopped or running now, so it might
1607 	 * later continue, exit, or stop again.
1608 	 */
1609 	*notask_error = 0;
1610 
1611 	if (task_is_stopped_or_traced(p))
1612 		return wait_task_stopped(ptrace, p, options,
1613 					 infop, stat_addr, ru);
1614 
1615 	return wait_task_continued(p, options, infop, stat_addr, ru);
1616 }
1617 
1618 /*
1619  * Do the work of do_wait() for one thread in the group, @tsk.
1620  *
1621  * -ECHILD should be in *@notask_error before the first call.
1622  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1623  * Returns zero if the search for a child should continue; then
1624  * *@notask_error is 0 if there were any eligible children,
1625  * or another error from security_task_wait(), or still -ECHILD.
1626  */
1627 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1628 			  enum pid_type type, struct pid *pid, int options,
1629 			  struct siginfo __user *infop, int __user *stat_addr,
1630 			  struct rusage __user *ru)
1631 {
1632 	struct task_struct *p;
1633 
1634 	list_for_each_entry(p, &tsk->children, sibling) {
1635 		/*
1636 		 * Do not consider detached threads.
1637 		 */
1638 		if (!task_detached(p)) {
1639 			int ret = wait_consider_task(tsk, 0, p, notask_error,
1640 						     type, pid, options,
1641 						     infop, stat_addr, ru);
1642 			if (ret)
1643 				return ret;
1644 		}
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1651 			  enum pid_type type, struct pid *pid, int options,
1652 			  struct siginfo __user *infop, int __user *stat_addr,
1653 			  struct rusage __user *ru)
1654 {
1655 	struct task_struct *p;
1656 
1657 	/*
1658 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1659 	 */
1660 	options |= WUNTRACED;
1661 
1662 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1663 		int ret = wait_consider_task(tsk, 1, p, notask_error,
1664 					     type, pid, options,
1665 					     infop, stat_addr, ru);
1666 		if (ret)
1667 			return ret;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 static long do_wait(enum pid_type type, struct pid *pid, int options,
1674 		    struct siginfo __user *infop, int __user *stat_addr,
1675 		    struct rusage __user *ru)
1676 {
1677 	DECLARE_WAITQUEUE(wait, current);
1678 	struct task_struct *tsk;
1679 	int retval;
1680 
1681 	trace_sched_process_wait(pid);
1682 
1683 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1684 repeat:
1685 	/*
1686 	 * If there is nothing that can match our critiera just get out.
1687 	 * We will clear @retval to zero if we see any child that might later
1688 	 * match our criteria, even if we are not able to reap it yet.
1689 	 */
1690 	retval = -ECHILD;
1691 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1692 		goto end;
1693 
1694 	current->state = TASK_INTERRUPTIBLE;
1695 	read_lock(&tasklist_lock);
1696 	tsk = current;
1697 	do {
1698 		int tsk_result = do_wait_thread(tsk, &retval,
1699 						type, pid, options,
1700 						infop, stat_addr, ru);
1701 		if (!tsk_result)
1702 			tsk_result = ptrace_do_wait(tsk, &retval,
1703 						    type, pid, options,
1704 						    infop, stat_addr, ru);
1705 		if (tsk_result) {
1706 			/*
1707 			 * tasklist_lock is unlocked and we have a final result.
1708 			 */
1709 			retval = tsk_result;
1710 			goto end;
1711 		}
1712 
1713 		if (options & __WNOTHREAD)
1714 			break;
1715 		tsk = next_thread(tsk);
1716 		BUG_ON(tsk->signal != current->signal);
1717 	} while (tsk != current);
1718 	read_unlock(&tasklist_lock);
1719 
1720 	if (!retval && !(options & WNOHANG)) {
1721 		retval = -ERESTARTSYS;
1722 		if (!signal_pending(current)) {
1723 			schedule();
1724 			goto repeat;
1725 		}
1726 	}
1727 
1728 end:
1729 	current->state = TASK_RUNNING;
1730 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1731 	if (infop) {
1732 		if (retval > 0)
1733 			retval = 0;
1734 		else {
1735 			/*
1736 			 * For a WNOHANG return, clear out all the fields
1737 			 * we would set so the user can easily tell the
1738 			 * difference.
1739 			 */
1740 			if (!retval)
1741 				retval = put_user(0, &infop->si_signo);
1742 			if (!retval)
1743 				retval = put_user(0, &infop->si_errno);
1744 			if (!retval)
1745 				retval = put_user(0, &infop->si_code);
1746 			if (!retval)
1747 				retval = put_user(0, &infop->si_pid);
1748 			if (!retval)
1749 				retval = put_user(0, &infop->si_uid);
1750 			if (!retval)
1751 				retval = put_user(0, &infop->si_status);
1752 		}
1753 	}
1754 	return retval;
1755 }
1756 
1757 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1758 		infop, int, options, struct rusage __user *, ru)
1759 {
1760 	struct pid *pid = NULL;
1761 	enum pid_type type;
1762 	long ret;
1763 
1764 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1765 		return -EINVAL;
1766 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1767 		return -EINVAL;
1768 
1769 	switch (which) {
1770 	case P_ALL:
1771 		type = PIDTYPE_MAX;
1772 		break;
1773 	case P_PID:
1774 		type = PIDTYPE_PID;
1775 		if (upid <= 0)
1776 			return -EINVAL;
1777 		break;
1778 	case P_PGID:
1779 		type = PIDTYPE_PGID;
1780 		if (upid <= 0)
1781 			return -EINVAL;
1782 		break;
1783 	default:
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (type < PIDTYPE_MAX)
1788 		pid = find_get_pid(upid);
1789 	ret = do_wait(type, pid, options, infop, NULL, ru);
1790 	put_pid(pid);
1791 
1792 	/* avoid REGPARM breakage on x86: */
1793 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1794 	return ret;
1795 }
1796 
1797 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1798 		int, options, struct rusage __user *, ru)
1799 {
1800 	struct pid *pid = NULL;
1801 	enum pid_type type;
1802 	long ret;
1803 
1804 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1805 			__WNOTHREAD|__WCLONE|__WALL))
1806 		return -EINVAL;
1807 
1808 	if (upid == -1)
1809 		type = PIDTYPE_MAX;
1810 	else if (upid < 0) {
1811 		type = PIDTYPE_PGID;
1812 		pid = find_get_pid(-upid);
1813 	} else if (upid == 0) {
1814 		type = PIDTYPE_PGID;
1815 		pid = get_pid(task_pgrp(current));
1816 	} else /* upid > 0 */ {
1817 		type = PIDTYPE_PID;
1818 		pid = find_get_pid(upid);
1819 	}
1820 
1821 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1822 	put_pid(pid);
1823 
1824 	/* avoid REGPARM breakage on x86: */
1825 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1826 	return ret;
1827 }
1828 
1829 #ifdef __ARCH_WANT_SYS_WAITPID
1830 
1831 /*
1832  * sys_waitpid() remains for compatibility. waitpid() should be
1833  * implemented by calling sys_wait4() from libc.a.
1834  */
1835 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1836 {
1837 	return sys_wait4(pid, stat_addr, options, NULL);
1838 }
1839 
1840 #endif
1841