1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/iocontext.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/fdtable.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/freezer.h> 36 #include <linux/cgroup.h> 37 #include <linux/syscalls.h> 38 #include <linux/signal.h> 39 #include <linux/posix-timers.h> 40 #include <linux/cn_proc.h> 41 #include <linux/mutex.h> 42 #include <linux/futex.h> 43 #include <linux/pipe_fs_i.h> 44 #include <linux/audit.h> /* for audit_free() */ 45 #include <linux/resource.h> 46 #include <linux/blkdev.h> 47 #include <linux/task_io_accounting_ops.h> 48 #include <linux/tracehook.h> 49 #include <linux/init_task.h> 50 #include <trace/sched.h> 51 52 #include <asm/uaccess.h> 53 #include <asm/unistd.h> 54 #include <asm/pgtable.h> 55 #include <asm/mmu_context.h> 56 #include "cred-internals.h" 57 58 DEFINE_TRACE(sched_process_free); 59 DEFINE_TRACE(sched_process_exit); 60 DEFINE_TRACE(sched_process_wait); 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static inline int task_detached(struct task_struct *p) 65 { 66 return p->exit_signal == -1; 67 } 68 69 static void __unhash_process(struct task_struct *p) 70 { 71 nr_threads--; 72 detach_pid(p, PIDTYPE_PID); 73 if (thread_group_leader(p)) { 74 detach_pid(p, PIDTYPE_PGID); 75 detach_pid(p, PIDTYPE_SID); 76 77 list_del_rcu(&p->tasks); 78 __get_cpu_var(process_counts)--; 79 } 80 list_del_rcu(&p->thread_group); 81 list_del_init(&p->sibling); 82 } 83 84 /* 85 * This function expects the tasklist_lock write-locked. 86 */ 87 static void __exit_signal(struct task_struct *tsk) 88 { 89 struct signal_struct *sig = tsk->signal; 90 struct sighand_struct *sighand; 91 92 BUG_ON(!sig); 93 BUG_ON(!atomic_read(&sig->count)); 94 95 sighand = rcu_dereference(tsk->sighand); 96 spin_lock(&sighand->siglock); 97 98 posix_cpu_timers_exit(tsk); 99 if (atomic_dec_and_test(&sig->count)) 100 posix_cpu_timers_exit_group(tsk); 101 else { 102 /* 103 * If there is any task waiting for the group exit 104 * then notify it: 105 */ 106 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 107 wake_up_process(sig->group_exit_task); 108 109 if (tsk == sig->curr_target) 110 sig->curr_target = next_thread(tsk); 111 /* 112 * Accumulate here the counters for all threads but the 113 * group leader as they die, so they can be added into 114 * the process-wide totals when those are taken. 115 * The group leader stays around as a zombie as long 116 * as there are other threads. When it gets reaped, 117 * the exit.c code will add its counts into these totals. 118 * We won't ever get here for the group leader, since it 119 * will have been the last reference on the signal_struct. 120 */ 121 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 122 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 123 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 124 sig->min_flt += tsk->min_flt; 125 sig->maj_flt += tsk->maj_flt; 126 sig->nvcsw += tsk->nvcsw; 127 sig->nivcsw += tsk->nivcsw; 128 sig->inblock += task_io_get_inblock(tsk); 129 sig->oublock += task_io_get_oublock(tsk); 130 task_io_accounting_add(&sig->ioac, &tsk->ioac); 131 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 132 sig = NULL; /* Marker for below. */ 133 } 134 135 __unhash_process(tsk); 136 137 /* 138 * Do this under ->siglock, we can race with another thread 139 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 140 */ 141 flush_sigqueue(&tsk->pending); 142 143 tsk->signal = NULL; 144 tsk->sighand = NULL; 145 spin_unlock(&sighand->siglock); 146 147 __cleanup_sighand(sighand); 148 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 149 if (sig) { 150 flush_sigqueue(&sig->shared_pending); 151 taskstats_tgid_free(sig); 152 /* 153 * Make sure ->signal can't go away under rq->lock, 154 * see account_group_exec_runtime(). 155 */ 156 task_rq_unlock_wait(tsk); 157 __cleanup_signal(sig); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 trace_sched_process_free(tsk); 166 put_task_struct(tsk); 167 } 168 169 170 void release_task(struct task_struct * p) 171 { 172 struct task_struct *leader; 173 int zap_leader; 174 repeat: 175 tracehook_prepare_release_task(p); 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials */ 178 atomic_dec(&__task_cred(p)->user->processes); 179 180 proc_flush_task(p); 181 write_lock_irq(&tasklist_lock); 182 tracehook_finish_release_task(p); 183 __exit_signal(p); 184 185 /* 186 * If we are the last non-leader member of the thread 187 * group, and the leader is zombie, then notify the 188 * group leader's parent process. (if it wants notification.) 189 */ 190 zap_leader = 0; 191 leader = p->group_leader; 192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 193 BUG_ON(task_detached(leader)); 194 do_notify_parent(leader, leader->exit_signal); 195 /* 196 * If we were the last child thread and the leader has 197 * exited already, and the leader's parent ignores SIGCHLD, 198 * then we are the one who should release the leader. 199 * 200 * do_notify_parent() will have marked it self-reaping in 201 * that case. 202 */ 203 zap_leader = task_detached(leader); 204 205 /* 206 * This maintains the invariant that release_task() 207 * only runs on a task in EXIT_DEAD, just for sanity. 208 */ 209 if (zap_leader) 210 leader->exit_state = EXIT_DEAD; 211 } 212 213 write_unlock_irq(&tasklist_lock); 214 release_thread(p); 215 call_rcu(&p->rcu, delayed_put_task_struct); 216 217 p = leader; 218 if (unlikely(zap_leader)) 219 goto repeat; 220 } 221 222 /* 223 * This checks not only the pgrp, but falls back on the pid if no 224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 225 * without this... 226 * 227 * The caller must hold rcu lock or the tasklist lock. 228 */ 229 struct pid *session_of_pgrp(struct pid *pgrp) 230 { 231 struct task_struct *p; 232 struct pid *sid = NULL; 233 234 p = pid_task(pgrp, PIDTYPE_PGID); 235 if (p == NULL) 236 p = pid_task(pgrp, PIDTYPE_PID); 237 if (p != NULL) 238 sid = task_session(p); 239 240 return sid; 241 } 242 243 /* 244 * Determine if a process group is "orphaned", according to the POSIX 245 * definition in 2.2.2.52. Orphaned process groups are not to be affected 246 * by terminal-generated stop signals. Newly orphaned process groups are 247 * to receive a SIGHUP and a SIGCONT. 248 * 249 * "I ask you, have you ever known what it is to be an orphan?" 250 */ 251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 252 { 253 struct task_struct *p; 254 255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 256 if ((p == ignored_task) || 257 (p->exit_state && thread_group_empty(p)) || 258 is_global_init(p->real_parent)) 259 continue; 260 261 if (task_pgrp(p->real_parent) != pgrp && 262 task_session(p->real_parent) == task_session(p)) 263 return 0; 264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 265 266 return 1; 267 } 268 269 int is_current_pgrp_orphaned(void) 270 { 271 int retval; 272 273 read_lock(&tasklist_lock); 274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 275 read_unlock(&tasklist_lock); 276 277 return retval; 278 } 279 280 static int has_stopped_jobs(struct pid *pgrp) 281 { 282 int retval = 0; 283 struct task_struct *p; 284 285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 286 if (!task_is_stopped(p)) 287 continue; 288 retval = 1; 289 break; 290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 291 return retval; 292 } 293 294 /* 295 * Check to see if any process groups have become orphaned as 296 * a result of our exiting, and if they have any stopped jobs, 297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 298 */ 299 static void 300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 301 { 302 struct pid *pgrp = task_pgrp(tsk); 303 struct task_struct *ignored_task = tsk; 304 305 if (!parent) 306 /* exit: our father is in a different pgrp than 307 * we are and we were the only connection outside. 308 */ 309 parent = tsk->real_parent; 310 else 311 /* reparent: our child is in a different pgrp than 312 * we are, and it was the only connection outside. 313 */ 314 ignored_task = NULL; 315 316 if (task_pgrp(parent) != pgrp && 317 task_session(parent) == task_session(tsk) && 318 will_become_orphaned_pgrp(pgrp, ignored_task) && 319 has_stopped_jobs(pgrp)) { 320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 322 } 323 } 324 325 /** 326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 327 * 328 * If a kernel thread is launched as a result of a system call, or if 329 * it ever exits, it should generally reparent itself to kthreadd so it 330 * isn't in the way of other processes and is correctly cleaned up on exit. 331 * 332 * The various task state such as scheduling policy and priority may have 333 * been inherited from a user process, so we reset them to sane values here. 334 * 335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 336 */ 337 static void reparent_to_kthreadd(void) 338 { 339 write_lock_irq(&tasklist_lock); 340 341 ptrace_unlink(current); 342 /* Reparent to init */ 343 current->real_parent = current->parent = kthreadd_task; 344 list_move_tail(¤t->sibling, ¤t->real_parent->children); 345 346 /* Set the exit signal to SIGCHLD so we signal init on exit */ 347 current->exit_signal = SIGCHLD; 348 349 if (task_nice(current) < 0) 350 set_user_nice(current, 0); 351 /* cpus_allowed? */ 352 /* rt_priority? */ 353 /* signals? */ 354 memcpy(current->signal->rlim, init_task.signal->rlim, 355 sizeof(current->signal->rlim)); 356 357 atomic_inc(&init_cred.usage); 358 commit_creds(&init_cred); 359 write_unlock_irq(&tasklist_lock); 360 } 361 362 void __set_special_pids(struct pid *pid) 363 { 364 struct task_struct *curr = current->group_leader; 365 pid_t nr = pid_nr(pid); 366 367 if (task_session(curr) != pid) { 368 change_pid(curr, PIDTYPE_SID, pid); 369 set_task_session(curr, nr); 370 } 371 if (task_pgrp(curr) != pid) { 372 change_pid(curr, PIDTYPE_PGID, pid); 373 set_task_pgrp(curr, nr); 374 } 375 } 376 377 static void set_special_pids(struct pid *pid) 378 { 379 write_lock_irq(&tasklist_lock); 380 __set_special_pids(pid); 381 write_unlock_irq(&tasklist_lock); 382 } 383 384 /* 385 * Let kernel threads use this to say that they 386 * allow a certain signal (since daemonize() will 387 * have disabled all of them by default). 388 */ 389 int allow_signal(int sig) 390 { 391 if (!valid_signal(sig) || sig < 1) 392 return -EINVAL; 393 394 spin_lock_irq(¤t->sighand->siglock); 395 sigdelset(¤t->blocked, sig); 396 if (!current->mm) { 397 /* Kernel threads handle their own signals. 398 Let the signal code know it'll be handled, so 399 that they don't get converted to SIGKILL or 400 just silently dropped */ 401 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 402 } 403 recalc_sigpending(); 404 spin_unlock_irq(¤t->sighand->siglock); 405 return 0; 406 } 407 408 EXPORT_SYMBOL(allow_signal); 409 410 int disallow_signal(int sig) 411 { 412 if (!valid_signal(sig) || sig < 1) 413 return -EINVAL; 414 415 spin_lock_irq(¤t->sighand->siglock); 416 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 417 recalc_sigpending(); 418 spin_unlock_irq(¤t->sighand->siglock); 419 return 0; 420 } 421 422 EXPORT_SYMBOL(disallow_signal); 423 424 /* 425 * Put all the gunge required to become a kernel thread without 426 * attached user resources in one place where it belongs. 427 */ 428 429 void daemonize(const char *name, ...) 430 { 431 va_list args; 432 struct fs_struct *fs; 433 sigset_t blocked; 434 435 va_start(args, name); 436 vsnprintf(current->comm, sizeof(current->comm), name, args); 437 va_end(args); 438 439 /* 440 * If we were started as result of loading a module, close all of the 441 * user space pages. We don't need them, and if we didn't close them 442 * they would be locked into memory. 443 */ 444 exit_mm(current); 445 /* 446 * We don't want to have TIF_FREEZE set if the system-wide hibernation 447 * or suspend transition begins right now. 448 */ 449 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 450 451 if (current->nsproxy != &init_nsproxy) { 452 get_nsproxy(&init_nsproxy); 453 switch_task_namespaces(current, &init_nsproxy); 454 } 455 set_special_pids(&init_struct_pid); 456 proc_clear_tty(current); 457 458 /* Block and flush all signals */ 459 sigfillset(&blocked); 460 sigprocmask(SIG_BLOCK, &blocked, NULL); 461 flush_signals(current); 462 463 /* Become as one with the init task */ 464 465 exit_fs(current); /* current->fs->count--; */ 466 fs = init_task.fs; 467 current->fs = fs; 468 atomic_inc(&fs->count); 469 470 exit_files(current); 471 current->files = init_task.files; 472 atomic_inc(¤t->files->count); 473 474 reparent_to_kthreadd(); 475 } 476 477 EXPORT_SYMBOL(daemonize); 478 479 static void close_files(struct files_struct * files) 480 { 481 int i, j; 482 struct fdtable *fdt; 483 484 j = 0; 485 486 /* 487 * It is safe to dereference the fd table without RCU or 488 * ->file_lock because this is the last reference to the 489 * files structure. 490 */ 491 fdt = files_fdtable(files); 492 for (;;) { 493 unsigned long set; 494 i = j * __NFDBITS; 495 if (i >= fdt->max_fds) 496 break; 497 set = fdt->open_fds->fds_bits[j++]; 498 while (set) { 499 if (set & 1) { 500 struct file * file = xchg(&fdt->fd[i], NULL); 501 if (file) { 502 filp_close(file, files); 503 cond_resched(); 504 } 505 } 506 i++; 507 set >>= 1; 508 } 509 } 510 } 511 512 struct files_struct *get_files_struct(struct task_struct *task) 513 { 514 struct files_struct *files; 515 516 task_lock(task); 517 files = task->files; 518 if (files) 519 atomic_inc(&files->count); 520 task_unlock(task); 521 522 return files; 523 } 524 525 void put_files_struct(struct files_struct *files) 526 { 527 struct fdtable *fdt; 528 529 if (atomic_dec_and_test(&files->count)) { 530 close_files(files); 531 /* 532 * Free the fd and fdset arrays if we expanded them. 533 * If the fdtable was embedded, pass files for freeing 534 * at the end of the RCU grace period. Otherwise, 535 * you can free files immediately. 536 */ 537 fdt = files_fdtable(files); 538 if (fdt != &files->fdtab) 539 kmem_cache_free(files_cachep, files); 540 free_fdtable(fdt); 541 } 542 } 543 544 void reset_files_struct(struct files_struct *files) 545 { 546 struct task_struct *tsk = current; 547 struct files_struct *old; 548 549 old = tsk->files; 550 task_lock(tsk); 551 tsk->files = files; 552 task_unlock(tsk); 553 put_files_struct(old); 554 } 555 556 void exit_files(struct task_struct *tsk) 557 { 558 struct files_struct * files = tsk->files; 559 560 if (files) { 561 task_lock(tsk); 562 tsk->files = NULL; 563 task_unlock(tsk); 564 put_files_struct(files); 565 } 566 } 567 568 void put_fs_struct(struct fs_struct *fs) 569 { 570 /* No need to hold fs->lock if we are killing it */ 571 if (atomic_dec_and_test(&fs->count)) { 572 path_put(&fs->root); 573 path_put(&fs->pwd); 574 kmem_cache_free(fs_cachep, fs); 575 } 576 } 577 578 void exit_fs(struct task_struct *tsk) 579 { 580 struct fs_struct * fs = tsk->fs; 581 582 if (fs) { 583 task_lock(tsk); 584 tsk->fs = NULL; 585 task_unlock(tsk); 586 put_fs_struct(fs); 587 } 588 } 589 590 EXPORT_SYMBOL_GPL(exit_fs); 591 592 #ifdef CONFIG_MM_OWNER 593 /* 594 * Task p is exiting and it owned mm, lets find a new owner for it 595 */ 596 static inline int 597 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 598 { 599 /* 600 * If there are other users of the mm and the owner (us) is exiting 601 * we need to find a new owner to take on the responsibility. 602 */ 603 if (atomic_read(&mm->mm_users) <= 1) 604 return 0; 605 if (mm->owner != p) 606 return 0; 607 return 1; 608 } 609 610 void mm_update_next_owner(struct mm_struct *mm) 611 { 612 struct task_struct *c, *g, *p = current; 613 614 retry: 615 if (!mm_need_new_owner(mm, p)) 616 return; 617 618 read_lock(&tasklist_lock); 619 /* 620 * Search in the children 621 */ 622 list_for_each_entry(c, &p->children, sibling) { 623 if (c->mm == mm) 624 goto assign_new_owner; 625 } 626 627 /* 628 * Search in the siblings 629 */ 630 list_for_each_entry(c, &p->parent->children, sibling) { 631 if (c->mm == mm) 632 goto assign_new_owner; 633 } 634 635 /* 636 * Search through everything else. We should not get 637 * here often 638 */ 639 do_each_thread(g, c) { 640 if (c->mm == mm) 641 goto assign_new_owner; 642 } while_each_thread(g, c); 643 644 read_unlock(&tasklist_lock); 645 /* 646 * We found no owner yet mm_users > 1: this implies that we are 647 * most likely racing with swapoff (try_to_unuse()) or /proc or 648 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 649 */ 650 mm->owner = NULL; 651 return; 652 653 assign_new_owner: 654 BUG_ON(c == p); 655 get_task_struct(c); 656 /* 657 * The task_lock protects c->mm from changing. 658 * We always want mm->owner->mm == mm 659 */ 660 task_lock(c); 661 /* 662 * Delay read_unlock() till we have the task_lock() 663 * to ensure that c does not slip away underneath us 664 */ 665 read_unlock(&tasklist_lock); 666 if (c->mm != mm) { 667 task_unlock(c); 668 put_task_struct(c); 669 goto retry; 670 } 671 mm->owner = c; 672 task_unlock(c); 673 put_task_struct(c); 674 } 675 #endif /* CONFIG_MM_OWNER */ 676 677 /* 678 * Turn us into a lazy TLB process if we 679 * aren't already.. 680 */ 681 static void exit_mm(struct task_struct * tsk) 682 { 683 struct mm_struct *mm = tsk->mm; 684 struct core_state *core_state; 685 686 mm_release(tsk, mm); 687 if (!mm) 688 return; 689 /* 690 * Serialize with any possible pending coredump. 691 * We must hold mmap_sem around checking core_state 692 * and clearing tsk->mm. The core-inducing thread 693 * will increment ->nr_threads for each thread in the 694 * group with ->mm != NULL. 695 */ 696 down_read(&mm->mmap_sem); 697 core_state = mm->core_state; 698 if (core_state) { 699 struct core_thread self; 700 up_read(&mm->mmap_sem); 701 702 self.task = tsk; 703 self.next = xchg(&core_state->dumper.next, &self); 704 /* 705 * Implies mb(), the result of xchg() must be visible 706 * to core_state->dumper. 707 */ 708 if (atomic_dec_and_test(&core_state->nr_threads)) 709 complete(&core_state->startup); 710 711 for (;;) { 712 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 713 if (!self.task) /* see coredump_finish() */ 714 break; 715 schedule(); 716 } 717 __set_task_state(tsk, TASK_RUNNING); 718 down_read(&mm->mmap_sem); 719 } 720 atomic_inc(&mm->mm_count); 721 BUG_ON(mm != tsk->active_mm); 722 /* more a memory barrier than a real lock */ 723 task_lock(tsk); 724 tsk->mm = NULL; 725 up_read(&mm->mmap_sem); 726 enter_lazy_tlb(mm, current); 727 /* We don't want this task to be frozen prematurely */ 728 clear_freeze_flag(tsk); 729 task_unlock(tsk); 730 mm_update_next_owner(mm); 731 mmput(mm); 732 } 733 734 /* 735 * Return nonzero if @parent's children should reap themselves. 736 * 737 * Called with write_lock_irq(&tasklist_lock) held. 738 */ 739 static int ignoring_children(struct task_struct *parent) 740 { 741 int ret; 742 struct sighand_struct *psig = parent->sighand; 743 unsigned long flags; 744 spin_lock_irqsave(&psig->siglock, flags); 745 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 746 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); 747 spin_unlock_irqrestore(&psig->siglock, flags); 748 return ret; 749 } 750 751 /* 752 * Detach all tasks we were using ptrace on. 753 * Any that need to be release_task'd are put on the @dead list. 754 * 755 * Called with write_lock(&tasklist_lock) held. 756 */ 757 static void ptrace_exit(struct task_struct *parent, struct list_head *dead) 758 { 759 struct task_struct *p, *n; 760 int ign = -1; 761 762 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { 763 __ptrace_unlink(p); 764 765 if (p->exit_state != EXIT_ZOMBIE) 766 continue; 767 768 /* 769 * If it's a zombie, our attachedness prevented normal 770 * parent notification or self-reaping. Do notification 771 * now if it would have happened earlier. If it should 772 * reap itself, add it to the @dead list. We can't call 773 * release_task() here because we already hold tasklist_lock. 774 * 775 * If it's our own child, there is no notification to do. 776 * But if our normal children self-reap, then this child 777 * was prevented by ptrace and we must reap it now. 778 */ 779 if (!task_detached(p) && thread_group_empty(p)) { 780 if (!same_thread_group(p->real_parent, parent)) 781 do_notify_parent(p, p->exit_signal); 782 else { 783 if (ign < 0) 784 ign = ignoring_children(parent); 785 if (ign) 786 p->exit_signal = -1; 787 } 788 } 789 790 if (task_detached(p)) { 791 /* 792 * Mark it as in the process of being reaped. 793 */ 794 p->exit_state = EXIT_DEAD; 795 list_add(&p->ptrace_entry, dead); 796 } 797 } 798 } 799 800 /* 801 * Finish up exit-time ptrace cleanup. 802 * 803 * Called without locks. 804 */ 805 static void ptrace_exit_finish(struct task_struct *parent, 806 struct list_head *dead) 807 { 808 struct task_struct *p, *n; 809 810 BUG_ON(!list_empty(&parent->ptraced)); 811 812 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 813 list_del_init(&p->ptrace_entry); 814 release_task(p); 815 } 816 } 817 818 static void reparent_thread(struct task_struct *p, struct task_struct *father) 819 { 820 if (p->pdeath_signal) 821 /* We already hold the tasklist_lock here. */ 822 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 823 824 list_move_tail(&p->sibling, &p->real_parent->children); 825 826 /* If this is a threaded reparent there is no need to 827 * notify anyone anything has happened. 828 */ 829 if (same_thread_group(p->real_parent, father)) 830 return; 831 832 /* We don't want people slaying init. */ 833 if (!task_detached(p)) 834 p->exit_signal = SIGCHLD; 835 836 /* If we'd notified the old parent about this child's death, 837 * also notify the new parent. 838 */ 839 if (!ptrace_reparented(p) && 840 p->exit_state == EXIT_ZOMBIE && 841 !task_detached(p) && thread_group_empty(p)) 842 do_notify_parent(p, p->exit_signal); 843 844 kill_orphaned_pgrp(p, father); 845 } 846 847 /* 848 * When we die, we re-parent all our children. 849 * Try to give them to another thread in our thread 850 * group, and if no such member exists, give it to 851 * the child reaper process (ie "init") in our pid 852 * space. 853 */ 854 static struct task_struct *find_new_reaper(struct task_struct *father) 855 { 856 struct pid_namespace *pid_ns = task_active_pid_ns(father); 857 struct task_struct *thread; 858 859 thread = father; 860 while_each_thread(father, thread) { 861 if (thread->flags & PF_EXITING) 862 continue; 863 if (unlikely(pid_ns->child_reaper == father)) 864 pid_ns->child_reaper = thread; 865 return thread; 866 } 867 868 if (unlikely(pid_ns->child_reaper == father)) { 869 write_unlock_irq(&tasklist_lock); 870 if (unlikely(pid_ns == &init_pid_ns)) 871 panic("Attempted to kill init!"); 872 873 zap_pid_ns_processes(pid_ns); 874 write_lock_irq(&tasklist_lock); 875 /* 876 * We can not clear ->child_reaper or leave it alone. 877 * There may by stealth EXIT_DEAD tasks on ->children, 878 * forget_original_parent() must move them somewhere. 879 */ 880 pid_ns->child_reaper = init_pid_ns.child_reaper; 881 } 882 883 return pid_ns->child_reaper; 884 } 885 886 static void forget_original_parent(struct task_struct *father) 887 { 888 struct task_struct *p, *n, *reaper; 889 LIST_HEAD(ptrace_dead); 890 891 write_lock_irq(&tasklist_lock); 892 reaper = find_new_reaper(father); 893 /* 894 * First clean up ptrace if we were using it. 895 */ 896 ptrace_exit(father, &ptrace_dead); 897 898 list_for_each_entry_safe(p, n, &father->children, sibling) { 899 p->real_parent = reaper; 900 if (p->parent == father) { 901 BUG_ON(p->ptrace); 902 p->parent = p->real_parent; 903 } 904 reparent_thread(p, father); 905 } 906 907 write_unlock_irq(&tasklist_lock); 908 BUG_ON(!list_empty(&father->children)); 909 910 ptrace_exit_finish(father, &ptrace_dead); 911 } 912 913 /* 914 * Send signals to all our closest relatives so that they know 915 * to properly mourn us.. 916 */ 917 static void exit_notify(struct task_struct *tsk, int group_dead) 918 { 919 int signal; 920 void *cookie; 921 922 /* 923 * This does two things: 924 * 925 * A. Make init inherit all the child processes 926 * B. Check to see if any process groups have become orphaned 927 * as a result of our exiting, and if they have any stopped 928 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 929 */ 930 forget_original_parent(tsk); 931 exit_task_namespaces(tsk); 932 933 write_lock_irq(&tasklist_lock); 934 if (group_dead) 935 kill_orphaned_pgrp(tsk->group_leader, NULL); 936 937 /* Let father know we died 938 * 939 * Thread signals are configurable, but you aren't going to use 940 * that to send signals to arbitary processes. 941 * That stops right now. 942 * 943 * If the parent exec id doesn't match the exec id we saved 944 * when we started then we know the parent has changed security 945 * domain. 946 * 947 * If our self_exec id doesn't match our parent_exec_id then 948 * we have changed execution domain as these two values started 949 * the same after a fork. 950 */ 951 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 952 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 953 tsk->self_exec_id != tsk->parent_exec_id) && 954 !capable(CAP_KILL)) 955 tsk->exit_signal = SIGCHLD; 956 957 signal = tracehook_notify_death(tsk, &cookie, group_dead); 958 if (signal >= 0) 959 signal = do_notify_parent(tsk, signal); 960 961 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 962 963 /* mt-exec, de_thread() is waiting for us */ 964 if (thread_group_leader(tsk) && 965 tsk->signal->group_exit_task && 966 tsk->signal->notify_count < 0) 967 wake_up_process(tsk->signal->group_exit_task); 968 969 write_unlock_irq(&tasklist_lock); 970 971 tracehook_report_death(tsk, signal, cookie, group_dead); 972 973 /* If the process is dead, release it - nobody will wait for it */ 974 if (signal == DEATH_REAP) 975 release_task(tsk); 976 } 977 978 #ifdef CONFIG_DEBUG_STACK_USAGE 979 static void check_stack_usage(void) 980 { 981 static DEFINE_SPINLOCK(low_water_lock); 982 static int lowest_to_date = THREAD_SIZE; 983 unsigned long free; 984 985 free = stack_not_used(current); 986 987 if (free >= lowest_to_date) 988 return; 989 990 spin_lock(&low_water_lock); 991 if (free < lowest_to_date) { 992 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 993 "left\n", 994 current->comm, free); 995 lowest_to_date = free; 996 } 997 spin_unlock(&low_water_lock); 998 } 999 #else 1000 static inline void check_stack_usage(void) {} 1001 #endif 1002 1003 NORET_TYPE void do_exit(long code) 1004 { 1005 struct task_struct *tsk = current; 1006 int group_dead; 1007 1008 profile_task_exit(tsk); 1009 1010 WARN_ON(atomic_read(&tsk->fs_excl)); 1011 1012 if (unlikely(in_interrupt())) 1013 panic("Aiee, killing interrupt handler!"); 1014 if (unlikely(!tsk->pid)) 1015 panic("Attempted to kill the idle task!"); 1016 1017 tracehook_report_exit(&code); 1018 1019 /* 1020 * We're taking recursive faults here in do_exit. Safest is to just 1021 * leave this task alone and wait for reboot. 1022 */ 1023 if (unlikely(tsk->flags & PF_EXITING)) { 1024 printk(KERN_ALERT 1025 "Fixing recursive fault but reboot is needed!\n"); 1026 /* 1027 * We can do this unlocked here. The futex code uses 1028 * this flag just to verify whether the pi state 1029 * cleanup has been done or not. In the worst case it 1030 * loops once more. We pretend that the cleanup was 1031 * done as there is no way to return. Either the 1032 * OWNER_DIED bit is set by now or we push the blocked 1033 * task into the wait for ever nirwana as well. 1034 */ 1035 tsk->flags |= PF_EXITPIDONE; 1036 set_current_state(TASK_UNINTERRUPTIBLE); 1037 schedule(); 1038 } 1039 1040 exit_signals(tsk); /* sets PF_EXITING */ 1041 /* 1042 * tsk->flags are checked in the futex code to protect against 1043 * an exiting task cleaning up the robust pi futexes. 1044 */ 1045 smp_mb(); 1046 spin_unlock_wait(&tsk->pi_lock); 1047 1048 if (unlikely(in_atomic())) 1049 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1050 current->comm, task_pid_nr(current), 1051 preempt_count()); 1052 1053 acct_update_integrals(tsk); 1054 1055 group_dead = atomic_dec_and_test(&tsk->signal->live); 1056 if (group_dead) { 1057 hrtimer_cancel(&tsk->signal->real_timer); 1058 exit_itimers(tsk->signal); 1059 } 1060 acct_collect(code, group_dead); 1061 if (group_dead) 1062 tty_audit_exit(); 1063 if (unlikely(tsk->audit_context)) 1064 audit_free(tsk); 1065 1066 tsk->exit_code = code; 1067 taskstats_exit(tsk, group_dead); 1068 1069 exit_mm(tsk); 1070 1071 if (group_dead) 1072 acct_process(); 1073 trace_sched_process_exit(tsk); 1074 1075 exit_sem(tsk); 1076 exit_files(tsk); 1077 exit_fs(tsk); 1078 check_stack_usage(); 1079 exit_thread(); 1080 cgroup_exit(tsk, 1); 1081 1082 if (group_dead && tsk->signal->leader) 1083 disassociate_ctty(1); 1084 1085 module_put(task_thread_info(tsk)->exec_domain->module); 1086 if (tsk->binfmt) 1087 module_put(tsk->binfmt->module); 1088 1089 proc_exit_connector(tsk); 1090 exit_notify(tsk, group_dead); 1091 #ifdef CONFIG_NUMA 1092 mpol_put(tsk->mempolicy); 1093 tsk->mempolicy = NULL; 1094 #endif 1095 #ifdef CONFIG_FUTEX 1096 /* 1097 * This must happen late, after the PID is not 1098 * hashed anymore: 1099 */ 1100 if (unlikely(!list_empty(&tsk->pi_state_list))) 1101 exit_pi_state_list(tsk); 1102 if (unlikely(current->pi_state_cache)) 1103 kfree(current->pi_state_cache); 1104 #endif 1105 /* 1106 * Make sure we are holding no locks: 1107 */ 1108 debug_check_no_locks_held(tsk); 1109 /* 1110 * We can do this unlocked here. The futex code uses this flag 1111 * just to verify whether the pi state cleanup has been done 1112 * or not. In the worst case it loops once more. 1113 */ 1114 tsk->flags |= PF_EXITPIDONE; 1115 1116 if (tsk->io_context) 1117 exit_io_context(); 1118 1119 if (tsk->splice_pipe) 1120 __free_pipe_info(tsk->splice_pipe); 1121 1122 preempt_disable(); 1123 /* causes final put_task_struct in finish_task_switch(). */ 1124 tsk->state = TASK_DEAD; 1125 schedule(); 1126 BUG(); 1127 /* Avoid "noreturn function does return". */ 1128 for (;;) 1129 cpu_relax(); /* For when BUG is null */ 1130 } 1131 1132 EXPORT_SYMBOL_GPL(do_exit); 1133 1134 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1135 { 1136 if (comp) 1137 complete(comp); 1138 1139 do_exit(code); 1140 } 1141 1142 EXPORT_SYMBOL(complete_and_exit); 1143 1144 SYSCALL_DEFINE1(exit, int, error_code) 1145 { 1146 do_exit((error_code&0xff)<<8); 1147 } 1148 1149 /* 1150 * Take down every thread in the group. This is called by fatal signals 1151 * as well as by sys_exit_group (below). 1152 */ 1153 NORET_TYPE void 1154 do_group_exit(int exit_code) 1155 { 1156 struct signal_struct *sig = current->signal; 1157 1158 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1159 1160 if (signal_group_exit(sig)) 1161 exit_code = sig->group_exit_code; 1162 else if (!thread_group_empty(current)) { 1163 struct sighand_struct *const sighand = current->sighand; 1164 spin_lock_irq(&sighand->siglock); 1165 if (signal_group_exit(sig)) 1166 /* Another thread got here before we took the lock. */ 1167 exit_code = sig->group_exit_code; 1168 else { 1169 sig->group_exit_code = exit_code; 1170 sig->flags = SIGNAL_GROUP_EXIT; 1171 zap_other_threads(current); 1172 } 1173 spin_unlock_irq(&sighand->siglock); 1174 } 1175 1176 do_exit(exit_code); 1177 /* NOTREACHED */ 1178 } 1179 1180 /* 1181 * this kills every thread in the thread group. Note that any externally 1182 * wait4()-ing process will get the correct exit code - even if this 1183 * thread is not the thread group leader. 1184 */ 1185 SYSCALL_DEFINE1(exit_group, int, error_code) 1186 { 1187 do_group_exit((error_code & 0xff) << 8); 1188 /* NOTREACHED */ 1189 return 0; 1190 } 1191 1192 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1193 { 1194 struct pid *pid = NULL; 1195 if (type == PIDTYPE_PID) 1196 pid = task->pids[type].pid; 1197 else if (type < PIDTYPE_MAX) 1198 pid = task->group_leader->pids[type].pid; 1199 return pid; 1200 } 1201 1202 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1203 struct task_struct *p) 1204 { 1205 int err; 1206 1207 if (type < PIDTYPE_MAX) { 1208 if (task_pid_type(p, type) != pid) 1209 return 0; 1210 } 1211 1212 /* Wait for all children (clone and not) if __WALL is set; 1213 * otherwise, wait for clone children *only* if __WCLONE is 1214 * set; otherwise, wait for non-clone children *only*. (Note: 1215 * A "clone" child here is one that reports to its parent 1216 * using a signal other than SIGCHLD.) */ 1217 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1218 && !(options & __WALL)) 1219 return 0; 1220 1221 err = security_task_wait(p); 1222 if (err) 1223 return err; 1224 1225 return 1; 1226 } 1227 1228 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1229 int why, int status, 1230 struct siginfo __user *infop, 1231 struct rusage __user *rusagep) 1232 { 1233 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1234 1235 put_task_struct(p); 1236 if (!retval) 1237 retval = put_user(SIGCHLD, &infop->si_signo); 1238 if (!retval) 1239 retval = put_user(0, &infop->si_errno); 1240 if (!retval) 1241 retval = put_user((short)why, &infop->si_code); 1242 if (!retval) 1243 retval = put_user(pid, &infop->si_pid); 1244 if (!retval) 1245 retval = put_user(uid, &infop->si_uid); 1246 if (!retval) 1247 retval = put_user(status, &infop->si_status); 1248 if (!retval) 1249 retval = pid; 1250 return retval; 1251 } 1252 1253 /* 1254 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1255 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1256 * the lock and this task is uninteresting. If we return nonzero, we have 1257 * released the lock and the system call should return. 1258 */ 1259 static int wait_task_zombie(struct task_struct *p, int options, 1260 struct siginfo __user *infop, 1261 int __user *stat_addr, struct rusage __user *ru) 1262 { 1263 unsigned long state; 1264 int retval, status, traced; 1265 pid_t pid = task_pid_vnr(p); 1266 uid_t uid = __task_cred(p)->uid; 1267 1268 if (!likely(options & WEXITED)) 1269 return 0; 1270 1271 if (unlikely(options & WNOWAIT)) { 1272 int exit_code = p->exit_code; 1273 int why, status; 1274 1275 get_task_struct(p); 1276 read_unlock(&tasklist_lock); 1277 if ((exit_code & 0x7f) == 0) { 1278 why = CLD_EXITED; 1279 status = exit_code >> 8; 1280 } else { 1281 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1282 status = exit_code & 0x7f; 1283 } 1284 return wait_noreap_copyout(p, pid, uid, why, 1285 status, infop, ru); 1286 } 1287 1288 /* 1289 * Try to move the task's state to DEAD 1290 * only one thread is allowed to do this: 1291 */ 1292 state = xchg(&p->exit_state, EXIT_DEAD); 1293 if (state != EXIT_ZOMBIE) { 1294 BUG_ON(state != EXIT_DEAD); 1295 return 0; 1296 } 1297 1298 traced = ptrace_reparented(p); 1299 1300 if (likely(!traced)) { 1301 struct signal_struct *psig; 1302 struct signal_struct *sig; 1303 struct task_cputime cputime; 1304 1305 /* 1306 * The resource counters for the group leader are in its 1307 * own task_struct. Those for dead threads in the group 1308 * are in its signal_struct, as are those for the child 1309 * processes it has previously reaped. All these 1310 * accumulate in the parent's signal_struct c* fields. 1311 * 1312 * We don't bother to take a lock here to protect these 1313 * p->signal fields, because they are only touched by 1314 * __exit_signal, which runs with tasklist_lock 1315 * write-locked anyway, and so is excluded here. We do 1316 * need to protect the access to p->parent->signal fields, 1317 * as other threads in the parent group can be right 1318 * here reaping other children at the same time. 1319 * 1320 * We use thread_group_cputime() to get times for the thread 1321 * group, which consolidates times for all threads in the 1322 * group including the group leader. 1323 */ 1324 thread_group_cputime(p, &cputime); 1325 spin_lock_irq(&p->parent->sighand->siglock); 1326 psig = p->parent->signal; 1327 sig = p->signal; 1328 psig->cutime = 1329 cputime_add(psig->cutime, 1330 cputime_add(cputime.utime, 1331 sig->cutime)); 1332 psig->cstime = 1333 cputime_add(psig->cstime, 1334 cputime_add(cputime.stime, 1335 sig->cstime)); 1336 psig->cgtime = 1337 cputime_add(psig->cgtime, 1338 cputime_add(p->gtime, 1339 cputime_add(sig->gtime, 1340 sig->cgtime))); 1341 psig->cmin_flt += 1342 p->min_flt + sig->min_flt + sig->cmin_flt; 1343 psig->cmaj_flt += 1344 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1345 psig->cnvcsw += 1346 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1347 psig->cnivcsw += 1348 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1349 psig->cinblock += 1350 task_io_get_inblock(p) + 1351 sig->inblock + sig->cinblock; 1352 psig->coublock += 1353 task_io_get_oublock(p) + 1354 sig->oublock + sig->coublock; 1355 task_io_accounting_add(&psig->ioac, &p->ioac); 1356 task_io_accounting_add(&psig->ioac, &sig->ioac); 1357 spin_unlock_irq(&p->parent->sighand->siglock); 1358 } 1359 1360 /* 1361 * Now we are sure this task is interesting, and no other 1362 * thread can reap it because we set its state to EXIT_DEAD. 1363 */ 1364 read_unlock(&tasklist_lock); 1365 1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1368 ? p->signal->group_exit_code : p->exit_code; 1369 if (!retval && stat_addr) 1370 retval = put_user(status, stat_addr); 1371 if (!retval && infop) 1372 retval = put_user(SIGCHLD, &infop->si_signo); 1373 if (!retval && infop) 1374 retval = put_user(0, &infop->si_errno); 1375 if (!retval && infop) { 1376 int why; 1377 1378 if ((status & 0x7f) == 0) { 1379 why = CLD_EXITED; 1380 status >>= 8; 1381 } else { 1382 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1383 status &= 0x7f; 1384 } 1385 retval = put_user((short)why, &infop->si_code); 1386 if (!retval) 1387 retval = put_user(status, &infop->si_status); 1388 } 1389 if (!retval && infop) 1390 retval = put_user(pid, &infop->si_pid); 1391 if (!retval && infop) 1392 retval = put_user(uid, &infop->si_uid); 1393 if (!retval) 1394 retval = pid; 1395 1396 if (traced) { 1397 write_lock_irq(&tasklist_lock); 1398 /* We dropped tasklist, ptracer could die and untrace */ 1399 ptrace_unlink(p); 1400 /* 1401 * If this is not a detached task, notify the parent. 1402 * If it's still not detached after that, don't release 1403 * it now. 1404 */ 1405 if (!task_detached(p)) { 1406 do_notify_parent(p, p->exit_signal); 1407 if (!task_detached(p)) { 1408 p->exit_state = EXIT_ZOMBIE; 1409 p = NULL; 1410 } 1411 } 1412 write_unlock_irq(&tasklist_lock); 1413 } 1414 if (p != NULL) 1415 release_task(p); 1416 1417 return retval; 1418 } 1419 1420 /* 1421 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1422 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1423 * the lock and this task is uninteresting. If we return nonzero, we have 1424 * released the lock and the system call should return. 1425 */ 1426 static int wait_task_stopped(int ptrace, struct task_struct *p, 1427 int options, struct siginfo __user *infop, 1428 int __user *stat_addr, struct rusage __user *ru) 1429 { 1430 int retval, exit_code, why; 1431 uid_t uid = 0; /* unneeded, required by compiler */ 1432 pid_t pid; 1433 1434 if (!(options & WUNTRACED)) 1435 return 0; 1436 1437 exit_code = 0; 1438 spin_lock_irq(&p->sighand->siglock); 1439 1440 if (unlikely(!task_is_stopped_or_traced(p))) 1441 goto unlock_sig; 1442 1443 if (!ptrace && p->signal->group_stop_count > 0) 1444 /* 1445 * A group stop is in progress and this is the group leader. 1446 * We won't report until all threads have stopped. 1447 */ 1448 goto unlock_sig; 1449 1450 exit_code = p->exit_code; 1451 if (!exit_code) 1452 goto unlock_sig; 1453 1454 if (!unlikely(options & WNOWAIT)) 1455 p->exit_code = 0; 1456 1457 /* don't need the RCU readlock here as we're holding a spinlock */ 1458 uid = __task_cred(p)->uid; 1459 unlock_sig: 1460 spin_unlock_irq(&p->sighand->siglock); 1461 if (!exit_code) 1462 return 0; 1463 1464 /* 1465 * Now we are pretty sure this task is interesting. 1466 * Make sure it doesn't get reaped out from under us while we 1467 * give up the lock and then examine it below. We don't want to 1468 * keep holding onto the tasklist_lock while we call getrusage and 1469 * possibly take page faults for user memory. 1470 */ 1471 get_task_struct(p); 1472 pid = task_pid_vnr(p); 1473 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1474 read_unlock(&tasklist_lock); 1475 1476 if (unlikely(options & WNOWAIT)) 1477 return wait_noreap_copyout(p, pid, uid, 1478 why, exit_code, 1479 infop, ru); 1480 1481 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1482 if (!retval && stat_addr) 1483 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1484 if (!retval && infop) 1485 retval = put_user(SIGCHLD, &infop->si_signo); 1486 if (!retval && infop) 1487 retval = put_user(0, &infop->si_errno); 1488 if (!retval && infop) 1489 retval = put_user((short)why, &infop->si_code); 1490 if (!retval && infop) 1491 retval = put_user(exit_code, &infop->si_status); 1492 if (!retval && infop) 1493 retval = put_user(pid, &infop->si_pid); 1494 if (!retval && infop) 1495 retval = put_user(uid, &infop->si_uid); 1496 if (!retval) 1497 retval = pid; 1498 put_task_struct(p); 1499 1500 BUG_ON(!retval); 1501 return retval; 1502 } 1503 1504 /* 1505 * Handle do_wait work for one task in a live, non-stopped state. 1506 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1507 * the lock and this task is uninteresting. If we return nonzero, we have 1508 * released the lock and the system call should return. 1509 */ 1510 static int wait_task_continued(struct task_struct *p, int options, 1511 struct siginfo __user *infop, 1512 int __user *stat_addr, struct rusage __user *ru) 1513 { 1514 int retval; 1515 pid_t pid; 1516 uid_t uid; 1517 1518 if (!unlikely(options & WCONTINUED)) 1519 return 0; 1520 1521 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1522 return 0; 1523 1524 spin_lock_irq(&p->sighand->siglock); 1525 /* Re-check with the lock held. */ 1526 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1527 spin_unlock_irq(&p->sighand->siglock); 1528 return 0; 1529 } 1530 if (!unlikely(options & WNOWAIT)) 1531 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1532 uid = __task_cred(p)->uid; 1533 spin_unlock_irq(&p->sighand->siglock); 1534 1535 pid = task_pid_vnr(p); 1536 get_task_struct(p); 1537 read_unlock(&tasklist_lock); 1538 1539 if (!infop) { 1540 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1541 put_task_struct(p); 1542 if (!retval && stat_addr) 1543 retval = put_user(0xffff, stat_addr); 1544 if (!retval) 1545 retval = pid; 1546 } else { 1547 retval = wait_noreap_copyout(p, pid, uid, 1548 CLD_CONTINUED, SIGCONT, 1549 infop, ru); 1550 BUG_ON(retval == 0); 1551 } 1552 1553 return retval; 1554 } 1555 1556 /* 1557 * Consider @p for a wait by @parent. 1558 * 1559 * -ECHILD should be in *@notask_error before the first call. 1560 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1561 * Returns zero if the search for a child should continue; 1562 * then *@notask_error is 0 if @p is an eligible child, 1563 * or another error from security_task_wait(), or still -ECHILD. 1564 */ 1565 static int wait_consider_task(struct task_struct *parent, int ptrace, 1566 struct task_struct *p, int *notask_error, 1567 enum pid_type type, struct pid *pid, int options, 1568 struct siginfo __user *infop, 1569 int __user *stat_addr, struct rusage __user *ru) 1570 { 1571 int ret = eligible_child(type, pid, options, p); 1572 if (!ret) 1573 return ret; 1574 1575 if (unlikely(ret < 0)) { 1576 /* 1577 * If we have not yet seen any eligible child, 1578 * then let this error code replace -ECHILD. 1579 * A permission error will give the user a clue 1580 * to look for security policy problems, rather 1581 * than for mysterious wait bugs. 1582 */ 1583 if (*notask_error) 1584 *notask_error = ret; 1585 } 1586 1587 if (likely(!ptrace) && unlikely(p->ptrace)) { 1588 /* 1589 * This child is hidden by ptrace. 1590 * We aren't allowed to see it now, but eventually we will. 1591 */ 1592 *notask_error = 0; 1593 return 0; 1594 } 1595 1596 if (p->exit_state == EXIT_DEAD) 1597 return 0; 1598 1599 /* 1600 * We don't reap group leaders with subthreads. 1601 */ 1602 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1603 return wait_task_zombie(p, options, infop, stat_addr, ru); 1604 1605 /* 1606 * It's stopped or running now, so it might 1607 * later continue, exit, or stop again. 1608 */ 1609 *notask_error = 0; 1610 1611 if (task_is_stopped_or_traced(p)) 1612 return wait_task_stopped(ptrace, p, options, 1613 infop, stat_addr, ru); 1614 1615 return wait_task_continued(p, options, infop, stat_addr, ru); 1616 } 1617 1618 /* 1619 * Do the work of do_wait() for one thread in the group, @tsk. 1620 * 1621 * -ECHILD should be in *@notask_error before the first call. 1622 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1623 * Returns zero if the search for a child should continue; then 1624 * *@notask_error is 0 if there were any eligible children, 1625 * or another error from security_task_wait(), or still -ECHILD. 1626 */ 1627 static int do_wait_thread(struct task_struct *tsk, int *notask_error, 1628 enum pid_type type, struct pid *pid, int options, 1629 struct siginfo __user *infop, int __user *stat_addr, 1630 struct rusage __user *ru) 1631 { 1632 struct task_struct *p; 1633 1634 list_for_each_entry(p, &tsk->children, sibling) { 1635 /* 1636 * Do not consider detached threads. 1637 */ 1638 if (!task_detached(p)) { 1639 int ret = wait_consider_task(tsk, 0, p, notask_error, 1640 type, pid, options, 1641 infop, stat_addr, ru); 1642 if (ret) 1643 return ret; 1644 } 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, 1651 enum pid_type type, struct pid *pid, int options, 1652 struct siginfo __user *infop, int __user *stat_addr, 1653 struct rusage __user *ru) 1654 { 1655 struct task_struct *p; 1656 1657 /* 1658 * Traditionally we see ptrace'd stopped tasks regardless of options. 1659 */ 1660 options |= WUNTRACED; 1661 1662 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1663 int ret = wait_consider_task(tsk, 1, p, notask_error, 1664 type, pid, options, 1665 infop, stat_addr, ru); 1666 if (ret) 1667 return ret; 1668 } 1669 1670 return 0; 1671 } 1672 1673 static long do_wait(enum pid_type type, struct pid *pid, int options, 1674 struct siginfo __user *infop, int __user *stat_addr, 1675 struct rusage __user *ru) 1676 { 1677 DECLARE_WAITQUEUE(wait, current); 1678 struct task_struct *tsk; 1679 int retval; 1680 1681 trace_sched_process_wait(pid); 1682 1683 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1684 repeat: 1685 /* 1686 * If there is nothing that can match our critiera just get out. 1687 * We will clear @retval to zero if we see any child that might later 1688 * match our criteria, even if we are not able to reap it yet. 1689 */ 1690 retval = -ECHILD; 1691 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1692 goto end; 1693 1694 current->state = TASK_INTERRUPTIBLE; 1695 read_lock(&tasklist_lock); 1696 tsk = current; 1697 do { 1698 int tsk_result = do_wait_thread(tsk, &retval, 1699 type, pid, options, 1700 infop, stat_addr, ru); 1701 if (!tsk_result) 1702 tsk_result = ptrace_do_wait(tsk, &retval, 1703 type, pid, options, 1704 infop, stat_addr, ru); 1705 if (tsk_result) { 1706 /* 1707 * tasklist_lock is unlocked and we have a final result. 1708 */ 1709 retval = tsk_result; 1710 goto end; 1711 } 1712 1713 if (options & __WNOTHREAD) 1714 break; 1715 tsk = next_thread(tsk); 1716 BUG_ON(tsk->signal != current->signal); 1717 } while (tsk != current); 1718 read_unlock(&tasklist_lock); 1719 1720 if (!retval && !(options & WNOHANG)) { 1721 retval = -ERESTARTSYS; 1722 if (!signal_pending(current)) { 1723 schedule(); 1724 goto repeat; 1725 } 1726 } 1727 1728 end: 1729 current->state = TASK_RUNNING; 1730 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1731 if (infop) { 1732 if (retval > 0) 1733 retval = 0; 1734 else { 1735 /* 1736 * For a WNOHANG return, clear out all the fields 1737 * we would set so the user can easily tell the 1738 * difference. 1739 */ 1740 if (!retval) 1741 retval = put_user(0, &infop->si_signo); 1742 if (!retval) 1743 retval = put_user(0, &infop->si_errno); 1744 if (!retval) 1745 retval = put_user(0, &infop->si_code); 1746 if (!retval) 1747 retval = put_user(0, &infop->si_pid); 1748 if (!retval) 1749 retval = put_user(0, &infop->si_uid); 1750 if (!retval) 1751 retval = put_user(0, &infop->si_status); 1752 } 1753 } 1754 return retval; 1755 } 1756 1757 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1758 infop, int, options, struct rusage __user *, ru) 1759 { 1760 struct pid *pid = NULL; 1761 enum pid_type type; 1762 long ret; 1763 1764 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1765 return -EINVAL; 1766 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1767 return -EINVAL; 1768 1769 switch (which) { 1770 case P_ALL: 1771 type = PIDTYPE_MAX; 1772 break; 1773 case P_PID: 1774 type = PIDTYPE_PID; 1775 if (upid <= 0) 1776 return -EINVAL; 1777 break; 1778 case P_PGID: 1779 type = PIDTYPE_PGID; 1780 if (upid <= 0) 1781 return -EINVAL; 1782 break; 1783 default: 1784 return -EINVAL; 1785 } 1786 1787 if (type < PIDTYPE_MAX) 1788 pid = find_get_pid(upid); 1789 ret = do_wait(type, pid, options, infop, NULL, ru); 1790 put_pid(pid); 1791 1792 /* avoid REGPARM breakage on x86: */ 1793 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1794 return ret; 1795 } 1796 1797 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1798 int, options, struct rusage __user *, ru) 1799 { 1800 struct pid *pid = NULL; 1801 enum pid_type type; 1802 long ret; 1803 1804 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1805 __WNOTHREAD|__WCLONE|__WALL)) 1806 return -EINVAL; 1807 1808 if (upid == -1) 1809 type = PIDTYPE_MAX; 1810 else if (upid < 0) { 1811 type = PIDTYPE_PGID; 1812 pid = find_get_pid(-upid); 1813 } else if (upid == 0) { 1814 type = PIDTYPE_PGID; 1815 pid = get_pid(task_pgrp(current)); 1816 } else /* upid > 0 */ { 1817 type = PIDTYPE_PID; 1818 pid = find_get_pid(upid); 1819 } 1820 1821 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1822 put_pid(pid); 1823 1824 /* avoid REGPARM breakage on x86: */ 1825 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1826 return ret; 1827 } 1828 1829 #ifdef __ARCH_WANT_SYS_WAITPID 1830 1831 /* 1832 * sys_waitpid() remains for compatibility. waitpid() should be 1833 * implemented by calling sys_wait4() from libc.a. 1834 */ 1835 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1836 { 1837 return sys_wait4(pid, stat_addr, options, NULL); 1838 } 1839 1840 #endif 1841